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Abstract

Fractal percolation exhibits a dramatic topological phase transition, changing abruptly
from a dust-like set to a system-spanning cluster. The transition points are unknown
and difficult to estimate. In many classical percolation models the percolation thresholds
have been approximated well using additive geometric functionals, known as intrinsic
volumes. Motivated by the question of whether a similar approach is possible for fractal
models, we introduce corresponding geometric functionals for the fractal percolation
process F. They arise as limits of expected functionals of finite approximations of F.
We establish the existence of these limit functionals and obtain explicit formulas for
them as well as for their finite approximations.
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1. Introduction

Fractal percolation in R
d is a family of random subsets of the unit cube J := [0, 1]d ⊂R

d

depending on two parameters M ∈N≥2 and p ∈ [0, 1], which is informally defined as follows.
In the first step divide J into Md closed subcubes of side length 1/M. Each of these subcubes
is kept with probability p and discarded with probability 1 − p independently of all other sub-
cubes. Then this construction is iterated. Let Fn, n ∈N, denote the union of the subcubes kept
in the nth step. They arise as follows. Assuming that Fn−1 is already constructed, in the nth step
each cube in Fn−1 (of side length 1/Mn−1) is divided into Md subcubes (of side length 1/Mn)
and each of these subcubes is kept (and included in Fn) with probability p independently of
all other subcubes and of the previous steps. In this way one obtains a decreasing sequence
F0 := J ⊃ F1 ⊃ F2 ⊃ . . . of (possibly empty) random compact sets. The limit set

F :=
⋂

n∈N0

Fn (1.1)

is known as fractal percolation or Mandelbrot percolation; see e.g. [6, 16]. Figure 1 shows
some finite approximations Fn of F for different values of p and M. It is well known that
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F is almost surely empty if p ≤ 1/Md , i.e. if on average not more than one of the Md sub-
cubes of any cube in the construction survives. For p> 1/Md , however, there is a positive
probability (depending on p, M, and d) that F �= ∅, and conditioned on F being nonempty, the
Hausdorff dimension and equally the Minkowski dimension of F are almost surely given by the
number

dimH F = D := log(Mdp)

log(M)
= d − log(1/p)

log(M)
; (1.2)

see e.g. [6]. The sets F are among the simplest examples of self-similar random sets as
introduced in [9, 11, 18].

Among many other properties, in particular their connectivity has been studied. Fractal
percolation exhibits a dramatic topological phase transition—for all dimensions d ≥ 2 and
all M ∈N≥2—when the parameter p increases from 0 to 1. There is a critical probability
pc = pc(M, d) ∈ (0, 1) such that, for p< pc, the set F is almost surely totally disconnected
(‘dustlike′), and, for p ≥ pc, F has connected components larger than one point with proba-
bility 1 (provided F is not empty); see [3]. Remarkably, the phase transition is discontinuous;
that is, the probability that F has connected components larger than one point is strictly
positive at pc.

For d = 2, Chayes, Chayes and Durrett [6] observed that for p ≥ pc there is even a positive
probability that F percolates, meaning here that F has a connected component which intersects
both the left and the right boundary of J, that is, {0} × [0, 1]d−1 and {1} × [0, 1]d−1. Note that
also at pc, there is a positive probability that F percolates; a simpler proof of this fact was
provided in [7].

In dimension d ≥ 3, F is known to percolate with positive probability for all p> pc(M, d),
provided M is large enough; see [3]. This is conjectured to hold for all M. An open question
is whether there is a positive probability for percolation at the corresponding threshold in
dimensions d ≥ 3. We refer to [2, 3] for a more detailed discussion of this and related issues.

As in many other percolation models, the exact values of pc(M, d) are not known. In fact,
for this model the situation is even worse than usual. Classical techniques using finite size
scaling apparently fail in this fractal model, since a proper scaling regime is inaccessible with
modern hardware. Some rigorous lower and upper bounds on pc(M, d) have been obtained, in
particular for d = 2 (see Section 2), but they are not tight.

Morphometric methods to estimate thresholds in percolation models have been proposed in
[20] and intensively studied in the physics literature [12, 19, 21, 22]; see also the recent study
in homological percolation [1] using topological data analysis. These methods are based on
additive functionals from integral geometry, in particular the Euler characteristic, and rely on
the observation that in many percolation models the expected Euler characteristic per site (as
a function of the model parameter p)—which can easily be computed analytically in many
models—has a zero close to the percolation threshold of the model. In dimension 2, a heuristic
explanation is based on the representation of the Euler characteristic for polyconvex sets as the
difference between the number of components and the number of holes. Below the threshold,
there are many small connected components, which can hardly contain any holes, resulting in
a positive Euler characteristic. Above the threshold, a few large clusters form with complex
shapes that contain many holes, resulting in a negative Euler characteristic. The argument
can, in fact, be related to an exact derivation of the threshold for certain self-matching lattices
[21]. Based on empirical evidence and heuristic arguments, the zeros of the Euler characteristic
provide for many classes of percolation models reasonable approximations and putative bounds
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Geometric functionals of fractal percolation 1087

FIGURE 1: Finite approximations of fractal percolation: realizations for different values of the survival
probability p and the linear number of subdivisions M. ‘Percolating’ clusters that span the system in the
vertical and horizontal directions are highlighted.

on the thresholds that capture their dependence on system parameters such as the degree of
anisotropy [12]. More precisely, across many models, the zero of the Euler characteristic has
been observed to be a lower bound for the percolation threshold pc if pc <

1
2 , and to be an upper

bound for pc if pc >
1
2 . For self-matching lattices with pc = 1

2 (such as the triangular lattice),
the zero of the Euler characteristic is also found to be 1

2 . This case is the only one up to now
in which the relation between Euler characteristic and percolation thresholds has been proven
rigorously using symmetry arguments; see e.g. [21].

In analogy to these findings for discrete and continuum percolation models, we intro-
duce and study here some corresponding geometric functionals for fractal percolation and
ask whether one can use them to predict or at least approximate percolation thresholds. It is
natural to expect that the dramatic phase transition (from dust to strong connectivity) in these
fractal models should leave at least some trace in geometric functionals such as the Euler char-
acteristic. Because of the self-similarity of the model, there is even some hope that—although
percolation is a global property—the thresholds can be predicted by local information alone.

Note that both F and the construction steps Fn are random compact subsets of the unit cube
[0, 1]d. Moreover, by their construction, the sets Fn are finite (random) unions of cubes (of side
length 1/Mn). Therefore, each Fn is almost surely polyconvex, i.e., a finite union of convex sets,
and so intrinsic volumes V0(Fn), V1(Fn), . . . , Vd(Fn) (also known as Minkowski functionals)
and even curvature measures are well defined for Fn almost surely.

Intrinsic volumes form a (complete) system of geometric invariants, which are charac-
terized by their properties. Among them are the volume Vd, the surface area Vd−1, and the
Euler characteristic V0; see Figure 2 for an illustration of the case d = 2. The remaining ones
describe integrated curvature properties of the boundary. For compact, convex sets K ⊂R

d,
they are most easily introduced via the Steiner formula, which expresses the volume (Lebesgue
measure) of the parallel sets K⊕ε := {x ∈R

d : infy∈K ||x − y|| ≤ ε}, where || · || denotes the
Euclidean norm, as a polynomial in ε. The intrinsic volumes V0(K), . . . , Vd(K) of K arise
as the unique coefficients in this formula (up to normalization):
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FIGURE 2: Illustration of the three intrinsic volumes in R
2: area, boundary length, and Euler characteristic

(i.e., #components − #holes).

Vd(K⊕ε) =
d∑

k=0

κd−kVk(K)εd−k.

Here κj denotes the volume of the unit ball in R
j. Intrinsic volumes are additive functionals;

i.e. for compact, convex sets K, L ⊂R
d the relation

Vk(K) + Vk(L) = Vk(K ∪ L) + Vk(K ∩ L) (1.3)

holds, provided K ∪ L is again convex. They can be extended additively to the convex ring Rd ,
the family of all compact polyconvex sets. Since Rd is closed with respect to unions and
intersections, the equation (1.3) holds for any K, L ∈Rd . Among the further properties of
intrinsic volumes are invariance with respect to rigid motions and homogeneity, meaning
that Vk satisfies Vk(λK) = λkVk(K) for any K ∈Rd and any λ > 0, where λK := {λx : x ∈ K}.
We refer to [23, Ch. 4] or [24, Ch. 14.2] for more details on intrinsic volumes.

While for the sets Fn intrinsic volumes are well defined, the limit set F is a fractal and so
these functionals are not directly defined. Since the Fn approximate the limit set F, as n → ∞,
we are interested in the expectationsEVk(Fn), k ∈ {0, . . . , d}, and in particular in their limiting
behavior as n → ∞. It turns out that some appropriate rescaling is necessary in order to see
convergence, which is closely related to the Hausdorff (and Minkowski) dimension of the limit
set F. Our first main result is a general formula which expresses these limits in terms of lower-
dimensional mutual intersections of certain parts of the construction steps Fn. Let J1, . . . , JMd

be the Md closed subcubes into which [0, 1]d is divided in the first step of the construction
of F. Denote by Fj

n, j = 1, . . . ,Md , the union of all subcubes kept in the nth step, that are
contained in Jj (see Figure 3 for an illustration and (4.1) for a formal definition).

Theorem 1.1. Let F be a fractal percolation on [0, 1]d with parameters M ∈N≥2 and
p ∈ (0, 1]. Let D be as given by (1.2) and let r := 1/M. Then, for each k ∈ {0, . . . , d}, the
limit

Vk(F) := lim
n→∞ rn(D−k)

EVk(Fn)

exists and is given by the expression

qd,k +
∑

T⊂{1,...,Md},|T|≥2

(−1)|T|−1
∞∑

n=1

rn(D−k)
EVk

(⋂
j∈T

Fj
n

)
, (1.4)

where qd,k := Vk([0, 1]d) is the kth intrinsic volume of the unit cube in R
d.
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FIGURE 3: Illustration of the sets Fj
n as subsets of Fn (for M = 2 and n = 6) and of an intersection⋂

j∈T Fj
n. The number of subsets Fj

n is by definition always M2.

We point out that all the intersections occurring in (1.4) consist of at least two of the cubes
Fj

n and are thus contained in some hyperplane. Hence, in this formula only sets which can be
studied in a lower-dimensional ambient space appear, allowing the use of fractal percolations
in lower-dimensional cubes for the computations. This makes the formula practically useful for
explicit calculations as carried out in R

1 and R
2 below. Note also that many of the intersections

are actually empty and that there are a lot of symmetries between the remaining ones.
While Theorem 1.1 states the existence of the limits Vk(F) for all parameters p ∈ (0, 1], the

limit set F is empty almost surely for p ≤ M−d . So the limit Vk(F) is not only a functional of
the limit set F, but also depends on the chosen approximation sequence Fn.

In R
2 (and similarly for R; see Corollary 5.1) we use the formula in Theorem 1.1 to derive

more explicit expressions for the limits Vk(F).

Theorem 1.2. Let F be a fractal percolation in [0, 1]2 with parameters M ∈N≥2 and p ∈ (0, 1].
Then

V2(F) = 1, V1(F) = 2M(1 − p)

M − p
and

V0(F) = 1 − 2p(M − 1)2

M − p

(
3

M − 1
− 4p

M − p
+ p2

M − p2

)
+ 2p(M2 − 1)

M2 − p
− 4p2(M − 1)2

(M − p)2 + p3(M − 1)2(M + p2)

(M − p2)(M2 − p3)
.

While V2(F) (the rescaled limit of the expected area) is constant and thus independent of
M and p, the functional V1(F) (the rescaled limit of the expected boundary lengths) is mono-
tone decreasing in p (for each fixed M). Most interesting is the limit V0(F) of the expected
Euler characteristics of the Fn.

Figure 4 (left) shows V0(F(p)) as a function of the survival probability p for different
M (black curves). The dotted vertical line indicates the threshold below which F is almost
surely empty. The coloured curves depict the analytic expressions for finite approximations of
the limit V0(F(p)) by the rescaled functionals p �→ rnD(p)

EV0(Fn(p)) for different n (obtained
in the proof of Theorem 1.2). Already for n = 12 the curves are almost indistinguishable from
n = ∞, indicating a fast convergence, which is rigorously confirmed below; see Remark 5.2.
The formulas for finite approximations are compared to simulations; see Remark 5.3. The
marks depict the arithmetic mean over 2500 to 75000 samples (depending on n). The error
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FIGURE 4: Rescaled expected Euler characteristics of finite approximations Fn (left) and their closed
complements Cn (right) as functions of the survival probability p for M = 2 (top), M = 3 (center), and
M = 4 (bottom). Each plot compares finite approximations with increasing n to the limit curve (n = ∞),
that is, to p �→ V0(F(p)) as given in Theorem 1.2 (left) and p �→ −Vc

0(F(p)) as given in Theorem 1.3. The
shaded areas indicate the rigorously known bounds on the percolation threshold; see (2.2).

bars depict the standard error of the mean. The simulation results are in excellent agreement
with the analytic curves.

The functionals Vk(F), which are based on the approximation of F by the sequence Fn,
provide a natural and intuitive first approach to quantifying the geometry of fractal perco-
lation F. One should however keep in mind that these limits most likely also depend on
the approximation sequence. There are other natural sequences of sets which approximate
F well and which may even be better suited to capture certain aspects of the geometry of F.
In particular, the parallel sets F⊕ε , ε > 0, of F are considered a good means of approxima-
tion, preserving many properties, and have also been studied extensively for (deterministic
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and random) self-similar sets; cf. e.g. [29–31]. Although the existence of the resulting limits
(known as fractal curvatures) has been established for random self-similar sets in [31], parallel
set approximation seems too technically difficult to allow the derivation of explicit expressions
for these limits, even for the simplest examples. We point out that the limit functionals Vk(F)
studied here are—just like their relatives, the fractal curvatures—closer in spirit to Minkowski
content and dimension than to the Hausdorff dimension. They depend on (and are thus in
principle capable of describing) how the studied set is embedded in the ambient space.

