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This paper is devoted to a spectral description of wave propagation phenomena in
conservative unbounded media, or, more precisely, the fact that a time-dependent
wave can often be represented by a continuous superposition of time-harmonic waves.
We are concerned here with the question of the perturbation of such a generalized
eigenfunction expansion in the context of scattering problems: if such a property
holds for a free situation, i.e. an unperturbed propagative medium, what does it
become under perturbation, i.e. in the presence of scatterers? The question has been
widely studied in many particular situations. The aim of this paper is to collect some
of them in an abstract framework and exhibit sufficient conditions for a perturbation
result. We investigate the physical meaning of these conditions which essentially
consist in, on the one hand, a stable limiting absorption principle for the free
problem, and on the other hand, a compactness (or short-range) property of the
perturbed problem.

This approach is illustrated by the scattering of linear water waves by a floating
body. The above properties are obtained with the help of integral representations,
which allow us to deduce the asymptotic behaviour of time-harmonic waves from that
of the Green function of the free problem. The results are not new: the main
improvement lies in the structure of the proof, which clearly distinguishes the
properties related to the free problem from those which involve the perturbation.

1. Introduction

1.1. Motivation

The aim of this paper is to propose a relatively general way of establishing gen-
eralized eigenfunction expansions for linear scattering problems, and illustrate the
method by a coupled problem arising in hydrodynamics: the scattering of water
waves by a floating body. The notion of eigenfunction expansion plays an essential
role in the study of wave propagation in non-dissipative continuous media, as well as
in the context of quantum physics. It provides conclusively the connection between
transient and time-harmonic phenomena. More precisely, it offers a representation
of a transient wave as a superposition of time-harmonic waves. In many textbooks,
such a representation appears as a universal truth, but is seldom rigorously justified.
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The fact is that, even for simple situations, the existing proofs are very intricate,
and hardly accessible to the layman.

From a mathematical point of view, the underlying question concerns the notion
of diagonalization of the self-adjoint operator that describes the dynamics of a prop-
agative system: can one always find a family of eigenfunctions which compose an
orthonormal basis of the energy space of the system? The problem is well under-
stood in the case of a bounded propagative domain, for which the operator generally
possesses a pure point spectrum, due to some compactness property (see, for exam-
ple, [36]). Spectral theory then ensures that the eigenfunctions can be chosen so as
to form a discrete orthonormal basis and hence the eigenfunction expansion of the
transient vibrations of the system is expressed as a series of time-harmonic states.
The present paper is rather devoted to wave propagation in unbounded media, for
which the associated operator generally possesses a continuous spectrum. In this
case, eigenfunctions have to be sought outside the finite energy space of the sys-
tem, which justifies the word ‘generalized’. And one may hope to find a continuous
orthonormal basis (in a sense to be specified) of such generalized eigenfunctions.
The general context in which such a family exists is now well understood [7, 8, 15]
but, apart from differential operators, there is no general way to construct it. Our
purpose is to focus on one particular aspect of the question, in the context of
scattering by obstacles: if one knows a basis of generalized eigenfunctions for the
medium called ‘free’ in the following, i.e. without obstacle, how can one construct
a basis for the perturbed medium, i.e. in the presence of the obstacle?

We do not deal here with the determination of a basis in the free situation, which
generally follows from the usual functional transforms. The simplest example is
given by a homogeneous medium filling the whole space. In this case the Fourier
transform is the appropriate tool for the diagonalization of the associated operator
(see, for example, [43] in acoustics), and the eigenfunction expansion appears as a
plane wave representation. Similarly, for water waves in a half-space, we shall see
in § 3 that the eigenfunction expansion follows easily from the use of a horizontal
Fourier transform. On the other hand, some particular inhomogeneous media can
be considered as free. For instance, separation of variables allows us to deal with
stratified media [45], using spectral theory of differential equations with variable
coefficients [38]. The case of gratings [44] also comes within this context.

What happens, then, when an obstacle is inserted in such a free medium? From
a physical point of view, a perturbation approach seems quite natural. Consider-
ing the free generalized eigenfunctions as incident time-harmonic waves, the gen-
eralized eigenfunctions of the scattering problem are sought as perturbations of
the previous eigenfunctions, by adding a perturbation term representing a scat-
tered time-harmonic wave. The first rigorous justification of this approach is due to
Ikebe [24] for the Schrödinger equation. His method was then improved [2,33,37,43]
and applied to many other wave propagation phenomena. The scalar wave equation
has been intensively studied in numerous situations, for example, perturbed cylin-
drical waveguides [16,17,29], wedge-shaped regions [18], stratified media [11,13,41]
and periodic waveguides [30]. Similar approaches were developed in elastodynam-
ics [10, 12, 31, 34] and electromagnetism [4, 41] and for more abstract models [40].
In hydrodynamics, the scattering of linear water waves by a fixed body was first
studied by Beale [6] (see also [21,39]).
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Collecting these different papers, one may be surprised at the apparent hetero-
geneousness of the methods used to reach the same goal. Indeed, the distinctive
feature of a given physical situation may affect most proofs, which leads us to think
that these proofs are highly ‘problem dependent’, that is, a slight change in the def-
inition of the problem requires us to adapt most proofs. This is particularly true in
the papers based on a local definition of energy (i.e. in any bounded subdomain of
the propagation medium). The purpose of the present paper is to propose a unified
approach based on a weighted definition of energy, following the notion of Hilbert
riggings developed in mathematical physics [8].

Section 2 presents an abstract perturbation result for generalized eigenfunction
expansions. This section, which is an improved version of the approach proposed
in [20], is organized as follows. In § 2.1 we set the definition of a generalized spectral
basis which furnishes a suitable functional context for generalized eigenfunction
expansions and offers a general but formal point of view on integral representations.
The theoretical framework is close to that proposed in [8]. In § 2.2, considering
an abstract wave equation, we show the basic consequences of our definition for
time–frequency analysis. The so-called limiting absorption principle guarantees the
existence of time-harmonic outgoing and incoming waves. We introduce a ‘stable’
form of this principle that plays an essential role in § 2.3, where the question of
the perturbation of a generalized spectral basis is investigated. The main result
of this paper, theorem 2.11, shows that, under some compactness property, the
perturbed generalized eigenfunctions are obtained by adding to the unperturbed
ones, considered as incident waves, the outgoing or incoming wave scattered by the
perturbation. The proof is given in § 2.4, which clarifies the connection with spectral
theory of self-adjoint operators. For the sake of simplicity, the theory is presented
under restrictive assumptions: only bounded operators with no point spectrum are
considered. We show in § 2.5 how to relax these assumptions in order to deal with
physical applications.

The method is illustrated by the two-dimensional problem of a rigid body floating
on a sea of infinite depth. The section below describes the equations of the problem
and presents a formal expression of the generalized eigenfunction expansion of the
transient motions. Its derivation is the object of § 3. We first state the mathematical
formulation of the problem in § 3.1. The free problem is studied in § 3.2, and the
compactness of the perturbation is proved in § 3.3. The final results are presented
in § 3.4. These results are not new: they slightly improve the known results [19]. The
proofs, however, are new. In particular they clearly identify the part of the work
which has to be revisited when dealing with more involved situations, for instance,
the case of an elastic floating body [22].

1.2. Main results for the two-dimensional sea-keeping problem

The linearized equations that model the coupled motions of a rigid body floating
at the free surface of an inviscid perfect fluid (with a potential flow) are well known
(see, for example, [25]). We present here a non-dimensional expression of these equa-
tions which involves the ‘acceleration potential’ Φ = Φ(X, t) (where X = (x, y) ∈ R

2

denotes a point in the fluid, and t denotes the time) instead of the usual velocity
potential (i.e. the former is the time derivative of the latter). The advantage of this
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Figure 1. Free (left) and perturbed (right) fluid domains.

formulation lies in the fact that it only involves second-order time derivatives: it is
well adapted to enter the abstract framework described in § 2.

For the sake of simplicity, we consider only two of the three possible rigid motions
of the floating body. These motions are described by a vector p = p(t) ∈ R

2, where
the first component represents the heave, i.e. the vertical displacement of the centre
of gravity G = (xG, yG) of the body with respect to its equilibrium position, and the
second component denotes the roll, i.e. its rotation in the plane. The sway, i.e. the
horizontal displacement, actually plays a different role from the other displacements
in the coupling process. The fact that it does not contribute to the buoyancy (that
is, Archimedes’) force leads to a one-way coupling: at every time t, this motion is
determined entirely by knowledge of the pair (Φ, p).

We denote by Ω̃ := {(x, y) ∈ R
2; y < 0} the half-space filled by the water at rest

in the absence of the body, and by F̃ := {(x, 0) ∈ R
2} its free surface (see figure 1).

The tilde will be used for all quantities related to this free situation. In the presence
of the body, the fluid domain is denoted by Ω ⊂ Ω̃. Its boundary consists of the
part F of F̃ located outside the body, and the immersed part Γ of its hull. At every
point X ∈ Γ , we denote by n = (nx, ny) the outer unit normal (exterior to Ω) and
by ν ∈ R

2 the vector related to n by ν(X) := (ny, (x − xG)ny − (y − yG)nx).
The time-dependent sea-keeping problem consists in finding a pair-(Φ, p) solution

to the following coupled equations at every time t > 0:

∆Φ = 0 in Ω, (1.1)

∂2
t Φ + ∂yΦ = 0 on F, (1.2)

∂nΦ − d2
t pν = 0 on Γ, (1.3)

M d2
t p + Kp +

∫
Γ

Φν dγ = 0, (1.4)

as well as suitable initial conditions. In (1.4), M and K are 2 × 2 real symmetric
positive definite matrices: M is the mass matrix of the body and K is the hydrostatic
stiffness matrix (Kp represents the variation of the Archimedes force due to a
displacement p of the body). Without loss of generality, we assume in the following
that M is the identity matrix: using the Cholesky factorization of M = LL

∗, this
amounts to replacing p, ν and K respectively by L

∗p, L
−1ν and L

−1
K(L∗)−1.

Our aim is to express (Φ, p) by means of particular time-harmonic solutions
to (1.1)–(1.4) which are constructed by considering this system as a perturbation
of the free water-wave problem:

∆Φ̃ = 0 in Ω̃,

∂2
t Φ̃ + ∂yΦ̃ = 0 on F̃ .

}
(1.5)
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A time-harmonic free wave is a solution to these equations which has the form

Φ̃(X, t) = Re{Φ̃ω(X) exp(−iωt)},

for some given angular frequency ω > 0. Throughout the paper, we shall use a
‘spectral index’ λ = ω2 instead of ω. Define

Φ̃λ,k(X) :=
1√
2π

exp(λ(ikx + y)) for λ ∈ R
+ and k = ±1 (1.6)

(where the choice of the coefficient 1/
√

2π will be justified later). These functions
obviously satisfy the time-harmonic equations corresponding to (1.5):

∆Φ̃λ,k = 0 in Ω̃, (1.7)

∂yΦ̃λ,k − λΦ̃λ,k = 0 on F̃ . (1.8)

They represent plane surface waves of frequency
√

λ which propagate towards k×∞.
We consider two kinds of perturbations of these plane waves, denoted by

w±
λ,k := (Φ±

λ,k, p±
λ,k), where Φ±

λ,k := Φ̃λ,k + Φ̇±
λ,k, (1.9)

which represents the superposition of the incident wave Φ̃λ,k and the scattered
wave Φ̇±

λ,k. These pairs correspond to periodic solutions of (1.1)–(1.4) if (Φ̇±
λ,k, p±

λ,k)
satisfies

∆Φ̇±
λ,k = 0 in Ω, (1.10)

∂yΦ̇±
λ,k − λΦ̇±

λ,k = 0 on F, (1.11)

∂nΦ̇±
λ,k + λp±

λ,k · ν = −∂nΦ̃λ,k on Γ, (1.12)

(K − λ)p±
λ,k +

∫
Γ

Φ̇±
λ,kν dγ = −

∫
Γ

Φ̃λ,kν dγ. (1.13)

The plus and minus signs are assigned to outgoing and incoming waves, respectively.
This difference is usually specified by means of a radiation condition at infinity,
which expresses that the energy of the scattered wave either radiates towards infinity
(+) or comes from infinity (−). It is given by [25]

lim
R→+∞

∫
|x|=R

|∂|x|Φ̇
±
λ,k ∓ iλΦ̇±

λ,k|2 dy = 0. (1.14)

The aim of the present paper is to understand the different properties which
allow us to express the transient solution u(t) := (Φ(·, t), p(t)) to (1.1)–(1.4) as a
continuous superposition of the time-harmonic solutions (1.9). More precisely, we
show that, for a suitable inner product 〈·, ·〉, we have

u(t) = Re
∫

R+

∑
k=±1

〈u(0), w±
λ,k〉w±

λ,ke−i
√

λt dλ, (1.15)

where u(0) only depends on the initial conditions. This formula is called the gener-
alized eigenfunction expansions of u(t).
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2. An abstract context for generalized eigenfunctions

We now describe the mathematical tools which will help us to prove the above
expansion in § 3. Our aim is to show how the well-known discrete spectral expansion
associated with a compact self-adjoint operator extends to the case of an operator
that has a continuous spectrum. Such a generalization is possible in a very general
context, but its description is intricate. Here we restrict ourselves to a particular
situation that applies for self-adjoint operators having an absolutely continuous
spectrum with no change of multiplicity. Our water-wave problem comes within
this framework, as do many other applications.

