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Abstract Let L be a one-to-one operator of type ω in L2(Rn), with ω ∈ [0, π/2), which has a bounded
holomorphic functional calculus and satisfies the Davies–Gaffney estimates. Let p(·) : R

n → (0, 1] be a
variable exponent function satisfying the globally log-Hölder continuous condition. In this article, the

authors introduce the variable Hardy space H
p(·)
L (Rn) associated with L. By means of variable tent

spaces, the authors establish the molecular characterization of H
p(·)
L (Rn). Then the authors show that

the dual space of H
p(·)
L (Rn) is the bounded mean oscillation (BMO)-type space BMOp(·), L∗ (Rn), where

L∗ denotes the adjoint operator of L. In particular, when L is the second-order divergence form elliptic
operator with complex bounded measurable coefficients, the authors obtain the non-tangential maximal

function characterization of H
p(·)
L (Rn) and show that the fractional integral L−α for α ∈ (0, (1/2)] is

bounded from H
p(·)
L (Rn) to H

q(·)
L (Rn) with (1/p(·)) − (1/q(·)) = 2α/n, and the Riesz transform ∇L−1/2

is bounded from H
p(·)
L (Rn) to the variable Hardy space Hp(·)(Rn).

Keywords: second-order divergence form elliptic operator; Davies–Gaffney estimate; variable Hardy
space; square function; maximal function; molecule; Riesz transform
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1. Introduction

The variable Lebesgue space Lp(·)(Rn) is a generalization of classical Lebesgue spaces, via
replacing the constant exponent p by a variable exponent function p(·) : R

n → (0, ∞),
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which consists of all measurable functions f such that, for some λ ∈ (0, ∞),

∫
Rn

[ |f(x)|
λ

]p(x)

dx <∞. (1.1)

The study of variable Lebesgue spaces originated from Orlicz [46] in 1931, which were
further developed by Nakano [44,45]. The next major step in the investigation of variable
function spaces was made in the article by Kováčik and Rákosńık [40] in 1991. Since
then, the interest in variable function spaces has increased steadily. Nowadays these
variable function spaces have been widely used in various analysis branches, for example,
in harmonic analysis [19,20,24,25], in fluid dynamics [1,48], in image processing [16]
and in partial differential equations and variational calculus [2,31,49].

Recently, as a generalization of classical Hardy spaces, Nakai and Sawano [43] intro-
duced variable Hardy spaces Hp(·)(Rn), established their atomic characterizations and
investigated their dual spaces. Independently, Cruz-Uribe and Wang [22] also studied
the variable Hardy spaces Hp(·)(Rn) with p(·) satisfying some conditions slightly weaker
than those used in [43]. As a sequel of [43], Sawano [50] sharpened the conclusion of
the atomic characterization of Hp(·)(Rn) in [43], which was used, in [50], to establish
the boundedness in Hp(·)(Rn) of the fractional integral operator and the commutators
generated by singular integral operators and bounded mean oscillation (BMO) functions.
After that, Yang et al. [58,61] established equivalent characterizations of variable Hardy
spaces via Riesz transforms and intrinsic square functions.

Conversely, in recent years, a lot of attention has been paid to the study of function
spaces, especially Hardy spaces and BMO spaces, associated with various operators; see,
for example, [6,9,11,12,26–28,34,35,37,59]. Here, let us give a brief overview of this
research direction. First, Auscher et al. [6], and then Duong and Yan [27,28], intro-
duced Hardy and BMO spaces associated with an operator L whose heat kernel has a
pointwise Gaussian upper bound. Later, Hardy spaces associated with operators that sat-
isfy the weaker conditions, the so-called Davies–Gaffney-type estimates, were treated in
[9,32,34,35]. More precisely, Auscher et al. [9] and Hofmann et al. [34,35] treated Hardy
spaces associated, respectively, with the Hodge Laplacian on a Riemannian manifold
equipped with a doubling measure, or with a second-order divergence form elliptic opera-
tor on R

n with complex coefficients, in which settings pointwise heat kernel bounds may
fail. Hofmann et al. [32] studied Hardy spaces associated with non-negative self-adjoint
operators satisfying the Davies–Gaffney estimates in the general setting of a metric space
with a doubling measure. Then the weighted Hardy spaces associated with operators were
also considered in [13,51]. Recently, by introducing a notion of reinforced off-diagonal
estimates (see Remark 2.4(ii)), Bui et al. [12] studied the weighted Hardy spaces asso-
ciated with non-negative self-adjoint operators satisfying such estimates, which, in some
sense, improve those results of [13,51] by extending the range of the considered weights.
To study the Hardy spaces associated with differential operators on more general under-
lying spaces (for example, the Laplace–Beltrami operator on any Riemannian manifold
with a doubling measure), Bui et al. [11] introduced Musielak–Orlicz–Hardy spaces asso-
ciated with operators satisfying reinforced off-diagonal estimates on balls on a metric
space with a doubling measure. The notion of reinforced off-diagonal estimates on balls

https://doi.org/10.1017/S0013091517000414 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091517000414


Variable Hardy spaces and Davies–Gaffney estimates 761

(see Remark 2.4(iii)) was first introduced in [11] by combining the ideas of the reinforced
off-diagonal estimates from [12] and the off-diagonal estimates on balls from [7].

Very recently, Yang and Zhuo [57] introduced variable Hardy spaces associated with
operators L on R

n, denoted by H
p(·)
L (Rn), where p(·) : R

n → (0, 1] is a variable expo-
nent function satisfying the globally log-Hölder continuous condition, and L is a linear
operator on L2(Rn) that generates an analytic semigroup {e−tL}t≥0 with kernels having
pointwise upper bounds. Moreover, in [57], the molecular characterization of Hp(·)

L (Rn)
was established, which was further applied to study the boundedness of the fractional
integral associated with L on Hp(·)

L (Rn), and the dual space of Hp(·)
L (Rn) was also inves-

tigated. Under an additional condition that L is non-negative self-adjoint, the atomic
and several maximal function characterizations of Hp(·)

L (Rn) were established in a recent
article [60].

Motivated by [32,34,35,57], in this article, we consider the variable Hardy spaces
H

p(·)
L (Rn) associated with a one-to-one operator L of type ω in L2(Rn), with ω ∈ [0, π/2),

which has a bounded holomorphic functional calculus and satisfies the Davies–Gaffney
estimates, namely, Assumptions 2.2 and 2.3 of this article. We point out that many
operators satisfy these assumptions (see Remark 2.6). Indeed, Assumption 2.3 (the
Davies–Gaffney estimates) is weaker than the reinforced off-diagonal estimates from [12]
and the reinforced off-diagonal estimates on balls from [11] (see Remark 2.4). Under
Assumptions 2.2 and 2.3, we introduce the variable Hardy spacesHp(·)

L (Rn) (see Definition
2.10). Then we establish their molecular characterizations via variable tent spaces. By
borrowing some ideas from [34,37], we further prove that the dual space of Hp(·)

L (Rn)
is the BMO-type space BMOp(·), L∗(Rn), where L∗ denotes the adjoint operator of L.
In particular, when L is the second-order divergence form elliptic operator with com-
plex bounded measurable coefficients, namely, L := −div(A∇) (see (2.5), below, for its
definition), we obtain the non-tangential maximal function characterization of Hp(·)

L (Rn)
and establish the boundedness of the associated fractional integral and Riesz transform
on Hp(·)

L (Rn).
Compared with the function spaces with constant exponents, a main difficulty in the

study of variable function spaces is that the quasi-norm ‖ · ‖Lp(·)(Rn) has no explicit
and direct expression. Indeed, ‖ · ‖Lp(·)(Rn) is just the Minkowski functional of a convex
modular ball {f ∈ Lp(·)(Rn) :

∫
Rn |f(x)|p(x) dx ≤ 1} (see (2.11), below), which makes

many estimates very complicated. To overcome this difficulty, in this article, we borrow
some ideas from Sawano [50], to be precise, slight variants of [50, Lemmas 4.1 and 5.2]
(which are restated here as Lemmas 3.8 and 5.7). The role of Lemma 3.8 is to reduce some
estimates in terms of Lp(·)(Rn) norms of some series of functions into some estimates in
terms of Lq(Rn) norms of some functions, while Lemma 5.7 establishes some connection
between ‖ · ‖Lp(·)(Rn) and ‖ · ‖Lq(·)(Rn) of infinite linear combinations of characteristic
functions; both lemmas play crucial roles in proving the main results of this article.
Conversely, observe that the heat semigroup of the operators considered in [57] has the
pointwise upper bounds, while the heat semigroup of the operators considered in this
article satisfies only some integral estimates; this difference leads to the proofs of main
results of this article becoming more difficult and hence needing some subtler and more
careful estimates, compared with those proofs of the corresponding results in [57].
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This article is organized as follows.
In § 2, we first describe Assumptions 2.2 and 2.3 imposed on the considered operator L

of this article. Then we recall some notation and notions on the variable Lebesgue space
Lp(·)(Rn) and give the definition of the Hardy space Hp(·)

L (Rn) in terms of the square
function of the heat semigroup generated by L.

