Probability in the Engineering and Informational Science§ 2002 499-511 Printed in the USA.
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We study arM/M/co queuing system in which each arrival has a random urgency
and is admitted if and only if it is more urgent than all individuals currently receiv-
ing service The system represent®r example a less-than-magnanimous emer-
gency facility For this systerand also for a closely related “Pargtye study the
busy period distribution ando a lesser extenbccupancyBoth exact and heavy
traffic results are given

1. INTRODUCTION

A favorite interpretation of the venerablM/M/co queue is that it models an emer-
gency facility treating randomly arriving urgent casids case is turned awagach
receives immediate attentipand the length of stay is unaffected by facility conges-
tion. In seeking to reduce the strain on such a facilithile retaining the accolade
“emergency it is arguable that the last two of these features are inviotdbkeher-
more the system should never be declared full—potentigkyvice must be unlim-
ited. The only recoursghen is to alter the definition of “urgetitOne approach is to
turn away all but very urgent caséshis thins the arrival stream and creates a new
M/M/o queueAn alternative and more interesting scheipessessing some polit-
ical finesseis to admit only the cases that are more urgent than all those presently re-
ceiving attentionlt is this parsimonious scheme that is our object of study

Specifically we consider a Minimal Admission Emergency FacilitAEF)
with the following characteristics

Al. Initially, the system is empfycases arrive in a rate Poisson stream
A2. Each case has a real-valued urgency with continuous distribltion
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A3. Acase is admitted to the facility if its urgency exceeds those of every case
currently in serviceotherwiseit is lost forever

A4. The sojourn time for each admitted case is unit exponential

A5. The arrival streamthe case urgenciesnd the sojourns are mutually
independent

Little is foregone through takingy to be the uniform distribution of0,1), and this
we da (Being a rudimentary model for the notion of “transient recgrttee MAEF
has a number of other perspectiysse[4].)

We analyze the MAEF both for fixed and in heavy traffid A — o0). For the
latter; it is fruitful to introduce a second systemamed the Parodyhich emulates
the MAEF in a rather oblique wayn the Parody system the service facility has a
countable stack of slots—the top one labegdhe nextS,, and so onAt any given
time, a slot may be either vacant or occupied by a single admittedlcesg” denote
the first slot belows, that is occupiedThe rules for the Parody are as follows

B1. Initially, every slot is occupied

B2. Whenever the case in sifcompletes its servigéhere is an influx of new
cases into the systenimstantaneously filling all of the slots abo®&.

B3. The sojourn times for admitted cases are independent unit exponentials

In view of rule B2 rule B1 is tantamount to the system being initially emgpty
realization of the Parody is depicted in FigureThe bars indicate slot occupancy
and the arrows indicate sojourn completion timesSarA snapshot of the occu-
pancy pattern and the associated Soare shown at timé

As well as being a tool for studying the MAERe parameter-free Parody would
seem to be of intrinsic interedtierg we shall be content to examine developments

f—
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FiGure 1. Arealization of the Parody
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in slots S; throughS,, for fixed but arbitraryn, and this obviates an interactive
particle system construction

There are many questions of substance concerning the respective busy,periods
occupancy processasrgency profiles of occupantstreams of lost and departing
casesand so forthThis article is largely concerned with busy periods for the two
systems it is organized as followsOne probability distribution plays a distin-
guished role in the proceedingand we devote Section 2 to thihe main work
begins in Section 3 with a study of the busy period for the MABEction 4 is a
parallel for the rather more tractable Paro8gction 5 deals with asymptotics f@
generalization of the Parody with a largdinite number of slotsand Section 6
discusses the MAEF in heavy traffiwith progress being made by welding the two
systems togetheMuch information on occupancy is a consequence of the busy
period materiala few simple properties for the MAEF are recorded in Secti@nd
some more far-reaching ideas are indicated very briefly in Section 7

2. A DISTRIBUTION

It will be shown in Section 5 thahere is a probability distributiofi¥ on[0,c0) with
Laplace transform given by

59 = | e g =1- epi-Exs) s>0 ®
(0]
with E; being an exponential integtal
Ei(s) = f x“le7™>dx, s> 0.
S

By differentiating(1), it follows that % satisfies(uniquely the distributional
equation

N B 0, x €1[0,1)
X§{dxp = {(l —F(x—1)dx, x€E[10).