Note that in the current approach using the sets Fn we consider closed cubes, meaning that
two surviving subcubes in any finite approximation Fn are connected even if they touch each
other only at a single corner. In the limit set F such connections cannot survive (because their
survival would require an infinite number of consecutive successes in a Bernoulli experiment
with success probability p: the survival at each level n of the two level-n squares touching the
corner). Therefore, it might be advisable to seek an approximation which avoids diagonal con-
nections from the beginning. Such an approximation is provided by the closed complements of
the Fn. When the subcubes are connected in the complement, such non-surviving connections
get disconnected already in the finite approximations Fn. More precisely, we study in Section 6
the expectationsEVk(Cn), where Cn := [0, 1]d \ Fn are the closed complements of the Fn in the
unit cube, and the limits

Vc
k(F) := lim

n→∞ rn(D−k)
EVk(Cn),

with D as in (1.2). We obtain for these limits a general formula (see Theorem 6.1), which is
very similar to the one obtained in Theorem 1.1 for Vk(F). Again, for the case d = 2, we have
computed explicit expressions. Here we state only the formula for the Euler characteristic (i.e.,
the case k = 0), the most interesting functional in connection with the percolative behavior to
be discussed in the next section (for the case k = 1 see Proposition 6.4).

Theorem 1.3. Let F be a fractal percolation in [0, 1]2 with parameters M ∈N≥2 and
p ∈ (1/M2, 1]. Then

Vc
0(F) = M2(1 − p)

p3 + (M − 1)p2 + (M − 1)p − M

(M2 − p3)(M − p)
.

Note that in R
2, −V0(Cn) is essentially the Euler characteristic of the set Fn with all diago-

nal connections between cubes removed (up to some boundary effects along the boundary of
[0, 1]2). Therefore, −Vc

0(F) will be the functional of interest in the sequel in connection with
the percolation properties of F.

More precisely, 1 − V0(Cn) + V0(Cn ∩ ∂[0, 1]2) corresponds to the Euler characteristic of
the cell complex with vertex set given by the squares of Fn, edges between any two squares
if they intersect in a common side, and faces given by four edges forming a square. It can
be shown that the effect of the last summand V0(Cn ∩ ∂[0, 1]2) is asymptotically negligible.
The approach corresponds to considering nearest neighbors in Z

2—as opposed to also taking
next-to-nearest neighbors into account, as done before.

2. Relation with percolation thresholds

We start by recalling some known results concerning the percolation thresholds pc = pc(M)
of fractal percolation in the plane. Chayes, Chayes and Durrett [6] have already established
that, for any M ∈N≥2,
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√
1/M ≤ pc(M) ≤ 0.9999. (2.1)

In [5] it is shown that the percolation threshold pc,NN of site percolation on the nearest neighbor
(NN) graph on Z

2 is a lower bound, i.e. pc,NN ≤ pc(M) for any M ∈N≥2. Since 0.556 ≤ pc,NN
(cf. [27]), this improves the above lower bound for any M ≥ 4. Moreover, limM→∞ pc(M) =
pc,NN; see [5]. It is believed that pc(M′) ≤ pc(M) for M′ ≥ M, but this monotonicity has been
established only in special cases, e.g. if M′ = M2. These bounds have been improved in [8, 28]
for some small values of M. The best known bounds for M = 2 and M = 3 are

0.881 ≤ pc(2) ≤ 0.993 and 0.784 ≤ pc(3) ≤ 0.940, (2.2)

respectively, and pc(4) ≤ 0.972; cf. [8].
In view of the aforementioned observations in [12,19–21], that the zero of the expected

Euler characteristic per site is close to the percolation thresholds in many percolation models,
let us now discuss the connections between the limit functionals for F introduced above and
the connectivity properties in fractal percolation.

p0 is a lower bound for pc. Our first observation is that, for any M ∈N≥2, the function
p �→ V0(F(p)) has a unique zero p0 = p0(M) in the open interval (1/M2, 1), as suggested by
Figure 4 (left). Moreover,V0(F(p))> 0 for p< p0 and V0(F(p))< 0 for p> p0. So far, this is in
accordance with the observations in classical percolation models. Since pc >

1
2 , one would by

analogy expect p0 to be an upper bound for pc. This is also what the naive heuristics suggests
for our model: below pc the limit set F is totally disconnected and therefore, if V0(F) is naively
interpreted as the ‘Euler characteristic’ of F (i.e., as #components – #holes), then it should be
positive for all p< pc. By comparing p0 with the known lower bounds for pc, we find in contrast
that p0(M) is not an upper bound but a lower bound for pc(M), i.e.

p0(M) ≤ pc(M) for all M ∈N≥2.

Indeed, for M = 2 and M = 3, p0(M) is below the lower bounds for pc(M) given by Don [8]
(cf. (2.2)), while for M ≥ 4, p0(M) ≤ 0.556, which is the lower bound for the site percolation
threshold pc,NN due to van den Berg and Ermakov [27]. Although p0 is a lower bound for pc,
unfortunately it is not very tight. In particular, it does not improve the known bounds.

The large-M limit of p0(M). In analogy with pc, for which pc(M) → pc,NN as M → ∞, we
observe that the zeros p0(M) also converge to a limit as M → ∞. The (pointwise) limit of the
functions p �→ V0(F(p)), as M → ∞, is the function v given by

v(p) := 1 − 4p + 4p2 − p3, p ∈ (0, 1],

which is the red curve depicted in Figure 5 (left). It turns out that v(p) coincides (up to a
factor p) with the mean Euler characteristic per site V0(Z2,NNN; p) of site percolation on
the next-to-nearest neighbor (NNN) graph on Z

2; cf. [21]. In particular, this implies for the
zeros that

lim
M→∞ p0(M) = p0,NNN,

where p0,NNN = (3 − √
5)/2 is the unique zero of v in (0,1), i.e. of p �→ V0(Z2,NNN; p). At first

glance it might be surprising that a different site percolation model appears in the limit (NNN
instead of NN, which showed up for the percolation thresholds). But this is consistent with the
discussion before Theorem 1.3—there is too much connectivity in the approximation sets Fn.
We will get back to this in a moment.
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FIGURE 5: For increasing values of the number of subdivisions M (color-coded), the rescaled expected
Euler characteristic of fractal percolation (left) and its complement (right) are plotted as functions of p.
The limiting curve for M → ∞ corresponds to the mean Euler characteristic per site (rescaled by the
intensity) of site percolation on Z

2 with eight or four neighbors, respectively.

pmin—a bound for pc? For any M ∈N≥2, the function p �→ V0(Fp) has a unique minimum
pmin = pmin(M) in the open interval (1/M2, 1), which lies always to the right of p0 (i.e., poten-
tially closer to pc). This is another natural candidate to bound the percolation threshold. At pmin
the geometry is extremal in the sense that, intuitively speaking, the ‘growth speed’ of the num-
ber of holes equals exactly the ‘growth speed’ of the number of clusters. For M = 2, pmin is
clearly a lower bound for pc(2), but as M → ∞, pmin(M) → 2/3, which is above pc,NN. So, for
large M, pmin(M) is clearly not a lower bound for pc(M). This implies that pmin(M) can neither
be a general lower nor a general upper bound for the percolation thresholds. Interesting open
questions are at which values of M the quantities pc(M) and pmin(M) change their order, and
whether pmin(M) (which can be interpreted as the parameter for which the difference between
number of holes and the number of connected components is maximal) is related in some way
to the percolation transition.

As the discussion before Theorem 1.3 suggests, there might be approximation sequences
for F which better capture the percolative behavior of F, and one candidate is the sequence of
the modified sets Fn with all diagonal connections between cubes removed, which we studied
by looking at the closed complements Cn := J \ Fn. Let us now discuss possible connections
with percolation thresholds of the corresponding limit functionals Vc

0(F).
p1—a lower bound for pc? Figure 4 (right) shows plots of the functions p �→ −Vc

0(F(p))
for different M (the black curves labeled ‘n = ∞’), again accompanied by some finite approx-
imations for different n. In Figure 5 (right) there are plots of the functions p �→ −Vc

0(F(p))
for all M together with the limit curve as M → ∞. Each of these curves possesses again a
unique zero p1 = p1(M) in (1/M2, 1). It is apparent from the plots in Figure 4 that p1(M) is
larger than p0(M) and thus potentially closer to the percolation threshold pc(M). At least for
M = 2, 3, p1(M) is a better lower bound for pc(M). But is this true in general? Unfortunately
not, as will become clear from looking at large M.

Large-M limit of p1(M). The (pointwise) limit of the functions p �→ −Vc
0(F(p)), as

M → ∞, is

vc(p) := −(1 − p)(p2 + p − 1) = p3 − 2p + 1, p ∈ (0, 1],
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which is the red curve depicted in Figure 5 (right). It turns out to coincide (up to a factor p) with
the mean Euler characteristic per site V0(Z2,NN, p) of site percolation on the nearest neighbor
graph on Z

2 as a function of p ∈ [0, 1]; see e.g. [21, Eq.(5), p. 4]. In particular, one gets for the
zeros that

lim
M→∞ p1(M) = p0,NN,

where p0,NN = (
√

5 − 1)/2 ≈ 0.618 is the unique zero of vc in (0,1). Note that p0,NN is strictly
larger than pc,NN ≈ 0.59. Thus for large M, pc(M)< p1(M), while for M = 2, 3, one has
pc(M)> p1(M). So p1 can neither be a general lower bound nor a general upper bound for pc.
This observation also rules out the minimum of p �→ Vc

0(F(p)) as a good general bound in
any way.

These findings show that there is not such a close connection between the Euler char-
acteristics and percolation thresholds in this fractal model as there are in other percolation
models. An explanation of why the phase transition leaves no signature in the studied func-
tionals might be that percolation happens in fact on lower-dimensional subsets. Recently it
has been shown (see [4]) that for p ≥ pc (and conditioned on F being nonempty), the union Z
of all connected components of F larger than one point forms almost surely a set of strictly
smaller Hausdorff dimension than the remaining set F \ Z (the dust), which has dimension
dimH F \ Z = dimH F = D almost surely. The rescaling with rDn of the geometric function-
als essentially means that they do not see the lower-dimensional set Z on which percolation
occurs. So from the point of view of the Hausdorff dimension, our result is consistent with
the findings in [4]. But in [4], it is also shown that in contrast the Minkowski dimensions of
Z and F \ Z coincide almost surely for p ≥ pc. Since our approximation of F by unions of
boxes Fn is related to the Minkowski (or box) dimension rather than to the Hausdorff dimen-
sion, our results support the hypothesis that, also in the Minkowski setting, the effect of the
dust dominates that of the larger components, though not on the level of dimension but on the
refined level of associated measures or contents as provided by our functionals. Long before
percolation occurs (i.e. for p< pc), the expected Euler characteristic EV0(Fn) becomes neg-
ative, i.e. it detects more holes than components in the approximations Fn, which indicates
that the nth approximation of the dust must have a lot of structure which only disappears in
the limit. More refined methods are necessary to separate the dust from the larger clusters. It
might for instance be worthwhile to look at the Euler characteristic of the percolation cluster
in finite approximations.

3. Outlook and outline

We emphasize that, although our work is motivated by questions regarding the percolation
properties, our focus here is on establishing the existence of the geometric limit functionals
Vk(F) and Vc

k(F) (Theorems 1.1 and 6.1), and on computing them explicitly in dimension 1
(Corollaries 5.1 and 6.2) and 2 (Theorems 1.2 and 1.3 and Proposition 6.4). The methods
developed here can be transferred to other random (self-similar) models. The functionals may
have other applications. Just like fractal curvatures, they clearly carry geometric information
beyond the fractal dimension, but unlike them, they can be computed explicitly for random
sets (at least in some cases). Even more importantly, they can be estimated well from the
finite approximations; see Remarks 5.2 and 6.2 for a discussion of the speed of convergence
of rDn

EV0(Fn) and rDn
EV0(Cn) as n → ∞, and see Remark 5.3 for a practical demonstration.

Hence the functionals may serve as robust and efficient geometric descriptors in applications
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and may e.g. help to distinguish different geometric structures of the same fractal dimension.
It is an aim of future research to further develop this ‘box counting’ approach to geometric
functionals to work for general (random) fractals. In view of the fast convergence of these
functionals it is another intriguing question whether a similar speed of convergence can be
expected for the percolation probabilities of Fn. The functionals Vk(F) describe first-order
properties of the random set F in a sense that can be made precise: for p>M−d , the almost
sure convergence, as n → ∞, of the random variables rn(D−k)Vk(Fn) to some limit random
variable Zk∞ can be shown, and the limit of expectations Vk(F) appears as the expectation
of this limit variable Zk∞. Moreover, the functionals Vk(F) turn out to determine essentially
the covariance structure and also higher moments of the limit variables Zk∞. We discuss these
results further in [13].

Outline. The remainder of this article is organized as follows. In Section 4, we describe frac-
tal percolation as a random self-similar set and introduce some notation and basic concepts.
In Section 5 we study in detail the approximation of F by the sets Fn, and in Section 6 the
approximation by the sets Cn. In both cases we first prove a general formula for arbitrary
dimensions (Theorems 1.1 and 6.1), which we then use to compute the limit functionals in
R and R

2. A careful analysis of the model in R is essential for the computations in R
2.

Additionally, it is necessary to understand the intersection of two independent copies of F
in R, the analysis of which also provides a new point of view on the lower bound for pc in
(2.1) obtained in [6]; see Remark 5.4. In the course of the proofs we derive not only explicit
expressions for the limit functionals but also exact formulas for the nth approximations; see
in particular Remarks 5.2 and 6.2. Following another idea in the physics literature [15, 26],
these formulas are also used to derive in Remark 6.3 the fractal subdimensions and the exact
associated amplitudes for this model, which is an alternative approach to refined information
about fractal sets beyond fractal dimension.

Finally, in Section 7 some estimates are proved which ensure the convergence of the series
occurring in the main formulas in Theorems 1.1 and 6.1. They are not needed for the further
results in R and R

2, as the convergence can be checked directly in these cases, but ensure their
validity in higher dimensions.

4. Fractal percolation as a random self-similar set

Fractal percolation F in R
d with parameters p ∈ [0, 1] and M ∈N≥2 is a random self-similar

set generated by the following random iterated function system (RIFS) S constructed on the
basic set J = [0, 1]d. Denote by J1, . . . , JMd the Md subcubes of side length r = 1/M into
which J is divided in the first step of the construction of F described above. S is a random
subset of the set � := {φ1, . . . , φMd}, where φj, j = 1, . . . ,Md , is the similarity which maps J
to Jj (rotation- and reflection-free, for simplicity and uniqueness). Each map φj is included in
S with probability p independent of all the other maps. It is obvious that S satisfies the open
set condition (OSC) with respect to the interior int(J) of J, since S is a random subset of �
and even the full set � satisfies OSC with respect to int(J).