2.1. Definition of a generalized spectral basis

2.1.1. Functional framework

In a Hilbert space H equipped with an inner product (·, ·) and the associated
norm ‖ · ‖, consider a bounded self-adjoint operator A, that is, such that

(Au, v) = (u, Av) for all u, v ∈ H.

The kind of pairs (H,A) we are interested in concerns models of wave propagation
phenomena in unbounded conservative media (see § 2.2). The norm of H can be
interpreted as the energy gauge of our system; in practice, such an energy is defined
by an integral over the whole propagative medium. The elements of H represent the
possible states v of the system: their energy ‖v‖ is finite, which implies a sufficient
decay of v at infinity. The operator A describes the dynamics of the system, and the
above self-adjointness property expresses a reciprocity condition between action and
observation. On account of the unbounded nature of the medium, the eigenfunctions
of A with finite energy, if any, cannot describe the propagation at large distance:
generalized eigenfunctions have to be searched in an ‘overspace’ of H, which will
be obtained by a weighted definition of energy. We introduce below an extension
of the notion of ‘spectral basis’ composed of such generalized eigenfunctions, which
requires the following ingredients.

(i) A weighted energy Hilbert space H↓ ⊂ H equipped with a norm ‖ · ‖↓ where
the index ‘↓’ signifies that the states of H↓ have a stronger decay at infinity
than those of H: these ‘localized’ states are obtained by introducing a suitable
weight in the integral that defines ‖ · ‖. We assume that H↓ is continuously
embedded in H and dense. In this situation, its dual space H↑ := (H↓)′ can be
interpreted as an ‘overspace’ of H (containing non-localized states of infinite
energy) when the latter is identified with its own dual, i.e.

H↓ ⊂ H = H′ ⊂ H↑. (2.1)

Hence, the duality product1 between H↓ and H↑ appears as an extension of
the inner product (·, ·) since relation (2.1) means in particular that

〈u, v〉 = (u, v) for all u ∈ H↓ and all v ∈ H. (2.2)

1We actually consider a semi-duality product: 〈αu, βv〉 = αβ̄〈u, v〉 for α, β ∈ C. We use the
notation 〈u, v〉 and 〈v, u〉 for both u ∈ H↓ and v ∈ H↑: they are simply conjugated to each other.
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(ii) A spectral Hilbert space Ĥ, whose elements will represent the coordinates
of the states of H in a generalized spectral basis. For the sake of simplicity,
we consider here the situation where this spectral space can be chosen as a
standard L2-space, more precisely2

Ĥ := L2(Λ × K), (2.3)

where Λ := ]λ−, λ+[ is a bounded open interval of R (whose closure will repre-
sent the spectrum of A) equipped with the Lebesgue measure. The elements
of K are intended to number the generalized eigenfunctions associated with
a given λ ∈ Λ: these ‘wave numbers’ may compose a discrete, or continuous
set K. Here we assume that K is either finite or a compact subset of R

n (for
some n � 1) equipped with a finite measure dσ. Both spectral variables λ and
k will generally appear as indices, and we shall denote by

(û, v̂)Λ×K :=
∫

Λ×K

ûλ,kv̂λ,k dλ dσk

the inner product in L2(Λ × K). Note that if K is finite, the integral on
K should be replaced by a finite sum. We keep the integral notation for
simplicity.

We are now able to state the definition of a generalized spectral basis composed of
non-localized states wλ,k ∈ H↑ indexed by λ ∈ Λ and k ∈ K. For technical reasons
that will be clarified later, we shall need a sufficient regularity of the vector-valued
function (λ, k) 
→ wλ,k. We shall say that a family {wλ,k ∈ H↑; (λ, k) ∈ Λ × K} is
Λ-locally Hölder continuous if, for every compact interval Λ′ interior to Λ (i.e. Λ′ =
[a, b] with λ− < a < b < λ+), on the one hand

the map Λ′ × K � (λ, k) 
→ wλ,k ∈ H↑ is continuous (2.4)

and on the other hand there exist α ∈ ]0, 1] and C(Λ′) > 0 such that

sup
k∈K

‖wλ,k − wλ′,k‖↑ � C(Λ′)|λ − λ′|α for all λ, λ′ ∈ Λ′. (2.5)

Note that (2.4) derives from (2.5) when K is finite.

Definition 2.1. A Λ-locally Hölder continuous family {wλ,k ∈ H↑; (λ, k) ∈ Λ×K}
associated with a spectral space L2(Λ × K) is said to be a generalized spectral basis3

for the operator A in H if the transformation U given by

(Uv)λ,k := 〈v, wλ,k〉 for all v ∈ H↓, (2.6)
2Our special choice (2.3) of a spectral space is sufficient for the applications we have in mind in

this paper, but not if the ‘spectral multiplicity’ of a point λ ∈ Λ depends on λ. In this situation,
which occurs, for instance, in waveguides, instead of (2.3), one may choose

Ĥ := L2(Λ1 × K1) ⊕ L2(Λ2 × K2) ⊕ · · · .

The ideas we present here can be readily extended to this case. More generally, the spectral space
of a self-adjoint operator appears as a direct integral of Hilbert spaces [35].

3This definition extends the notion of a spectral basis for a Hermitian matrix, or more generally,
that of a compact self-adjoint operator A in H. In the latter case, one can find a Hilbertian
basis {wn ∈ H; n ∈ N} (i.e. an infinite complete orthonormal family) composed of eigenvectors:
(A−λn)wn = 0, where (λn)n∈N is a real sequence which tends to 0. The transformation U defined
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defines by density a unitary operator from H to L2(Λ × K) (still denoted by U)
which diagonalizes A in the sense that4

A = U∗λU . (2.7)

Remark 2.2. The functions wλ,k ∈ H↑ are called generalized eigenfunctions since
they formally satisfy

Awλ,k = λwλ,k for all (λ, k) ∈ Λ × K. (2.8)

Indeed, suppose that A(H↓) ⊂ H↓, which allows us to define the extension of A to
the space H↑ by

〈v,Au〉 := 〈Av, u〉 for all u ∈ H↑ and all v ∈ H↓.

Relation (2.7) can also be written as UA = λU , i.e.

〈Av, wλ,k〉 = λ〈v, wλ,k〉 for all v ∈ H↓,

which is merely (2.8). In practice we shall use this relation only for an intuitive con-
struction of a perturbed generalized basis (see § 2.3). Hence, the restrictive assump-
tion A(H↓) ⊂ H↓ is not necessary for our purposes.

The diagonal representation (2.7) provides the key for a functional calculus of A:
for every bounded function f : Λ → C, the operator f(A) is then simply given by

f(A) := U∗f(λ)U . (2.9)

We show below two interpretations of this formula, which also reads

(f(A)u, v) = (f(λ)Uu, Uv)Λ×K =
∫

Λ×K

f(λ)〈u, wλ,k〉〈v, wλ,k〉 dλ dσk (2.10)

if u and v belong to H↓. By permuting the integral on Λ×K with the second dual-
ity product (involving v), we first exhibit the generalized eigenfunction expansion
of f(A). The permutation of the integral with both duality products then leads to
the notion of integral representations. However, in the present context, this latter
interpretation is but formal (its justification requires more information about A),
whereas the functional scheme (2.1) yields a suitable framework for the former
interpretation.

2.1.2. Generalized eigenfunction expansions

The continuity assumption (2.4) on the wλ,k (which does not concern the behav-
iour of wλ,k near the bounds λ± of Λ) allows us to construct some superpositions

by (Uv)n := (v, wn) is a unitary operator from H to the spectral space

�2(N) :=
{

v̂ = (v̂n)n∈N; v̂n ∈ C and
∑
n∈N

|v̂n|2 < ∞
}

,

and U diagonalizes A in the sense that Au =
∑

n∈N
λn(v, wn)wn, which is merely (2.7).

4In formula (2.7), we abusively denote λ the operator of multiplication by the scalar function
λ in the spectral space L2(Λ × K).
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of these functions by means of vector-valued integrals5

v′ =
∫

Λ×K

v̂λ,kwλ,k dλ dσk ∈ H↑,

provided that v̂ ∈ L2(Λ × K) is Λ-compactly supported (i.e. v̂λ,k = 0 for all k ∈ K
and λ in a vicinity of λ±). It satisfies the Fubini property

〈v′, v〉 =
∫

Λ×K

v̂λ,k〈v, wλ,k〉 dλ dσk for all v ∈ H↓.

By virtue of the definition (2.6) of U , this relation reads 〈v′, v〉 = (v̂,Uv)Λ×K , where
the right-hand side is merely (U∗v̂, v). Hence, the above vector-valued integral ini-
tially defined in H↑ actually belongs to H and

U∗v̂ =
∫

Λ×K

v̂λ,kwλ,k dλ dσk.

The expression of U∗v̂ for any v̂ ∈ L2(Λ × K) follows by approximating v̂ by its
restrictions to an increasing sequence of compact subsets of Λ whose union covers Λ.
Since U∗ is continuous, the corresponding integrals admit a limit in H, which can
be seen as a principal value at the bounds of Λ, and will be denoted by

U∗v̂ = H-PV
∫

Λ×K

v̂λ,kwλ,k dλ dσk for all v̂ ∈ L2(Λ × K). (2.11)

This formula provides an explicit form of the diagonal representation (2.9):

f(A)u = H-PV
∫

Λ×K

f(λ)〈u, wλ,k〉wλ,k dλ dσk for all u ∈ H↓, (2.12)

which is the generalized eigenfunction expansion of f(A) (for u ∈ H, the same
expression holds if 〈u, wλ,k〉 is replaced by (Uu)λ,k).

2.1.3. Integral representations

Considering tensor products of Hilbert spaces [5,8] (also called direct products),
formula (2.10) can be rewritten as

(f(A)u, v) =
∫

Λ

f(λ)
{ ∫

K

〈〈wλ,k ⊗ wλ,k, ū ⊗ v〉〉 dσk

}
dλ for all u, v ∈ H↓,

where the double duality product between H↑ ⊗ H↑ and H↓ ⊗ H↓ is given by

〈〈u1 ⊗ u2, v1 ⊗ v2〉〉 := 〈u1, v1〉〈u2, v2〉 for all u1, u2 ∈ H↑ and all v1, v2 ∈ H↓.
5The vector- or operator-valued integrals considered in this paper can be interpreted as Bochner

integrals (see, for example, [46]). Here this means that the integrand v̂λ,kwλ,k can be approximated
by a sequence of finitely valued functions {ϕ

(n)
λ,k}n∈N strongly convergent in H↑ for fixed λ and k,

in such a way that

lim
n→∞

∫
Λ×K

‖v̂λ,kwλ,k − ϕ
(n)
λ,k‖↑ dλ dσk = 0.

In the vector case the Bochner integral offers most of the nice properties of the scalar Lebesgue
integral. It obeys a norm-dominated convergence theorem, and allows the permutation of the
integral with any continuous operator (the case of linear forms yields the Fubini-like relation
which leads to (2.11)).
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The permutation of
∫

K
with 〈〈·, ·〉〉 then yields the condensed expression

(f(A)u, v) =
∫

Λ

f(λ)〈〈Υλ, ū ⊗ v〉〉 dλ, (2.13)

where

Υλ :=
∫

K

wλ,k ⊗ wλ,k dσk ∈ H↑ ⊗ H↑ for λ ∈ Λ. (2.14)

Then by permuting similarly the integral on Λ, we obtain

(f(A)u, v) = 〈〈κf , ū ⊗ v〉〉, where κf := PV
∫

Λ

f(λ)Υλ dλ. (2.15)

This relation is merely the integral representation of f(A) which involves its kernel
κf , expressed here by means of the generalized eigenfunctions.

The permutations of integrals which lead to this representation are easily justified
if f is compactly supported. Indeed, wλ,k ⊗ wλ,k is a continuous family of H↑ ⊗ H↑
(thus uniformly continuous on Λ′ × K for every compact Λ′ ⊂ Λ), so κf belongs to
H↑⊗H↑. But, apart from this case, the justification of the last permutation requires
a precise knowledge of the behaviour of Υλ near the bounds λ± of Λ. This behaviour
determines the singularity of the kernel: in general the principal value must be
understood in a weaker topology than that of H↑ ⊗ H↑. For instance, the kernel of
the identity operator is the diagonal Dirac measure (given by 〈〈δdiag, ū⊗v〉〉 = (u, v)).
In § 3.2 we shall deal with the case of the Green function of our free water-wave
problem, i.e. the kernel of its resolvent (which belongs to H↑ ⊗ H↑ in this particular
two-dimensional situation).