This, in turn, entails thag¥ is absolutely continuous with densityspecified by

[0 xe[0Y
A {fn(x), xe[nn+1),neEN,

wheref,(x) = x %, x € [1,2), and forn=2,3,...,

f.(x) = )—1({nfn1(n) —Jx_l fo_(u) du}, X€E[n,n+1).

f is continuous or1,00) and convex decreasing on bdth2] and[2,00). It has a
cusp at 2 andmore generallya discontinuity in its(n — 1)st derivative an for
n=23,....
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All moments of¥ exist and are given by

Hn (25) r=J[ x"§{dx} = e7qy, neN,
0,00)

wherey is Euler’s constant and eacf is rational in particulay q; = 1, g, = 2,
0z = 9/2, andq, = 34/3.

3. THE MAEF

The MAEF can be constructed formally as a right-continuous Markov jump process
& = (&: 0=t < o0) with state spacé1,[0,1], the set of point measures on the unit
interval equipped with the vague topologse€5, p. 124]). Eachu € M,[0,1] has
the representation= %, §,,, where 0= u; = --- = uy and|p| = p{[0,1]} < 0, 6,
being the Dirac measureaté, = pwill mean that there arjgl| cases present at time
t with urgencieay;. In harmony with characteristics A1-A®e stipulate that the
process has rate 1 transitions — p— 8, 1 =i = [y, and rateA du transitions
H— M+ 8y, u € [uyy,1]), with obvious conventions whejp| = 0. Furthermore
according to characteristic A%, is the zero measuyenless stated otherwisal-
ternatively we may construct the sojourns of admitted cases diretliving at¢ as
a byproduct

A basic self-similarity property of is that its restriction tgu,1] is simply a
rescaled version of with retarded arrival rata (1 — u).

LetT=inf{t = 0:|&| # O} be the time of the first admissipand denote the
MAEF busy periodby

0, =inf{t>T:|&|=0—T.

In this sectionwe are concerned with propertieséyf in particular we obtain in
Theorem ] exact expressions for its Laplace transfogig(A) = Ee ¥, s> 0.

LemMaA 1. The family of functionsgs > 0 defined by
gs(M) ={s+ AL —-ys(A}Y  A>0,
is interrelated according to the functional equation

gé = 70s0s+1, s> Oa (2)
where the prime denotes the derivative with respeat to

Proor: Fixy > 0. Consider the procegswith initial conditionéy = 6;—), and let

0 denote the associated busy peribdring the sojourn of the initial casa new case

is admitted at ratay. Suppose that such an admission does qatuimet; then by

the self-similarity of¢, the system first empties of cases having urgency in excess of
1 -y after a length of time equal in law tot+ 6,,. At this juncture the initial case
may or may not have departethese deliberations lead to a distributional equation
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fordB: Let X, andT; be exponential variables of rates 1 ahg respectivelyand let
61 = 6,y, assuming mutual independendéen

T 0+ 1K > T 06, X =T,

whereg’ £ g is independent oKy, T;, and#,. Conditioning onT, andé,, we may
take Laplace transforms apafter some routine calculatipobtain that

_ 1- )‘y(ll/s+1(/\y) - l;[/s(/\y)) -1 gs+l()\y)

Ee ¥ = = , s> 0. 3
S+ 1+ Ay~ dora(AY) 0. (1Y) )
Now, regardsas fixed and observe that, (s) = fol Ee ¥ dy. Thereforgintegration
of (3) gives
A
Os+1(X) 1
1-—— |dx= A (S)=s+ A — , A>0. 4
fo ( 0.(% ) i 0.0 )
The value of the integrand is confined [i@,1], and hence (4) entails thatgs is
continuous on0,00). This justifies differentiation of4), which leads tq2). u
THEOREM 1: For eachi > 0,
-1
Yn(s) = 1- %{(2 Rn(S)A“> - s}, s> 0, (5)
n=0
where the Rare rational functions defined recursively by
1 1 n
RO(S) = g’ Rn+1(s) = _m IgoRnfr(s)Rr(S_‘_]-)’ n=01,...,s>0,
(6)
so that
Ry(S) Ru(9) 2s+3
§)=—-——, S) = ,
' s(s+1)° 7 2s(s+1)2(s+2)
6s® + 34s? + 61s+ 35
Rs(s) = —

6s(s+1)3%(s+ 2)%(s+3)’
and, furthermore,
37

E0—1+1/\ 1A2+ A%+ 7
SRR 5 432 (7)

Proor: By definition of g,

() =1-A*{gs(V)}*—9s), sA>0.
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To develop the required expansion fgy; first apply Leibniz’s formula ta(2) to
obtain

n /n
génﬂ):_%(r)génwggpb n=01,.... 8)

Let Ry(s) := s71 = g4(0+) and usg8) to show thaR,(s) := g{”(0+)/n!, n € N is
well defined and satisfie). A straightforward induction argument usig@) veri-
fies that

lg{™(A)/nl] < s~(+ D) neEN,sA>0.
This bound controls the error term in the Taylor expansiogs@ind consequently

(n)
9s(A) = gs(A+H) = X % =D R(s)A, 0<A<ss>0. (9)

n=0 . n=0

Next, integrate(2) to produce

A
gS = S_l exp{_ f gs+1(x) dx}’ S’)\ > O? (10)
0

and use thigogether with analytic continuatioto extend the domain of validity in
(9): firstto 0< A < s+ 1, and thenby iteration to A > 0. Thus we have proved5).