For obtaining F as an invariant set of the RIFS S, we employ a Galton–Watson tree on the set
of all finite words�∗ :=⋃∞

n=0 �n, where�n := {1, . . . ,Md}n, n ∈N0. In particular,�0 = {ε},
where ε is the empty word of length |ε| = 0. For each σ ∈�∗, let Sσ be an independent copy
of the RIFS S. Sσ contains a random number νσ of maps (with νσ being binomially distributed
with p and Md). Let Iσ ⊆ {1, . . . ,Md} be the set of indices of the maps in Sσ . It is convenient to
denote these maps by φσ i, i ∈ Iσ . Note that |Iσ | = νσ . In particular, Iσ may be empty. We build
a random tree T in �∗ as follows: set T0 := {ε} and for n ∈N0, define Tn+1 := ∅ if Tn = ∅, and
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Tn+1 := {σ i : σ ∈ Tn, i ∈ Iσ}
if Tn �= ∅. Finally, we set

T :=
∞⋃

n=0

Tn.

Here T can be interpreted as the population tree of a Galton–Watson process in which Tn

represents the nth generation and σ i ∈ Tn+1, i ∈ Iσ are the descendants of an individuum σ ∈
Tn. The self-similar random set associated with the RIFS S is the set

F :=
∞⋂

n=1

⋃
σ∈Tn

Jσ ,

where, for any σ ∈�∗ of length |σ | = n ∈N and any set K ⊂R
d,

Kσ := φσ |1 ◦ φσ |2 ◦ . . . ◦ φσ |n(K).

Here σ |k, k ∈ {1, . . . , n}, denotes the word formed by the first k letters of σ . F is called
self-similar because of the following stochastic self-similarity property (which characterizes
F uniquely): if F(i), i ∈ {0, 1, . . . ,Md}, are independent and identically distributed copies of F
and S is the corresponding RIFS as above, independent of the F(i), then

F(0) =
⋃
φi∈S

φi(F(i)).

In the language of the tree and the associated sets considered above, the construction steps
Fn, n ∈N, of the fractal percolation process are given by

Fn =
⋃
σ∈Tn

Jσ .

Here the sets Jσ with |σ | = n encode the subcubes of level n of the construction, and the above
union extends over those subcubes Jσ which have survived all the previous steps, i.e. over all
σ for which all the cubes Jσ |i, i ∈ {1, . . . , n}, have been kept in the ith step of the construction.
We also introduce, for each j ∈ {1, . . . ,Md} and each n ∈N, the set

Fj
n :=

⋃
σ∈Tn,σ |1=j

Jσ , (4.1)

which is the union of those cubes of level n which are subcubes of Jj = φj(J). We will not
make much use of the limit objects and their self-similarity in the sequel; we will mainly
use the following basic properties of the construction steps Fn and their parts Fj

n. For any
j ∈ {1, . . . ,Md} and any n ∈N, we have

Fj
n = φj(F̃n−1) (4.2)

in distribution, where F̃n−1 is the random set which equals Fn−1 with probability p and is
empty otherwise (i.e., F̃j

n−1 = Fj
n−1 ∩ J̃j, where J̃j is a random set independent of Fj

n−1, which
equals Jj with probability p and is empty otherwise). The homogeneity and motion-invariance
of the intrinsic volumes implies now in particular that

EVk
(
Fj

n

)= pEVk(φj(Fn−1)) = prk
EVk(Fn−1), (4.3)

for any k ∈ {0, . . . , d} and any j ∈ {1, . . . ,Md}, where r = 1/M is the scaling ratio of φj.
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5. Approximation of F by the sequence (Fn)n

Our first aim in this section is to prove Theorem 1.1. Let M ∈N≥2 and p ∈ (0, 1] be arbitrary
and let D be as defined in (1.2). (D is the Minkowski dimension of F in case Mdp ≥ 1 and
negative otherwise.) Set

vk(n) := rn(D−k)
EVk(Fn), n ∈N0, (5.1)

where F0 := J = [0, 1]d. Since the latter is a deterministic set, we have vk(0) = Vk(F0) = qd,k.
We are going to show that the limit Vk(F) = limn→∞ vk(n) exists for any k and, moreover, that
it coincides with the expression stated in (1.4). The first step is to derive a kind of renewal
equation for the vk. (The approach is similar to the methods in [29, 31] which are based on
renewal theory. However, here we do not need the renewal theorem as it is possible to argue
directly.)

Setting
wk(n) := vk(n) − vk(n − 1), n ∈N,

it is easy to see that

lim
n→∞ vk(n) = vk(0) +

∞∑
j=1

wk(j); (5.2)

i.e., the limit on the left exists if and only if the sum on the right converges. (Indeed, by
definition of wk, we have

vk(n) = vk(n − 1) + wk(n) = . . .= vk(0) +
n∑

j=1

wk(j)

for any n ∈N, and so in (5.2) the limit on the left exists if and only if the partial sums on the
right converge.) Therefore, it is enough to compute the functions wk, which turns out to be
easier than computing the vk directly. The relation

vk(n) = vk(n − 1) + wk(n), n ∈N,

can be viewed as a (discrete) renewal equation, with wk being the error term. By definition of
wk, we have

wk(n) = vk(n) − vk(n − 1) = rn(D−k)
EVk(Fn) − r(n−1)(D−k)

EVk(Fn−1)

= rn(D−k)(
EVk(Fn) − rk−D

EVk(Fn−1)
)

= rn(D−k)(
EVk(Fn) − Mdp rk

EVk(Fn−1)
)
,

where we employed the relation Mdp = r−D in the last step. Now the similarity relation (4.3)
implies

Md∑
j=1

EVk
(
Fj

n

)= Mdprk
EVk(Fn−1),

which we can insert in the above expression to obtain

wk(n) = rn(D−k)

(
EVk(Fn) −

Md∑
j=1

EVk
(
Fj

n

))
. (5.3)
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Using the inclusion–exclusion principle, this can be expressed in a more convenient form.
Since Fn =⋃N

j=1 Fj
n, we get

Vk(Fn) −
N∑

j=1

Vk
(
Fj

n

)= ∑
T⊂{1,...,Md},|T|≥2

(−1)|T|−1Vk

(⋂
j∈T

Fj
n

)
.

Taking expectations and plugging the resulting equation into (5.3), we obtain for each n ∈N

and each k ∈ {0, . . . , d} the representation

wk(n) =
∑

T⊂{1,...,Md},|T|≥2

(−1)|T|−1rn(D−k)
EVk

(⋂
j∈T

Fj
n

)
. (5.4)

Note that this is a finite sum with a fixed number of terms (independent of n). Combined with
(5.2), it yields

Vk(F) = qd,k +
∞∑

n=1

∑
T⊂{1,...,Md},|T|≥2

(−1)|T|−1rn(D−k)
EVk

(⋂
j∈T

Fj
n

)
. (5.5)

This is almost the formula stated in Theorem 1.1 except for the different order of summa-
tion. The summations can be interchanged (and thus the formula (1.4) is verified) provided
that the summations over n in (1.4) converge for each set T. This convergence is ensured by
Proposition 5.1 below for any p ∈ (0, 1]. Recall that the kth intrinsic volume of a polyconvex
set K can be localized to a signed measure on K, the kth curvature measure Ck(K, ·). Denote
by Cvar

k (K) the total mass of the total variation measure of Ck(K, ·).
Proposition 5.1. Let F be a fractal percolation in [0, 1]d with parameters M ≥ 2 and p ∈ (0, 1].
For each k ∈ {0, . . . , d} and each T ⊂ {1, . . . ,Md} with |T| ≥ 2,

∞∑
n=1

rn(D−k)
ECvar

k

(⋂
j∈T

Fj
n

)
<∞.

In particular, the sums
∞∑

n=1

rn(D−k)
EVk

(⋂
j∈T

Fj
n

)
converge absolutely.

We postpone the proof of Proposition 5.1 to the last section, where we will discuss it together
with the proof of a similar assertion needed in Section 6. With this statement in hand we can
now complete the proof of the main theorem.

Proof of Theorem 1.1. To obtain the formula (1.4), all we have to do is to interchange the
order of the summations in the formula (5.5). This is justified, since, by Proposition 5.1, all the
series occurring in (1.4) converge for any p ∈ (0, 1]. �

Now we are going to apply formula (1.4) to derive explicit expressions for the function-
als Vk(F) for fractal percolation F in R

d for dimensions d = 1, 2. In particular, we will prove
Theorem 1.2. The computations in dimension d = 2 require explicit formulas for the nth con-
struction steps of the one-dimensional case. The same method can, in principle, provide explicit
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expressions in dimension d = 3 and higher. The derivation in dimension d relies on formulas
for all dimensions up to d − 1 for the nth construction steps Fn of F (and for intersections
of their independent copies). While the computations quickly become technically involved,
including separate analyses of many cases of intersections and lengthy expressions, the method
remains the same. In this sense the case d = 2 is prototypical.

The case d = 1. Fractal percolation in one dimension (for which we use throughout the letter
K instead of F) is not very interesting as a percolation model. However, the limiting behavior
of the studied geometric functionals is of independent interest. Moreover, as indicated above,
the case d = 1 is essential for the computations in the two-dimensional case. First, we derive
explicit expressions for the expected intrinsic volumes of the approximation steps Kn, n ∈N0,
of a fractal percolation K in [0, 1], from which it is easy to determine the rescaled limits Vk(K).
Then we study the intersection of two such random sets (cf. Proposition 5.3), which is needed
too for the discussion of the case d = 2.

Proposition 5.2. Let K be a fractal percolation on the interval [0, 1] with parameters M ∈N≥2
and p ∈ (0, 1]. Denote by Kn the nth step of the construction of K. Then, for any n ∈N0,

EV1(Kn) = pn

and

EV0(Kn) = (Mp)n
(

1 − (M − 1)p

M − p

[
1 −

( p

M

)n])
.

Proof. For j = 1, . . . ,M, let Kj
n be the union of the surviving intervals of level n contained

in Jj = φj([0, 1]); cf. (4.1). Then Kn =⋃M
j=1 Kj

n, and since in this union only sets Kj
n with

consecutive indices can have a nonempty intersection, by the inclusion–exclusion formula
we get

EVk(Kn) =
M∑

j=1

EVk
(
Kj

n

)− M−1∑
j=1

EVk
(
Kj

n ∩ Kj+1
n

)
. (5.6)

For k = 1, the second sum vanishes, since these intersections consist of at most one point.
Moreover, by (4.3), the terms in the first sum satisfy

EVk
(
Kj

n

)= prk
EVk(Kn−1), n ∈N. (5.7)

Since V1(K0) = V1([0, 1]) = 1, this yields

EV1(Kn) =
M∑

j=1

(p/M)EV1(Kn−1) = pEV1(Kn−1) = . . .= pn

as claimed. For k = 0, the terms in second sum in (5.6) contribute. The Euler characteristic
V0
(
Kj

n ∩ Kj+1
n
)

equals 1 with probability p2n (and is 0 otherwise), since for a nonempty inter-
section at each level from 1 to n the two intervals containing the possible intersection point
need to survive (which has probability p for each of these intervals). Using this and (5.7), we
conclude from (5.6) that

EV0(Kn) =
M∑

j=1

pEV0(Kn−1) −
M−1∑
j=1

p2n = MpEV0(Kn−1) − (M − 1)p2n.
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FIGURE 6: The rescaled limits V0(K) (left) and V0(K(1) ∩ K(2)) (right) as functions of p ∈ (0, 1] for
different values of M (color-coded) as given by Corollary 5.1 and Remark 5.1, respectively. The limit
curves as M → ∞ are shown in light blue.

This is a recursive relation for the sequence (EV0(Kn))n∈N0 where EV0(K0) = 1. By an
induction argument, it is easy to obtain the explicit representation

EV0(Kn) = (Mp)n − (M − 1)
n∑

i=1

(Mp)n−ip2i = (Mp)n
(

1 − (M − 1)
n∑

i=1

( p

M

)i
)
,

which yields the asserted formula. �
Corollary 5.1. Let K be a fractal percolation on the interval [0, 1] with parameters M ∈N≥2
and p ∈ (0, 1]. Then

V1(K) = 1 and V0(K) = M(1 − p)

M − p
.

Proof. Since D = log (Mp)/ log M, we have Mp = MD = r−D, and so, by Proposition 5.2,

V0(K) = lim
n→∞ rDn

EV0(Kn) = lim
n→∞ 1 − (M − 1)p

M − p

[
1 −

( p

M

)n]= 1 − (M − 1)p

M − p

and
V1(K) = lim

n→∞ r(D−1)n
EV1(Kn) = lim

n→∞ p−npn = 1,

as claimed. �
Figure 6 (left) shows plots of V0(K) as a function of p for different values of the

parameter M. It is apparent that these are positive and monotone decreasing functions in p
for any M and that the limit as M → ∞ is given by f (p) = 1 − p.

Proposition 5.3. Let K(1),K(2) be independent fractal percolations on the interval [0, 1] with
the same parameters M ∈N≥2 and p ∈ (0, 1]. Then, for any n ∈N0,

EV1
(
K(1)

n ∩ K(2)
n

)= p2n
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and

EV0
(
K(1)

n ∩ K(2)
n

)= (Mp2)n

×
(

3 − 2M−n − 4p
M − 1

M − p

[
1 −

( p

M

)n]+ (M − 1)p2

M − p2

[
1 −

(
p2

M

)n ])
.

Proof. For i ∈ {1, 2} and j ∈ {1, . . . ,M}, let K(i),j
n be the union of those level-n intervals in

the union K(i)
n which are contained in Jj (similarly as in (4.1)). Then K(i)

n =⋃M
j=1 K(i),j

n . Since

Kj
i ⊂ Jj and Jj ∩ Jl �= ∅ if and only if |j − l| ≤ 1, we can write the intersection K(1)

n ∩ K(2)
n as

K(1)
n ∩ K(2)

n =
M⋃

j=1

K(1),j
n ∩

M⋃
l=1

K(1),l
n =

M⋃
j=1

(
K(1),j

n ∩
j+1⋃

l=j−1

K(2),l
n

)
=:

M⋃
j=1

Lj,

where we have set K(2),0
n = K(2),M+1

n := ∅ for convenience. The random sets Lj (whose depen-
dence on n we suppress in the notation) satisfy Lj ⊂ Jj almost surely, and therefore in the
union

⋃
j Lj only sets with consecutive indices can have a nonempty intersection. Thus, by the

inclusion–exclusion principle, we conclude for the expected intrinsic volumes that

EVk
(
K(1)

n ∩ K(2)
n

)= M∑
j=1

EVk(Lj) −
M−1∑
j=1

EVk(Lj ∩ Lj+1). (5.8)

Now observe that, for j = 1, . . . ,M − 1,

Lj ∩ Lj+1 = K(1),j
n ∩ K(1),j+1

n ∩ (K(2),j
n ∪ K(2),j+1

n

)
,

and this random set either is empty or consists of exactly one point zj (namely, the unique
point in the intersection Jj ∩ Jj+1). The latter event occurs if and only if (1) for each of the

two sets K(1),j
n ,K(1),j+1

n , at each level k = 1, . . . , n the subinterval of level k that contains zj

survives (each of these events has probability pn), and (2) a similar survival of all subintervals
containing zj also occurs for at least one of the sets K(2),j

n ,K(2),j+1
n . The probability of this latter

event is 2pn − p2n. Hence EVk(Lj ∩ Lj+1) = (2p3n − p4n)Vk({zj}), and therefore

EV0(Lj ∩ Lj+1) = 2p3n − p4n and EVk(Lj ∩ Lj+1) = 0 for k ≥ 1. (5.9)

It remains to determine EVk(Lj). By definition of Lj, we have

Lj =
j+1⋃

l=j−1

K(1),j
n ∩ K(2),l

n ,

and therefore the inclusion–exclusion formula gives

EVk(Lj) =
j+1∑

l=j−1

EVk
(
K(1),j

n ∩ K(2),l
n

)− j∑
l=j−1

EVk
(
K(1),j

n ∩ K(2),l
n ∩ K(2),l+1

n

)
.