In § 3, we establish the molecular characterization of Hp(·)
L (Rn) (see Theorem 3.14),

which is an immediate consequence of Propositions 3.10 and 3.12. In particular, Propo-
sition 3.10 shows that the molecular Hardy space is a subspace of Hp(·)

L (Rn), and in its
proof, to overcome the difficulty caused by the variable ‖ · ‖Lp(·)(Rn), we need to apply
Lemma 3.8, which is different from the proofs of corresponding results of Hp

L(Rn) estab-
lished in [11,34,35]. Proposition 3.12 shows thatHp(·)

L (Rn) is a subspace of the molecular
Hardy space and its proof depends on the atomic decomposition of the variable tent space
T p(·)(Rn) from [61] (which is restated here as Lemma 3.3) and on Lemma 3.11, which
shows that an atom of T p(·)(Rn) is a molecule of Hp(·)

L (Rn) under the projection operator
πM, L, with M ∈ N, defined in (3.23), below. To show Lemma 3.11, we need to make full
use of properties of the Davies–Gaffney estimates from Assumption 2.3, since the heat
semigroup {e−tL}t>0 considered in this article has no pointwise upper bounds, which is
essentially different from that of [57].

In § 4, by borrowing some ideas from [34,35,37], we introduce the BMO-type space
BMOM

p(·), L∗(Rn) with M ∈ N (see Definition 4.1) and establish the duality between

H
p(·)
L (Rn) and BMOM

p(·), L∗(Rn) (see Theorem 4.8). To prove Theorem 4.8, we need to
first give several properties related to BMOM

p(·), L∗(Rn) (see Proposition 4.3, Remark 4.6
and Lemmas 4.4, 4.5 and 4.7). The essential difficulty arising here is that the quasi-
norm ‖ · ‖Lp(·)(Rn), in general, has no property of the translation invariance; namely, for
any z ∈ R

n and ball B(x, r) ⊂ R
n with x ∈ R

n and r ∈ (0, ∞), ‖χB(x, r)‖Lp(·)(Rn) may
not be equal to ‖χB(x+z, r)‖Lp(·)(Rn). To overcome this difficulty, we make full use of a
slight variant of [61, Lemma 2.6] (see Lemma 3.9), which is different from the case that
p(·) ≡ constant ∈ (0, 1] as in [34,35].

In § 5, as an example of operators satisfying Assumptions 2.2 and 2.3, we consider the
second-order divergence form elliptic operator L := −div(A∇) with complex bounded
measurable coefficients. In § 5.1, by making full use of the divergence structure of
L, we obtain the non-tangential maximal function characterization of Hp(·)

L (Rn) (see
Theorem 5.3). The proof of Theorem 5.3 mainly depends on the extrapolation theorem for
Lp(·)(Rn) (see [21, Theorem 1.3] or Lemma 5.5), which reduces the proof of Theorem 5.3
to some inequality in terms of the weighted Lebesgue space with constant exponent
in [11]. In § 5.2, as an application of the molecular characterization of Hp(·)

L (Rn) in
Theorem 3.14, we show that the fractional integral L−α is bounded from H

p(·)
L (Rn)

to H
q(·)
L (Rn) for α ∈ (0, (1/2)] and (1/p(·)) − (1/q(·)) = 2α/n (see Theorem 5.8). The

proof of Theorem 5.8 strongly depends on a slight variant of [50, Lemma 5.2], namely,
Lemma 5.7. In § 5.3, by borrowing some ideas from [12,38,59], we prove that the Riesz
transform ∇L−1/2 is bounded from H

p(·)
L (Rn) to Hp(·)(Rn) (see Theorem 5.17) via the

atomic characterization of Hp(·)(Rn) (see [50, Theorem 1.1]).
We end this section by making some conventions on notation. Throughout this article,

we denote by C a positive constant that is independent of the main parameters but may
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vary from line to line. We also use C(α,β,...) to denote a positive constant depending on the
parameters α, β, . . . . The symbol f � g means that f ≤ Cg. If f � g and g � f , then we
write f ∼ g. For any measurable subset E of R

n, we denote by E� the set R
n\E, and by χE

the characteristic function of E. For any a ∈ R, the symbol �a� denotes the largest integer
m such that m ≤ a. Let N := {1, 2, . . .} and Z+ := N ∪ {0}. Let R

n+1
+ := R

n × (0,∞).
For any α ∈ (0, ∞) and x ∈ R

n, define

Γα(x) := {(y, t) ∈ R
n+1
+ : |y − x| < αt}. (1.2)

If α = 1, we simply write Γ(x) instead of Γα(x).
For any ball B := B(xB, rB) ⊂ R

n with xB ∈ R
n and rB ∈ (0, ∞), α ∈ (0,∞) and

j ∈ N, we let αB := B(xB, αrB),

U0(B) := B and Uj(B) := (2jB) \ (2j−1B). (1.3)

For any p ∈ [1, ∞], p′ denotes its conjugate number, namely, 1/p+ 1/p′ = 1.
For any r ∈ (0, ∞), denote by Lr

loc (Rn) the set of all locally r-integrable functions on
R

n and, for any measurable set E ⊂ R
n, let Lr(E) be the set of all measurable functions

f on E such that ‖f‖Lr(E) := [
∫

E
|f(x)|r dx]1/r <∞.

2. Preliminaries

In this section, we first describe some basic assumptions on the operator L studied
throughout this article. Then we recall some notation and notions on variable Lebesgue
spaces and introduce the variable Hardy spaces Hp(·)

L (Rn) associated with L.

2.1. Two assumptions on the operator L

Before giving the assumptions on the operator L studied in this article, we first recall
some knowledge about bounded holomorphic functional calculi introduced by McIntosh
[42] (see also [3]).

Let ω ∈ [0, π). The closed and open ω sectors, Sω and S0
ω, are defined, respectively, by

setting

Sω := {z ∈ C : | arg z| ≤ ω} ∪ {0} and S0
ω := {z ∈ C \ {0} : | arg z| < ω}.

A closed and densely defined operator T in L2(Rn) is said to be of type ω if

(i) the spectrum σ(T ) of T is contained in Sω.

(ii) for any θ ∈ (ω, π), there exists a positive constant C(θ) such that, for any z ∈ C \ Sθ,

|z|‖(zI − T )−1‖L(L2(Rn)) ≤ C(θ),

here and hereafter, L(L2(Rn)) denotes the set of all continuous linear operators from
L2(Rn) to itself, and for any S ∈ L(L2(Rn)), the operator norm of S is denoted by
‖S‖L(L2(Rn)).
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For any μ ∈ (0, π), define

H∞(S0
μ) := {f : S0

μ → C is holomorphic and ‖f‖L∞(S0
μ) <∞}

and

Ψ(S0
μ) :=

{
f ∈ H∞(S0

μ) : ∃α, C ∈ (0, ∞) such that |f(z)| ≤ C|z|α
1 + |z|2α

, ∀z ∈ S0
μ

}
.

For any ω ∈ [0, π), let T be a one-to-one operator of type ω in L2(Rn). For any ψ ∈
Ψ(S0

μ) with μ ∈ (ω, π), the operator ψ(T ) ∈ L(L2(Rn)) is defined by setting

ψ(T ) :=
∫

γ

ψ(ξ)(ξI − T )−1 dξ, (2.1)

where γ := {reiν : r ∈ (0, ∞)} ∪ {re−iν : r ∈ (0, ∞)}, ν ∈ (ω, μ), is a curve consisting
of two rays parameterized anti-clockwise. It is easy to see that the integral in (2.1) is
absolutely convergent in L2(Rn) and the definition of ψ(T ) is independent of the choice
of ν ∈ (ω, μ) (see [3, Lecture 2]). It is well known that the above holomorphic functional
calculus defined on Ψ(S0

μ) can be extended to H∞(S0
μ) by a limiting procedure (see [42]).

Let 0 ≤ ω < μ < π. Recall that the operator T is said to have a bounded holomorphic
functional calculus in L2(Rn) if there exists a positive constant C(ω,μ), depending on ω
and μ, such that, for any ψ ∈ H∞(S0

μ),

‖ψ(T )‖L(L2(Rn)) ≤ C(ω,μ)‖ψ‖L∞(S0
μ). (2.2)

By [3, Theorem F], we know that, if (2.2) holds true for some μ ∈ (ω, π), then it also
holds true for all μ ∈ (ω, π).

Remark 2.1. Let T be a one-to-one operator of type ω in L2(Rn) with ω ∈ [0, π/2).
Then it follows from [47, Theorem 1.45] that T generates a bounded holomorphic
semigroup {e−zT }z∈S0

π/2−ω
on the open sector S0

π/2−ω.

We now make the following two assumptions on the operator L, which are used
throughout the article.

Assumption 2.2. L is a one-to-one operator of type ω in L2(Rn), with ω ∈ [0, π/2),
and has a bounded holomorphic functional calculus.

Assumption 2.3. The semigroup {e−tL}t>0 generated by L satisfies the Davies–
Gaffney estimates; namely, there exist positive constants C and c such that, for any
closed subsets E and F of R

n and f ∈ L2(Rn) with supp f ⊂ E,

‖e−tL(f)‖L2(F ) ≤ Ce−c([ dist (E, F )]2/t)‖f‖L2(E). (2.3)

Here and hereafter, for any subsets E and F of R
n,

dist (E, F ) := inf{|x− y| : x ∈ E, y ∈ F}.
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Remark 2.4.

(i) The notion of the Davies–Gaffney estimates (or the so-called L2 off-diagonal esti-
mates) of the semigroup {e−tL}t>0 was first introduced by Gaffney [29] and Davies
[23], which serves as good substitutes of the Gaussian upper bound of the associated
heat kernel; see also [7] and related references therein.

(ii) Let L be a non-negative self-adjoint operator on L2(Rn) and {e−tL}t>0 be the
analytic semigroup generated by L. The notion of the reinforced off-diagonal esti-
mates introduced in [12] is that there exists a constant pL ∈ [1, 2) such that, for
all pL < p ≤ q < p′L, {e−tL}t>0 satisfies Lp − Lq off-diagonal estimates, denoted by
e−tL ∈ F(Lp − Lq); namely, there exist positive constants C and c such that, for all
t ∈ (0, ∞), any closed subsets E and F of R

n and f ∈ Lp(Rn) with supp f ⊂ E,∥∥e−tL(f)
∥∥

Lq(F )
≤ Ct−(n/2)((1/p)−(1/q))e−c[ dist (E, F )]2/t‖f‖Lp(E),

which is obviously stronger than Assumption 2.3 in this article.