Becausd, is stochastically dominated by the busy period ofthe\)/M(1)/co
gueue all moments existWe calculate

Ef, = lim s (1=y,(s) = lim A~*({sg()} * —1)

= )\1<exp{ fA 0:1(X) dx} - 1)

/\n+an(1
- A(‘”’{ETl)} —1)’

where the third equality us€%0) and monotone convergendehe final expression
yields the expansion i7). [ ]

It is natural to inquire what happens in heavy traffiowevey we have been
unable to tackle larga asymptotics directly using?). Instead an entirely fresh
route via the Parody system leads eventually to the following resutiutline proof
of which is given in Section .6

THEOREM 2: ASA — oo,

O,

d o
— S 3.
loglogA o
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That the limit law is supported by, o) is plausible roughly logA cases are admit-
ted up to time 1and#, must exceed the greatest of their sojoymakich is about
loglog A. There is also a glimmer of an explanation here for the diminishing lack of
smoothness of at successive positive integers

We now turn to occupancguccessive MAEF emptying times are regeneration
epochs for the procegsamong these times are the emptying instants foktfid /oo
gueue sharing the same arrival stream gpoakentia) sojourns It follows that &;
converges in distribution to a random element\df([0,1]), sayé.., which is a still
of the MAEF in equilibrium

A few properties of¢,, follow promptly from our knowledge o#,. Let the
maximal urgency be given by

ui =inf{lu=0:£&,.([u,1]) = 0}

Then using(7), we have
3 35
Pui=0=P(é,| =0 =1+ AE6,) t=1—2r+ Z/\Z— 7—2A3 +.o=1p(A),
A>0.

Thus by the self-similarity of, the distribution ofuZ, is given by
P(ui =u)=p(A(l-u), A>00=u=L1

Furthermorewhen the MAEF containm cases and the maximal urgencyighe
instantaneous admission rateiid — u) and the departure ratens Balancing these
rates and exploiting ergodicity yields the equilibrium mean occupancy

Elé,.| = AE(L—u) f (x)dx= A 1A2+1/\3 > A+
= — U = X X= _ = - - e
bor * o P 2 4 288 ’

A>0.

Finally, replacingh with A(1 — u) in the last expansion gives the equilibrium mean
urgency profileEé ([u,1]),0=u= 1
A word on deeper aspects of occupancy is given in Section 7

4. THE PARODY

In this sectionwe study the Parodygarrying out a program similar to thatin Sectian 3

Formalizing rules B1-B3wve define the occupancy pattern for the Parodyon
slots to be a continuous-time Markov chdin= (£;: 0 =t < o0) with state space
{0,13", wherez, = (£7,...,4™), the understanding being that

(i) _
t

1 ifslotS is occupied at time
0 otherwise
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{ has unit rate transitions as follows
(10,...,00 —» (1L1,...,2),
(170’-”70,1’ Xj+l’~--9xn) - (1’17”"17 Xj+l7-~'7 Xn)’ 2 SJ =n,

(Xgy..051, .., %) = (Xg5...,0,..., Xn),

where eaclx; € {0,1}. In line with rule B1, we assume thay=(1,...,1). The paths
of ¢ are taken to be right-continuous

For 1=j = n, let®; be the first time that an influx prescribed by rule B2 fills at
least each of the slof§, throughS:

@, =inf{t>0:{"=0,¢"=12=i=j}

in particular we shall regard®, as theParody busy period
The following result provides exact information én.

THEOREM 3: Let n= 1. The busy period for the Parody on n slots has Laplace
transform given by

n _pi("
P.(s):=FEe *n=1- H(s+j)( Y <J> s> 0. (11)
j=0
Furthermore,
E®, = []j H)J("). (12)
j=1

Proor: By considering the respective events tBat occupied and vacant at time
0;_1, we may observe tha& satisfies the distributional equation

0,2X, ©20_,+1(X>0,_,)0, 2=j=n, (13)

where®; 4 0; is an independent variable aigis the exponential sojourn time for

the initial individual in slotS, which is thereby independent ®f_,. Taking Laplace
transforms by first conditioning 0@;_, on the right yieldsafter a little rearrange-
ment the following recursion for:

1-%_4(s)

Vi(s)=(s+1)7 1-W¥(9)= T-w (511
-1

2=j=n,s>0.