2.2. Application to time–frequency analysis

2.2.1. An abstract wave equation

In order to illustrate the consequences of the preceding definition of a generalized
spectral basis, we consider in this section an abstract wave equation which consists
in finding u = u(t) ∈ H such that

d2
t u + Au = 0 for t > 0, (2.16)

and which satisfies the initial conditions

u(0) = g and dtu(0) = h, (2.17)

for some real data g and h in H. As before, A is supposed bounded and self-adjoint
in H. Here we assume in addition that A is real, positive and invertible. In these
conditions the solution to (2.16), (2.17) reads

u(t) = cos(A1/2t)g + A−1/2 sin(A1/2t)h,

or equivalently,

u(t) = Re{exp(−iA1/2t)u(0)}, where u(0) := g + iA−1/2h. (2.18)
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Definition 2.1 offers an explicit form of operator exp(−iA1/2t) = U∗ exp(−i
√

λt)U
(which is unitary since the multiplication by exp(−i

√
λt) is unitary in L2(Λ × K)).

Indeed, in this case formula (2.9) becomes

u(t) = Re
{

H-PV
∫

Λ×K

〈u(0), wλ,k〉wλ,ke−i
√

λt dλ dσk

}
, (2.19)

which amounts to interpreting the transient wave u(t) as a continuous superposition
of the time-harmonic waves wλ,k exp(−i

√
λt).

Consider now the case of a time-harmonic excitation starting at t = 0 which
generates a time-dependent wave u = u(t) ∈ H solution to

d2
t u + Au = fe−i

√
λ0t, (2.20)

for some given λ0 ∈ Λ and f ∈ H, and which satisfies initial conditions such
as (2.17). What can be said about the behaviour of u(t) at large time? Does it reach
asymptotically a time-harmonic regime? We first show an essential consequence of
definition 2.1 which will yield the answer.

2.2.2. The limiting absorption principle

By definition the spectrum of A is the complement of the set composed of the
ζ ∈ C such that the resolvent of A,

Rζ := (A − ζ)−1, (2.21)

is a bounded operator in H. Definition 2.1 contains precise information about the
behaviour of Rζ in the vicinity of Λ (which will justify in particular the fact that
Λ̄ is the spectrum of A). This is the object of the so-called limiting absorption
principle, which concerns the existence of both one-sided limits

R±
λ := lim

C±	ζ→λ∈Λ
Rζ with C

± := {ζ ∈ C; ± Im ζ > 0}, (2.22)

for a suitable topology. Indeed, such limits cannot be bounded in H (otherwise λ
would not be in the spectrum of A). The functional scheme (2.1) furnishes a weaker
topology: by virtue of (2.2), we can write

〈Rζu, v〉 = (Rζu, v) for all u, v ∈ H↓,

which amounts to considering Rζ in B(H↓,H↑), the space of bounded operators
from H↓ to H↑.

Formula (2.9) applied to f(λ) = (λ − ζ)−1 yields the generalized eigenfunction
expansion of Rζ :

Rζu = H-PV
∫

Λ×K

〈u, wλ,k〉wλ,k

λ − ζ
dλ dσk for all u ∈ H↓. (2.23)

The regularity assumption (2.5) allows us to exhibit the limit of this expression
when ζ ∈ C

± tends to some λ0 ∈ Λ as follows.

Proposition 2.3 (limiting absorption principle). In the context of definition 2.1,
for every λ0 ∈ Λ, the resolvent Rζ of A has one-sided limits (2.22) for the uniform
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topology6 of B(H↓,H↑). These limits (which are locally Hölder continuous on Λ)
are given by

R±
λ0

u = H↑-PV
∫

(Λ\{λ0})×K

〈u, wλ,k〉wλ,k

λ − λ0
dλ dσk

± iπ
∫

K

〈u, wλ0,k〉wλ0,k dσk for all u ∈ H↓, (2.24)

where the principal value occurs at λ± as well as λ0.

Let us point out that this formulation of the limiting absorption principle is not
optimal in general. In many situations the limits R±

λ0
u exist for a finer topology than

the uniform topology of B(H↓,H↑). The latter derives naturally from our definition
of a spectral basis, whereas R±

λ0
u generally has a stronger decay at infinity than

the functions of H↑.

Proof. In order to split the difficulties related to the principal values at λ± and
λ0, choose a compact Λ′ ⊂ Λ containing λ0 as an interior point, and consider the
following decomposition of the resolvent:

Rζ = R′
ζ + R′′

ζ ,

where R′
ζ and R′′

ζ are spectrally truncated parts of the resolvent defined by

R′
ζ := U∗ χΛ′(λ)

λ − ζ
U and R′′

ζ := U∗ χΛ\Λ′(λ)
λ − ζ

U ,

where χΛ′ and χΛ\Λ′ denote the characteristic functions of Λ′ and Λ \ Λ′, respec-
tively.

The family of functions fζ(λ) = (λ − ζ)−1χΛ\Λ′(λ) is indefinitely differentiable
with respect to ζ when the latter lies in a vicinity of λ0, uniformly with respect to
λ ∈ Λ. Hence, R′′

ζ is also infinitely differentiable near λ0 for the topology of B(H),
thus a fortiori for that of B(H↓,H↑). At point λ0, its limit value is simply given by

R′′
λ0

u = H-PV
∫

(Λ\Λ′)×K

〈u, wλ,k〉wλ,k

λ − λ0
dλ dσk for all u ∈ H↓, (2.25)

where the principal value is taken at the bounds λ± of Λ.
It remains do deal with R′

ζ , given by (2.23), where Λ is replaced by Λ′, which
allows us to get rid of the principal value. The existence of the one-sided limits
depends on the regularity of the integrand with respect to λ. In order to point
out this dependence, we introduce the family of operators Uλ, for λ ∈ Λ, simply
obtained by fixing the variable λ in the definition of U :

(Uλv)k := (Uv)λ,k = 〈v, wλ,k〉 for all v ∈ H↓. (2.26)

6More explicitly,

lim
C±�ζ→λ0∈Λ

sup
v∈H↓\{0}

‖Rζv − R±
λ0

v‖↑

‖v‖↓
= 0.
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The continuity assumption (2.4) implies that, for every λ ∈ Λ, the operator Uλ

is continuous from H↓ to L2(K). As for formula (2.11), it is easy to see that its
adjoint is the operator of superposition of the generalized eigenfunctions associated
with λ:

U∗
λf =

∫
K

fkwλ,k dσk ∈ H↑ for all f ∈ L2(K).

Hence, R′
ζ reads

R′
ζ =

∫
Λ′

U∗
λUλ

λ − ζ
dλ ∈ B(H↓,H↑).

Notice then that the local Hölder continuity (2.5) of the wλ,k implies the same
regularity for Uλ in the uniform topology of B(H↓, L

2(K)). Indeed, by the Schwarz
inequality, we have

sup
v∈H↓\{0}

‖Uλv − Uλ′v‖K

‖v‖↓
� C(Λ′)|λ − λ′|α for all λ, λ′ ∈ Λ′.

And of course the same property holds for U∗
λ ∈ B(L2(K),H↑), and thus also

for U∗
λUλ ∈ B(H↓,H↑). Hence, the Plemelj formula (also called the Sokhotskyi for-

mula [23]) gives an explicit form of the limits of the above expression of R′
ζ , as well

as the local Hölder continuity of these limits:

R′±
λ0

= B(H↓,H↑)-PV
∫

Λ′\{λ0}

U∗
λUλ

λ − λ0
dλ ± iπU∗

λ0
Uλ0 , (2.27)

where the principal value is taken at λ0. Combining (2.25) and (2.27) yields (2.24).

2.2.3. Physical significance

We now come back to our abstract wave equation (2.20). The existence of the one-
sided limits R±

λ actually guarantees the asymptotic time-harmonic behaviour of its
solution. More precisely R+

λ (respectively, R−
λ ) describes the outgoing (respectively,

incoming) regime of propagation which is reached when t → +∞ (respectively,
−∞). This is the object of the limiting amplitude principle. We give here without
proof7 a weak formulation of this property that will not be used in the following:
we want only to justify the physical interpretation of R±

λ .

Proposition 2.4 (limiting amplitude principle). In the context of definition 2.1,
let λ0 be an interior point of Λ, and let f ∈ H↓ chosen such that Uf is Λ-compactly
supported.8 Then for each initial datum u(0) and dtu(0) in H, the solution u(t)
to (2.20) has the following asymptotic behaviour at large time:

lim
t→±∞

〈u(t) − e−i
√

λ0tR±
λ0

f, v〉 = 0 for all v ∈ H↓.

7Proposition 2.4 is easily proved following the idea of Eidus [14] (see also [36]).
8If f is not Λ-compactly supported, the limiting amplitude principle holds [14, 36] with an

additional condition on the behaviour of Rζ near the bounds of Λ.
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In other words, forgetting the factor exp(−i
√

λ0t), we see that R±
λ0

f represents
the time-harmonic outgoing (+) or incoming (−) wave generated by the excita-
tion f . The fact that R±

λ0
∈ B(H↓,H↑) means that we consider localized excita-

tions f ∈ H↓, and the corresponding responses are non-localized but have a finite
weighted energy.

2.2.4. A ‘stable’ form of limiting absorption

We see from (2.24) that

Im〈R±
λ0

u, u〉 = ±π

∫
K

|〈u, wλ0,k〉|2 dσk for all u ∈ H↓. (2.28)

This quantity may be interpreted as the mean energy flux9 which is necessary to
maintain the time-harmonic wave R±

λ0
u (it is positive for outgoing waves, and nega-

tive for incoming waves). If this flux vanishes, can we assert that the corresponding
outgoing or incoming wave has a finite energy? Such a property plays a leading
role in the perturbation approach of § 2.3. In short, it guarantees that the limiting
absorption holds for localized enough perturbations of the propagative medium.
Thus, we give the following definition.

Definition 2.5. In the context of definition 2.1, A is said to satisfy a stable lim-
iting absorption principle if the limits R±

λ of proposition 2.3 satisfy in addition the
‘stability condition’

u ∈ H↓ and Im〈R±
λ u, u〉 = 0 =⇒ R±

λ u ∈ H, (2.29)

for all λ ∈ Λ.

From a physical point of view, this condition signifies that if a time-harmonic
wave does not produce or use any energy on average in time, then the total energy
of the wave is necessarily finite. To a certain extent, this means that there is a ‘no
wave’s land’ between two kinds of time-harmonic waves maintained by a localized
excitation: stationary waves of finite energy (which are both incoming and outgo-
ing), and propagative incoming or outgoing waves of infinite energy. And the energy
flux is the very tool to distinguish between them.

9In equation (2.20), the ‘physical’ wave is represented by the real part ϕ(t) of u(t), which
satisfies

d2
t ϕ + Aϕ = g(t) := Re{fe−i

√
λ0t}.

Taking the inner product of this equation with dtϕ yields the energy relation

dt{ 1
2‖dtϕ‖2 + 1

2 (Aϕ, ϕ)} = (g(t), dtϕ),

where the right-hand side denotes the energy flux brought to the system. If f ∈ H↓, we know from
proposition 2.4 that the behaviour of this flux at large time is given by

F±(t) := 〈Re{fe−i
√

λ0t}, dt Re{R±
λ0

fe−i
√

λ0t}〉,

whose average on one period reads
√

λ0

2π

∫ 2π/
√

λ0

0
F±(t) dt =

√
λ0

2
Im〈R±

λ0
f, f〉.
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The mathematical interpretation of condition (2.29) concerns the link between
R±

λ and the unbounded inverse (A − λ)−1 of A − λ, whose domain is the range
R(A − λ) of A − λ:

(A − λ)−1(A − λ) = IdH and (A − λ)(A − λ)−1 = IdR(A−λ).

The following lemma shows that both one-sided limits R±
λ may be seen as extensions

of (A − λ)−1.

Lemma 2.6. In the context of definition 2.1, if u ∈ R(A − λ) ∩ H↓, then

R±
λ u = (A − λ)−1u. (2.30)

Proof. For u ∈ R(A − λ0) ∩ H↓, define v := (A − λ0)−1u ∈ H, which satisfies
(A − λ0)v = u. Applying Rλ0±iε to this relation yields

v ± iεRλ0±iεv = Rλ0±iεu.

In order to obtain the limit of this equality as ε → 0+, consider the quantity
v±

ε := εRλ0±iεv, which can be written v±
ε = f±

ε (A)v, where

f±
ε (λ) :=

ε

λ − λ0 ∓ iε
.

Hence, by (2.9),

‖v±
ε ‖2 = ‖f±

ε (λ)Uv‖2
Λ×K =

∫
Λ×K

|f±
ε (λ)|2|(Uv)λ,k|2 dλ dσk.

Noting that limε→0 f±
ε (λ) = 0 for all λ �= λ0 and that |f±

ε (λ)| � 1, we deduce by the
Lebesgue theorem that limε→0 ‖v±

ε ‖ = 0. The conclusion follows from the limiting
absorption principle.

The stability condition (2.29) furnishes a sufficient condition for some u ∈ H↓ to
belong to the range of A − λ (so that (2.30) holds).