(iii) Let (X , d) be a metric space with a doubling measure μ, and L be a one-to-one oper-
ator of type ω in L2(X ) with ω ∈ (0, π/2). The notion of the reinforced off-diagonal
estimates on balls introduced in [11] is that there exist constants pL ∈ [1, 2) and
qL ∈ (2, ∞] such that, for all pL < p ≤ q < qL, {e−tL}t>0 satisfies Lp − Lq off-
diagonal estimates on balls, denoted by e−tL ∈ O(Lp − Lq); namely, there exist
constants θ1, θ2 ∈ [0,∞) and C, c ∈ (0,∞) such that, for any t ∈ (0,∞), any ball
B := B(xB, rB) ⊂ X with xB ∈ X and rB ∈ (0,∞), and any locally p-integrable
function f on X ,{

1
μ(B)

∫
B

|e−tL
(
χBf

)
(x)|q dμ(x)

}1/q

≤ C

[
Υ

(
rB
t1/2

)]θ2
{

1
μ(B)

∫
B

|f(x)|p dμ(x)
}1/p

and, for any j ∈ N ∩ [3, ∞),{
1

μ(2jB)

∫
Uj(B)

|Tt

(
χBf

)
(x)|q dμ(x)

}1/q

≤ C2jθ1

[
Υ

(
2jrB
t1/2

)]θ2

e−c((2jrB)2/t)

{
1

μ(B)

∫
B

|f(x)|p dμ(x)
}1/p

and {
1

μ(B)

∫
B

|Tt(χUj(B)f)(x)|q dμ(x)
}1/q

≤ C2jθ1

[
Υ

(
2jrB
t1/2

)]θ2

e−c((2jrB)2/t)

{
1

μ(2jB)

∫
Uj(B)

|f(x)|p dμ(x)
}1/p

,
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where Uj(B) is as in (1.3) and, for all s ∈ (0,∞), Υ(s) := max
{
s, 1/s

}
. The notion

of off-diagonal estimates on balls was first introduced by Auscher and Martell [7]
in the setting of a metric space with a doubling measure, which was operational for
proving weighted estimates in [8]. From [7, Proposition 3.2], we deduce that, for
any 1 ≤ p ≤ q ≤ ∞, e−tL ∈ O(Lp − Lq) is equivalent to e−tL ∈ F(Lp − Lq) in the
setting of the classical Euclidean space. By this and (ii) of this remark, we know
that the reinforced off-diagonal estimates on balls introduced in [11] are stronger
than Assumption 2.3 of this article.

Remark 2.5. Let L be an operator satisfying Assumptions 2.2 and 2.3.

(i) By Remark 2.1, we know that the semigroup e−zL is holomorphic in S0
π/2−ω.

From this, Assumption 2.3 and an argument similar to that used in the proof of
[32, Proposition 3.1], we deduce that, for any k ∈ Z+, the family {(tL)ke−tL}t>0 of
operators satisfies the Davies–Gaffney estimates (2.3). In particular, for any k ∈ Z+

and t ∈ (0, ∞), the operator (tL)ke−tL is bounded on L2(Rn).

(ii) Let L∗ be the adjoint operator of L in L2(Rn). Then, by [39, Theorems 5.30 and
6.22 of Chapter 3], we know that L∗ is also a one-to-one operator of type ω in
L2(Rn). From [30, Lemma 2.6.2], it follows that, for any k ∈ Z+ and t ∈ (0, ∞),
[(tL)ke−tL]∗ = (tL∗)ke−tL∗

. By this, (i) of this remark and an argument of duality,
we find that, for any k ∈ Z+, the family {(tL∗)ke−tL∗}t>0 of operators also satisfies
(2.3).

(iii) By [33, Lemma 2.3], we know that there exist positive constants C and c such
that, for any t, s ∈ (0, ∞), any closed subsets E and F of R

n and f ∈ L2(Rn) with
supp f ⊂ E,

‖e−sLe−tL(f)‖L2(F ) ≤ Ce−c([ dist (E, F )]2/max{s, t})‖f‖L2(E). (2.4)

(iv) We point out that the assumption that L is one-to-one is necessary for the bounded
holomorphic functional calculus on L2(Rn) (see [3,42]). By [18, Theorem 2.3], we
further know that, if T is a one-to-one operator of type ω in L2(Rn), then T has
dense domain and dense range.

Remark 2.6. Examples of operators that satisfy Assumptions 2.2 and 2.3 include:

(i) the second-order divergence form elliptic operator with complex bounded coeffi-
cients as in [34,35]. Recall that a matrix A(x) := (Aij(x))n

i,j=1 of complex-valued
measurable functions on R

n is said to satisfy the elliptic condition if there exist
positive constants λ ≤ Λ such that, for almost every x ∈ R

n and all ξ, η ∈ C
n,

λ|ξ|2 ≤ �〈A(x)ξ, ξ〉 and |〈A(x)ξ, η〉| ≤ Λ|ξ||η|,

where 〈·, ·〉 denotes the inner product in C
n and �ξ denotes the real part of ξ. For

such a matrix A(x), the associated second-order divergence form elliptic operator
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1/q

1/p

Figure 1. (p, q)-figure.

L is defined by setting, for any f ∈ D(L),

Lf := −div(A∇f), (2.5)

which is interpreted in the weak sense via a sesquilinear form. Here and hereafter,
D(L) denotes the domain of L. It is well known that there exists a positive constant
ω ∈ [0, π/2) such that the operator L is one-to-one of type ω in L2(Rn) and L has a
bounded holomorphic functional calculus in L2(Rn) (see, for example, [4,10,35]).
Hence, L satisfies Assumption 2.2. Let k ∈ Z+. By [7, Proposition 5.7(a)] (see also
[4, Corollary 3.6]), we find that there exist positive constants p−(L) and p+(L) such
that, for all p−(L) < p ≤ q < p+(L), (tL)ke−tL ∈ F(Lp − Lq); namely, there exist
positive constants C and c such that, for all t ∈ (0, ∞), any closed subsets E, F of
R

n and f ∈ Lp(Rn) with supp f ⊂ E,

‖(tL)ke−tL(f)‖Lq(F ) ≤ Ct−(n/2)((1/p)−(1/q))e−c([ dist (E, F )]2/t)‖f‖Lp(E). (2.6)

Moreover, by [4, § 3.4], we know that

p−(L) ∈
[
1,

2n
n+ 2

)
for n ≥ 3; p−(L) = 1 for n ∈ {1, 2} (2.7)

and

p+(L) ∈
(

2n
n− 2

, ∞
]

for n ≥ 3; p+(L) = ∞ for n ∈ {1, 2}. (2.8)

This implies that L satisfies Assumption 2.3. Figure 1 illustrates the parameters
involved in the Lp − Lq off-diagonal estimates satisfied by (tL)ke−tL. The bottom-
right corner of the shaded triangle is (1/p−(L), 1/p+(L)), with p−(L) ∈ [1, 2) and
p+(L) ∈ (2, ∞], and, for every pair (1/p, 1/q) in the shaded region, (tL)ke−tL ∈
F(Lp − Lq).
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(ii) the one-to-one non-negative self-adjoint operator L having the Gaussian upper
bounds; namely, there exist positive constants C and c such that, for any t ∈ (0, ∞)
and x, y ∈ R

n,

|pt(x, y)| ≤ C

tn/2
exp

(
− c

|x− y|2
t

)
, (2.9)

where pt denotes the kernel of e−tL. Indeed, every non-negative self-adjoint operator
L is an operator of type 0 and has a bounded holomorphic functional calculus.
Thus, L satisfies Assumption 2.2. Moreover, by (2.9) and [7, Proposition 2.2], we
know that, for any 1 ≤ p ≤ q ≤ ∞, e−tL ∈ O(Lp − Lq). By the fact that e−tL ∈
O(Lp − Lq) is equivalent to e−tL ∈ F(Lp − Lq) (see [7, Proposition 3.2]), we know
that L satisfies Assumption 2.3.

(iii) the Schrödinger operator −Δ + V on R
n with the non-negative potential V ∈

L1
loc(R

n) and not identically zero (see, for example, [32,38,51,55] and related ref-
erences therein). Indeed, by [32, Chapter 8], we know that −Δ + V is a particular
case of (ii) of this remark.

2.2. Variable Hardy spaces H
p(·)
L (Rn)

In this subsection, we introduce the variable Hardy space Hp(·)
L (Rn). We begin with

recalling some notation and notions on variable Lebesgue spaces.
Let P(Rn) be the set of all the measurable functions p(·) : R

n → (0, ∞) satisfying

p− := ess inf
x∈Rn

p(x) > 0 and p+ := ess sup
x∈Rn

p(x) <∞. (2.10)

A function p(·) ∈ P(Rn) is called a variable exponent function on R
n. For any p(·) ∈

P(Rn) with p− ∈ (1, ∞), we define p′(·) ∈ P(Rn) by

1
p(x)

+
1

p′(x)
= 1 for all x ∈ R

n.

The function p′ is called the dual variable exponent of p.
For any p(·) ∈ P(Rn), the variable Lebesgue space Lp(·)(Rn) is defined to be the set of

all measurable functions f satisfying (1.1), equipped with the Luxemburg (also known as
the Luxemburg–Nakano) (quasi-)norm

‖f‖Lp(·)(Rn) := inf
{
λ ∈ (0, ∞) :

∫
Rn

[ |f(x)|
λ

]p(x)

dx ≤ 1
}
. (2.11)

For more properties of the variable Lebesgue spaces, we refer the reader to [20,25].