Define¢;(s) = log(1 — ¥(s)) and take logarithms in the above recursion to obtain

Dn(S) = —Adp_1(S) = (—A)"Pu(9)
= (—A)"tlog(s(s+1)"1)=(—A)"logs, s> 0,
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whereA is the forward difference operator with respecstélence
1—- v, (s) = exp{(—A)"logs}, s> 0,

which is equivalent tq11). To prove(12), divide the last display by and let
s— 0+. u

The next result is the companion to Theorenit 8hows the likeness between
the Parody orfilog A] slots and the MAER~vhenA is large The proof is given at the
end of Section 5

THEOREM 4: AS n— oo,

O,
logn

d o
—> .

Results for the equilibrium slot occupancy pattern may be obtained in a manner
similar to those for MAEF occupancy in Section 3

5. PARODY ASYMPTOTICS

Here we verify Theorem 4 and prepare the ground for proving Theordnr&t, we
introduce a Modified Parody system by replacing rule B2 with the following

B2'. Atthe epoch®y, R,,... of an independent renewal process with associ-
ated distributiorf, there is an influx of new casggrovidedS, is vacant
filling all slots aboveS*.

Rules B1 and B3 remain intadtiote that the developments in the Parody for slots
below§ constitute an instance of the Modified Parody wilhe law of®;.

Again, we shall deal with the topslots calling the Modified Parody occupancy
pattern? = (£;: 0=t < o), with state spacf0,1}", whereZ, = (Z,...,£") has an
analogous interpretation t&. On each interval0, Ry),[ Ry, Ry),..., the right-
continuous procesé evolves as a continuous-time Markov chain with unit rate
transitions of the form

(X1y.0sd, . %) = (Xg5.,0,.00, X0);
in addition at the epoctR, when and only whenZ)- = 0, there is a jump

o,...,0 > (1,...,1),
(o’“"ovlaijrl"--’xn)%(1"--’15Xj+15'--’xn)’ ZSJ = n,

as appropriatehere x; € {0,1}.
Forl=j=n,let

8, =inf{t>0:Z0=0,"=11=i=j},
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with ®, = 0,(F) being theModified Parody busy perio@lthough “cycle” would be
more accurate nowAs a final twist we allowF to depend om.

The following complement to Theorem 4 shows that the asymptotic busy period
length is robust in the face of the new influx rule

THEOREM 5: Let F,, n € N, be probability distributions o140, c0) for which

UZ(Fn)

F)<o and ————— —0; 14
He(Fn) by (F,)logn a4
then,
On(Fn) 4
X 1
logn -3 (15)

Before proceeding with the praaofe need a little renewal theoiyet F andF,,
n € N, be probability distributions 01(0,c0). The harmonic renewal measure on
(0,00) allied toF is given byvg = X;—, j ~*F*), whereF * is thej-fold convolution of
F (seee.g., [2]). Clearly,

Pe(s) = —log(1—F(s)), s>0.
Define further a measurng, on (0,00) by
voldut = (1— e Y)vg {dulogn}, n e N.
LeEmMA 2: Let R, n € N, satisfy condition (14). Then,
voldup > ut(1—eY)du (16)
in the sense of weak convergence on bounded interva;oj.

Proor: Takes > 0. Employing the inequalityF (s) — 1 + spy(F)| = 2s?u,(F) and
condition(14), we obtain for largen,

- Ifn( s ) _ HFys O<uz(Fn)s >~ Ma(Fo)s

logn logn log?n logn °

Hence

9 =5 5g5) =g
on(S) = 7, logn)  "*\logn

| 1-F,((s+1)/logn) oal S
—og{ 1- F.(s/logn) }—>og< s )
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The convergence claimed {&6) then follows from the continuity theorem for La-
place transforms of measuresee[3, p. 433]) and the formula

* s+1
f e l(l-eYdu= Iog(—). u
0 s

PrOOF OF THEOREM 5: Letting @, 4 R1, we have the distributional equation

8 26,_,+1X>0,_)0, 1=j=n,
with the same conventions as(ib3). Mimicking the proof of Theorem,3ve obtain
Ty (s) := Ee *n = 1 — exp{~dn(9)},

where

[ee]

Bn(s) = (=A)"g (s) = J e sU(1—eY)"ve {du},

0

the integral arising from the linearity oA and the formula(—A)"e 3" =
efsu(l _ efu)n‘
Thus fort > 0 andK > 1,

q§n<$) = fow e X1-—n)"(1—e ) 1y, {dx} =JOK +f:o =1+ 1.