Lemma 2.7. In the context of definition 2.5, for u ∈ H↓ we have

Im〈R±
λ u, u〉 = 0 ⇐⇒ u ∈ R(A − λ). (2.31)

Proof. First note that if u ∈ R(A − λ0) ∩ H↓, then v := (A − λ0)−1u satisfies
(A − λ0)v = u, which shows that

Im((A − λ0)−1u, u) = Im{(v,Av) − λ0‖v‖2} = 0.

Hence, Im〈R±
λ0

u, u〉 = 0 by lemma 2.6.
The converse is based on the stability condition (2.29). Let u ∈ H↓ such that

Im〈R±
λ0

u, u〉 = 0. From (2.28), this is equivalent to Uλ0u = 0 (where the operators
Uλ are defined in (2.26)). In this situation, the principal value at λ0 in the expres-
sion (2.24) of R±

λ0
u can be removed. As this quantity here belongs to H, we have

(R±
λ0

u, v) =
∫

Λ

(Uλu, Uλv)K

λ − λ0
dλ for all v ∈ H↓,
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since the Hölder continuity of Uλ implies that, near λ0,

‖Uλu‖K � C|λ − λ0|α. (2.32)

As H↓ is dense in H, the above expression remains valid for all v ∈ H such that
‖Uλv‖K is continuous near λ0, in particular Av with v ∈ H↓ since UλAv = λUλv.
We deduce that

(R±
λ0

u, (A − λ0)v) =
∫

Λ

(Uλu, Uλv)K dλ = (u, v) for all v ∈ H↓,

which shows that (A − λ0)R±
λ0

u = u, and hence u belongs to R(A − λ0).

We end this section by a simple criterion for the stability condition, which is
related to the α-Hölder continuity (2.5) of the wλ,k.

Proposition 2.8. In the context of definition 2.1, if α > 1
2 , then condition (2.29)

holds.

Proof. Let λ0 ∈ Λ and u ∈ H↓ such that Im〈R±
λ0

u, u〉 = 0. As in the proof of
lemma 2.7, we have Uλ0u = 0, and thus Uλu satisfies (2.32). As a consequence,
when ζ = λ0 ± iε tends to λ0, the one-sided limits of URζu = (λ − ζ)−1Uu exist in
L2(Λ × K) (and are equal) since

|λ − ζ|−1|λ − λ0|α � |λ − λ0|−1+α,

which belongs to L2(Λ) for α > 1
2 . As U is unitary, Rζu has a limit in H, which is

merely R+
λ0

u = R−
λ0

u.

2.3. Perturbation of a generalized spectral basis

We show now how to construct under suitable assumptions generalized spectral
bases for an operator A considered as a perturbation of a ‘simpler’ operator Ã,
called free, where both A and Ã are assumed bounded self-adjoint operators in the
same space H. We define their difference by

D := A − Ã, (2.33)

which is clearly bounded and self-adjoint in H. We shall assume that we know a
generalized spectral basis {w̃λ,k} for Ã defined in the context of definition 2.1: the
transformation

(Ũv)λ,k := 〈v, w̃λ,k〉 for all v ∈ H↓ (2.34)

defines by density a unitary operator from H to L2(Λ × K) which diagonalizes Ã.

2.3.1. Intuitive construction

In order to find a generalized spectral basis for A, we search solutions wλ,k to (2.8)
in the form wλ,k = w̃λ,k + ẇλ,k. Using the above definition of D and the fact that
(Ã − λ)w̃λ,k = 0, we see that the perturbation term ẇλ,k must satisfy

(A − λ)ẇλ,k = −Dw̃λ,k. (2.35)
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But this equation is ill-posed if λ belongs to the spectrum of A, which is precisely
the situation we are interested in. A roundabout way to solve it consists in replacing
first A−λ by A− ζ for some ζ ∈ C

±, solving the corresponding equation, and then
letting ζ → λ. This is precisely the purpose of the limiting absorption principle. If
the one-sided limits (2.22) of the resolvent of A exist, we can consider the outgoing
and incoming perturbations ẇ±

λ,k of the free generalized eigenfunctions w̃λ,k given
by

ẇ±
λ,k := −R±

λ Dw̃λ,k,

which formally satisfy (2.35). In these conditions, we are led to two families of
generalized eigenfunctions for A:

w±
λ,k := w̃λ,k + ẇ±

λ,k = (Id − R±
λ D)w̃λ,k. (2.36)

In the context of wave propagation, w̃λ,k can be interpreted as an incident time-
harmonic wave and ẇ±

λ,k then represents the corresponding scattered outgoing or
incoming wave, that is, the response of the perturbation of the propagative medium
to the incident wave. Do these families define generalized spectral bases for A? We
present below sufficient conditions that guarantee such a property.

2.3.2. Compact perturbation of the free problem

In § 2.2 we deduce the limiting absorption principle from the a priori knowledge
of a generalized spectral basis. Here the question is reversed: the above construction
of perturbed generalized eigenfunctions is subject to the existence of the one-sided
limits R±

λ . The idea is to derive them from the following relation between Rζ and
the free resolvent R̃ζ := (Ã − ζ)−1:

Rζ − R̃ζ = −RζDR̃ζ = −R̃ζDRζ for all ζ ∈ C
±, (2.37)

which is easily deduced from the definition (2.33) of D. This relation yields in
particular that

Rζ = R̃ζ(Id + DR̃ζ)−1, (2.38)

which shows that the existence of R±
λ depends, on the one hand, on a limiting

absorption principle for the free problem, i.e. the existence of the limits R̃±
λ and,

on the other hand, on an invertibility condition for Id + DR̃±
λ (sometimes called a

‘division’ property).
Proposition 2.3 provides the existence of the one-sided limits R̃±

λ as operators
from H↓ to H↑. Hence, the formal limit of relation (2.38) will make sense if the
invertibility of Id + DR̃±

λ occurs in H↓. We must thus assume that D extends by
density to an operator of B(H↑,H↓), which signifies that A differs from Ã by a
‘localizing’ operator. But this continuity is not sufficient to provide the invertibility
of Id + DR̃±

λ . With the following definition of a compact perturbation, the question
falls within the Fredholm alternative.

Definition 2.9. A is called a compact perturbation of Ã in the functional scheme
(2.1) if D extends by density to a bounded operator from H↑ to H↓, and DR̃±

λ are
compact operators in H↓ for every λ ∈ Λ.
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In this context, it remains to find the values of λ for which the homogeneous
equations

u± + DR̃±
λ u± = 0 with u± ∈ H↓, (2.39)

admit a non-zero solution.

Proposition 2.10. Assume that the free operator Ã satisfies the stable limiting
absorption principle of definition 2.5. Then, for every compact perturbation A of
Ã, the operator Id + DR̃±

λ is invertible in H↓ if and only if λ is not an eigenvalue
of A.

Proof. Let us first assume that λ is an eigenvalue of A. Then there exists a non-zero
w ∈ H such that Aw = λw, which shows by (2.33) that

(Ã − λ)w = −Dw.

As a consequence u := Dw ∈ H↓ belongs to the range of Ã−λ and lemma 2.6 thus
shows that w = −R̃±

λ u. Applying D to this equality gives

(Id + DR̃±
λ )u = 0,

where u �= 0 (otherwise w would also vanish). Hence, Id + DR̃±
λ is not invertible.

The converse is based on the stability property (2.29) for the free resolvent R̃±
λ .

Assume that u± ∈ H↓ is a non-zero solution to (2.39). The function w± := R̃±
λ u± ∈

H↑ then satisfies
w± = −R̃±

λ Dw±, (2.40)

from which we infer that

〈R̃±
λ Dw±,Dw±〉 = −〈w±,Dw±〉 ∈ R,

since D is the extension in H↑ of a self-adjoint operator in H. The stability prop-
erty (2.29) for the free resolvent then shows that R̃±

λ Dw± ∈ H, so w± ∈ H by (2.40).
Moreover, lemma 2.7 tells us that Dw± belongs to the range of Ã−λ, which allows
us to use lemma 2.6. Applying Ã − λ to (2.40) yields

(Ã − λ)w± = −Dw±,

that is, (A − λ)w± = 0; hence, λ is an eigenvalue of A.

2.3.3. Main result

The following theorem justifies our intuitive construction of perturbed generalized
eigenfunctions.

Theorem 2.11. Assume that the free operator Ã is diagonalized in the sense of
definition 2.1 and satisfies the additional stability property of definition 2.5. Then,
for every compact perturbation A of Ã (in the sense of definition 2.9) which has no
point spectrum,10 the following statements hold.

10See § 2.5 if A has eigenvalues.

https://doi.org/10.1017/S0308210506000138 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210506000138


Generalized eigenfunction expansions 1013

(i) (Perturbed limiting absorption.) The perturbed resolvent Rζ admits one-sided
limits11 R±

λ ∈ B(H↓,H↑) at every point λ ∈ Λ. These limits are given by

R±
λ = R̃±

λ (Id + DR̃±
λ )−1 for all λ ∈ Λ. (2.41)

(ii) (Perturbed spectral bases.) Both families {w±
λ,k; (λ, k) ∈ Λ × K} given by for-

mula (2.36) define generalized spectral bases of A in the sense of definition 2.1.

Proof. We have already justified the existence of the right-hand side of (2.41). The
fact that these are the one-sided limits in B(H↓,H↑) of the right-hand side of (2.38)
(as well as the Hölder continuity of these limits) follows from standard arguments of
perturbation theory, essentially based on the properties of the Neumann series [27,
theorem IV-1.16]. Hence, (i) is proved.

The proof of (ii) is based on spectral theory; it is given in the next section.

Translated into a more physical language, theorem 2.11 guarantees fundamental
properties for every sufficiently localized (or ‘short-range’) perturbation of a free
propagative medium:

(i) the existence of outgoing and incoming time-harmonic waves, which involve
a similar asymptotic distribution of energy to free propagation (indeed the
weighted definition of energy is the same for both free and perturbed prob-
lems);

(ii) the fact that the outgoing and incoming perturbations of a complete family
of incident free waves yield the suitable tool for time–frequency analysis.

2.4. Connection with spectral theory

The so-called spectral theorem [9, 27] is the keystone of a functional calculus of
self-adjoint operators. This theorem asserts that every bounded self-adjoint operator
A admits a spectral family {Eλ}λ∈R, i.e. a family of orthonormal projections which
allows us to express any function f : R → C of A by the explicit formula

(f(A)u, v) =
∫

R

f(λ) d(Eλu, v) for all u, v ∈ H. (2.42)

We denote by EI := χI(A) the spectral projection associated with any interval
I ⊂ R, where χI is the characteristic function of I. This operator is related to the
resolvent of A by means of Stone’s formula, which reads

(EIu, u) = ‖EIu‖2 =
±1
π

lim
δ→0+

lim
ε→0+

∫ b−δ

a+δ

Im(Rλ±iεu, u) dλ for all u ∈ H

for an open interval I = ]a, b[. Note that

Im(Rλ±iεu, u) = ±ε‖Rλ±iεu‖2,

11As in proposition 2.3, these limits hold for the uniform topology of B(H↓, H↑) and are locally
Hölder continuous on Λ.
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since A is self-adjoint. Hence, if I is contained in the resolvent set of A, the quantity
‖Rλ±iεu‖ remains bounded as ε tends to 0, which shows that ‖EIu‖ = 0 for every
u ∈ H, that is, EI = 0.

On the other hand, if I is such that the limiting absorption principle holds near
all its points, i.e. if the one-sided limits R±

λ exist in B(H↓,H↑), Stone’s formula
becomes

‖EIu‖2 =
±1
π

∫
I

Im〈R±
λ u, u〉 dλ for all u ∈ H↓. (2.43)

This relation tells us that the spectral measure d(Eλu, u) = d ‖Eλu‖2 is proportional
to Lebesgue measure, and its density is a continuous function of λ, which is merely
the energy flux appearing in (2.28):

d
dλ

‖Eλu‖2 =
±1
π

Im〈R±
λ u, u〉 for all u ∈ H↓. (2.44)

The spectral measure is called absolutely continuous in this case.

2.4.1. Spectral measures for the free and perturbed problems

For the free problem, limiting absorption is derived from the a priori knowledge
of a generalized spectral basis {w̃λ,k}: proposition 2.3 holds for R̃±

λ , as well as its
consequence (2.28), which gives here an explicit form of the spectral density of Ã:

d
dλ

‖Ẽλu‖2 =
±1
π

Im〈R̃±
λ u, u〉 =

∫
K

|〈u, w̃λ,k〉|2 dσk for all u ∈ H↓. (2.45)

We want to establish a similar formula for the perturbed problem. Limiting
absorption was obtained in this case by means of the perturbation relation (2.41),
so (2.44) holds. We first prove the following lemma.

Lemma 2.12. For λ ∈ Λ and u ∈ H↓, we denote ũ± ∈ H↓ defined by

ũ± = (Id + DR̃±
λ )−1u = (Id − DR±

λ )u, (2.46)

so that (2.41) equivalently reads R±
λ u = R̃±

λ ũ±. Then

Im〈R±
λ u, u〉 = Im〈R̃±

λ ũ±, ũ±〉.