Remark 2.7. Let p(·) ∈ P(Rn).

(i) For any λ ∈ C and f ∈ Lp(·)(Rn), ‖λf‖Lp(·)(Rn) = |λ|‖f‖Lp(·)(Rn). In particular, if
p− ∈ [1, ∞), then Lp(·)(Rn) is a Banach space (see [25, Theorem 3.2.7]), and for
any f, g ∈ Lp(·)(Rn), ‖f + g‖Lp(·)(Rn) ≤ ‖f‖Lp(·)(Rn) + ‖g‖Lp(·)(Rn).
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(ii) For any non-trivial function f ∈ Lp(·)(Rn), it holds true that∫
Rn

[ |f(x)|
‖f‖Lp(·)(Rn)

]p(x)

dx = 1

(see, for example, [20, Proposition 2.21]).

(iii) By (2.11), it is easy to see that, for any s ∈ (0, ∞) and f ∈ Lp(·)(Rn),

‖|f |s‖Lp(·)(Rn) = ‖f‖s
Lsp(·)(Rn)

(see also [22, Lemma 2.3]).

Recall that a measurable function g ∈ P(Rn) is said to be globally log-Hölder continu-
ous, denoted by g ∈ C log(Rn), if there exist constants C1, C2 ∈ (0, ∞) and g∞ ∈ R such
that, for any x, y ∈ R

n,

|g(x) − g(y)| ≤ C1

log(e+ 1/|x− y|)
and

|g(x) − g∞| ≤ C2

log(e+ |x|) .

Also, recall that the Hardy–Littlewood maximal operator M is defined by setting, for
all f ∈ L1

loc (Rn) and x ∈ R
n,

M(f)(x) := sup
B�x

1
|B|

∫
B

|f(y)|dy, (2.12)

where the supremum is taken over all balls B of R
n containing x.

Remark 2.8. Let p(·) ∈ C log(Rn) and 1 < p− ≤ p+ <∞. Then there exists a positive
constant C such that, for any f ∈ Lp(·)(Rn), ‖M(f)‖Lp(·)(Rn) ≤ C‖f‖Lp(·)(Rn) (see, for
example, [25, Theorem 4.3.8]).

The following Fefferman–Stein vector-valued inequality of M on Lp(·)(Rn) was proved
in [21, Corollary 2.1].

Lemma 2.9 (Cruz-Uribe et al. [21]). Let q ∈ (1, ∞) and p(·) ∈ C log(Rn) with
p− ∈ (1, ∞). Then there exists a positive constant C such that, for any sequence {fj}j∈N

of measurable functions,∥∥∥∥{ ∞∑
j=1

[M(fj)]q
}1/q∥∥∥∥

Lp(·)(Rn)

≤ C

∥∥∥∥( ∞∑
j=1

|fj |q
)1/q∥∥∥∥

Lp(·)(Rn)

.

Assume that the operator L satisfies Assumptions 2.2 and 2.3. For any k ∈ N, the
square function SL, k associated with L is defined by setting, for any f ∈ L2(Rn) and
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x ∈ R
n,

SL, k(f)(x) :=
[ ∫∫

Γ(x)

∣∣(t2L)ke−t2L(f)(y)
∣∣2 dy dt
tn+1

]1/2

, (2.13)

where Γ(x) is as in (1.2) with α = 1. In particular, when k = 1, we write SL instead of
SL, k. We notice that, for any k ∈ N, SL, k is bounded on L2(Rn). Indeed, by the Fubini
theorem, we know that, for any f ∈ L2(Rn),∫

Rn

|SL, k(f)(x)|2 dx =
∫

Rn

∫ ∞

0

∫
|y−x|<t

|(t2L)ke−t2L(f)(y)|2 dy dt
tn+1

dx

=
∫

Rn

∫ ∞

0

|(t2L)ke−t2L(f)(y)|2 dt
t

dy � ‖f‖2
L2(Rn), (2.14)

where the last step in (2.14) is from [3, Theorem F] (see also [32, (4.1)]).
We now introduce the variable Hardy spaces associated with the operator L.

Definition 2.10. Let p(·) ∈ P(Rn) satisfy p+ ∈ (0, 1] and L be an operator satisfying
Assumptions 2.2 and 2.3. The variable Hardy space Hp(·)

L (Rn) is defined as the completion
of the space {

f ∈ L2(Rn) : ‖SL(f)‖Lp(·)(Rn) <∞}
with respect to the quasi-norm

‖f‖
H

p(·)
L (Rn)

:= ‖SL(f)‖Lp(·)(Rn) = inf
{
λ ∈ (0, ∞) :

∫
Rn

[
SL(f)(x)

λ

]p(x)

dx ≤ 1
}
.

Remark 2.11.

(i) In particular, when p(·) ≡ constant ∈ (0, 1], Hp(·)
L (Rn) was studied in [14,26] as

a special case. We refer the reader to [32,38,55] for more progresses on Hardy
spaces associated with operators satisfying the Davies–Gaffney estimates.

(ii) If L is a non-negative self-adjoint operator having the Gaussian upper bounds
as in Remark 2.6(ii), the variable Hardy space Hp(·)

L (Rn) was studied in [57,60].
Moreover, when L := −Δ is the Laplace operator on R

n, by [57, Theorem 5.3],
we conclude that, if p(·) ∈ C log(Rn) with n/(n+ 1) < p− ≤ p+ ≤ 1 and (2/p−) −
(1/p+) < (n+ 1)/n, then Hp(·)

L (Rn) and Hp(·)(Rn) coincide with equivalent quasi-
norms, where Hp(·)(Rn) stands for the variable Hardy space (see also Definition
5.10).

(iii) Let ϕ : R
n × [0,∞) → [0,∞) be a growth function as in [11], and L be an operator

satisfying the reinforced off-diagonal estimates on balls as in Remark 2.4(iii). Then
Bui et al. [11] introduced the Musielak–Orlicz–Hardy space Hϕ,L(Rn) associated
with the operator L via the Lusin area function. Recall that the Musielak–Orlicz
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space Lϕ(Rn) is defined to be the set of all measurable functions f on R
n such that

‖f‖Lϕ(Rn) := inf
{
λ ∈ (0,∞) :

∫
Rn

ϕ(x, |f(x)|/λ) dx ≤ 1
}
<∞.

Observe that, if

ϕ(x, t) := tp(x) for all x ∈ R
n and t ∈ [0,∞), (2.15)

then Lϕ(Rn) = Lp(·)(Rn). However, a general Musielak–Orlicz function ϕ satisfying
all the assumptions in [11] may not have the form as in (2.15) (see [41]). Conversely,
it was proved in [56, Remark 2.23(iii)] that there exists a variable exponent function
p(·) ∈ C log(Rn), but tp(·) is not a uniformly Muckenhoupt weight which was required
in [11]. Thus, Musielak–Orlicz–Hardy spaces associated with operators in [11] and
variable Hardy spaces associated with operators in this article do not cover each
other.

3. Molecular characterization of H
p(·)
L (Rn)

In this section, we first recall some properties of variable tent spaces from [57,61]. Then
we establish the molecular characterization of Hp(·)

L (Rn).

3.1. Variable tent spaces

For any measurable function f on R
n+1
+ and x ∈ R

n, define

A(f)(x) :=
[ ∫∫

Γ(x)

|f(y, t)|2 dy dt
tn+1

]1/2

,

where Γ(x) is as in (1.2) with α = 1. For any q ∈ (0, ∞), the tent space T q(Rn+1
+ ) is defined

to be the space of all measurable functions f such that ‖f‖T q(Rn+1
+ ) := ‖A(f)‖Lq(Rn) <∞,

which was first introduced by Coifman et al. in [17].
The following lemma is just [17, Theorem 2].

Lemma 3.1 (Coifman et al. [17]). Let p ∈ (1, ∞). Then, for any f ∈ T p(Rn+1
+ ) and

g ∈ T p′
(Rn+1

+ ), the pairing

〈f, g〉 :=
∫∫

R
n+1
+

f(x, t)g(x, t)
dxdt
t

realizes T p′
(Rn+1

+ ) as the dual of T p(Rn+1
+ ), up to equivalent norms, where 1/p+ 1/p′ = 1.

Definition 3.2. Let p(·) ∈ P(Rn). The variable tent space T p(·)(Rn+1
+ ) is defined to

be the space of all measurable functions f such that

‖f‖T p(·)(Rn+1
+ ) := ‖A(f)‖Lp(·)(Rn) <∞.
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For any open set O ⊂ R
n, the tent over O is defined by setting

Ô :=
{
(y, t) ∈ R

n+1
+ : dist

(
y, O�) ≥ t

}
.

Let p(·) ∈ P(Rn). Recall that a measurable function a on R
n+1
+ is called a (p(·), ∞)-

atom if there exists a ball B ⊂ R
n such that

(i) supp a ⊂ B̂;

(ii) for all q ∈ (1, ∞), ‖a‖T q(Rn+1
+ ) ≤ |B|1/q‖χB‖−1

Lp(·)(Rn)
.

We point out that the (p(·), ∞)-atom was first introduced in [61]. For any p(·) ∈ P(Rn)
with 0 < p− ≤ p+ ≤ 1, any sequences {λj}j∈N ⊂ C and {Bj}j∈N of balls in R

n, let

A({λj}j∈N, {Bj}j∈N) :=
∥∥∥∥{∑

j∈N

[ |λj |χBj

‖χBj
‖Lp(·)(Rn)

]p−}1/p−∥∥∥∥
Lp(·)(Rn)

.