Now again K(1),j
n ∩ K(2),l

n is a singleton with probability p2n and empty otherwise, provided
l = j − 1 or l = j + 1 (and l /∈ {0,M + 1}). Similarly, K(1),j

n ∩ K(2),l
n ∩ K(2),l+1

n is a singleton
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with probability p3n and empty otherwise, provided l /∈ {0,M}. (For the exceptional l, these
intersections are empty almost surely.) This implies

EV0(Lj) =EV0
(
K(1),j

n ∩ K(2),j
n

)+{2(p2n − p3n), j ∈ {2, . . . ,M − 1},
p2n − p3n, j ∈ {1,M},

and EVk(Lj) =EVk
(
K(1),j

n ∩ K(2),j
n
)

for any k ≥ 1. Plugging this and (5.9) into (5.8), we
conclude that, for k = 0, 1 and any n ∈N,

EVk
(
K(1)

n ∩ K(2)
n

)= pk(n) +
M∑

j=1

EVk
(
K(1),j

n ∩ K(2),j
n

)
, (5.10)

where p0(n) := (M − 1)(2p2n − 4p3n + p4n) and p1(n) := 0, n ∈N. Now observe that, by (4.2),
we have

K(1),j
n ∩ K(2),j

n = φj
(
K̃(1)

n−1 ∩ K̃(2)
n−1

)
in distribution, where K̃(i)

n−1 is (similarly as in (4.2)) the random set which equals K(i)
n−1 with

probability p and is empty otherwise. This implies

EVk
(
K(1),j

n ∩ K(2),j
n

)= p2rk
EVk

(
K(1)

n−1 ∩ K(2)
n−1

)
,

for any j = 1, . . . ,M and any n ∈N, where K(i)
0 = [0, 1], and thus EVk

(
K(1)

0 ∩ K(2)
0

)=
Vk([0, 1]) = 1 for k = 0, 1. Setting αn :=EV1

(
K(1)

n ∩ K(2)
n
)
, n ∈N0, we have α0 = 1, and we

infer from (5.10) that

αn =
M∑

j=1

EV1
(
K(1),j

n ∩ K(2),j
n

)= Mp2rαn−1 = p2αn−1, n ∈N.

It is easy to see now that αn = p2n, proving the first formula in Proposition 5.3.
Setting βn :=EV0

(
K(1)

n ∩ K(2)
n
)
, n ∈N0, we infer in a similar way that β0 = 1 and

βn =
M∑

j=1

EV0
(
K(1),j

n ∩ K(2),j
n

)+ p0(n) = Mp2βn−1 + p0(n), n ∈N,

which provides a recursive relation for the sequence (βn)n. By an induction argument, we
obtain

βn = (Mp2)n +
n∑

j=1

(
Mp2)n−j

p0(j), n ∈N0.

Plugging in the p0(j) and computing the sum, we conclude that, for any n ∈N0,

βn = (Mp2)n
(

3 − 2

Mn
− 4p

M − 1

M − p

[
1 −

( p

M

)n]+ (M − 1)p2

M − p2

[
1 −

(p2

M

)n])
,

which shows the second formula in Proposition 5.3 and completes the proof. �
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Remark 5.1. It is easy to see from Proposition 5.3 that for D′ := log(Mp2)/ log M the rescaled

expressions rn(D′−k)
EVk

(
K(1)

n ∩ K(2)
n
)

converge as n → ∞. Indeed, since rD′−1 = p−2 and

rD′ = (1/M)D′ = (Mp2)−1, we obtain

V1(K(1) ∩ K(2)) := lim
n→∞ rn(D′−1)

EV1
(
K(1)

n ∩ K(2)
n

)= 1 and

V0(K(1) ∩ K(2)) := lim
n→∞ rnD′

EV0
(
K(1)

n ∩ K(2)
n

)= 3 − 4p
M − 1

M − p
+ p2 M − 1

M − p2 .

Again the rescaled length V1(K(1) ∩ K(2)) is constant, while the rescaled Euler characteristic
of K(1) ∩ K(2) depends on p and M. Figure 6 (right) shows plots of V0(K(1) ∩ K(2)) as a func-
tion of p for different values of the parameter M. It is apparent that these are positive and
monotone decreasing functions in p for any M and that the limit as M → ∞ is given by f (p) =
3 − 4p + p2. From the existence of the limits Vk(K(1) ∩ K(2)) it is clear that D′ as chosen above
is the correct scaling exponent. The notation for the limit is justified by the fact that D′ is
almost surely the Hausdorff dimension of K(1) ∩ K(2), as the following statement clarifies.

Proposition 5.4. Let K(1),K(2) be independent fractal percolations on [0, 1] with the same
parameters M ∈N≥2 and p ∈ (0, 1]. If p ≤ 1/

√
M, then the set K(1) ∩ K(2) is almost surely

empty. If p> 1/
√

M, there is a positive probability that K(1) ∩ K(2) �= ∅, and, conditioned on
K(1) ∩ K(2) �= ∅, we have dimH (K(1) ∩ K(2)) = D′ almost surely.

Proof. For any p ∈ (0, 1], the set K(1) ∩ K(2) can be coupled with a fractal percolation F on
[0, 1] with parameter p2 (and the same M) by retaining an interval Iσ of level n if and only if
it is contained in both sets K(1)

n and K(2)
n . Then K(1) ∩ K(2) dominates F. Hence, almost surely,

dimH
(
K(1) ∩ K(2)

)≥ dimH F. Now observe that conditioning on the event {K(1) ∩ K(2) �= ∅} is
the same as conditioning on {F �= ∅}. Indeed, on the one hand the first event is obviously satis-
fied whenever the latter is. On the other hand, if {F = ∅} holds, then there is some n ∈N such
that Fn = ∅. This implies that, for any m ≥ n, K(1)

m ∩ K(2)
m consists of finitely many isolated

points contained in the set {kM−n : k ∈ {1, . . . ,Mn − 1}} (cf. the proof of Proposition 5.3).
In particular, there are no new points generated after the nth step. Each point at level m ≥ n
is independently retained in the next step with probability p2. This means in particular that
K(1) ∩ K(2) is empty almost surely under the condition F = ∅. We conclude that, for p ≤ √

M,
the set K(1) ∩ K(2) is empty almost surely, since F has this property. Moreover, since con-
ditioned on F �= ∅ we have dimH F = D′ almost surely for any p ≥ √

M, we infer from the
above inequality that conditioned on K(1) ∩ K(2) �= ∅, D′ is almost surely a lower bound for
dimH

(
K(1) ∩ K(2)

)
. (The same is true for the Minkowski dimension.)

We show that D′ is also an upper bound for dimH
(
K(1) ∩ K(2)

)
. For any realization

of K(1) ∩ K(2) and any δ > 0, a δ-cover of K(1) ∩ K(2) is obtained by taking the cubes of
level n (for some n large enough that M−n < δ) contained in Fn (which cover F) and adding
the finitely many singletons

{
kM−n

}
, k = 1, . . . ,Mn − 1, which clearly cover the additional

isolated points in K(1) ∩ K(2) not already covered by the chosen intervals. Using these cov-
ers and noting that the singletons have diameter zero and the intervals diameter M−n, we get
for any s> 0 that Hs

δ(K
(1) ∩ K(2)) ≤ ZnM−ns, where Zn is the number of cubes in Fn. Since

Zn is the size of the nth generation of a Galton–Watson process in which the expected num-

ber of offspring of an individuum is MD′ = M2p, it is well known that ZnM−nD′ → 1 almost

surely as n → ∞. This shows HD′
(K(1) ∩ K(2))<∞ almost surely and thus dimH (K(1) ∩

K(2)) ≤ D′. �
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FIGURE 7: Possible mutual positions of the basic cubes Jj which produce nonempty intersections.

FIGURE 8: In the intersection of two unions of intervals (or of unions of cubes in neighboring rows)
isolated points appear, which need to be taken into account in the formulas.

The case d = 2. Now we provide proofs of the formulas stated in Theorem 1.2 for the three
limit functionals Vk(F), k = 0, 1, 2, for fractal percolation F in R

2. The starting point is again
the general formula in Theorem 1.1, which can be simplified further by using on the one hand
the various symmetries in the fractal percolation model and on the other hand the properties
of the functionals.

Proof of Theorem 1.2. Let M ∈N≥2, p ∈ (0, 1], and k ∈ {0, 1, 2}. By (1.4) in Theorem 1.1,
we have

Vk(F) = q2,k +
∑

T⊂{1,...,M2},|T|≥2

(−1)|T|−1
∞∑

n=1

rn(D−k)
EVk

(⋂
j∈T

Fj
n

)
. (5.11)

Observe that among the intersections
⋂

j∈T Fj
n occurring in (5.11) only those need to be consid-

ered for which the corresponding intersection
⋂

j∈T Jj of the subcubes Jj = φj(J) is nonempty.
All other intersections are empty almost surely and hence their expected intrinsic volumes are
zero. The nonempty intersections of subcubes can be reduced to four basic cases (see Figure 7).
There are only two ways in which two subcubes can have a nonempty intersection: they can
intersect in a common face (like J1 and J4 in Figure 7) or in a common corner (like J1 and J2).
Three subcubes can only have a nonempty intersection at a common corner (like J1, J2, and
J3), and similarly four subcubes can only intersect in a common corner (like J1, J2, J3, and J4).
Only the number of intersections of each of these four types changes with M. These numbers
are given by 2M(M − 1), 2(M − 1)2, 4(M − 1)2 and (M − 1)2, respectively, independently of
p and n. Hence the formula (5.11) reduces to

Vk(F) = q2,k − 2M(M − 1)
∞∑

n=1

rn(D−k)
EVk

(
F1

n ∩ F4
n

)
(5.12)

− 2(M − 1)2
∞∑

n=1

rn(D−k)
EVk

(
F1

n ∩ F2
n

)
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+ 4(M − 1)2
∞∑

n=1

rn(D−k)
EVk

(
F1

n ∩ F2
n ∩ F3

n

)
− (M − 1)2

∞∑
n=1

rn(D−k)
EVk

( 4⋂
j=1

Fj
n

)
.

For k = 2, i.e. for the area V2 in R
2, it is enough to observe that the area of all the inter-

sections of the level sets Fj
n in this formula are almost surely zero (they are all contained in a

line segment), implying that EV2
(⋂

j∈T Fj
n
)= 0 for all n ∈N and all index sets T with |T| ≥ 2.

Therefore,
V2(F) = q2,2 = V2([0, 1]2) = 1,

independently of M and p, as asserted in Theorem 1.2.
For k = 1, i.e. for the ‘boundary length’ V1, only the intersections of the first type F1

n ∩ F4
n

need to be considered; for the other three types the intersection is at most one point, implying
that the expected boundary length vanishes, independently of n. This yields

V1(F) = q2,1 − 2M(M − 1)
∞∑

n=1

rn(D−1)
EV1

(
F1

n ∩ F4
n

)
. (5.13)

We claim that, for each n ∈N,

EV1
(
F1

n ∩ F4
n

)= p2n/M. (5.14)

We will show below that this follows from Proposition 5.3. Plugging (5.14) into (5.13) and
recalling that rD−1 = M−D+1 = (M p)−1, we conclude

V1(F) = 2 − 2(M − 1)
∞∑

n=1

(M p)−np2n = 2 − 2(M − 1)
∞∑

n=1

(p/M)n

= 2 − 2(M − 1)
p

M − p
= 2M(1 − p)

M − p
.

For k = 0, i.e. for the Euler characteristic V0, all terms in the above formula (5.12) are
relevant and contribute to the limit. It is rather easy to see that V0(F1

n ∩ F2
n ∩ F3

n ∩ F4
n) = 1 with

probability p4n, since at all levels m = 1, . . . , n, in each of the four cubes Ji, i = 1, . . . , 4, the
subcube of level m which intersects the common corner needs to survive (which happens with
probability p, independently of all the other subcubes of any level). Otherwise the intersection
of the four sets Fj

n will be empty. Hence, for each n ∈N (and each M ≥ 2),

EV0
(
F1

n ∩ F2
n ∩ F3

n ∩ F4
n

)= p4n. (5.15)

Therefore, the sum in the last line of formula (5.12) is given by

∞∑
n=1

rnD
EV0

( 4⋂
j=1

Fj
n

)
=

∞∑
n=1

(rD p4)n = rD p4

1 − rD p4
= p3

M2 − p3
, (5.16)

where the last equality is due to the relation p rD = r2 = M−2. (Note that the geometric series
above converges, since p4 rD = p3 M−2 < 1 for any p ∈ (0, 1] and any integer M ≥ 2.)

Similarly, one observes that V0
(
F1

n ∩ F2
n ∩ F3

n

)= 1 with probability p3n and V0
(
F1

n ∩ F2
n

)=
1 with probability p2n for n ∈N, which yields for the sums in the third and the second line in
the formula (5.12) the expressions
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∞∑
n=1

rnD
EV0

(
F1

n ∩ F2
n ∩ F3

n

)= ∞∑
n=1

(rD p3)n = p2

M2 − p2
(5.17)

and
∞∑

n=1

rnD
EV0

(
F1

n ∩ F2
n

)= ∞∑
n=1

(rDp2)n = p

M2 − p
. (5.18)

It remains to compute the expected Euler characteristic for the type F1
n ∩ F4

n . We claim that,
for any n ∈N,

EV0
(
F1

n ∩ F4
n

)= (Mp2)n (5.19)

×
(

3

M
− 2M−n − 4

M − 1

M − p

[ p

M
−
( p

M

)n ]+ M − 1

M − p2

[
p2

M
−
(

p2

M

)n ])
.