Proof. For ζ ∈ C \ R, define

uζ := (Id + DR̃ζ)−1u = (Id − DRζ)u ∈ H,

where the second equality is readily deduced from (2.37) which also shows that
Rζu = R̃ζuζ . Hence,

(Rζu, u) = (R̃ζuζ , (Id + DR̃ζ)uζ) = (R̃ζuζ , uζ) + (R̃ζuζ ,DR̃ζuζ),

where the last inner product is real for D is self-adjoint. As a consequence,

Im(Rζu, u) = Im(R̃ζuζ , uζ).

The conclusion then follows from both free and perturbed limiting absorption prin-
ciples.
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By virtue of (2.44), lemma 2.12 tells us that the spectral measure d‖Eλu‖2 of A
is related to that of Ã by the relation d‖Eλu‖2 = d‖Ẽλũ±‖2. It remains to show the
link with perturbed generalized eigenfunctions.

Proposition 2.13. With the assumptions of theorem 2.11, the spectral density of
A is given by

d
dλ

‖Eλu‖2 =
∫

K

|〈u, w±
λ,k〉|2 dσk for all u ∈ H↓. (2.47)

Proof. By the definition (2.36) of w±
λ,k, we have

〈u, w±
λ,k〉 = 〈u, (Id − R±

λ D)w̃λ,k〉,

which shows by transposition that

〈u, w±
λ,k〉 = 〈(Id − DR∓

λ )u, w̃λ,k〉 = 〈ũ∓, w̃λ,k〉,

where ũ± is defined in (2.46). Hence, we deduce from (2.45) that∫
K

|〈u, w±
λ,k〉|2 dσk =

∫
K

|〈ũ∓, w̃λ,k〉|2 dσk =
±1
π

Im〈R̃±
λ ũ±, ũ±〉.

Lemma 2.12 then yields the result.

2.4.2. Proof of theorem 2.11

Spectral theory, together with proposition 2.13, provides the isometric character
of the operation of decomposition on the w±

λ,k (corollary 2.14). The fact that it is
surjective follows from the same property for the free problem (proposition 2.15).

Corollary 2.14. With the assumptions of theorem 2.11, both transformations

(U±v)λ,k := 〈v, w±
λ,k〉 for all v ∈ H↓, (2.48)

extend by density as isometric operators from H to L2(Λ × K) which satisfy

U±f(A) = f(λ)U±. (2.49)

Proof. Formula (2.47) means that, for every interval I ⊂ Λ,

‖EIu‖2 =
∫

Λ×K

χI(λ)|(U±u)λ,k|2 dλ dσk for all u ∈ H↓.

In particular we have ER = Id. Thus,

‖u‖2 = ‖U±u‖2
Λ×K for all u ∈ H↓.

So U± is isometric, and extends to the whole space H since H↓ is dense. The fact
that this transformation diagonalizes A is a direct consequence of formula (2.42),
where d(Eλu, v) is deduced from (2.47) by the polarization principle:

(f(A)u, v) =
∫

Λ×K

f(λ)(U±u)λ,k(U±v)λ,k dλ dσk, (2.50)

https://doi.org/10.1017/S0308210506000138 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210506000138


1016 C. Hazard and F. Loret

which reads (f(A)u, v) = (f(λ)U±u, U±v)Λ×K ; hence,

f(A) = (U±)∗f(λ)U .

Relation (2.49) is a slightly more precise version of this diagonalization formula,
which can be written equivalently as

U±f(A) = P±f(λ)U±,

where P± := U±(U±)∗ is the orthogonal projection on the range R(U±) of U±. To
remove P± from the above relation, note that

‖f(A)v‖ = ‖U±f(A)v‖Λ×K = ‖f(λ)U±v‖Λ×K for all v ∈ H,

which is readily deduced from (2.50) by taking u = v and f(A)f̄(A) = f(A)(f(A))∗

instead of f(A). So (2.49) is proved.

Proposition 2.15. With the assumptions of theorem 2.11, both transformations
U± are unitary from H to L2(Λ × K).

Proof. We know that U± is isometric: it remains to prove that it is surjective,
or equivalently that (U±)∗ is injective. Suppose that (U±)∗û = 0 for some û ∈
L2(Λ × K). Then

(û, U±v)Λ×K = 0 for all v ∈ H.

For every interval I ⊂ Λ, one can replace v by EIv in this formula. Noting that
U±EI = χI(λ)U± by (2.49), we deduce that (χI û, U±v)Λ×K = 0 for all v ∈ H,
which means that (U±)∗χI û = 0. Following (2.11), this relation reads∫

Λ×K

χI(λ)v̂λ,kw±
λ,k dλ dσk = 0

for every I interior to Λ. Hence,∫
K

v̂λ,kw±
λ,k dσk = 0 for a.e. λ ∈ Λ.

Using the definition (2.36) of w±
λ,k, this property becomes

(IdH↑ − R±
λ D)ũλ = 0, where ũλ :=

∫
K

v̂λ,kw̃λ,k dσk ∈ H↑, (2.51)

for almost every λ ∈ Λ. Applying D, we deduce that

(IdH↓ − DR±
λ )Dũλ = 0.

Notice then that, from (2.41) and (2.46), we have

R±
λ D = R̃±

λ (IdH↓ − DR±
λ )D.

Hence, R±
λ Dũλ = 0, so ũλ = 0 by (2.51). In other words, we have proved that∫

Λ×K

χI(λ)v̂λ,kw̃λ,k dλ dσk = 0

for every I ⊂ Λ, that is Ũ∗(χI û) = 0. But Ũ is unitary, so Ũ∗ is injective, and thus
û = 0.
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2.5. From theory to applications

How does the preceding abstract framework apply in practical situations? For
most models of wave propagation phenomena which enter the framework of our
abstract wave equation (2.16) (in particular our water-wave problem), A is unbound-
ed and may have a point spectrum besides the continuous spectrum investigated
in the present paper. So far this situation was excluded. We show here that the
content of §§ 2.1 and 2.2 easily extends to such operators, but not the perturbation
approach of § 2.3. We give a trick to overcome this difficulty.

2.5.1. Unbounded operators

In the context of spectral theory, dealing with unbounded operators amounts
to allowing unbounded functions f : Λ → C in the functional calculus offered by
formula (2.9). To do so, it suffices to restrict the latter to the elements of the
domain of f(A) which is naturally characterized by means of the inverse spectral
transformation U∗:

f(A)v = U∗f(λ)Uv for all v ∈ D(f(A)),

D(f(A)) = U∗{v̂ ∈ L2(Λ × K); f(λ)v̂ ∈ L2(Λ × K)}.

}
(2.52)

This formula actually provides the extension of definition 2.1 to an unbounded
self-adjoint operator A := f(A). Indeed, suppose that f is a smooth real-valued
diffeomorphism so that it defines a change of variable µ := f(λ). Noting that∫

Λ×K

|v̂λ,k|2 dλ dσk =
∫

f(Λ)×K

|v̂f−1(µ),k|2cµ dµdσk with cµ :=
∣∣∣∣ df−1

dµ
(µ)

∣∣∣∣,
we infer that the transformation

v̂λ,k
C−→ (Cv̂)µ,k = c1/2

µ v̂f−1(µ),k

is unitary from L2(Λ × K) to L2(f(Λ) × K). Hence, (2.52) can be rewritten

A = U∗µU ∈ D(A),

where U := CU is unitary from H to L2(f(Λ) × K). This transformation takes the
form

(Uv)µ,k := 〈v, w′
µ,k〉 for all v ∈ H↓ with w′

µ,k := c1/2
µ wf−1(µ),k, (2.53)

which shows that the family

{w′
µ,k ∈ H↑; (µ, k) ∈ f(Λ) × K}

is a generalized spectral basis for the unbounded operator A. The normalization
coefficient c

1/2
µ is smooth, so it does not affect the regularity assumptions of def-

inition 2.1, which then holds for unbounded operators: Λ is simply allowed to be
unbounded. It is readily seen that the matter of §§ 2.1 and 2.2, that is, generalized
eigenfunction expansions and limiting absorption, extends to unbounded operators
with natural precautions concerning the domain. More precisely, all the properties
mentioned in theses lines hold for A if and only if they hold for A = f(A).
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2.5.2. About a possible point spectrum

The present spectral analysis cannot provide any information about the possible
eigenvalues of the system, which reveal the existence of trapped waves (or bound
states). It concerns only the continuous spectrum (more precisely the absolutely
continuous spectrum) which corresponds to propagative waves, whereas the point
spectrum is related to localized vibrations of the system. Fortunately, both regimes
exist independently.

Indeed, suppose that A has a point spectrum Λp. Let Hp denote the subspace
of H spanned by the associated eigenvectors, and let Hc denote its orthogonal
complement:

H = Hc
⊥
⊕ Hp.

Both these subspaces are invariant under A, which shows that A can be split as a
direct sum,

A = Ac ⊕ Ap,

where the restriction Ac := A|Hc (respectively, Ap := A|Hp) has a pure continuous
spectrum (respectively, pure point spectrum). Definition 2.1 then extends as follows,
under the natural assumption Hp ⊂ H↓ (trapped waves are always localized states).

Definition 2.16. Let Λc := Λ \ Λp. A Λc-locally Hölder continuous family

{wλ,k ∈ H↑; (λ, k) ∈ Λc × K}

associated with a spectral space L2(Λ × K) is said to be a generalized spectral basis
for the continuous part of A if the transformation

(Uv)λ,k := 〈v, wλ,k〉 for all v ∈ H↓,

defines by density a unitary operator from Hc = (N(U))⊥ to L2(Λ × K) which
satisfies

Ac ⊕ 0 = U∗λU .

To obtain a spectral representation of A, not only of its continuous part, we
simply have to exhibit an orthonormal family of eigenvectors which spans Hp.
The complete spectral transformation then appears as the sum of two orthogonal
contributions: the continuous part described by the wλ,k and a discrete part similar
to the finite-dimensional case (see footnote 3).

Definition 2.16 offers a ‘restricted’ functional calculus which involves only the
continuous part of A; formula (2.12) is now the generalized eigenfunction expan-
sion of (f(Ac) ⊕ 0)u. Hence, the content of § 2.2 holds if we are only interested in
the spectrally continuous part of the solution to our abstract wave equation (which
amounts to considering data in Hc), bearing in mind the fact that Rζ now denotes
(Ac − ζ)−1 ⊕ 0. Note that outside Λp a complete limiting absorption principle for
A is readily deduced from the restricted version, since the discrete part of the resol-
vent, i.e. (Ap − ζ)−1, is analytic outside the eigenvalues. All the results concerning
the energy flux then also hold for the complete resolvent of A, provided that λ is
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not an eigenvalue, because the discrete part of the resolvent does not contribute to
the energy flux.

Finally, the perturbation approach of § 2.3 holds with minor changes if A has a
point spectrum. The perturbed limiting absorption principle (theorem 2.11(i)) is
valid outside eigenvalues: this is exactly what proposition 2.10 tells us. And the
perturbed generalized spectral bases (theorem 2.11(ii)) have to be understood in
the sense of definition 2.16. Indeed, the expression of the spectral density given
in proposition 2.13 is valid outside eigenvalues, and corollary 2.14 now involves
f(Ac) ⊕ 0 instead of f(A).

2.5.3. How to use theorem 2.11

In § 2.3 the assumption that A and Ã are bounded operators defined in the
same Hilbert space cannot be removed without introducing technical complications
that reduce the generality of this approach. But, for most scattering problems, the
operators which describe the free and perturbed dynamics of the system, say Ã
and A, are not only unbounded but also defined in different Hilbert spaces, say H̃
and H. Indeed, the presence of the scatterer generally implies a different description
of the possible states of the system, which is particularly clear in coupled problems.
The following idea, which applies in many practical situations (and is illustrated
in § 3) simply consists in comparing bounded functions of A and Ã in a ‘cumulative’
functional framework into which both free and perturbed problems can be carried.

If both A and Ã are positive, a convenient choice of bounded function is to
consider their respective resolvents Rζ and R̃ζ at a given point ζ = −α with α > 0:

A := R−α = (A + α)−1 and Ã := R̃−α = (Ã + α)−1.

These operators are clearly bounded positive and self-adjoint. As mentioned above,
the limiting absorption principle holds for A if and only if it holds for A, and
likewise for Ã and Ã. Here the link is explicit since the resolvent Rξ of A is related
to Rζ by

Rξ = −ξ−1(Id + ξ−1Rζ) with ξ := (ζ + α)−1, (2.54)

which follows from the relation

rξ ◦ r−α = −ξ−1(1 + ξ−1rζ), where rζ(λ) := (λ − ζ)−1.

As a consequence, if they exist, the one-sided limits of these resolvents satisfy

R±
µ = −µ−1(Id + µ−1R∓

λ ) with µ := (λ + α)−1, (2.55)

where the change of sign is due to the fact that ξ ∈ C
± if and only if ζ = ξ−1 −α ∈

C
∓. Note that this relation shows that the stability condition (2.29) holds for R±

µ

if and only if it holds for R±
λ .