The following lemma establishes the atomic decomposition of T p(·)(Rn), which is a slight
variant of [61, Theorem 2.16] (see also [57, Lemma 3.3]).

Lemma 3.3. Let p(·) ∈ C log(Rn) with p+ ∈ (0, 1]. Then, for any f ∈ T p(·)(Rn), there
exist {λj}j∈N ⊂ C and a family {aj}j∈N of (p(·), ∞)-atoms such that, for almost every
(x, t) ∈ R

n+1
+ ,

f(x, t) =
∑
j∈N

λjaj(x, t) (3.1)

and

A({λj}j∈N, {Bj}j∈N) ≤ C‖f‖T p(·)(Rn+1
+ ),

where, for any j ∈ N, Bj is the ball associated with aj and C a positive constant
independent of f .

The proof of Lemma 3.3 is a slight modification of the proof of [61, Theorem 2.16] via
replacing the cubes therein by balls of R

n, the details being omitted.

Remark 3.4.

(i) Let p(·) ∈ C log(Rn) with p+ ∈ (0, 1] and q ∈ (0, ∞). By [57, Corollary 3.4 and
Remark 3.6], we know that, if f ∈ T p(·)(Rn+1

+ ) ∩ T q(Rn+1
+ ), then (3.1) holds true

in both T p(·)(Rn+1
+ ) and T q(Rn+1

+ ).

(ii) Let p(·) ∈ C log(Rn) with p+ ∈ (0, 1]. Then, by [43, Remark 4.4], we know that, for
any {λj}j∈N ⊂ C and {Bj}j∈N of balls in R

n,
∑

j∈N
|λj | ≤ A({λj}j∈N, {Bj}j∈N).
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3.2. Molecular characterization of H
p(·)
L (Rn)

In this subsection, we establish the molecular characterization of Hp(·)
L (Rn). We begin

with introducing some notions.

Definition 3.5. Let L satisfy Assumptions 2.2 and 2.3 and p(·) ∈ P(Rn) with p+ ∈
(0, 1]. Assume M ∈ N and ε ∈ (0, ∞). A function m ∈ L2(Rn) is called a (p(·), M, ε)L-
molecule if m ∈ R(LM ) (the range of LM ) and there exists a ball B := B(xB, rB) ⊂ R

n

with xB ∈ R
n and rB ∈ (0, ∞) such that, for any k ∈ {0, . . . , M} and j ∈ Z+,

‖(r−2
B L−1)k(m)‖L2(Uj(B)) ≤ 2−jε|2jB|1/2‖χB‖−1

Lp(·)(Rn)
,

where, for any j ∈ Z+, Uj(B) is as in (1.3).

Remark 3.6. Let m be a (p(·), M, ε)L-molecule as in Definition 3.5 associated with
the ball B ⊂ R

n. If ε ∈ (n
2 ,∞), then it is easy to see that, for any k ∈ {0, . . . ,M},

‖(r−2
B L−1)k(m)‖L2(Rn) ≤ C|B|1/2‖χB‖−1

Lp(·)(Rn)

with C being a positive constant independent of m, k and B.

Definition 3.7. Let L satisfy Assumptions 2.2 and 2.3 and p(·) ∈ P(Rn) with
p+ ∈ (0, 1]. Assume M ∈ N and ε ∈ (0, ∞). For a measurable function f on R

n, f =∑∞
j=1 λjmj is called a molecular (p(·), M, ε)-representation of f if {mj}j∈N is a family of

(p(·), M, ε)L-molecules, the summation converges in L2(Rn) and {λj}j∈N ⊂ C satisfies
that A({λj}j∈N, {Bj}j∈N) <∞, where, for any j ∈ N, Bj is the ball associated with mj .
Let

H
p(·), ε
L, M (Rn) := {f : f has a molecular (p(·), M, ε)-representation}.

Then the variable molecular Hardy space H
p(·), ε
L, M (Rn) is defined as the completion of

H
p(·), ε
L, M (Rn) with respect to the quasi-norm

‖f‖
H

p(·), ε
L, M (Rn)

:= inf

{
A({λj}j∈N, {Bj}j∈N

)
:

f =
∞∑

j=1

λjmj is a molecular (p(·), M, ε)-representation

}
,

where the infimum is taken over all the molecular (p(·), M, ε)-representations of f as
above.

To establish the molecular characterization of Hp(·)
L (Rn), we need the following two

technical lemmas. Lemma 3.8 is a slight variant of [50, Lemma 4.1] with cubes therein
replaced by balls here.
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Lemma 3.8. Let p(·) ∈ C log(Rn), p := min{p−, 1} and q ∈ [1, ∞). Then there exists a
positive constant C such that, for any sequence {Bj}j∈N of balls in R

n, {λj}j∈N ⊂ C and
functions {aj}j∈N satisfying that, for any j ∈ N, supp aj ⊂ Bj and ‖aj‖Lq(Rn) ≤ |Bj |1/q,∥∥∥∥[ ∞∑

j=1

|λjaj |p
]1/p∥∥∥∥

Lp(·)(Rn)

≤ C

∥∥∥∥[ ∞∑
j=1

|λjχBj
|p

]1/p∥∥∥∥
Lp(·)(Rn)

. (3.2)

Proof. For any sequence {Bj}j∈N of balls in R
n, we can find a sequence {Qj}j∈N of

cubes in R
n such that, for any j ∈ N,

Bj ⊂ Qj ⊂ √
nBj . (3.3)

It is easy to see that, for any x ∈ √
nBj , M(χBj

)(x) ≥ (|Bj |/|
√
nBj |) = n−(n/2). Hence,

for any j ∈ N and x ∈ R
n,

χQj
(x) ≤ χ√

nBj
(x) � M(χBj

)(x). (3.4)

By [50, Lemma 4.1], we know that (3.2) holds true with Bj replaced by Qj . From this,
(3.3), (3.4), Remark 2.7(iii) and Lemma 2.9, we deduce that∥∥∥∥[ ∞∑

j=1

|λjaj |p
]1/p∥∥∥∥

Lp(·)(Rn)

�
∥∥∥∥[ ∞∑

j=1

|λjχQj
|p

]1/p∥∥∥∥
Lp(·)(Rn)

�
∥∥∥∥{ ∞∑

j=1

|λj |p[M(χBj
)]2

}1/2∥∥∥∥2/p

L2p(·)/p(Rn)

�
∥∥∥∥{ ∞∑

j=1

|λj |pχBj

}1/2∥∥∥∥2/p

L2p(·)/p(Rn)

∼
∥∥∥∥[ ∞∑

j=1

|λjχBj
|p

]1/p∥∥∥∥
Lp(·)(Rn)

.

This finishes the proof of Lemma 3.8. �

The following lemma is just [61, Lemma 2.6] with cubes therein replaced by balls here
(see also [57, Lemma 3.13] and [36, Corollary 3.4]).

Lemma 3.9. Let p(·) ∈ C log(Rn). Then there exists a positive constant C such that,
for any balls B1 and B2 of R

n satisfying B1 ⊂ B2,

C−1

( |B1|
|B2|

)1/p−

≤ ‖χB1‖Lp(·)(Rn)

‖χB2‖Lp(·)(Rn)

≤ C

( |B1|
|B2|

)1/p+

. (3.5)

Proof. For i ∈ {1, 2}, let Bi := B(xi, ri) with xi ∈ R
n and ri ∈ (0, ∞). For any x ∈

R
n and r ∈ (0, ∞), denote by Q(x, r) the open cube centred at x with the side length
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r. Let Q1 := Q(x1, 2r1/
√
n) and Q2 := Q(x2, 2r2). It is easy to see that Q1 ⊂ B1 ⊂

B2 ⊂ Q2,

|B1| ∼ |Q1| and |B2| ∼ |Q2|. (3.6)

Let Q̃1 := Q(x1, 2r1). Then we have Q1 ⊂ B1 ⊂ Q̃1. Hence, we obtain

‖χQ1‖Lp(·)(Rn) ≤ ‖χB1‖Lp(·)(Rn) ≤ ‖χQ̃1
‖Lp(·)(Rn).

By [61, Lemma 2.6], we know that ‖χQ1‖Lp(·)(Rn) ∼ ‖χQ̃1
‖Lp(·)(Rn). Thus, we have

‖χB1‖Lp(·)(Rn) ∼ ‖χQ1‖Lp(·)(Rn). (3.7)

Similarly, we obtain

‖χB2‖Lp(·)(Rn) ∼ ‖χQ2‖Lp(·)(Rn). (3.8)

Conversely, by the fact that Q1 ⊂ Q2 and [61, Lemma 2.6], we find that( |Q1|
|Q2|

)1/p−

�
‖χQ1‖Lp(·)(Rn)

‖χQ2‖Lp(·)(Rn)

�
( |Q1|
|Q2|

)1/p+

,

which, combined with (3.7), (3.8) and (3.6), implies (3.5). This finishes the proof of
Lemma 3.9. �

We now turn to establish the molecular characterization of Hp(·)
L (Rn).

Proposition 3.10. Let L satisfy Assumptions 2.2 and 2.3 and p(·) ∈ C log(Rn)
with p+ ∈ (0, 1]. Assume M ∈ N ∩ (n/2[(1/p−) − (1/2)],∞) and ε ∈ (n/p−, ∞). Then

there exists a positive constant C such that, for any f ∈ H
p(·), ε
L, M (Rn), ‖f‖

H
p(·)
L (Rn)

≤
C‖f‖

H
p(·), ε
L, M (Rn)

.