We will demonstrate below that this follows from Proposition 5.3. Plugging (5.16)–(5.19) into
(5.12) and computing the remaining series yields the missing terms of V0(F). More precisely,
we get for the last sum on the first line of (5.12) the expression

E1 := 2(M − 1)2p

M − p

(
3

M − 1
− 4p

M − p
+ p2

M − p2

)
− 2M(M − 1)2p

×
(

2

(M − 1)(M2 − p)
− 4p

(M − p)(M2 − p2)
+ p2

(M − p2)(M2 − p3)

)
,

and therefore

V0(F) = 1 − E1 + (M − 1)2
(

− 2p

M2 − p
+ 4p2

M2 − p2
− p3

M2 − p3

)
.

Combining some of the terms gives the formula stated in Theorem 1.2 for V0(F).
To complete the proof, it remains to verify the equations (5.14) and (5.19). To understand the

structure of F1
n ∩ F4

n , it is enough to study the intersection of two independent one-dimensional
fractal percolations K(1) and K(2) defined on a common interval [0, 1] (with the same param-
eters M and p as F). For n ∈N and i = 1, 2, let K(i)

n denote the nth steps of their construction.
Similarly as in (4.2), let K̃(i)

n , i = 1, 2, be the random set which equals K(i)
n with probability p

and is empty otherwise; i.e. we add an additional 0th step to decide whether the set K(i)
n , n ∈N,

is kept or discarded. This is to account for the first step of the construction of F (in which the
cubes Ji are discarded with probability 1 − p). Then, for each n, we have the following equality
in distribution:

F1
n ∩ F4

n =ψ
(
K̃(1)

n−1 ∩ K̃(2)
n−1

)
, (5.20)

where ψ : R→R
2, x �→ (t/M)a + ((1 − t)/M)b is the similarity, which maps [0, 1] to the seg-

ment J1 ∩ J4 with endpoints a and b. Since intrinsic volumes are independent of the ambient
space dimension, motion-invariant, and homogeneous, this implies in particular that

EVk
(
F1

n ∩ F4
n

)=EVk
(
ψ
(
K̃(1)

n−1 ∩ K̃(2)
n−1

))
(5.21)

= rkp2
EVk

(
K(1)

n−1 ∩ K(2)
n−1

)
.

Now the claims (5.14) and (5.19) follow from combining (5.21) with Proposition 5.3. �
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Remark 5.2. From the proof of Theorem 1.2, we also get explicit expressions for the expected
intrinsic volumes of the approximation sets Fn for each n ∈N. To determine vk(m) :=
rm(D−k)

EVk(Fm), it is enough to truncate all the sums in the formula (5.12) after the mth step
and compute the resulting finite geometric sums. This yields, for k = 0 and n ∈N,

v0(n) = 1 − 2p(M − 1)2

M − p

(
3

M − 1
− 4p

M − p
+ p2

M − p2

) [
1 −

( p

M

)n]
+ 2p(M2 − 1)

M2 − p

[
1 −

( p

M2

)n]− 4p2(M − 1)2

(M − p)2

[
1 −

(
p2

M2

)n ]

+ p3(M − 1)2(M + p2)

(M − p2)(M2 − p3)

[
1 −

(
p3

M2

)n ]
.

It is easy to see that this sequence converges exponentially fast to V0(F) as n → ∞. More
precisely, we have

v0(n) − V0(F) ∼ c (p/M)n as n → ∞

(i.e. the quotient of the left- and the right-hand side converges to 1) with the constant

c := 2p(M − 1)2

M − p

(
3

M − 1
− 4p

M − p
+ p2

M − p2

)

being positive for each p ∈ (0, 1] and M ∈N≥2. Moreover, the sequence (v0(n))n is even-
tually strictly decreasing, i.e. strictly decreasing from some index n0 ∈N. This exemplifies
that the convergence vk(n) → Vk(F) is extremely fast and that the functionals Vk(F) can be
approximated well by the vk(n). This was also observed in simulations, where already for
small n (e.g. n = 8, even for M = 2; see Figure 4), vk(n) is virtually indistinguishable from the
limit Vk(F); see also Remark 5.3 below. Fast convergence can also be expected for the limits
Vk(K) of other random self-similar sets K, for which no exact formula may be available. It is
another intriguing question whether a similar speed of convergence can be expected for the
percolation probabilities of Fn.

Remark 5.3. (On the simulation study.) Due to the fast convergence of the studied geometric
functionals, their numerical estimation is efficient and accurate. A simulation study demon-
strates their potential as robust shape descriptors for applications; see Figure 4. To generate
the approximations of fractal percolation, we create black-and-white pixel images by hierar-
chically simulating the survival or death of squares (given by patches of pixels). We use the
MT19937 generator [17] (known as ‘Mersenne Twister’) to generate the required Bernoulli
variables. Taking advantage of the additivity of the Minkowski functionals, we compute the
Euler characteristic using an efficient algorithm, where the computation time grows linearly
with the system size. We simply iterate over all 2 × 2 neighborhoods of pixels and add the
corresponding values from a look-up table as described in [10]. In two separate simulations
using analogous parameters, we have computed the Euler characteristics of Fn and Cn (see
Section 6).
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We simulate realizations of finite approximations for M = 2, 3, and 4. For each value
of M, we choose three levels n of the approximation: n = 32/(2M), n = 32/(2M) + 2, or
n = 32/(2M) + 4. Since the rate of convergence increases with M, for larger M smaller
values of n are sufficient. For each chosen value of the probability of survival p =
0.11, 0.13, . . . , 0.99, we simulate 75000, 5000, or 2500 samples for M = 2, 3, or 4, respec-
tively. Only in the case of M = 2, p ≤ 0.31 for Fn, the number of samples is increased by a
factor 10 for improved statistics.

The mean values are unbiasedly estimated by the arithmetic mean of the Euler characteris-
tics of the samples. The error bars in the plots represent the sample standard deviations. The
simulation results, shown in Figure 4, are in excellent agreement with the analytic curves; see
Remarks 5.2 and 6.2. The code is freely available via GitHub [14].

Remark 5.4. An essential observation in the proof of Theorem 1.2 (cf. Equation (5.20) and
the discussion preceding it) is that any intersection F(1) ∩ F(2) of two fractal percolations con-
structed in neighboring squares sharing a common side can be modeled by the intersection
K(1) ∩ K(2) of two independent one-dimensional fractal percolations K(1),K(2) on that side
(with the same parameters M and p as the F(i)). More precisely, the random sets F(1) ∩ F(2)

and K(1) ∩ K(2) are equal in distribution. Therefore their Hausdorff and Minkowski dimen-
sions must coincide. The almost sure dimension of the latter set has been determined in
Proposition 5.4. Moreover, Proposition 5.4 states that the intersection K(1) ∩ K(2) is almost
surely empty for any p ≤ 1/

√
M, and so the same must hold for F(1) ∩ F(2). This observation

allows a short alternative proof of the lower bound 1/
√

M of Chayes, Chayes and Durrett [6]
for the percolation threshold of fractal percolation F in [0, 1]2 (see (2.1)): the intersection of
F with any vertical line of the form y = k/Mn, where n ∈N and k ∈ {1, . . . ,Mn − 1}, can be
modeled as a union of Mn small copies of K(1) ∩ K(2). Any path in F from left to right needs
to pass this line, which is impossible if these intersections are empty almost surely, i.e. for any
p ≤ 1/

√
M.

Remark 5.5. It is easy to see from Theorem 1.1 that also for fractal percolation in R
d, the

rescaled limit Vd(F) of the volume equals 1 for any p and M. Indeed, none of the intersections
occurring in the formula (1.4) will contribute to the limit, as they are contained in lower-
dimensional subsets of Rd.

6. Approximation of F by the closed complements of (Fn)n

Now we consider the closed complements Cn := J \ Fn, n ∈N0, of the construction steps
Fn of the fractal percolation process inside the unit cube J = [0, 1]d. Note that C0 = ∅, since
F0 = J. The random sets Cn are also given by

Cn =
⋃

σ∈�n\Tn

Jσ

(cf. Section 4), implying in particular that each realization of Cn consists of a finite number
of closed cubes and is thus polyconvex. Hence intrinsic volumes are well defined. The set Cn

consists of those subcubes Jσ of level n for which at least one of the cubes Jσ |i, i ∈ {1, . . . , n},
was discarded. We also introduce, for each j ∈ {1, . . . ,Md} (and each n ∈N0), the set

Cj
n :=

⋃
σ∈�n\Tn,σ |1=j

Jσ ,

as the union of those cubes of level n which are contained in Jj ∩ Cn.
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We are interested in the expected intrinsic volumes EVk(Cn), k = 0, . . . , d, and in particular
in the limiting behavior as n → ∞, for which we have the following general formula analogous
to (1.4) in Theorem 1.1.

Theorem 6.1. Let k ∈ {0, . . . , d − 1}, and let F be a fractal percolation in R
d with parameters

M ∈N≥2 and p ∈ (rd−k, 1]. Let D be the Minkowski dimension of F (see (1.2)). Then the limit

Vc
k(F) := lim

n→∞ rn(D−k)
EVk(Cn)

exists and is given by the expression

qd,k
Md−k(1 − p)

Md−kp − 1
+

∑
T⊂{1,...,Md},|T|≥2

(−1)|T|−1
∞∑

n=1

rn(D−k)
EVk

(⋂
j∈T

Cj
n

)
, (6.1)

where, as before, qd,k = Vk([0, 1]d).

Remark 6.1. The condition p> rd−k, which is equivalent to k<D, is a natural restriction for
the existence of Vc

k(F). If the dimension D of F is smaller than the homogeneity index k of
the functional, then the ‘edge effects’ caused by the common boundary of Cn with J = [0, 1]d

will dominate the limiting behavior, and therefore a different rescaling will be necessary. More
precisely, since for the cube J no rescaling is necessary for the intrinsic volumes, one would
expect the limit limn→∞ rn(k−k)

EVk(Cn) to converge instead, which is too rough to see the
lower-dimensional set F. For D< d − 1, for instance, it is easy to see that the surface area
Cd−1(Cn, ∂J) → Vd−1(J) as n → ∞, while Cd−1(Cn, ∂Fn) ≈ r(d−1−D)n → 0. We refer also to
Corollary 6.2 below, where we explicitly compute Vc

0(F) for fractal percolation F = Fp on the
unit interval for all parameters p. It turns out that, for p< 1/M, the edge effects dominate
and we have Vc

0(Fp) = ∞, while Vc
0(Fp) is finite for all p ≥ 1/M, including the critical case

p = 1/M, for which the ‘edge effects’ matter and contribute a second term in the limit. We
expect that this is the generic behavior of all functionals Vc

k(F) in any dimension: convergence
at and divergence below their critical value p = rd−k.

Proof. We follow the lines of the proof of Theorem 1.1. Let

vc
k(n) := rn(D−k)

EVk(Cn), n ∈N0.

Since C0 = ∅, we have vc
k(0) =EVk(∅) = 0. Setting

wk(n) := vc
k(n) − vc

k(n − 1), n ∈N,

we observe that, similarly as in (5.2) above,

Vc
k(F) = lim

n→∞ vc
k(n) =

∞∑
n=1

wk(n). (6.2)

By definition of wk, we have

wk(n) = vc
k(n) − vc

k(n − 1) = rn(D−k)(
EVk(Cn) − Mdp rk

EVk(Cn−1)
)
. (6.3)

Now recall from (4.2) that, for each j ∈ {1, . . . ,Md}, Fj
n survives the first construction step

with probability p (in which case it is distributed like φj(Fn−1)), and it is empty otherwise.
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Thus, for the closed complements Cj
n, we get

EVk(Cj
n) = pEVk(φj(Cn−1)) + (1 − p)EVk(Jj)

= prk
EVk(Cn−1) + (1 − p)rkqd,k,

and therefore
Md∑
j=1

EVk(Cj
n) = Mdprk

EVk(Cn−1) + Md(1 − p)rkqd,k.

Plugging this into (6.3) and recalling that r−D = Mdp yields

wk(n) = rn(D−k)

⎛⎝EVk(Cn) −
Md∑
j=1

EVk(Cj
n)

⎞⎠+ r(n−1)(D−k) 1 − p

p
qd,k.

Since Cn =⋃Md

j=1 Cj
n, by the inclusion–exclusion principle, this can be expressed in a more

convenient form: for each n ∈N and each k ∈ {0, . . . , d},

wk(n) = r(n−1)(D−k) 1 − p

p
qd,k +

∑
T⊂{1,...,Md}

|T|≥2

(−1)|T|−1rn(D−k)
EVk

(⋂
j∈T

Cj
n

)
. (6.4)

Note that this is again a finite sum with a fixed number of terms (independent of n) and that
all the intersections appearing in this formula are at most (d − 1)-dimensional. The summation
over n can be shown to converge for each summand separately (see Proposition 6.1 below; this
is where the hypothesis p> rd−k is used).

Inserting the representation (6.4) for wk into (6.2) yields

Vc
k(F) =

∞∑
n=1

⎛⎜⎜⎜⎜⎝r(n−1)(D−k) 1 − p

p
qd,k +

∑
T⊂{1,...,Md}

|T|≥2

(−1)|T|−1rn(D−k)
EVk

(⋂
j∈T

Cj
n

)⎞⎟⎟⎟⎟⎠
= qd,k

1 − p

p

∞∑
n=0

rn(D−k) +
∑

T⊂{1,...,Md}
|T|≥2

(−1)|T|−1
∞∑

n=1

rn(D−k)
EVk

(⋂
j∈T

Cj
n

)
, (6.5)

where the convergence of the geometric series in the first term is due to the assumption
p> rd−k, which implies D> k. The convergence of the series in the last expression for each
index set T is ensured by Proposition 6.1 just below (for which condition p> rd−k is needed
again), justifying in particular the interchange of the summations and showing the existence
of the limit of the vc

k(n) as n → ∞. Now the formula (6.1) follows easily from computing the
series in the first term and recalling that r−D = Mdp. �
Proposition 6.1. Let k ∈ {0, . . . , d − 1} and F be a fractal percolation in [0, 1]d with parame-
ters M ∈N≥2 and p ∈ (rd−k, 1]. Then, for each T ⊂ {1, . . . ,Md} with |T| ≥ 2,

∞∑
n=1

rn(D−k)
ECvar

k

(⋂
j∈T

Cj
n

)
<∞,
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where, as before, Cvar
k (K) denotes the total mass of the total variation measure of the kth

curvature measure of a polyconvex set K. In particular, the sums
∞∑

n=1

rn(D−k)
EVk

(⋂
j∈T

Cj
n

)
converge absolutely.