We shall be able to say that A is a perturbation of Ã if both spaces H̃ and H can
be identified with two subspaces of the same ‘cumulative’ Hilbert space H, that is,

H = H̃ ⊕̃ H̃0 = H ⊕ H0. (2.56)

In such a case, the operators Ã and A can be carried into H by defining

Ã := Ã ⊕̃ 0 and A := A ⊕ 0,
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which are bounded self-adjoint operators in H. Their difference

D := A − Ã = {(A + α)−1 ⊕ 0} − {(Ã + α)−1 ⊕̃ 0} (2.57)

is thus also bounded and self-adjoint. In order to apply theorem 2.11, the cumulative
space must fit into a weighted functional scheme such as (2.1), i.e.

H↓ ⊂ H ⊂ H↑,

where both spaces H↓ and H↑ are related to their free and perturbed analogues by

H↓/↑ = H̃↓/↑ ⊕̃ H̃0 = H↓/↑ ⊕ H0. (2.58)

In these conditions, it is clear that a family wµ,k ∈ H is a generalized spectral
basis for A in the sense of definition 2.1 if and only if wµ,k := wµ,k ⊕ 0 ∈ H is a
generalized spectral basis for A in the sense of definition 2.16 (and the same holds
for the free problem). Hence, the perturbation approach of § 2.3 will apply if one is
able to prove the compactness property of definition 2.9 for D.

To sum up, the justification of generalized eigenfunction expansions for a scat-
tering problem consists in the following steps:

(i) find a generalized spectral basis w̃λ,k for the unbounded operator Ã (using
well-known functional transformations), and verify the stability condition
(2.29);

(ii) find a cumulative functional scheme as described above and prove that

DR̃
±
µ = D(R̃±

µ ⊕̃(−µ−1Id))

is compact in H↓ for every µ ∈ r−α(Λ).

Then both families

w±
λ,k := (Id − R∓

µ D)w̃λ,k ∈ H↑, where w̃λ,k := w̃λ,k ⊕̃ 0,

are generalized spectral bases for A⊕0. Note that the change of sign in this formula is
due to (2.55). Denoting by P : H → H and P0 : H → H0 the restricted projections
defined by u = Pu ⊕ P0u (which extend to H↑ by (2.58)), we have

w±
λ,k = (P − R∓

µ PD)w̃λ,k ⊕ (P0 + µ−1P0D)w̃λ,k,

where the component in H0 vanishes since

P0Dw̃λ,k = −P0Ãw̃λ,k = −µP0w̃λ,k.

Hence, the families
w±

λ,k := (P − R∓
µ PD)w̃λ,k ∈ H↑ (2.59)

are generalized spectral bases for the unbounded operator A.

3. Application to the two-dimensional sea-keeping problem

3.1. Abstract formulation

We show here that our water-wave problem (1.1)–(1.4) as well as the free ver-
sion (1.5) can be expressed as abstract wave equations such as (2.16) involving
unbounded self-adjoint operators.
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3.1.1. The coupled problem

Substituting (1.4) in (1.3) (recall that we have chosen M = Id), the sea-keeping
problem reads as follows:

∆Φ = 0 in Ω, (3.1)

∂2
t Φ + ∂yΦ = 0 on F, (3.2)

∂nΦ +
(

Kp +
∫

Γ

Φν dγ

)
· ν = 0 on Γ, (3.3)

d2
t p + Kp +

∫
Γ

Φν dγ = 0. (3.4)

The key of the abstract formulation lies in the following remark: at every time t, if
we know the acceleration potential only on the free surface F , say ϕ := Φ|F , as well
as the position p of the floating body, then equations (3.1) and (3.3) determine Φ
everywhere. This suggests the introduction of the operator Θ, which maps the pair
(ϕ, p) onto the solution Φ = Θ(ϕ, p) of the boundary-value problem

∆Φ = 0 in Ω,

Φ = ϕ on F,

∂nΦ +
( ∫

Γ

Φν dγ

)
· ν = −Kp · ν on Γ.

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (3.5)

Hence, our system (3.1)–(3.4) amounts to

∂2
t ϕ + ∂yΘ(ϕ, p) = 0 on F,

d2
t p + Kp +

∫
Γ

Θ(ϕ, p)ν dγ = 0,

which can be condensed as a single equation on u := (ϕ, p):

d2
t u + Au = 0, where Au :=

(
∂yΘu, Kp +

∫
Γ

Θuν dγ

)
. (3.6)

To prove that the operator A is self-adjoint, we have to specify the proper functional
framework in which it is defined. We first give a rigorous definition of Θ.

Lemma 3.1. The operator Θ formally defined by (3.5) appears as a continuous
operator from H1/2(F ) × C

2 (where H1/2(F ) is the trace space of the standard
Sobolev space H1(Ω)) to the weighted Sobolev space

W 1(Ω) := {Ψ ; ηΨ ∈ L2(Ω) and ∇Ψ ∈ L2(Ω)3},

where

η(X) := (1 + ‖X‖2)−1/2(ln(2 + ‖X‖2))−1.

Proof. The basic property of W 1(Ω) is that the quantity
∫

Ω
‖∇Ψ‖2 defines a norm

in W 1(Ω)/C equivalent to the quotient norm [3]. Hence, the following variational
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formulation of (3.5):

find Φ ∈ W 1(Ω) such that Φ|F = ϕ and∫
Ω

∇Φ · ∇Ψ +
( ∫

Γ

Φν dγ

)
·
( ∫

Γ

Ψ̄ν dγ

)
= −Kp ·

∫
Γ

Ψ̄ν dγ

for all Ψ ∈ W 1(Ω) such that Ψ |F = 0,

which is easily derived from Green’s formula, falls within the province of Lax–
Milgram theorem, since the second sesquilinear term is positive. This means that
this variational problem is well posed, provided that ϕ belongs to the trace space
W 1/2(F ) of W 1(Ω). The statement of the lemma follows by noting that H1/2(F ) ⊂
W 1/2(F ), since H1(Ω) ⊂ W 1(Ω). More precisely, the following topological equality
holds:

H1/2(F ) = W 1/2(F ) ∩ L2(F ), (3.7)

which is easily deduced from the characterization of W 1/2(F ) given in [3].

Consider then the Hilbert space

H := L2(F ) × C
2

equipped with the inner product

(u, v)H :=
∫

F

ϕψ̄ dx + Kp · q̄ for u = (ϕ, p) and v = (ψ, q),

as well as its subspace
V := H1/2(F ) × C

2.

Proposition 3.2. The operator A formally defined by (3.6) appears as an un-
bounded positive self-adjoint injective operator in H, given by

(Au, v)H := a(u, v) for all u ∈ D(A) and all v ∈ V, (3.8)
D(A) := {u ∈ V; ∃Ku > 0 and all v ∈ V, |a(u, v)| � Ku‖v‖H}, (3.9)

where a(·, ·) is the Hermitian form defined in V × V by

a(u, v) :=
∫

Ω

∇Θu · ∇Θv +
(

Kp +
∫

Γ

Θuν dγ

)
·
(

Kq̄ +
∫

Γ

Θvν dγ

)
,

for all u = (ϕ, p) and v = (ψ, q) in V.

Proof. The link between the formal definition (3.6) of A and the form a(·, ·) follows
from Green’s formula and the definition (3.5) of Θ, which yield

a(u, v) =
∫

F

∂yΘuv̄ dx +
(

Kp +
∫

Γ

Θuν dγ

)
· Kq = (Au, v)H.

By lemma 3.1, we may infer that a(·, ·) is continuous on V ×V. It is clearly positive
and Hermitian. Moreover, we show below that, for some positive constants λ0 and
m, we have

a(u, u) + λ0‖u‖2
H � m‖u‖2

V for all u ∈ V. (3.10)
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For such a form, we know that (3.8)–(3.2) defines a positive self-adjoint opera-
tor [27]. The fact that it is injective is obvious: a(u, u) = 0 implies that Θu = 0,
and thus u = 0 (Θ is clearly injective).

Property (3.10) can be proved by contradiction. Suppose that there exists a
sequence un = (ϕn, pn) ∈ V such that ‖un‖V = 1 and

a(un, un) + λ0‖un‖2
H → 0 as n → +∞.

The fact that ‖un‖H → 0 tells us that ϕn → 0 in L2(F ) and pn → 0. On the other
hand, a(un, un) → 0 shows that Θun → 0 in W 1(Ω). Hence, ϕn = (Θun)|F → 0 in
W 1/2(F ). From (3.7) we deduce that ϕn → 0 in H1/2(F ), and thus un → 0 in V,
which contradicts the assumption that ‖un‖V = 1.

3.1.2. The free problem

In the absence of the floating body, the propagation of water waves is described
by the system (1.5), which leads to an abstract wave equation similar to (3.6):

d2
t φ̃ + Ãφ̃ = 0, where Ãφ̃ := ∂yΘ̃φ̃, (3.11)

and where Θ̃ denotes the harmonic lifting that maps a function φ̃ defined on F̃ to
the solution Φ̃ to

∆Φ̃ = 0 in Ω̃,

Φ̃ = φ̃ on F̃ .

}
(3.12)

As in lemma 3.1, Θ̃ defines a continuous operator from H1/2(F̃ ) to W 1(Ω̃), and
proposition 3.2 can be transposed to the operator Ã, which is self-adjoint in L2(F̃ ):
it is now associated with the Hermitian form

a(φ̃, ψ̃) :=
∫

Ω̃

∇Θ̃φ̃ · ∇Θ̃ψ̃ for all φ̃, ψ̃ ∈ H1/2(F̃ ).

3.2. Spectral analysis of the free problem

3.2.1. Construction of a generalized spectral basis

We first exhibit a diagonal representation of the free operator Ã = ∂yΘ̃ defined
in (3.11). We proceed as in [21] using the horizontal Fourier transform:

Fϕ(κ) :=
1√
2π

∫
R

e−iκxϕ(x) dx, κ ∈ R,

which appears as a unitary transformation from L2(Rx) to L2(Rκ). Recall that its
inverse F−1 = F∗ is given by

F∗ϕ̂(x) =
1√
2π

∫
R

e+iκxϕ̂(κ) dκ.

Applying F to the equations (3.12) satisfied by Φ̃ = Θ̃φ̃ and solving the resulting
differential equation in the y direction yields

FΦ̃(κ, y) = exp(|κ|y)F φ̃(κ).
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Taking the y-derivative of this expression at y = 0, we deduce that

∂yΘ̃ = F∗|κ|F . (3.13)

Consider then the change of variables

κ ∈ R → (λ, k) := (|κ|, sgn κ) ∈ R
+ × {±1}.

The corresponding transformation

ϕ̂(κ) C−→ Cϕ̂(λ, k) := ϕ̂(kλ)

is unitary from L2(Rκ) to L2(R+ × {±1}) since∫
R

∣∣∣∣ϕ̂(κ)
∣∣∣∣2 dκ =

∫
R+

∑
k=±1

|Cϕ̂(λ, k)|2 dλ.

As a consequence, formula (3.13) converts to the required form (2.7), i.e.

Ã = Ũ∗λŨ,

where Ũ := CF appears as a product of unitary operators; it is then unitary from
L2(R) to the spectral space L2(R+ × {±1}).

This diagonal representation of Ã can now be interpreted by its generalized eigen-
function expansion. Indeed, by introducing the functions

φ̃λ,k(x) :=
1√
2π

eikλx for λ ∈ R
+ and k = ±1, (3.14)

we see that Ũ reads

(Ũ φ̃)λ,k =
∫

R

φ̃(x)φ̃λ,k(x) dx.

We can interpret this integral as a duality product between two weighted L2-spaces
of the form

L2
s(R) := {φ̃; ηsφ̃ ∈ L2(R)}, where ηs(x) := (1 + x2)s/2. (3.15)

Indeed, L2
s(R) and L2

−s(R) are obviously dual to each other when L2(R) is identi-
fied with its own dual. Noting that φ̃λ,k ∈ L2

−s(R), provided that s > 1
2 , the above

expression of Ũ becomes

(Ũ φ̃)λ,k = 〈φ̃, φ̃λ,k〉 for all φ̃ ∈ L2
s(R), (3.16)

where 〈·, ·〉 denotes the integral over R in the rest of this section. To sum up, we
have almost proved the following proposition.

Proposition 3.3. In the functional scheme L2
s(R) ⊂ L2(R) ⊂ L2

−s(R) with s > 1
2 ,

the family {φ̃λ,k ∈ L2
−s(R); (λ, k) ∈ R

+ × {±1}} associated with the spectral space
L2(R+ × {±1}) is a generalized spectral basis of Ã (in the sense of definition 2.1).
Moreover, if s > 1, the stability condition (2.29) holds.
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Proof. It only remains to verify the local Hölder continuity of φ̃λ,k, i.e. prop-
erty (2.5). Here this is a consequence of the inequality

|eiτ − eiτ ′ | � 21−α|τ − τ ′|α for all τ, τ ′ ∈ R and all α ∈ [0, 1]. (3.17)

which is easily proved by noting that

|eiτ − eiτ ′ | � 2 and |eiτ − eiτ ′ | =
∣∣∣∣ ∫ τ ′

τ

eit dt

∣∣∣∣ � |τ − τ ′|,

and taking the product of these inequalities raised to the powers 1 − α and α,
respectively. Applying (3.17) here yields

‖φ̃λ,k − φ̃λ′,k‖2
L2

−s(R) � C|λ − λ′|2α

∫
R

|x|2α

(1 + x2)s
dx,

where the integral on the right-hand side is bounded if α < s − 1
2 . As s > 1

2 , prop-
erty (2.5) is proved. Moreover, if s > 1, one can choose α such that 1

2 < α < s − 1
2 :

the stability condition then follows from proposition 2.8.