Proof. Let f ∈ H
p(·), ε
L, M (Rn). Then, by Definition 3.7, we know that there exist

{λj}j∈N ⊂ C and a family {mj}j∈N of (p(·), M, ε)L-molecules, associated with balls
{Bj}j∈N of R

n, such that

f =
∞∑

j=1

λjmj in L2(Rn) (3.9)

and
‖f‖

H
p(·), ε
L, M (Rn)

∼ A({λj}j∈N, {Bj}j∈N). (3.10)

By (3.9) and the fact that SL is bounded on L2(Rn) (see (2.14)), we find that

lim
N→∞

∥∥∥∥SL(f) − SL

( N∑
j=1

λjmj

)∥∥∥∥
L2(Rn)

= 0,

which implies that there exists a subsequence of {SL(
∑N

j=1 λjmj)}N∈N (without loss of
generality, we may use the same notation as the original sequence) such that, for almost
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every x ∈ R
n,

SL(f)(x) = lim
N→∞

SL

( N∑
j=1

λjmj

)
(x).

Hence, for almost every x ∈ R
n, it holds true that

SL(f)(x) ≤
∞∑

j=1

|λj |SL(mj)(x) =
∞∑

j=1

∞∑
i=0

|λj |SL(mj)(x)χUi(Bj)(x),

where, for each j ∈ N and i ∈ Z+, Ui(Bj) is defined as in (1.3) with B replaced by Bj .
From this, Remark 2.7(iii) and the fact that p− ∈ (0, 1], it follows that

‖SL(f)‖p−
Lp(·)(Rn)

=
∥∥[SL(f)]p−

∥∥
Lp(·)/p− (Rn)

≤
∞∑

i=0

∥∥∥∥ ∞∑
j=1

|λj |p− [SL(mj)χUi(Bj)]
p−

∥∥∥∥
Lp(·)/p− (Rn)

=
∞∑

i=0

∥∥∥∥{ ∞∑
j=1

|λj |p− [SL(mj)χUi(Bj)]
p−

}1/p−∥∥∥∥p−

Lp(·)(Rn)

. (3.11)

To prove Proposition 3.10, it suffices to show that there exist positive constants C and
θ ∈ (n/p−, ∞) such that, for any i ∈ Z+ and (p(·), M, ε)L-molecule m, associated with
ball B := B(xB, rB) with xB ∈ R

n and rB ∈ (0, ∞),

‖SL(m)‖L2(Ui(B)) ≤ C2−iθ|2iB|1/2‖χB‖−1
Lp(·)(Rn)

. (3.12)

Indeed, by (3.12), we find that, for any i ∈ Z+ and j ∈ N,

‖2iθ‖χBj
‖Lp(·)(Rn)SL(mj)χUi(Bj)‖L2(Rn) � |2iBj |1/2. (3.13)

Notice that, for any x ∈ R
n,

χ2iBj
(x) ≤ 2inM(χBj

)(x), (3.14)

where M is the Hardy–Littlewood maximal function defined in (2.12). Since θ ∈
(n/p−, ∞), we can choose a positive constant r ∈ (0, p−) such that θ ∈ (n/r,∞). By
this, (3.13), Lemmas 3.8 and 2.9, (3.14) and Remark 2.7(iii), we conclude that∥∥∥∥{ ∞∑

j=1

[|λj |SL(mj)χUi(Bj)]
p−

}1/p−∥∥∥∥
Lp(·)(Rn)

�
∥∥∥∥{ ∞∑

j=1

[
2−iθ‖χBj

‖−1
Lp(·)(Rn)

|λj |χ2iBj

]p−
}1/p−∥∥∥∥

Lp(·)(Rn)
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� 2−i(θ−(n/r))

∥∥∥∥{ ∑
j∈N

[
M

( |λj |r
‖χBj

‖r
Lp(·)(Rn)

χBj

)]p−/r}1/p−∥∥∥∥
Lp(·)(Rn)

∼ 2−i(θ−(n/r))

∥∥∥∥{∑
j∈N

[
M

( |λj |r
‖χBj

‖r
Lp(·)(Rn)

χBj

)]p−/r}r/p−∥∥∥∥1/r

Lp(·)/r(Rn)

� 2−i(θ−(n/r))

∥∥∥∥{∑
j∈N

[ |λj |r
‖χBj

‖r
Lp(·)(Rn)

χBj

]p−/r}r/p−∥∥∥∥1/r

Lp(·)/r(Rn)

∼ 2−i(θ−(n/r))A({λj}j∈N, {Bj}j∈N).

From this, (3.11), (3.10) and the fact that θ ∈ (n/r, ∞), we deduce that, for any f ∈
H

p(·), ε
L, M (Rn),

‖f‖
H

p(·)
L (Rn)

= ‖SL(f)‖Lp(·)(Rn) �
{ ∞∑

i=0

2−i(θ−(n/r))

}1/p−

‖f‖
H

p(·), ε
L, M (Rn)

∼ ‖f‖
H

p(·), ε
L, M (Rn)

,

which is the desired result.
Next, we prove (3.12). Indeed, when i ∈ {0, . . . , 10}, since SL is bounded on L2(Rn)

(see (2.14)), by the definition of (p(·),M, ε)L-molecules, we have

‖SL(m)‖L2(Ui(B)) � ‖m‖L2(Rn) � |B|1/2‖χB‖−1
Lp(·)(Rn)

. (3.15)

When i ∈ Z+ ∩ [11, ∞), for any given η ∈ (0, 1), we write

‖SL(m)‖L2(Ui(B)) =
[ ∫

Ui(B)

∫ ∞

0

∫
B(x, t)

|t2Le−t2L(m)(y)|2 dy dt
tn+1

dx
]1/2

≤
[ ∫

Ui(B)

∫ 2iηrB

0

∫
B(x, t)

|t2Le−t2L(m)(y)|2 dy dt
tn+1

dx
]1/2

+
[ ∫

Ui(B)

∫ ∞

2iηrB

∫
B(x, t)

· · · dx
]1/2

=: I + II. (3.16)

To estimate II, by Remark 2.5(i), we find that, for any k ∈ Z+ and t ∈ (0, ∞), (tL)ke−tL

is bounded on L2(Rn). From this, it follows that

II ≤
[ ∫

Ui(B)

∫ ∞

2iηrB

∫
Rn

|(t2L)M+1e−t2L(L−M (m))(y)|2 dy
dt

t4M+n+1
dx

]1/2

�
[ ∫

Ui(B)

∫ ∞

2iηrB

‖L−M (m)‖2
L2(Rn)

dt
t4M+n+1

dx
]1/2

� ‖L−M (m)‖L2(Rn)

[ ∫
Ui(B)

(
1

2iηrB

)4M+n

dx
]1/2

� 2−iη(2M+(n/2))2in/2‖L−M (m)‖L2(Rn)r
−2M
B . (3.17)
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By the fact that m is a (p(·), M, ε)L-molecule, ε > (n/p−) > (n/2), Remark 3.6 and
(3.17), we know that

II � 2−iη(2M+(n/2))|2iB|1/2‖χB‖−1
Lp(·)(Rn)

. (3.18)

To estimate I, for any i ∈ Z+ ∩ [11, ∞), let

Si(B) := (2i+1B) \ (2i−2B) and S̃i(B) := (2i+2B) \ (2i−3B).

If t ∈ (0, 2iηrB) and x ∈ Ui(B), then it is easy to see that B(x, t) ⊂ Si(B). From this,
we deduce that

I ≤
[ ∫

Ui(B)

∫ 2iηrB

0

∫
Si(B)

|t2Le−t2L(mχ[S̃i(B)]�)(y)|2 dy dt
tn+1

dx
]1/2

+
[ ∫

Ui(B)

∫ 2iηrB

0

∫
B(x, t)

∣∣t2Le−t2L(mχS̃i(B))(y)
∣∣2 dy dt
tn+1

dx
]1/2

=: I1 + I2. (3.19)

For I2, notice that, for i ∈ Z+ ∩ [11,∞),

S̃i(B) ⊂
2⋃

k=−2

Ui+k(B),

then, by the boundedness of SL on L2(Rn) (see (2.14)), we obtain

I2 ≤ ‖SL(mχS̃i(B))‖L2(Rn) � ‖mχS̃i(B)‖L2(Rn) � 2−iε|2iB|1/2‖χB‖−1
Lp(·)(Rn)

. (3.20)

For I1, by Remark 2.5(i), we know that {tLe−tL}t>0 satisfies the Davies–Gaffney
estimates (2.3). From this and the fact that dist ([S̃i(B)]�, Si(B)) ∼ 2irB , it follows that

I1 �
[ ∫

Ui(B)

∫ 2iηrB

0

e−c((2irB)2/t2)‖m‖2
L2(Rn)

dt
tn+1

dx
]1/2

� ‖m‖L2(Rn)

[ ∫
Ui(B)

∫ 2iηrB

0

(
t

2irB

)N dt
tn+1

dx
]1/2

� ‖m‖L2(Rn)|2iB|1/22−(i/2)[N(1−η)+ηn]|B|−(1/2), (3.21)

where c is as in (2.4) and N ∈ (n+ 1, ∞) is determined later. This, together with
Remark 3.6 and (3.21), implies that

I1 � 2−(i/2)[N(1−η)+ηn]|2iB|1/2‖χB‖−1
Lp(·)(Rn)

.

Combining this, (3.20), (3.19), (3.16) and (3.18), we find that, for any (p(·), M, ε)L-
molecule m associated with ball B ⊂ R

n and i ∈ Z+ ∩ [11, ∞),

‖SL(m)‖L2(Ui(B)) � 2−iθ|2iB|1/2‖χB‖−1
Lp(·)(Rn)

, (3.22)
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where

θ := min
{

1
2
[N(1 − η) + ηn], ε, η

(
2M +

n

2

)}
.