We postpone the proof of Proposition 6.1 to the last section.

The case d = 1. In order to derive explicit formulas for the limits Vc
k(F) in R

2 it is again nec-
essary to discuss these functionals in R first. We start with a general formula to determine the
intrinsic volumes of a polyconvex set C ⊂R from the intrinsic volumes of its closed comple-
ment. This will be used to derive expressions for EVk

(
D(1)

n
)

and EVk
(
D(1)

n ∩ D(2)
n
)

from the

ones already obtained in Section 5 for EVk
(
K(1)

n
)

and EVk
(
K(1)

n ∩ K(2)
n
)
, where D(i)

n := I \ K(i)
n .

Lemma 6.1. Let I := [0, 1] ⊂R be the unit interval and let K ⊂ I be polyconvex (i.e. a finite
union of intervals). Then the closed complement C := I \ K of K within I is polyconvex, V1(C) =
1 − V1(K), and

V0(C) = 1 + V0(K) − 1K(0) − 1K(1) − N(K),

where 1A denotes the indicator function of a set A, and N(A) is the number of isolated points
in A. Moreover, if K′ ⊂ I is a second polyconvex set and C′ := I \ K′, then

V1(C ∩ C′) = 1 − V1(K) − V1(K′) + V1(K ∩ K′) and

V0(C ∩ C′) = 1 + V0(K) + V0(K′) − V0(K ∩ K′) − 1K∪K′ (0)

− 1K∪K′ (1) − N(K) − N(K′) + N(K ∩ K′).
Proof. The first formula is an easy consequence of the additivity of V1, noting that

I = K ∪ C, V1(I) = 1, and V1(C ∩ K) = 0. The second formula for V1 follows from the first
one and additivity by noting that

C ∪ C′ = I \ (K ∩ K′). (6.6)

In R the Euler characteristic V0 equals the number of connected components of a polycon-
vex set. If K ⊂ I has k connected components, k ∈N0, then Kc =R \ K has k + 1 (including
the two unbounded ones), and so I ∩ Kc has k + 1 − 1K(0) − 1K(1), since an unbounded con-
nected component of Kc contributes a component to I ∩ Kc only if it has nonempty intersection
with I (that is, if 0 /∈ K or 1 /∈ K). Finally, taking the closure of I \ K leaves the number of con-
nected components unchanged, provided there are no isolated points in K. Any isolated point,
however, reduces the number of connected components in C by one, since it causes the two
connected components of I \ K adjacent to this point to merge to one component of C. This
proves the first formula for V0. The second formula follows from the first one, taking into
account (6.6):

V0(C ∩ C′) = V0(C) + V0(C′) − V0(C ∪ C′)
= 1 + V0(K) − 1K(0) − 1K(1) − N(K)

+ 1 + V0(K′) − 1K′ (0) − 1K′ (1) − N(K′)
− 1 − V0(K ∩ K′) + 1K∩K′ (0) + 1K∩K′ (1) + N(K ∩ K′)

= 1 + V0(K) + V0(K′) − V0(K ∩ K′) − 1K∪K′ (0) − 1K∪K′ (1)

− N(K) − N(K′) + N(K ∩ K′),
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where we have used the additivity of the indicator function, implying 1K + 1K′ = 1K∩K′ +
1K∪K′ . This completes the proof of the last formula. �

It is clear that corresponding formulas hold for the expected intrinsic volumes of random
polyconvex subsets K and K′ of [0, 1] and their closed complements. Note that the functional N
counting the number of isolated points is not additive. Below we always have the situation that
K and K′ have no isolated points, while isolated points may appear in the intersection K ∩ K′;
see Figure 8 for an example.

Corollary 6.1. Let K(1),K(2) be two independent fractal percolations on the interval I = [0, 1],
both with the same parameters M ∈N≥2 and p ∈ (0, 1]. For n ∈N0, let K(i)

n denote the nth step

of the construction of Ki, i = 1, 2, and let D(i)
n := I \ K(i)

n . Then, for any n ∈N0,

EV1
(
D(1)

n ∩ D(2)
n

)= 1 − 2EV1
(
K(1)

n

)+EV1
(
K(1)

n ∩ K(2)
n

)
and

EV0
(
D(1)

n ∩ D(2)
n

)= 2EV0
(
K(1)

n

)−EV0
(
K(1)

n ∩ K(2)
n

)+EN
(
K(1)

n ∩ K(2)
n

)
+ 1 − 4pn + 2p2n.

Moreover, we have EV1
(
D(1)

n
)= 1 −EV1

(
K(1)

n
)

and

EV0
(
D(1)

n

)=EV0
(
K(1)

n

)+ 1 − 2pn.

Proof. Applying Lemma 6.1 to realizations C, C′ of the random sets D(1)
n , D(2)

n , respectively,
and taking expectations, for k = 1 we obtain directly the formula stated above, while for k = 0
we obtain

EV0
(
D(1)

n ∩ D(2)
n

)= 1 +EV0
(
K(1)

n

)+EV0
(
K(2)

n

)−EV0
(
K(1)

n ∩ K(2)
n

)
− P

(
0 ∈ K(1)

n ∪ K(2)
n

)− P
(
1 ∈ K(1)

n ∪ K(2)
n

)
−EN

(
K(1)

n

)−EN
(
K(2)

n

)+EN
(
K(1)

n ∩ K(2)
n

)
.

Now observe that almost surely the set K(i)
n contains no isolated points, implying that

EN(K(i)
n ) = 0. Moreover,

P
(
0 ∈ K(1)

n ∪ K(2)
n

)= P
(
0 ∈ K(1)

n

)+ P
(
0 ∈ K(2)

n

)− P
(
0 ∈ K(1)

n ∩ K(2)
n

)
= 2pn − p2n,

and similarly for the point 1 instead of 0. This proves the second formula. The third formula is
a direct application of the first formula in Lemma 6.1 to the realizations C of the random set
D(1)

n . Similarly, the last formula follows from applying the second formula in Lemma 6.1 to
the realizations C of D(1)

n and taking expectations:

EV0
(
D(1)

n

)= 1 +EV0
(
K(1)

n

)− P
(
0 ∈ K(1)

n

)− P
(
1 ∈ K(1)

n

)−EN
(
K(1)

n

)
=EV0

(
K(1)

n

)+ 1 − 2pn,

since P
(
0 ∈ K(1)

n
)= P

(
1 ∈ K(1)

n
)= pn and EN

(
K(1)

n
)= 0. �

To get more explicit expressions for EVk
(
D(1)

n
)

and EVk
(
D(1)

n ∩ D(2)
n
)

from Corollary 6.1, we

can employ Propositions 5.2 and 5.3, where formulas for EVk
(
K(1)

n
)

and EVk
(
K(1)

n ∩ K(2)
n
)

have

been derived. The missing piece is an explicit expression for the expected number EN
(
K(1)

n ∩
K(2)

n
)

of isolated points.

https://doi.org/10.1017/apr.2020.33 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2020.33


Geometric functionals of fractal percolation 1113

Proposition 6.2. Let K(1),K(2) be independent fractal percolations on the interval [0, 1], both
with the same parameters M and p. Then, for any n ∈N0,

EN
(
K(1)

n ∩ K(2)
n

)
= (Mp2)n

(
2 − 2M−n − 4p

M − 1

M − p

[
1 −

( p

M

)n]+ 2p2 M − 1

M − p2

[
1 −

(
p2

M

)n
])

.

Proof. First observe that for n = 0 both sides of the formula equal zero and thus the
formula holds in this case. Let N(n) := N

(
K(1)

n ∩ K(2)
n
)
, and let Nj(n) := N(K(1)

n ∩ K(2)
n ∩ Oj),

j = 1, . . . ,M, be the number of those isolated points contained in the open subinterval Oj :=
int(Jj) = ((j − 1)/M, j/M). Then obviously

N(n) =
M∑

j=1

Nj(n) +
M−1∑
j=1

1
{
j/M isolated in K(1)

n ∩ K(2)
n

}
. (6.7)

(6.7)

Because of the self-similarity, Nj(n) has the same distribution as Ñ(n − 1), where Ñ(n − 1) is
the random variable which equals N(n − 1) with probability p2 and is zero otherwise (which
accounts for the effect that Jj may be discarded in the first construction step of K(1) or K(2),
in which case there are no isolated points generated). Moreover, by symmetry, the indicator
variables in the second sum all have the same distribution, given by

P
({

1/M isolated in K(1)
n ∩ K(2)

n

})= 2p2n(1 − pn)2 =: qn(p).

Indeed, in order for 1/M to be isolated, either both K(1),1
n and K(2),2

n (with K(i),j
n as defined in

(4.1)) need to have a nonempty intersection with 1/M (which happens with probability p2n)
while at the same time neither K(1),2

n nor K(2),1
n intersects 1/M (which happens with probability

(1 − pn)2); or we must have the same situation exactly reversed, i.e. K(1),2
n and K(2),1

n intersect
1/M while K(1),1

n and K(2),2
n do not. Taking expectations in (6.7), we get

EN(n) =
M∑

j=1

p2
EN(n − 1) + (M − 1)P

({
1/M isolated in K(1)

n ∩ K(2)
n

})
= Mp2

EN(n − 1) + (M − 1)qn(p),

which is a recursion relation for the sequence (γn)n∈N with γn :=EN(n). By induction, we infer
that

γn = (M − 1)qn(p) + Mp2γn−1 = . . .= (M − 1)
n∑

s=1

(Mp2)n−sqs(p).

Since qs(p) = 2p2s(1 − 2ps + p2s) = 2(p2s − 2p3s + p4s), we conclude that

γn = 2(M − 1)(Mp2)n
n∑

s=1

(Mp2)−s(p2s − 2p3s + p4s)

= 2(M − 1)(Mp2)n
n∑

s=1

(
(1/M)s − 2(p/M)s + (p2/M)s

)
= 2(M − 1)(Mp2)n

( [
1 −

(
1

M

)n]
− 2p

M − p

[
1 −

( p

M

)n]+ p2

M − p2

[
1 −

(
p2

M

)n ])
,

from which the expression stated in Proposition 6.2 easily follows. �
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Now we are ready to derive explicit expressions for EVk
(
D(1)

n
)

and EVk
(
D(1)

n ∩ D(2)
n
)

from
Corollary 6.1.

Theorem 6.2. Let K(1),K(2) be independent fractal percolations on the interval I = [0, 1], both
with the same parameters M ∈N≥2 and p ∈ (0, 1]. For n ∈N0, let K(i)

n be the nth step of the

construction of Ki, i = 1, 2, and let D(i)
n := I \ K(i)

n .
Then, for any n ∈N0, EV1

(
D(1)

n ∩ D(2)
n
)= 1 − 2pn + p2n and

EV0
(
D(1)

n ∩ D(2)
n

) = 2(Mp)n
(

1 − p
M − 1

M − p

[
1 −

( p

M

)n])+ 1 − 4pn + 2p2n

+ (Mp2)n

(
−1 + p2 M − 1

M − p2

[
1 −

(
p2

M

)n
])

.

Moreover, we have EV1
(
D(1)

n
)= 1 − pn and

EV0
(
D(1)

n

)= (Mp)n
(

1 − p
M − 1

M − p

[
1 −

( p

M

)n])+ 1 − 2pn.

Proof. Combine Corollary 6.1 with Propositions 5.2, 5.3, and 6.2. The two formulas for V1

and also the one for EV0
(
D(1)

n
)

follow at once. In case of EV0
(
D(1)

n ∩ D(2)
n
)

observe that, for
any n ∈N0,

EN
(
K(1)

n ∩ K(2)
n

)−EV0
(
K(1)

n ∩ K(2)
n

)
= (Mp2)n

(
2 − 2M−n − 4p

M − 1

M − p

[
1 −

( p

M

)n]+ 2p2 M − 1

M − p2

[
1 −

(
p2

M

)n
])

− (Mp2)n

(
3 − 2M−n − 4p

M − 1

M − p

[
1 −

( p

M

)n]+ p2 M − 1

M − p2

[
1 −

(
p2

M

)n
])

= (Mp2)n

(
−1 + p2 M − 1

M − p2

[
1 −

(
p2

M

)n
])

= (Mp2)n

(
M(p2 − 1)

M − p2
− (M − 1)p2

M − p2

(
p2

M

)n)
,

and thus EV0
(
D(1)

n ∩ D(2)
n
)

equals

2EV0
(
K(1)

n

)+ 1 − 4pn + 2p2n + (Mp2)n

(
−1 + p2 M − 1

M − p2

[
1 −

(
p2

M

)n
])

. �

It is now easy to derive explicit expressions for the limit functionals Vc
k(K) =

limn→∞ r(D−k)n
EVk(Dn) of fractal percolation K in R for all possible parameters.

Corollary 6.2. Let K be a fractal percolation on the interval I = [0, 1] with parameters
M ∈N≥2 and p ∈ (0, 1]. If Kn is the nth construction step and Dn := I \ Kn, then

lim
n→∞EV1(Dn) =

{
1 for p ∈ (0, 1) (while Vc

1(K) = ∞),

0 for p = 1 (which equals Vc
1(K) in this case).
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Moreover,

Vc
0(K) =

⎧⎪⎪⎨⎪⎪⎩
M(1−p)

M−p for p ∈ (1/M, 1] (which equals V0(K); cf. Corollary 5.1),

2M+1
M+1 for p = 1/M,

∞ for p ∈ (0, 1/M).

Proof. Since here

D = log Mp

log M

(cf. (1.2)), which implies Mp = r−D, we infer from Theorem 6.2 that, for any n ∈N,
r(D−1)n

EV1(Dn) = p−n − 1 and

rDn
EV0(Dn) = 1 − p

M − 1

M − p

[
1 −

( p

M

)n]+ (Mp)−n(1 − 2pn).

Letting now n → ∞, the stated limits follow at once. �
The case d = 2. In R

2, the formula (6.1) in Theorem 6.1 reduces to

Vc
k(F) = q2,k

M2−k(1 − p)

M2−kp − 1
− E1 − E2 + E3 − E4, (6.8)

where

E1 := 2M(M − 1)
∞∑

n=1

rn(D−k)
EVk

(
C1

n ∩ C4
n

)
,

E2 := 2(M − 1)2
∞∑

n=1

rn(D−k)
EVk

(
C1

n ∩ C2
n

)
,

E3 := 4(M − 1)2
∞∑

n=1

rn(D−k)
EVk

(
C1

n ∩ C2
n ∩ C3

n

)
,

E4 := (M − 1)2
∞∑

n=1

rn(D−k)
EVk

( 4⋂
j=1

Cj
n

)
.