We are thus in the context of § 2.1. In particular we know that every function of
Ã has the generalized eigenfunction expansion

f(Ã)φ̃ = L2(R)-PV
∫

R+
f(λ)

∑
k=±1

〈φ̃, φ̃λ,k〉φ̃λ,k dλ for all φ̃ ∈ D(f(Ã)) ∩ L2
s(R).

(3.18)

3.2.2. Green’s function and integral representation

Our aim here is to justify formula (2.15) for the resolvent R̃ζ of the free opera-
tor Ã. The spectral representation yields in this case

〈R̃ζ φ̃, ψ̃〉 =
∫

R+

〈〈Υλ, φ̃ ⊗ ψ̃〉〉
λ − ζ

dλ (3.19)

where

Υλ(x, x′) :=
∑

k=±1

φ̃λ,k(x) ⊗ φ̃λ,k(x′) =
1
π

cos(λ|x − x′|), (3.20)

and 〈〈·, ·〉〉 stands for a double integral over Rx × Rx′ , more precisely for the dual-
ity product between L2

−s(R) ⊗ L2
−s(R) and L2

s(R) ⊗ L2
s(R): the kernel Υλ clearly

belongs to the former.
Permuting 〈〈·, ·〉〉 with the integral on R

+, we have

〈R̃ζ φ̃, ψ̃〉 = 〈〈gζ , φ̃ ⊗ ψ̃〉〉 =
∫

Rx×Rx′

gζ(x, x′)φ̃(x)ψ̃(x′) dxdx′,

where gζ is the Green function of Ã, i.e. the kernel of its resolvent, which is formally
given by

gζ(x, x′) := PV
∫

R+

Υλ(x, x′)
λ − ζ

dλ =
1
π

PV
∫

R+

cos(λ|x − x′|)
λ − ζ

dλ. (3.21)
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The function ψ can be eliminated from the above formula, which then takes the
usual form of the integral representation of R̃ζ :

(R̃ζ φ̃)(x′) =
∫

R

gζ(x, x′)φ̃(x) dx for all x′ ∈ R. (3.22)

We have to specify the proper interpretation of the principal value in (3.21) which
allows the permutation leading to this integral representation. Here the Green func-
tion has a weak singularity, for the problem is one-dimensional.

Proposition 3.4. The Green function of the free water-wave problem belongs to
L2

−s(R) ⊗ L2
−s(R) with s > 1

2 : it is given by (3.21), where the principal value is
understood in L2

−s(R) ⊗ L2
−s(R) at λ = +∞. And the integral representation (3.22)

holds for every φ̃ ∈ L2
s(R).

Proof. First note that, for fixed x and x′ such that x �= x′, the principal value
in (3.21) exists in C. Indeed, integrating by parts yields∫ M

0

cos(λr)
λ − ζ

dλ =
∫ M

0

sin(λr)
r(λ − ζ)2

dλ +
sin(Mr)
r(M − ζ)

, r = |x − x′|,

which clearly admits a limit when M → +∞. This formula can be written∫ M

0

Υλ

λ − ζ
dλ =

∫ M

0

Υ
(−1)
λ

(λ − ζ)2
dλ +

Υ
(−1)
M

M − ζ
,

where

Υ
(−1)
λ (x, x′) :=

∫ λ

0
Υµ(x, x′) dµ =

1
π

sin(λ|x − x′|)
|x − x′| .

The kernel Υ
(−1)
λ is bounded, and thus belongs to L2

−s(R) ⊗ L2
−s(R) for every λ > 0.

Moreover,

‖Υ
(−1)
λ ‖L2

−s(R)⊗L2
−s(R) � Cλ2/3

for some positive constant C, since∫
R

∣∣∣∣ sin(λ|x − x′|)
x − x′

∣∣∣∣2η2
−s(x) dx

� λ2
∫

|x−x′|<λ−2/3
dx + λ4/3

∫
|x−x′|>λ−2/3

η2
−s(x) dx

� Cλ4/3.

As a consequence (λ − ζ)−2Υ
(−1)
λ is integrable over R

+ with values in L2
−s(R) ⊗

L2
−s(R) and

gζ = PV
∫

R+

Υλ

λ − ζ
dλ =

∫
R+

Υ
(−1)
λ

(λ − ζ)2
dλ.
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The integral representation is then easily justified:

〈R̃ζ φ̃, ψ̃〉 = lim
M→+∞

〈〈 ∫ M

0

Υλ

λ − ζ
dλ, φ̃ ⊗ ψ̃

〉〉

=
〈〈

lim
M→+∞

∫ M

0

Υλ

λ − ζ
dλ, φ̃ ⊗ ψ̃

〉〉
,

where the first equality follows from (3.19) by Fubini’s theorem, and the second
follows from the above property of gζ .

Proposition 3.4 is not optimal: formula (3.22) actually is valid for every φ̃ ∈
L2(R), but this is not used here.

3.2.3. The limiting absorption principle

Since we are in the context of definition 2.1, the statement of proposition 2.3
holds for the free problem. And the generalized eigenfunction expansion (2.24) can
be translated into the limit form of the integral representation (3.22). This is the
object of the following proposition.

Proposition 3.5. For every λ > 0, the one-sided limits R̃±
λ of the free resolvent

R̃ζ exist in B(L2
s(R), L2

−s(R)) for s > 1
2 . They satisfy the integral representation

(R̃±
λ φ̃)(x′) =

∫
R

g±
λ (x, x′)φ̃(x) dx for all x′ ∈ R, (3.23)

where g±
λ ∈ L2

−s(R) ⊗ L2
−s(R) are the one-sided limits of gζ , which can be expressed

in the form

g±
λ (x, x′) = ±ie±iλr +

1
π

Re{eiλrE1(iλr)} with r := |x − x′|, (3.24)

where E1 denotes the exponential integral function [1].

Proof. Here formula (2.24) yields

〈R̃±
λ0

φ̃, ψ̃〉 = PV
∫

R+\{λ0}

〈〈Υλ, φ̃ ⊗ ψ̃〉〉
λ − λ0

dλ ± iπ〈〈Υλ0 , φ̃ ⊗ ψ̃〉〉,

for φ̃ and ψ̃ in L2
s(R). The existence of the principal value at λ0 follows from the

local Hölder continuity of Υλ (which derives from that of φ̃λ,k). Using the same
arguments as in the proof of proposition 3.4, this formula amounts to the integral
representation (3.23), where

g±
λ0

= PV
∫

R+\{λ0}

Υλ

λ − λ0
dλ ± iπΥλ0 . (3.25)

The equivalent expression (3.24) is deduced from (3.21) written in the form

gζ(x, x′) =
1
2π

{
PV

∫
R+

e+iλr

λ − ζ
dλ + PV

∫
R+

e−iλr

λ − ζ
dλ

}
.
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Indeed, considering each integral as a Cauchy integral in the complex λ-plane,
the residue theorem allows us to move the integration path to the half-imaginary
axis located in the half-λ-plane where exp(±iλr) is exponentially decreasing. For
instance, if Re ζ > 0 and Im ζ > 0, we have

PV
∫

R+

e+iλr

λ − ζ
dλ = 2iπeiζr +

∫
R+

e−tr

t + iζ
dt

= 2iπeiζr + eiζr

∫
iζr+R+

e−z

z
dz,

where the last integral is merely E1(iζr). Similarly, the second Cauchy integral is
equal to exp(−iζr)E1(−iζr), which yields

gζ(x, x′) = ieiζr +
1
2π

{e+iζrE1(+iζr) + e−iζrE1(−iζr)}.

The case in which Re ζ > 0 and Im ζ < 0 lead to the same expression, where the
first term i exp(iζr) must be replaced by −i exp(−iζr). Taking the limit as ζ ∈ C

±

tends to λ > 0 gives (3.24).

3.3. Compactness of the perturbation

We prove here that the sea-keeping problem (3.6) corresponds to a compact
perturbation of the free problem (3.11) using the trick described in § 2.5, i.e. by
comparing the resolvents A := R−α and Ã := R̃−α of A and Ã for some α > 0 in a
cumulative functional framework.

3.3.1. The comparison operator

The free and perturbed energy spaces H̃ := L2(F̃ ) and H := L2(F ) × C
2 appear

naturally as subspaces of H := L2(F̃ ) × C
2, since (2.56) holds with complementary

subspaces given by H0 := L2(F0), where F0 := F̃ \ F and H̃0 := C
2. We denote

by P : H → H and P0 : H → H0 the canonical restrictions associated with the
perturbed decomposition, that is,

P(φ̃, p) = (φ̃|F , p) and P0(φ̃, p) = φ̃|F0 for all (φ̃, p) ∈ H.

Consider then the comparison operator (2.57) for some given α > 0,

D := A − Ã, where A := R−α ⊕ 0 and Ã := R̃−α ⊕̃ 0,

which can be written

Du = {R−αPu − P(R̃−αφ̃, 0)} ⊕ {−P0(R̃−αφ̃, 0)} for all u = (φ̃, p) ∈ H.

The aim of this section is to prove the following proposition.

Proposition 3.6. For s, s′ < 3
2 , the operator D is compact from L2

−s(F̃ ) × C
2 to

L2
s′(F̃ ) × C

2.

Let us first make explicit the above definition of D. For u = (φ̃, p) ∈ H, define
φ̃α := R̃−αφ̃ ∈ H̃ and uα := R−αPu = (ϕα, pα) ∈ H, so that

Du = (ϕα − (φ̃α)|F , pα) ⊕ (−(φ̃α)|F0). (3.26)
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By virtue of (3.6), uα is the solution to the following coupled problem:

∂yΘuα + αϕα = φ̃|F ,

Kpα +
∫

Γ

Θuαν dγ + αpα = p.

From the definition (3.5) of Θ, this amounts to solving the boundary-value problem

∆Φα = 0 in Ω,

∂yΦα + αΦα = φ̃ on F,

∂nΦα +
(

Kpα +
∫

Γ

Φαν dγ

)
· ν = 0 on Γ,

Kpα +
∫

Γ

Φαν dγ + αpα = p,

where Φα := Θuα, so ϕα = (Φα)|F . Similarly, for the free problem we have φ̃α =
(Φ̃α)|F̃ , where

∆Φ̃α = 0 in Ω̃,

∂yΦ̃α + αΦ̃α = φ̃ on F̃ .

}
(3.27)

As a consequence, to find Du, we must solve first (3.27) and then the following
coupled system, where Ψ := Φα − (Φ̃α)|Ω :

∆Ψ = 0 in Ω,

∂yΨ + αΨ = 0 on F,

∂nΨ +
(

Kq +
∫

Γ

Ψν dγ

)
· ν = −∂nΦ̃α −

( ∫
Γ

Φ̃αν dγ

)
· ν on Γ,

Kq +
∫

Γ

Ψν dγ + αq = p −
∫

Γ

Φ̃αν dγ.

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
(3.28)

Relation (3.26) thus becomes

Du = (Ψ |F , q) ⊕ (−(Φ̃α)|F0). (3.29)

In order to prove that D enters the framework of definition 2.9, we need pre-
cise information about the solutions of problems (3.27) and (3.28), which will be
obtained with the help of the ‘immersed’ Green function. The latter provides an
explicit integral representation of Φ̃α and an implicit one for Ψ .

3.3.2. The ‘immersed’ Green function

The Green function gζ introduced in § 3.2 (see proposition 3.4) is not adapted
to study the solution to (3.28) because the perturbation extends under the free
surface. This function represents the response of the free surface to a point source
located on this free surface. Here we need the response of the whole sea to an
immersed excitation, represented by the ‘immersed’ Green function, which is merely
the function generally used in the literature for integral equations (see, for example,
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[28, 42]). We denote it by Gζ = Gζ(X, X ′), where X = (x, y) and X ′ = (x′, y′)
belong to Ω̃, and ζ ∈ C \ R

+. It satisfies the following equations:

∆XGζ(X, X ′) = δX′(X) for X ∈ Ω̃,

∂yGζ(X, X ′) − ζGζ(X, X ′) = 0 for X ∈ F̃ ,

where δX′ denotes the Dirac measure at point X ′. It is given by

Gζ(X, X ′) =
1
2π

{
ln

∣∣∣∣z − z′

z − z′

∣∣∣∣ + 2
∫

R+

Re(eiλ(z̄−z′))
λ − ζ

dλ

}
, (3.30)

where z = z(X) := x + iy and z′ = z′(X) := x′ + iy′. Of course, this expression
coincides with (3.21) when X, X ′ ∈ F̃ , that is, y = y′ = 0: the free surface Green
function is simply the trace on F̃ × F̃ of the immersed one.