By the fact that M ∈ (n/2[(1/p−) − (1/2)],∞), we can choose some η ∈ (0, 1) such that
η(2M + (n/2)) > (n/p−). Then, by taking N := 2n/(1 − η)p− and ε ∈ (n/p−, ∞), we
find that θ ∈ (n/p−, ∞), which, together with (3.22) and (3.15), implies (3.12). This
finishes the proof of Proposition 3.10. �

Let M ∈ N and L satisfy Assumptions 2.2 and 2.3. For any F ∈ T 2(Rn+1
+ ) and x ∈ R

n,
define

πM, L(F )(x) :=
∫ ∞

0

(t2L)M+1e−t2L(F (·, t))(x) dt
t
. (3.23)

Lemma 3.11. Let L satisfy Assumptions 2.2 and 2.3 and p(·) ∈ P(Rn) with p+ ∈
(0, 1]. Assume that A is a (p(·), ∞)-atom associated with ball B ⊂ R

n. Then, for any
M ∈ N and ε ∈ (0, ∞), there exists a positive constant C(M, ε), depending on M and ε,
such that C(M, ε)πM, L(A) is a (p(·), M, ε)L-molecule associated with the ball B.

Proof. Let A be a (p(·), ∞)-atom associated with ball B := B(xB, rB) ⊂ R
n for some

xB ∈ R
n and rB ∈ (0, ∞). Then we know that

‖A‖T 2(Rn+1
+ ) ≤ |B|1/2‖χB‖−1

Lp(·)(Rn)
. (3.24)

Let
m := πM, L(A) and b := L−M (m). (3.25)

Next, we show that m is a (p(·), M, ε)L-molecule associated with B, up to a harmless
constant multiple. Indeed, when k ∈ {0, . . . , M}, by (3.25) and (3.23), we find that, for
any g ∈ L2(Rn),∫

Rn

(r2BL)k(b)(x)g(x) dx

=
∫

Rn

∫ ∞

0

r2k
B t2(M+1)Lk+1e−t2L(A(·, t))(x)g(x) dt

t
dx

=
∫ ∞

0

∫
Rn

r2k
B t2(M+1)A(x, t)(L∗)k+1

e−t2L∗(g)(x) dx
dt
t
. (3.26)

From this, the fact that supp A ⊂ B̂, Lemma 3.1, Remark 2.5(ii), (2.14) and (3.24), we
deduce that, for any k ∈ {0, . . . , M} and g ∈ L2(Rn),∣∣∣∣ ∫

Rn

(r2BL)k(b)(x)g(x) dx
∣∣∣∣ ≤ r2M

B

∫∫
B̂

|A(x, t)||(t2L∗)k+1e−t2L∗
(g)(x)|dx dt

t

≤ r2M
B ‖A‖T 2(Rn+1

+ )‖(t2L∗)k+1e−t2L∗
(g)‖T 2(Rn+1

+ )

= r2M
B ‖A‖T 2(Rn+1

+ )‖SL∗, k+1(g)‖L2(Rn)

� r2M
B |B|1/2‖χB‖−1

Lp(·)(Rn)
‖g‖L2(Rn), (3.27)
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which implies that

‖(r2BL)k(b)‖L2(Rn) � r2M
B |B|1/2‖χB‖−1

Lp(·)(Rn)
.

By this and (3.25), we conclude that, for any j ∈ {0, 1, 2},
‖(r−2

B L−1)k(m)‖L2(Uj(B)) � |B|1/2‖χB‖−1
Lp(·)(Rn)

. (3.28)

When k ∈ {0, . . . , M}, from (3.26), Remark 2.5(ii), (2.14) and (3.24), we deduce that,
for any j ∈ Z+ ∩ [3, ∞) and g ∈ L2(Rn) with supp g ⊂ Uj(B),∣∣∣∣ ∫

Uj(B)

(r2BL)k(b)(x)g(x) dx
∣∣∣∣

≤ r2M
B

∫∫
B̂

|A(x, t)||(t2L∗)k+1e−t2L∗
(g)(x)|dx dt

t

≤ r2M
B ‖A‖T 2(Rn+1

+ )‖(t2L∗)k+1e−t2L∗
(g)χB̂‖T 2(Rn+1

+ )

� r2M
B |B|1/2‖χB‖−1

Lp(·)(Rn)
‖(t2L∗)k+1e−t2L∗

(g)χB̂‖T 2(Rn+1
+ ). (3.29)

By the Hölder inequality and Remark 2.5(ii), we find that

‖(t2L∗)k+1e−t2L∗
(g)χB̂‖T 2(Rn+1

+ )

=
[ ∫

Rn

∫∫
Γ(x)

|(t2L∗)k+1e−t2L∗
(g)(y)χB̂(y, t)|2 dy dt

tn+1
dx

]1/2

≤
[ ∫

B

∫ rB

0

∫
B(x, t)∩B

|(t2L∗)k+1e−t2L∗
(g)(y)|2 dy dt

tn+1
dx

]1/2

≤
[ ∫ rB

0

∫
B

|(t2L∗)k+1e−t2L∗
(g)(y)|2 dy

dt
t

]1/2

�
[ ∫ rB

0

e−2c((2jrB)2/t2)‖g‖2
L2(Uj(B))

dt
t

]1/2

�
[ ∫ rB

0

(
t

2jrB

)2N dt
t

]1/2

‖g‖L2(Uj(B)) � 2−jN‖g‖L2(Uj(B)),

where the positive constant c is as in (2.3) and N ∈ N is determined below. From this and
(3.29), it follows that, for any j ∈ Z+ ∩ [3, ∞) and g ∈ L2(Rn) with supp g ⊂ Uj(B),∣∣∣∣ ∫

Uj(B)

(r2BL)k(b)(x)g(x) dx
∣∣∣∣ � 2−jNr2M

B |B|1/2‖χB‖−1
Lp(·)(Rn)

‖g‖L2(Uj(B)).

This further implies that, for any j ∈ Z+ ∩ [3,∞)

‖(r2BL)k(b)‖L2(Uj(B)) � 2−j(N+(n/2))r2M
B |2jB|1/2‖χB‖−1

Lp(·)(Rn)
.
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By choosing some N ∈ N such that N + n/2 > ε and (3.25), we conclude that, for any
j ∈ Z+ ∩ [3,∞),

‖(r−2
B L−1)k(m)‖L2(Uj(B)) � 2−jε|2jB|1/2‖χB‖−1

Lp(·)(Rn)
. (3.30)

Combining (3.30) and (3.28), we know that m = πM, L(A) is a (p(·), M, ε)L-molecule
associated with B, up to a harmless constant multiple. This finishes the proof of
Lemma 3.11. �

Proposition 3.12. Let L satisfy Assumptions 2.2 and 2.3 and p(·) ∈ C log(Rn) with

p+ ∈ (0, 1]. Assume M ∈ N and ε ∈ (0, ∞). Then, for any f ∈ H
p(·)
L (Rn) ∩ L2(Rn), there

exist {λj}j∈N ⊂ C and a family {mj}j∈N of (p(·), M, ε)L-molecules, associated with balls
{Bj}j∈N of R

n, such that f =
∑∞

j=1 λjmj in L2(Rn) and

A({λj}j∈N, {Bj}j∈N) ≤ C‖f‖
H

p(·)
L (Rn)

,

where the positive constant C is independent of f .

Proof. For any f ∈ H
p(·)
L (Rn) ∩ L2(Rn) and (x, t) ∈ R

n+1
+ , let F (x, t) := t2Le−t2L

(f)(x). By [3, Theorem F], we know that t2Le−t2L is bounded from L2(Rn) to T 2(Rn+1
+ ).

This, together with f ∈ H
p(·)
L (Rn), implies that F ∈ T 2(Rn+1

+ ) ∩ T p(·)(Rn+1
+ ). Then, by

Lemma 3.3 and Remark 3.4(i), we conclude that there exist {λj}j∈N ⊂ C and a family
{aj}j∈N of (p(·), ∞)-atoms, associated with balls {Bj}j∈N of R

n, such that

F =
∞∑

j=1

λjaj in T 2(Rn+1
+ ) ∩ T p(·)(Rn+1

+ ) (3.31)

and

A({λj}j∈N, {Bj}j∈N) � ‖F‖T p(·)(Rn+1
+ ) ∼ ‖f‖

H
p(·)
L (Rn)

. (3.32)

By the bounded holomorphic functional calculi for L, we know that

f = C(M)

∫ ∞

0

(t2L)M+1e−t2L(t2Le−t2L(f))
dt
t

= πM, L(F ) in L2(Rn), (3.33)

where C(M) is a positive constant such that C(M)

∫ ∞
0
t2(M+2)e−2t2 (dt/t) = 1. Via some

arguments similar to those used in the proofs of (3.26) and (3.27), we conclude that πM, L

is bounded from T 2(Rn+1
+ ) to L2(Rn) (see also [11, Proposition 4.5(i)]). From this, (3.33)

and (3.31), it follows that

f = C(M)πM, L

( ∞∑
j=1

λjaj

)
= C(M)

∞∑
j=1

λjπM, L(aj) in L2(Rn). (3.34)

Noticing that, for anyM ∈ N, ε ∈ (0, ∞) and j ∈ N, πM, L(aj) is a (p(·), M, ε)L-molecule,
up to a harmless constant multiple (see Lemma 3.11), by Definition 3.7, we know that
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(3.34) is a (p(·), M, ε)-molecular representation of f . This, together with (3.32), finishes
the proof of Proposition 3.12. �

Let L satisfy Assumptions 2.2 and 2.3 and p(·) ∈ P(Rn) with p+ ∈ (0, 1]. For any
M ∈ N and ε ∈ (0, ∞), define Hp(·), ε

L, fin, M (Rn) as the set of all finite linear combinations
of (p(·), M, ε)L-molecules.