Here the sets C1
n, . . . ,C4

n are four of the M2 sets Cj
n = Jj \ Fj

n, chosen so that the corresponding
sets Jj, j = 1, . . . , 4, intersect in a point x and are numbered as indicated in Figure 7. The factor
in front of the summation in each Ei indicates how many times this particular intersection
configuration occurs in the union

Cn =
M2⋃
j=1

Cj
n,

taking into account all symmetries.
Theorem 6.1 asserts that, for k = 0, the formula (6.8) is valid for all p ∈ (1/M2, 1], and for

k = 1, for all p ∈ (1/M, 1]. While for E1 we will again employ the one-dimensional case, the
last three summands E2, E3, and E4 vanish for k = 1, since the intersections involved contain at

https://doi.org/10.1017/apr.2020.33 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2020.33


1116 M. A. KLATT AND S. WINTER

most one point. For k = 0 these terms can be obtained by direct inspection of the intersections
of the Cj

n.

Lemma 6.2. Suppose p> 1/M2. Then, for k = 0, the terms E2, E3, and E4 in (6.8) are
given by

E2 = 2(M − 1)2
(

1

M2p − 1
− 2

M2 − 1
+ p

M2 − p

)
,

E3 = 4(M − 1)2
(

1

M2p − 1
− 3

M2 − 1
+ 3p

M2 − p
− p2

M2 − p2

)
,

and

E4 = (M − 1)2
(

1

M2p − 1
− 4

M2 − 1
+ 6p

M2 − p
− 4p2

M2 − p2
+ p3

M2 − p3

)
.

Proof. In all three intersection configurations of the sets Cj
n considered here, the intersection

contains at most one point, x; cf. Figure 7. For each of the sets Cj
n to contain x, it is necessary

that in at least one of the sets Fj
k, k = 1, . . . , n, the kth-level subsquare intersecting x is dis-

carded (which happens with probability 1 − pn). Thus, by independence, we obtain for the
intersections of �= 2, 3, or 4 of these sets

EV0

( �⋂
j=1

Cj
n

)
= P

( �⋂
j=1

Cj
n = {x}

)
= (1 − pn)�,

and therefore

∞∑
n=1

rnD
EV0

( �⋂
j=1

Cj
n

)
=

�∑
k=0

(
l

k

)
(−1)k pk−1

M2 − pk−1 . (6.9)

Indeed, employing the binomial theorem and the relation r−D = M2p, we get

∞∑
n=1

rnD
EV0

( �⋂
j=1

Cj
n

)
=

∞∑
n=1

(M2p)−n(1 − pn)� =
�∑

k=0

(
l

k

)
(−1)k

∞∑
n=1

(
pk−1

M2

)n

,

where in the last expression all the geometric series converge thanks to the assumption
p> 1/M2. Computing these series yields the expression stated in (6.9). Finally, the asser-
tion of the lemma follows from plugging (6.9) into the expressions for E2, E3, and E4 given
by (6.8). �

The expressions derived in Theorem 6.2 for intersections of fractal percolations in
one dimension will now be used to compute the expected intrinsic volumes of the (one-
dimensional) intersections C1

n ∩ C4
n appearing in the term E1 in the formula (6.8) for fractal

percolation in R
2.

Proposition 6.3. Let F be a fractal percolation in R
2 with parameters M ∈N≥2 and p ∈ (0, 1].

Then, for any n ∈N,

EV1
(
C1

n ∩ C4
n

)= 1

M

(
1 − 2pn + p2n

)

https://doi.org/10.1017/apr.2020.33 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2020.33


Geometric functionals of fractal percolation 1117

and

EV0
(
C1

n ∩ C4
n

)= 2(Mp)n
(

1 − p

M − p
+ M − 1

M − p

( p

M

)n
)

+ 1 − 4pn + 2p2n

− (Mp2)n

(
1 − p2

M − p2 + M − 1

M − p2

(
p2

M

)n
)

.

Proof. Let K(1),K(2) be two independent fractal percolations on the interval I = [0, 1] with
the same parameters M and p as F, and independent of F. For n ∈N0, let K(i)

n be the nth step

of the construction of K(i), i = 1, 2, and let D(i)
n := I \ K(i)

n (just as in Corollary 6.1). Denote
by K̃(i)

n , i = 1, 2, the random set which equals K(i)
n with probability p and is empty otherwise.

Recalling from (5.20) that in distribution

F1
n ∩ F4

n =ψ
(
K̃(1)

n−1 ∩ K̃(2)
n−1

)
,

we infer that, since Cj
n is determined by Fj

n and similarly D(i)
n−1 is determined by K(i)

n−1, the
following equation also holds in distribution: for each n ∈N,

C1
n ∩ C4

n =ψ
(
D̂(1)

n−1 ∩ D̂(2)
n−1

)
, (6.10)

where D̂(i)
n is the random set which equals D(i)

n with probability p and I with probability 1 − p.
This implies that for each n ∈N0,

EV0
(
C1

n+1 ∩ C4
n+1

)=EV0
(
D̂(1)

n ∩ D̂(2)
n

)
= p2

EV0
(
D(1)

n ∩ D(2)
n

)+ p(1 − p)EV0
(
D(1)

n ∩ I
)

+ p(1 − p)EV0
(
I ∩ D(2)

n

)+ (1 − p)2
EV0(I ∩ I)

= p2
EV0

(
D(1)

n ∩ D(2)
n

)+ 2p(1 − p)EV0
(
D(1)

n

)+ (1 − p)2.

Employing now the formulas derived in Theorem 6.2 for EV0
(
D(1)

n ∩ D(2)
n
)

and EV0
(
D(1)

n
)
, we

obtain for each n ∈N0

EV0

(
C1

n+1 ∩ C4
n+1

)
= p2

(
2(Mp)n

(
1 − p

M − 1

M − p

[
1 −

( p

M

)n])+ 1 − 4pn + 2p2n

+ (Mp2)n

(
−1 + p2 M − 1

M − p2

[
1 −

(
p2

M

)n
]))

+ 2p(1 − p)

(
(Mp)n

(
1 − p

M − 1

M − p

[
1 −

( p

M

)n])+ 1 − 2pn
)

+ (1 − p)2

= 2p(Mp)n

(
1 − p

M − 1

M − p

[
1 −

( p

M

)n])+ 1 − 4pn+1 + 2p2(n+1)

+ p2(Mp2)n

(
−1 + p2 M − 1

M − p2

[
1 −

(
p2

M

)n
])

,
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where we combined some of the terms to get to the last expression. Replacing n + 1 by n, this
simplifies to

EV0

(
C1

n ∩ C4
n

)
= 2

M
(Mp)n

(
1 − p

M − 1

M − p

[
1 −

( p

M

)n−1
])

+ 1 − 4pn + 2p2n

+ 1

M
(Mp2)n

(
−1 + p2 M − 1

M − p2

[
1 −

(
p2

M

)n−1])

= 2(Mp)n
(

1 − p

M − p
+ M − 1

M − p

( p

M

)n
)

+ 1 − 4pn + 2p2n

− (Mp2)n

(
1 − p2

M − p2
+ M − 1

M − p2

(
p2

M

)n
)
,

for any n ∈N, completing the proof of the formula for V0 in Proposition 6.3. The formula for
V1 follows similarly from (6.10) using the corresponding formulas from Theorem 6.2:

EV1
(
C1

n+1 ∩ C4
n+1

)=EV1
(
ψ
(
D̂(1)

n ∩ D̂(2)
n

))= 1

M
EV1

(
D̂(1)

n ∩ D̂(2)
n

)
= 1

M

(
p2
EV1

(
D(1)

n ∩ D(2)
n

)+ 2p(1 − p)EV1
(
D(1)

n

)+ (1 − p)2
)

= 1

M

(
p2
[
1 − 2pn + p2n

]
+ 2p(1 − p)

[
1 − pn]+ (1 − p)2

)
= 1

M

(
1 − 2pn+1 + p2(n+1)). �

Corollary 6.3. If p> 1/M2, then for k = 0 the term E1 in (6.8) is given by

E1 = 2M(M − 1)

M − p

(
2(1 − p)

M − 1
+ 2(M − 1)p

M2 − p
− p(1 − p2)

M − p2

)
− 2M(M − 1)2p3

(M − p2)(M2 − p3)
+ 2M(M − 1)

M2p − 1
− 8M

M + 1
+ 4M(M − 1)p

M2 − p
.

Similarly, if p> 1/M, then for k = 1,

E1 = 2(M − 1)

(
1

Mp − 1
− 2

M − 1
+ p

M − p

)
.

Proof. To determine E1 for k = 0, we multiply the expression derived in Proposition 6.3 for
EV0

(
C1

n ∩ C4
n

)
by rDn = (M2p)−n and sum over n to obtain

E1 = 2M(M − 1)
∞∑

n=1

(M2p)−n

[
2(Mp)n

(
1 − p

M − p
+ M − 1

M − p

( p

M

)n
)

(6.11)

− (Mp2)n

(
1 − p2

M − p2
+ M − 1

M − p2

(
p2

M

)n
)

+ 1 − 4pn + 2p2n

]
,

and the expression stated above is then derived by computing the various geometric series
(which do all converge, thanks to the assumption p> 1/M2, justifying thus in particular the
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above interchange of summations) and combining some of the terms. For k = 1, the stated
expression for E1 follows similarly by multiplying the expression for EV1

(
C1

n ∩ C4
n

)
from

Proposition 6.3 by r(D−1)n = (Mp)−n and summing over n. The series involved converge due
to the assumption p> 1/M. �

Now we are ready to prove Theorem 1.3. For convenience, we repeat the statement here,
and we add a corresponding formula for the limit Vc

1(F) of the rescaled boundary lengths.

Proposition 6.4. Let F be a fractal percolation in R
2 with parameters M ∈N≥2 and p ∈ [0, 1].

Then, for any p> 1/M2,

Vc
0(F) = M2(1 − p)

p3 + (M − 1)p2 + (M − 1)p − M

(M2 − p3)(M − p)
.

Moreover, for any p> 1/M,

Vc
1(F) = 2M

1 − p

M − p

(= V1(F); cf. (1.2)
)
.

Proof of Proposition 6.4 and thus in particular of Theorem 1.3. All one has to do is to insert
the expressions for E1, . . . , E4 obtained in Lemma 6.2 and Corollary 6.3 into the formula (6.8)
for Vc

k(F). For k = 0, we obtain (recalling that q2,0 = V0(J) = 1)

Vc
0(F) = M2(1 − p)

M2p − 1
− E1 − E2 + E3 − E4

= M2(1 − p)

M2p − 1
− 2M(M − 1)

M − p

(
2(1 − p)

M − 1
+ 2(M − 1)p

M2 − p
− p(1 − p2)

M − p2

)
(6.12)

+ 2M(M − 1)2p3

(M − p2)(M2 − p3)
− 2M(M − 1)

M2p − 1
+ 8M

M + 1
− 4M(M − 1)p

M2 − p

− E2 + E3 − E4,

where

−E2 + E3 − E4 = (M − 1)2
(

1

M2p − 1
− 4

M2 − 1
+ 4p

M2 − p
− p3

M2 − p3

)
.

Fortunately, this can be simplified to the expression stated above. Similarly, for k = 1 (taking
into account that E2 = E3 = E4 = 0 in this case), we get

Vc
1(F) = 2M

1 − p

Mp − 1
− 2(M − 1)

(
1

Mp − 1
− 2

M − 1
+ p

M − p

)
,

which simplifies to the expression stated above. This completes the proof. �
Remark 6.2. (On the speed of convergence.) From the proof of Proposition 6.4, we also get
explicit expressions for the expected intrinsic volumes of the approximation sets Cm for each
m ∈N. To determine vc

k(m) := rm(D−k)
EVk(Cm), m ∈N, it is enough to truncate all the sums

in the formula (6.8) after the mth term (including the very first one, which appears already in
summed form in (6.8); cf. (6.5)). For k = 0, we obtain for any m ∈N

vc
0(m) = 1 − p

p

m∑
n=0

rnD − E1(m) − 2E2(m) + 4E3(m) − E4(m),
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where E1(m), the truncated term corresponding to E1, can be read off from the equation (6.11)
in the proof of Corollary 6.3:

E1(m) := 2M(M − 1)
m∑

n=1

[
2

1 − p

M − p

(
1

M

)n

+ 2
M − 1

M − p

( p

M2

)n − 1 − p2

M − p2

( p

M

)n

− M − 1

M − p2

(
p3

M2

)n

+
(

1

M2p

)n

− 4

(
1

M2

)n

+ 2
( p

M2

)n
]

.

Similarly, E�(m), �= 2, 3, 4, are derived by truncating the corresponding sums E� and
computing the resulting finite geometric sums (cf. (6.9)):

E�(m) := (M − 1)2
m∑

n=1

(M2p)−n(1 − pn)�

= (M − 1)2
�∑

k=0

(
�

k

)
(−1)k pk−1

M2 − pk−1

[
1 −

(
pk−1

M2

)m
]

.

Computing all the finite geometric sums, we get for each of the terms in the equation (6.12) a
corresponding one for vc

0(m) with a factor of the form (1 − qm) for a suitable q (just as in the
last line of the formula above). The constant terms add up to Vc

0(F), so that we end up with the
following exact expansion in m:

vc
0(m) = Vc

0(F) + 4M(1 − p)

M − p
M−m − 2M(M − 1)p(1 − p2)

(M − p)(M − p2)
M(D−3)m + M−Dm

− 4M−2m + 4p(M − 1)

M − p
M(D−4)m + c̃M(3D−8)m, (6.13)

where

c̃ := (M − 1)p3

M2 − p3

(M − 1)(M − p2) − 2M(M − p)

M − p2 .

It is easy to see that this sequence again converges exponentially fast to Vc
0(F) as m → ∞.

Remark 6.3. (On fractal subdimensions.) Multiplying (6.13) by MDm, we obtain an exact
expansion for EV0(Cm):

EV0(Cm) = Vc
0(F)MDm + 4M(1 − p)

M − p
M(D−1)m − 2M(M − 1)p(1 − p2)

(M − p)(M − p2)
M(2D−3)m

+ 1 − 4M(D−2)m + 4p(M − 1)

M − p
M(2D−4)m + c̃M(4D−8)m.

Since D< 2 for p< 1, the last three terms vanish as m → ∞. The remaining terms determine
the subdimensions of F in the sense of [26]. We obtain

EV0(Cm) = Vc
0(F)MDm + c2MD2m + c3MD3m + 1 + o(1)

as m → ∞, where

c2 := 4M(1 − p)

M − p
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is the amplitude of the first subdimension D2 := D − 1, and

c3 := −2M(M − 1)p(1 − p2)

(M − p)(M − p2)

is the amplitude of second subdimension

D3 := 2D − 3 = log Mp2

log M
.