7)

The integrand if17) is bounded and sty Lemma 2 above and Theorenb®f[1],
we havel; — flK e "x "1 dx Moreover using the convergence 6f and Lemma 2
again we havefor largen,

oo oo K [e's)
A-eYHl,= f e %y, {dx} =f —f - f e X(1—e)x tdx
K 0 0 K

Becaus is arbitrary we conclude fron{17) that¢é,(t/logn) — [;” e >x 1 dx=
Ei(t). Therefore

@<L> —1—exp{—E,(t)}, t>0.

logn

The continuity theorem for Laplace transforms justifies the opening claim of Sec-
tion 2 regarding the existence gf and then(15). u

ProOF oF THEOREM 4: Slots S, throughS, of the (standarg Parody behave like
slots S, throughS,_; of a Modified Parody systepwith F the unit exponential
distribution Thus Theorem 4 is an immediate consequence of Theorem 5 B
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6. MAEF ASYMPTOTICS

This section indicates how Theorem 2 may be established by linking the MAEF to a
certain Modified Parody

For each\ > e®, let MAEF™ be an MAEF with arrival rate.. Consider ad-
missions to MAEFY that have urgency exceeding-le,, where 0< €, < 1. The
successive epochs at which this system becomes empty of all such extreme cases
form a renewal process with associated distributBgnsay Next, for eachA > 1,
create a Modified Parody process MPas follows Take a Parody process on
slotsS; throughS;eq,1; remove the toglog Ae, | slots and let the aforementioned
renewal epochs be the case influx times for the remaining stecker rule B2
Finally, let 7, be the busy period for M® and Iet7-A be the first emptying time of
MAEFW: thus 7, = ®ﬂogﬂ flogac,1(G) andr, = d v, +6,, whereY, is an indepen-
dent ratex exponential variable

Theorem 2 is clearly equivalent to

Tr

D 4.
loglogA

(18)

&

To prove(18), our strategy is to show that Theorem 5 can be applied to give
'T'/\ d

— S 19

loglogA 8 (19)

and that the processes MAEFand MP? can be coupled to admii8) as a con-
sequence of19). Herg €, — 0 must be chosen with carthere is a tension between
the demands aof19) and the coupling

We now summarize the details

Proor oF THEOREM 2: The main task is to obtain the following lempihe proof of

which is too lengthy to be included heri is contained in[4]. The coupling is

achieved essentially by metamorphosing MAERwith ¢/ taken propitiously to be
unit exponentiglinto MP™W via immaterial adjustments to case sojourns

LEmMA 3: Let K> 0 and take
€, = A Lexp{(loglogA)3}.
Then, the following conditions hold:

(a) The laws F:= Ggn, n € N, satisfy (14).
(b) The pairsMAEF™ andMP™, A > e®, can be coupled in such a way that

lim P[7,1(r, = Kloglog\) = 7,1(7, = Klog log )] = 1.
A—>

This grantedletx > 1 and choos& > x. Suppressing dependenceirmenote
by A the event in the probability iib) of Lemma 3 and letB be the event that
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7,/log logA = x, with B being defined similarly but with¥, in place ofr,. Since
BN A=BnN A we have

P(B)—P(BNA) =P(BNA =PBNA=PB)—PBNA). (20)

However by Theorem 5 and conditioi@) of Lemma 3lim,_,., P(B) = ¥(x), and by
condition(b) of Lemma 3lim,_,.,P(A) = 0. Consequentlyletting A — oo in (20),
we obtain lim_,..P(B) = §(x). Thus (18) is verified and with it Theorem 2 H

Remark: We claim thafE®,, ~ e logn is a matter of direct calculation usir{@2)
and thatwith appreciably more efforpbne can show

E6, ~ e” log logA. (22)

We leave &idy verification of(21) as an unsolved problem u

7. CLOSING COMMENTS

Many aspects of the two systems remain to be examire@dexamplewe have not
obtained the equilibrium distribution of total occupancy for either systeéaver-
thelessthe busy period propositions do lay a foundation for a more detailed descrip-
tion of occupancyin fact, it is possible to obtain space-time scaling-limit theorems
for the occupancy profile of both the MAEF and the Paroaysynopsis of some
results in this direction is given i#].
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