In the following we are interested only in the particular case ζ = −α with α > 0
for which Gζ has a stronger decay at infinity than for Im ζ �= 0.

Lemma 3.7. When r := |x − x′| → +∞, we have G−α(X, X ′) = O(r−2) uniformly
in every strip y0 < y, y′ � 0. And the same behaviour holds for every spatial deriva-
tive of G−α.

Proof. Under the assumption that y + y′ remains bounded, we have

ln
∣∣∣∣z − z′

z − z′

∣∣∣∣ =
(y + y′)2 − (y − y′)2

2r2 + O(r−4),

which shows that the first term in (3.30) is O(r−2). Following the same idea as in
the proof of (3.24), the second term can be written as∫

R+

Re(eiλ(z̄−z′))
λ + α

dλ = Re
∫

R+

e−tρ

t − iα
dt, where ρ := r − i(y + y′).

Then, integrating by parts twice yields∫
R+

e−tρ

t − iα
dt =

1
ρ2

∫
R+

2e−tρ

(t − iα)3
dt +

1
ρ2α2 +

i
ρα

.

The two first terms of the right-hand side are obviously O(r−2). As α is real, the
real part of the third term is also O(r−2). Hence, the lemma is proved for G−α. For
its spatial derivatives, the same arguments apply: the logarithmic term is dealt with
by a direct derivation, and the latter formula can be derived with respect to ρ.

3.3.3. The free problem

For φ̃ ∈ L2(F̃ ), problem (3.27) is well posed in

W 1
F̃

(Ω̃) := {Φ̃ ∈ W 1(Ω̃); Φ̃|F̃ ∈ L2(F̃ )},

where W 1(Ω̃) is given in lemma 3.1. Indeed, its variational formulation reads∫
Ω̃

∇Φ̃α · ∇Φ̃′ + α

∫
F

Φ̃αΦ̃′ dx =
∫

F

φ̃Φ̃′ dx for all Φ̃′ ∈ W 1
F̃

(Ω̃),

https://doi.org/10.1017/S0308210506000138 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210506000138


Generalized eigenfunction expansions 1031

where the left-hand side defines an inner product in W 1
F̃

(Ω̃). Hence, the operator
Θ̃α which maps φ̃ to the solution Φ̃α of (3.27) is continuous from L2(F̃ ) to W 1

F̃
(Ω̃).

The knowledge of G−α yields an explicit integral representation of this operator:

(Θ̃αφ̃)(X ′) = Φ̃α(X ′) =
∫

F̃

G−α((x, 0), X ′)φ̃(x) dx for all X ′ ∈ Ω̃ (3.31)

which is classically obtained by Green’s formula. This relation is merely the har-
monic lifting in Ω̃ of the integral representation (3.22) since Θ̃α = Θ̃R−α and
G−α((x, 0), ·) = Θ̃g−α(x, ·), where Θ̃ is defined in (3.12).

We want to extend formula (3.31) to every φ̃ ∈ L2
−s(F̃ ). We are interested only

in the local behaviour of Φ̃α, say in Ω̃R := {X ∈ Ω̃; ‖X‖ < R}, since the perturbed
problem (3.28) involves only (Φ̃α)|Γ and (∂nΦ̃α)|Γ .

Lemma 3.8. For s < 3
2 and R > 0, the mapping Θ̃α : φ̃ → Φ̃α extends to a bounded

operator from L2
−s(F̃ ) to H1

∆(Ω̃R) := {Φ̃ ∈ H1(Ω̃R); ∆Φ̃ = 0 in Ω̃R}.

Proof. Choose R′ > R and denote by χR′ the characteristic function of the set
{|x| < R′}. Then Θ̃α can be split as follows:

Θ̃α = Θ̃R′

α + Θ̃∞
α , where Θ̃R′

α φ̃ := Θ̃α(χR′ φ̃) and Θ̃∞
α φ̃ := Θ̃α((1 − χR′)φ̃).

For every s > 0, the operator Θ̃R′

α is clearly continuous from L2
−s(F̃ ) to W 1

F̃
(Ω̃),

and thus also to H1
∆(Ω̃R) by restriction. To deal with Θ̃∞

α , note that, by Schwarz’s
inequality, (3.31) yields

|(Θ̃∞
α φ̃)(X ′)|2 � ‖φ̃‖2

L2
−s(F̃ )

∫
|x|>R′

|ηs(x)G−α((x, 0), X ′)|2 dx.

Lemma 3.7 shows that if s < 3
2 , the above integral is a bounded function of X ′ ∈ Ω̃R.

And a similar inequality holds for every spatial derivative of Θ̃∞
α φ̃. Hence, Θ̃∞

α is
continuous from L2

−s(F̃ ) to Hm(Ω̃R) for every m > 0. The conclusion follows.

3.3.4. The perturbed problem

As above, problem (3.28) is well posed in the space W 1
F (Ω) × C

2. Indeed, its
variational formulation can be written∫

Ω

∇Ψ · ∇Ψ ′ + α

∫
F

ΨΨ ′ dx + αKq · q′ +
(

Kq +
∫

Γ

Ψν dγ

)
·
(

Kq′ +
∫

Γ

Ψ ′ν dγ

)
= −

∫
Γ

∂nΦ̃αΨ ′ dγ −
( ∫

Γ

Φ̃αν dγ

)
·
(

Kq′ +
∫

Γ

Ψ ′ν dγ

)
+ Kp · q′,

for all pairs (Ψ ′, q′) ∈ W 1
F (Ω) × C

2. The left-hand side is clearly a coercive sesquilin-
ear form in this space, and the right-hand side depends continuously on (Φ̃α, p) ∈
H1

∆(Ω̃R) × C
2 (where R must be chosen so that Γ ⊂ Ω̃R). This means that the

operator that maps (Φ̃α, p) to the solution (Ψ, q) of (3.28) is continuous from
H1

∆(Ω̃R) × C
2 to W 1

F (Ω) × C
2. Moreover, Ψ satisfies the following usual integral

representation [28,42] for all X ′ ∈ Ω:

Ψ(X ′) =
∫

Γ

(Ψ(X)∂nX
G−α(X, X ′) − ∂nΨ(X)G−α(X, X ′)) dγX . (3.32)

https://doi.org/10.1017/S0308210506000138 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210506000138


1032 C. Hazard and F. Loret

Lemma 3.9. For s′ < 3
2 , the mapping

(Φ̃α, p) → (Ψ |F , q)

is continuous from H1
∆(Ω̃R) × C

2 to H
1/2
s′ (F ) × C

2, where H
1/2
s′ (F ) := H1/2(F ) ∩

L2
s′(F ).

Proof. From (3.7) we know that H1/2(F ) is the trace space of W 1
F (Ω). On the

other hand, the above integral representation and lemma 3.7 show that Ψ(x, 0) =
O(|x|−2), and hence Ψ |F ∈ L2

s′(F ) for every s′ < 3
2 .

3.3.5. Proof of proposition 3.6 and consequences

The characterization (3.29) of D together with lemmas 3.8 and 3.9 show that
D is continuous from L2

−s(F̃ ) × C
2 to {H

1/2
s′ (F ) ⊕ H1/2(F0)} × C

2 for s, s′ < 3
2 .

Moreover, by the Rellich theorem, the canonical injections H1/2(F0) ⊂ L2(F0) and
H

1/2
s′ (F ) ⊂ L2

s′′(F ) are compact if s′ > s′′. So proposition 3.6 is proved.
This guarantees the compactness of the perturbation in the sense of definition 2.9.

Corollary 3.10. For 1
2 < s < 3

2 , the operators DR̃
±
µ are compact in

H↓ := L2
s(F̃ ) × C

2 for every µ ∈ ]0, α−1[.

Proof. From proposition 3.5, we know that R̃
±
µ = R̃±

µ ⊕̃(−µ−1IdC2) is continuous
from L2

s(F̃ ) × C
2 to L2

−s(F̃ ) × C
2 if s > 1

2 . Choosing s′ = s in proposition 3.6 yields
the result.

3.4. Conclusion

The previous sections show that our wave problem comes within the field of
application of theorem 2.11. Indeed, we know a generalized spectral basis for the
free problem, which satisfies the stability condition (proposition 3.3). And the per-
turbation we consider is compact (corollary 3.10). As a consequence, for 1 < s < 3

2 ,
both families in (2.59), i.e.

w±
λ,k := (P − R∓

µ PD)(w̃λ,k, 0) ∈ L2
−s(F̃ ) × C

2, where µ := (λ + α)−1,

define generalized spectral bases for A. It remains to show a more explicit charac-
terization of these eigenfunctions, by a proper interpretation of R∓

µ PD.
For u = (φ̃, p) ∈ H↑, define v := PDu = (ψ, q) and u̇ := Rξv = (ϕ̇, ṗ), where

ξ ∈ C
±. Formula (3.29) tells us that v = (Ψ |F , q), where (Ψ, q) is obtained by suc-

cessively solving (3.27) and (3.28). Moreover, by (2.54), we have u̇ = −ξ−1(Id +
ξ−1Rζ)v, where ξ = (ζ + α)−1 or, equivalently,

(A − ζ)(ξu̇ + v) = −ξ−1v.

By virtue of the definition (3.6) of A, this means that

∂yΘ(ξu̇ + v) − ζ(ξϕ̇ + ψ) = −ξ−1ψ,

K(ξṗ + q) +
∫

Γ

Θ(ξu̇ + v)ν dγ − ζ(ξṗ + q) = −ξ−1q.
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By defining Φ̇ such that
Θ(ξu̇ + v) = ξΦ̇ + Ψ,

and using the equations (3.28), this system amounts to solving

∆Φ̇ = 0 in Ω,

∂yΦ̇ − ζΦ̇ = 0 on F,

∂nΦ̇ +
(

Kṗ +
∫

Γ

Φ̇ν dγ

)
· ν = ξ−1

(
∂nΦ̃α + ν ·

∫
Γ

Φ̃αν dγ

)
on Γ,

Kṗ +
∫

Γ

Φ̇ν dγ − ζṗ = ξ−1
(

− p +
∫

Γ

Φ̃αν dγ

)
.

This means that, to find u̇ := RξPDu, we must solve first (3.27) and then the
above system, which yields u̇ = (Φ̇|F , ṗ).

When ξ ∈ C
∓ → µ ∈ ]0, α−1[, that is, when ζ ∈ C

± tends to λ ∈ R
+, the limiting

absorption principle tells us that the limit of (Φ̇, ṗ) exists and satisfies the above
equations with ζ replaced by λ (and ξ by µ). In the particular case u = −(w̃λ,k, 0),
we rediscover equations (1.10)–(1.13) satisfied by the scattered wave (Φ̇±

λ,k, p±
λ,k),

since in this situation Φ̃α = µΦ̃λ,k, where Φ̃λ,k is given in (1.6).
The radiation condition (1.14) that characterizes the outgoing or incoming solu-

tion is then easily justified using the immersed Green function (3.30) again. Indeed,
the solution (Φ̇, ṗ) of the above equations satisfies the integral representation (3.32)
with G−α replaced by Gζ . Hence,

Φ̇±
λ,k(X ′) =

∫
Γ

(Φ̇±
λ,k(X)∂nX

G±
λ (X, X ′) − ∂nΦ̇±

λ,k(X)G±
λ (X, X ′)) dγX ∀X ′ ∈ Ω,

where G±
λ are the one-sided limits of Gζ , which shows that Φ̇±

λ,k satisfies the radia-
tion condition (1.14) if the same holds for G±

λ (X, ·) and ∂nX
G±

λ (X, ·) uniformly in
X ∈ Γ . Following the same idea as in proposition 3.5, we see that

G±
λ (X, X ′) = ±ieλ(±i|x−x′|+(y+y′)) + E±

λ (X, X ′),

where E±
λ (X, X ′) represents the evanescent component of G±

λ (X, X ′) whose con-
tribution vanishes in the radiation condition. And the dominant term obviously
satisfies (1.14). As a conclusion, we have justified the intuitive construction of § 1.2.

Theorem 3.11. Under the assumption that the operator A, defined in propos-
ition 3.2, has no eigenvalues, both families

w±
λ,k := ((Φ̃λ,k + Φ̇±

λ,k)|F , p±
λ,k), λ ∈ R

+ and k = ±1,

given by (1.6) and (1.10)–(1.14), and associated with the spectral space L2(R+ ×
{±1}), define generalized spectral bases for A in the functional scheme

L2
s(F ) × C

2 ⊂ L2(F ) × C
2 ⊂ L2

−s(F ) × C
2 with s > 1.

In particular the announced generalized eigenfunction expansion (1.15) of the
transient coupled motions is now established: it has to be understood in the sense
of (2.19).
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Note that the absence of eigenvalues of A, which amounts to the uniqueness of the
solution to (1.10)–(1.14), seems to be an open question. The case of the scattering by
a fixed obstacle has been extensively studied, from the uniqueness proof pioneered
by John [26] to the discovery of trapped waves by McIver [32] (see [28] for a review
of these results). But very little is known about the coupled problem.
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