Recall from Proposition 5.4 and Remark 5.4 that D3 (which is positive for p> 1/
√

M) is the
dimension of the intersection of two copies of F constructed in neighboring squares sharing
a common side. Similarly D2 (which is positive for p> 1/M) is the dimension of a frac-
tal percolation on an interval with the same parameters as F, or equally the dimension of
F ∩ ∂[0, 1]2. Hence two subdimensions appear for these random fractals, as suggested by
[15, 26], and they carry geometric meaning as in the deterministic setting studied there.

7. Proof of Propositions 5.1 and 6.1

Let n ∈N and let W1,W2, . . . be unions of subcubes of J = [0, 1]d of level n. More
precisely, if �1, �2, . . . are arbitrary subsets of {1, . . . ,Md}n, then we let

Wi :=
⋃
σ∈�i

Jσ , i ∈N. (7.1)

Our first aim is to establish a general bound on the curvature of the intersection W1 ∩ W2 ∩
. . .∩ W� for an arbitrary number � ∈N≥2 of these sets. For this we will employ an estimate
from [29]. Recall from [29] that for any finite familyX = {X1, . . . , Xm} of sets, the intersection
number �= �(X ) is defined by

� := max
i∈{1,...,m}

|{j : Xj ∩ Xi �= ∅}|.

If � is small compared to m, then the following estimate, which is a special case of
[29, Corollary 3.0.5] for a family of convex sets, is particularly useful.

Lemma 7.1. Let {X1, . . . , Xm} be a family of compact, convex subsets of Rd and let � be its
intersection number. Then, for any k ∈ {0, . . . , d},

Cvar
k

( m⋃
j=1

Xj

)
≤ m2�bk,

where bk := max{Ck(Xj) : j = 1, . . . ,m}.
Proof. Since the Xi are convex, any intersection XI :=⋂i∈I Xi, I ⊆ {1, . . . ,m} is also convex

and contained in each of the sets Xi, i ∈ I. Therefore, the monotonicity and positivity of the
intrinsic volumes implies that

Cvar
k (XI) = Ck(XI) ≤ max

i∈I
Ck(Xi) ≤ bk.
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Thus (for B :=R
d) the assumptions of [29, Corollary 3.0.5] are satisfied with b := bk and the

assertion follows. �
Recall that r = 1/M.

Lemma 7.2. There is a constant cd,k such that for any n ∈N and � ∈N≥2 and any collection
W1, . . . ,W� of unions of cubes of level n as defined in (7.1), the following estimate holds:

Cvar
k (W1 ∩ . . .∩ W�) ≤ cd,k|�1|rkn, (7.2)

where |�1| is the number of cubes in W1.

Note that |�1| ≤ Mdn = r−dn, which implies that the right-hand side of (7.2) is always bounded
from above by cd,kr(k−d)n.

Proof. First let �= 2. We write the intersection W1 ∩ W2 as a union of convex sets. It is
clear that each set Jσ in the union W1 intersects at most 3d cubes (the neighboring ones) from
the union W2. Let �2

σ ⊂�2 be the set of indices of the cubes from W2 intersecting Jσ . Then
|�2

σ | ≤ 3d and we have

W1 ∩ W2 =
⋃
σ∈�1

(
Jσ ∩

⋃
ω∈�2

σ

Jω

)
=
⋃
σ∈�1

⋃
ω∈�2

σ

(Jσ ∩ Jω).

In this way we have represented W1 ∩ W2 as a union of at most |�1| · 3d ≤ (Md)n3d convex
sets Rσ,ω := Jσ ∩ Jω. Note that each of the sets Rσ,ω is the intersection of two cubes and thus
a k-face of some cube of level n (of some dimension k ∈ {0, . . . , d}). We may reduce the
number of sets in this representation by deleting the double occurrences of any face without
changing the union set. Then the reduced family F ⊂ {Rσ,ω} has an intersection number � =
�(F ) bounded from above by 3d times the number of faces of a cube in R

d (which also equals
3d). Indeed, each set R ∈F is contained in a cube of dimension d, and any other set R′ ∈F
intersecting R must be a face of the same cube or of one of the neighboring cubes. Note also
that each of the sets R ∈F is convex and contained in a cube of side length rn. Therefore,

Cvar
k (R) = Ck(R) ≤ Ck(rnJ) = rknCk(J) = rknqd,k,

where we have used the monotonicity, motion-invariance, and homogeneity of the intrinsic
volumes. Now we can apply Lemma 7.1 to the family F consisting of m ≤ (Md)n3d sets and
satisfying bk := max{Ck(R) : R ∈F} ≤ rknqd,k. We obtain

Cvar
k (W1 ∩ W2) ≤ |�1|3d232d

rknqd,k = cd,k|�1|rkn,

where the constant
cd,k := 3d232d

qd,k

is independent of n. This proves the case �= 2. For the general case, fix some � > 2 and note
that W1 ∩ . . .∩ W� can be represented by

W1 ∩ . . .∩ W� =
⋃
σ∈�1

⋃
ω2∈�2

σ

. . .
⋃

ω�∈��σ
Jσ ∩ Jω2 ∩ . . .∩ Jω�, (7.3)

where, similarly as before, �j
σ is the family of those words ω ∈�j for which Jσ ∩ Jω �= ∅,

j = 2, . . . , �. Now observe that Jσ ∩ Jω2 ∩ . . .∩ Jω� is a finite intersection of cubes of the grid
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and thus a k-face of Jσ (of some dimension k ∈ {0, . . . , d})—if not empty. Hence, for fixed σ ,
there are at most 3d distinct sets in the union corresponding to the faces of Jσ . Deleting all
multiplicities so that no set appears more than once in the union on the right of (7.3), we again
end up with a representation of W1 ∩ . . .∩ W� by at most |�1| · 3d convex sets, and as before,
the intersection number of the reduced family will not exceed 32d. Hence (7.2) follows again
from Lemma 7.1 with the same constant cd,k as before. This completes the proof for arbitrary
integers �≥ 2. �
Remark 7.1. If the union set W1 contains many ‘interior’ cubes of the intersection

⋂�
j=1 Wj,

then the above estimate can be improved. Recall that, for k ≤ d − 1, the kth curvature measure
of any set is concentrated on its boundary. Therefore, in order to bound the total curvature
variation of the set

⋂�
j=1 Wj, it is enough to represent this set near its boundary by a union

of cubes. To this end, let �1
∂ ⊆�1 be the set of those cubes in �1 which have a nonempty

intersection with the boundary ∂
⋂�

j=1 Wj. Let A be the set defined by the right-hand side of

(7.3) when we replace the set�1 in the first union by�1
∂ . Then A is obviously a union of cubes

and a subset of
⋂�

j=1 Wj. Moreover, it has the property that ∂
⋂�

j=1 Wj ⊂ ∂A and that any point

x ∈ ∂A that is not in ∂
⋂�

j=1 Wj has positive distance (at least rn) to ∂
⋂�

j=1 Wj. Therefore, since
curvature measures are locally determined, we conclude that (for any k ∈ {0, . . . , d − 1})

Cvar
k (W1 ∩ . . .∩ W�) ≤ Cvar

k (A) ≤ cd,k|�1
∂ |rkn,

where the second inequality follows from applying the same argument to A that we applied in
the proof of Lemma 7.2 to the set on the right-hand side of (7.3).

With Lemma 7.2 and Remark 7.1 in hand, we are now in a position to prove Propositions
5.1 and 6.1.

Proof of Propositions 5.1 and 6.1. First note that in both statements the second assertion
is an immediate consequence of the first one, which is due to the fact that |Vk(K)| ≤ Cvar

k (K)
for any polyconvex set K. In order to prove the first assertions in the two propositions, we
fix a set T ⊆ {1, . . . ,Md}, |T| ≥ 2, and let U :=⋂j∈T Jj (where Jj is the cube of side length
r = 1/M containing Fj). U is a cube of some dimension u ∈ {0, . . . , d − 1}, and the intersection⋂

j∈T Fj
n is contained in U (and similarly

⋂
j∈T Cj

n ⊆ U). Let H be the affine hull of U, which
is a u-dimensional affine space. Since intrinsic volumes are independent of the dimension
of the ambient space, it is enough to study the intersection of the sets Fj

n ∩ H (or Cj
n ∩ H,

respectively), for j ∈ T, in the space H. The sets Fj ∩ H can be modeled by fractal percolations
on u-dimensional cubes. Let K(j), j ∈ T, be independent fractal percolations on [0, 1]u with
the same parameters p and M as F. Denote by K̃(j) the random set which equals K(j) with
probability p and is empty otherwise. Then we have, for each n ∈N, Fj

n ∩ H =ψ
(
K̃(j)

n
)
, j ∈ T,

in distribution, where ψ : H →R
u is one of the similarities (with factor 1/r) mapping U to

[0, 1]u. (In fact, it is possible to couple Fj and K̃(j) in such a way that this distributional relation
becomes an almost sure one. But we do not need this here for our argument.) In particular, it
follows that

Cvar
k

(⋂
j∈T

Fj
n

)
= Cvar

k

(⋂
j∈T

ψ
(
K̃(j)

n

))≤ r−kCvar
k

(⋂
j∈T

K(j)
n

)
,

where the equality holds in distribution and the inequality almost surely. For the latter note
that, for each realization of the random sets K(j), j ∈ T, either K̃(j)

n = ∅ for some j ∈ T, in which
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case the inequality is trivial, since the total variation measure is nonnegative; or K̃(j)
n = K(j)

n for
all j ∈ T, in which case it becomes an equality. (Analogously, we have Cj

n ∩ H =ψ
(
D̃(j)

n
)
, j ∈ T,

in distribution, where D̃(j)
n := [0, 1]u \ K̃(j)

n is the random set which equals D(j)
n := [0, 1]u \ K(j)

n

with probability p and [0, 1]u with probability 1 − p.)
Now we are in a position to apply Lemma 7.2. For each realization of the K(j), j ∈ T, the sets

K(j)
n are collections of (u-dimensional) level-n cubes, as required. Fixing some index j′ ∈ T, we

denote by Z′
n the number of basic cubes of level n contained in K(j′) and infer that

Cvar
k

(⋂
j∈T

K(j)
n

)
≤ cu,kZ′

nrkn,

where cu,k is a universal constant independent of the realization, which means that the above
estimate holds almost surely. Observe that the random variables Z′

n, n ∈N, form a Galton–
Watson process with offspring distribution Bin(Mu, p). It is well known that EZ′

n = (Mup)n.
Setting c := r−kcu,k, we conclude that

ECvar
k

(⋂
j∈T

Fj
n

)
≤ r−k

ECvar
k

(⋂
j∈T

K(j)
n

)
≤ cM(u−k)npn,

which implies (recall that MD = Mdp)

∞∑
n=1

r(D−k)n
ECvar

k

(⋂
j∈T

Fj
n

)
≤ c

∞∑
n=1

r(d−u)n = c

1 − rd−u
<∞,

since u ≤ d − 1. This proves the first assertion in Proposition 5.1 and completes the proof of
this statement.

Now let us look at the first assertion of Proposition 6.1. Fix k ∈ {0, . . . , d − 1}. An argument
analogous to the one above now applied to the intersections

⋂
j∈T Cj

n yields

Cvar
k

(⋂
j∈T

Cj
n

)
= r−kCvar

k

(⋂
j∈T

D̃(j)
n

)
≤ cMunrkn,

where c is as above and Mun is an upper bound for the number of basic cubes of level n

in the set D̃(j′)
n = [0, 1]u \ K̃(j′)

n (for some fixed index j′ ∈ T), even in the case when this set
equals [0, 1]u. This estimate is not as strong as the one in the previous case. Nevertheless,
taking expectations, multiplying by r(D−k)n, and summing over n as above yields the desired
conclusion, the finiteness of the expression

∞∑
n=1

rn(D−k)
ECvar

k

(⋂
j∈T

Cj
n

)
,

for all p ∈ (rd−u, 1]. This proves the first assertion in Proposition 6.1 for any index set T such
that u( = u(T)) ≤ k, for the full range of p for which we claimed it (and, in the case of certain
T, for still more values of p). For T such that u> k, however, some p are missing (namely
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those in the interval (rd−k, rd−u]). But in this case, a better estimate can be obtained by taking
Remark 7.1 into account. It allows us to replace Mun in the above estimate by the number Yn

′

of level-n cubes in D̃(j′)
n that have a nonempty intersection with ∂

(⋂
j∈T D̃(j)

n
)
. For any cube Q

counted in Y ′
n there is an index j ∈ T such that C ∩ ∂D̃(j)

n �= ∅. This in turn means either that one
of the neighboring cubes of Q (i.e., one with nonempty intersection with Q) is contained in
K(j)

n , or that Q ∩ ∂[0, 1]u �= ∅. Hence the number Y ′
n can be bounded from above by the number

of neighbors of the cubes in the sets K(j)
n , j ∈ T, plus the number of cubes intersecting ∂[0, 1]u.

In fact, since the kth curvature measure of the cube [0, 1]u is concentrated on its k-faces (recall
k< u), among the cubes Q intersecting ∂[0, 1]u that are not already counted because of their
intersection with some cube in some K(j)

n , only those need to be counted which intersect a
k-face of ∂[0, 1]u. Note that there are at most Mkn such cubes for each k-face. Summarizing
the argument, we obtain

Cvar
k

(⋂
j∈T

Cj
n

)
= r−kCvar

k

(⋂
j∈T

D̃(j)
n

)
≤ crkn

(∑
j∈T

(3u − 1)|K(j)
n | + fkMkn

)
,

where fk is the number of k-faces of [0, 1]u and 3u − 1 is the number of neighboring cubes
of the same size of a given u-dimensional cube. Taking expectations and noting that E|K(j)

n | =
(Mup)n for each j ∈ T, we get

r(D−k)n
ECvar

k

(⋂
j∈T

Cj
n

)
≤ c1rDn(Mup)n + c2rDnMkn = c1r(d−u)n + c2r(D−k)n,

where c1 = c · |T|(3u − 1) and c2 = c · fk. Summing over n, we conclude that

∞∑
n=1

r(D−k)n
ECvar

k

(⋂
j∈T

Cj
n

)
≤ c1

∞∑
n=1

r(d−u)n + c2

∞∑
n=1

r(D−k)n,

where the first sum on the right converges (for all p ∈ (0, 1]) since u ≤ d − 1, and the second
sum converges for all p such that D> k (i.e. for p ∈ (rd−k, 1]). This shows the convergence of
the sum on the left for any p ∈ (rd−k, 1] for the case k< u and completes the proof of the first
assertion of Proposition 6.1. �
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