We have the following proposition, which plays a key role in the proof of Theorem 4.8,
below.

Proposition 3.13. Let L satisfy Assumptions 2.2 and 2.3 and p(·) ∈ P(Rn) with

p+ ∈ (0, 1]. Assume M ∈ N and ε ∈ (0, ∞). Then H
p(·), ε
L, fin, M (Rn) is dense in H

p(·), ε
L, M (Rn)

with respect to the quasi-norm ‖ · ‖
H

p(·), ε
L, M (Rn)

.

Proof. Let g ∈ H
p(·), ε
L, M (Rn). Then, by Definition 3.7, we know that, for any δ ∈ (0, ∞),

there exists a function f ∈ H
p(·), ε
L, M (Rn) such that

‖g − f‖
H

p(·), ε
L, M (Rn)

≤ δ/2. (3.35)

By the definition of H
p(·), ε
L, M (Rn), we find that there exist {λj}j∈N ⊂ C and a family

{mj}j∈N of (p(·), M, ε)L-molecules, associated with balls {Bj}j∈N of R
n, such that

f =
∑∞

j=1 λjmj in L2(Rn) and A({λj}j∈N, {Bj}j∈N) <∞. Now, for any N ∈ N, let
fN :=

∑N
j=1 λjmj . Then we have

‖f − fN‖
H

p(·), ε
L, M (Rn)

≤ A({λ}∞j=N+1, {Bj}∞j=N+1)

=
∥∥∥∥ ∞∑

j=N+1

[ |λj |χBj

‖χBj
‖Lp(·)(Rn)

]p−∥∥∥∥1/p−

Lp(·)/p− (Rn)

. (3.36)

Since

A({λj}j∈N, {Bj}j∈N) =
∥∥∥∥ ∞∑

j=1

[ |λj |χBj

‖χBj
‖Lp(·)(Rn)

]p−∥∥∥∥1/p−

Lp(·)/p− (Rn)

<∞,

it follows that, for almost every x ∈ R
n,

lim
N→∞

∞∑
j=N+1

[ |λj |χBj
(x)

‖χBj
‖Lp(·)(Rn)

]p−

= 0.

Combining this and the dominated convergence theorem (see, for example, [25, Lemma
3.2.8]), we have

lim
N→∞

∥∥∥∥ ∞∑
j=N+1

[ |λj |χBj

‖χBj
‖Lp(·)(Rn)

]p−∥∥∥∥1/p−

Lp(·)/p− (Rn)

= 0.
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By this and (3.36), we conclude that ‖f − fN‖
H

p(·), ε
L, M (Rn)

→ 0 as N → ∞. Hence, we find

that, for any δ ∈ (0, ∞), there exists some N0 ∈ N such that, for any N > N0,

‖f − fN‖
H

p(·), ε
L, M (Rn)

< δ/2. (3.37)

Obviously, for any N ∈ N, fN ∈ H
p(·), ε
L, fin, M (Rn). From (3.35) and (3.37), we deduce that,

for any δ ∈ (0, ∞), when N > N0,

‖g − fN‖
H

p(·), ε
L, M (Rn)

� ‖g − f‖
H

p(·), ε
L, M (Rn)

+ ‖f − fN‖
H

p(·), ε
L, M (Rn)

� δ.

Thus, Hp(·), ε
L, fin, M (Rn) is dense in Hp(·), ε

L, M (Rn) with respect to the quasi-norm ‖ · ‖
H

p(·), ε
L, M (Rn)

.

This finishes the proof of Proposition 3.13. �

By Propositions 3.10 and 3.12, we immediately conclude Theorem 3.14 below, which
establishes the molecular characterization of Hp(·)

L (Rn). Since the proof is obvious, we
omit the details.

Theorem 3.14. Let L satisfy Assumptions 2.2 and 2.3 and p(·) ∈ C log(Rn) with p+ ∈
(0, 1]. Assume M ∈ N ∩ (n/2[(1/p−) − (1/2)], ∞) and ε ∈ (n/p−, ∞). Then H

p(·), ε
L, M (Rn)

and H
p(·)
L (Rn) coincide with equivalent quasi-norms.

Remark 3.15.

(i) Notice that Hofmann et al. [32, Theorem 4.1] established the atomic characteriza-
tion of the Hardy space H1

L(X) associated with a non-negative self-adjoint operator
L (see also [38, Theorem 5.1] for the atomic characterization of Hp

L(X) with
p ∈ (0, 1]). In this article, we cannot obtain an atomic characterization of Hp(·)

L (Rn)
similar to [32, Theorem 4.1] (or [38, Theorem 5.1]), though we can establish the
molecular characterization of Hp(·)

L (Rn) (see Proposition 3.12) by using the atomic
decomposition of tent spaces. The intrinsic reason for this is that the operator L of
this article may not be self-adjoint, which has been pointed out in the introduction
of [32]. More precisely, by Lemma 3.11, we know that the operator πM, L only maps
any (p(·), ∞)-atom A of T p(·)(Rn+1

+ ) into a (p(·), M, ε)L-molecule of Hp(·)
L (Rn),

which has no compact support. However, if the operator L is non-negative self-
adjoint, by the finite speed propagation for the wave equation (see [32, Definition
3.3 and Lemma 3.5]), we can further show that πM, L(A) has compact support and
hence is an atom of Hp(·)

L (Rn), the details being omitted.

(ii) In particular, when p(·) ≡ p ∈ (0, 1] is a constant, and L satisfies Assumptions 2.2
and 2.3, then Theorem 3.14 coincides with [26, Theorem 3.15] in the case when the
underlying space X := R

n.

(iii) When p(·) ≡ 1 and L is a one-to-one non-negative self-adjoint operator, from
Theorem 3.14, we deduce that, for any given M ∈ N ∩ (n/4, ∞) and ε ∈ (n, ∞),
H1, ε

L, M (Rn) and H1
L(Rn) coincide with equivalent quasi-norms, which was already
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obtained in [32, Corollary 5.3] and the ranges of M and ε coincide with those of
[32, Corollary 5.3]. Moreover, when p(·) ≡ p ∈ (0, 1], Theorem 3.14 was already
obtained in [38, Theorem 5.1].

(iv) If p(·) ≡ p ∈ (0, 1] is a constant and L is the second-order divergence form ellip-
tic operator as in (2.5), by Theorem 3.14, we find that, for any given M ∈
N ∩ (n/2[(1/p) − (1/2)], ∞) and ε ∈ ((n/p), ∞), Hp, ε

L, M (Rn) and Hp
L(Rn) coincide

with equivalent quasi-norms. This is just [35, Theorem 3.5], and the ranges of M
and ε coincide with those of [35, Theorem 3.5].

Corollary 3.16. Let L satisfy Assumptions 2.2 and 2.3 and p(·) ∈ C log(Rn) with p+ ∈
(0, 1]. Suppose T is a linear operator, or a positive sublinear operator, which is bounded on
L2(Rn). Let M ∈ N ∩ (n/2[(1/p−) − (1/2)], ∞) and ε ∈ (n/p−, ∞). Assume that there
exist positive constants C and θ ∈ (n/p−, ∞) such that, for any (p(·), M, ε)L-molecule
m, associated with ball B of R

n, and j ∈ Z+,

‖T (m)‖L2(Uj(B)) ≤ C2−jθ|2jB|1/2‖χB‖−1
Lp(·)(Rn)

.

Then there exists a positive constant C such that, for any f ∈ H
p(·)
L (Rn),

‖T (f)‖Lp(·)(Rn) ≤ C‖f‖
H

p(·)
L (Rn)

. (3.38)

Proof. By Theorem 3.14, we know that H
p(·), ε
L, M (Rn) is dense in Hp(·)

L (Rn) with respect
to the quasi-norm ‖ · ‖

H
p(·)
L (Rn)

. Hence, to complete the proof of Corollary 3.16, we only

need to show that, for all f ∈ H
p(·), ε
L, M (Rn), (3.38) holds true. The remainder of the proof

of Corollary 3.16 is a complete analogue of the proof of Proposition 3.10, the details being
omitted. This finishes the proof of Corollary 3.16. �

4. The duality of H
p(·)
L (Rn)

Let L satisfy Assumptions 2.2 and 2.3. In this section, we mainly consider the duality
of Hp(·)

L (Rn). To this end, motivated by [34,35], we introduce the following BMO-type
space BMOM

p(·), L∗(Rn). Here and hereafter, we denote by L∗ the adjoint operator of L.
Let p(·) ∈ P(Rn) with p+ ∈ (0, 1] and L satisfy Assumptions 2.2 and 2.3. In what

follows, let �0n be the origin of R
n. For any M ∈ N and ε ∈ (0, ∞), define

Mε, M
p(·), L(Rn) :=

{
μ := LM (ν) : ν ∈ D(LM ), ‖μ‖Mε, M

p(·), L
(Rn) <∞}

,

where D(LM ) denotes the domain of LM and

‖μ‖Mε, M
p(·), L

(Rn) := sup
j∈Z+

2jε|B(�0n, 2j)|−(1/2)‖χB(�0n, 1)‖Lp(·)(Rn)

×
M∑

k=0

‖L−k(μ)‖L2(Uj(B(�0n, 1))). (4.1)
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Let

MM, ∗
p(·), L(Rn) :=

⋂
ε∈(0,∞)

(Mε, M
p(·), L(Rn))∗.

Here and hereafter, (Mε, M
p(·), L(Rn))∗ denotes the dual space of Mε, M

p(·), L(Rn); namely, the

set of all the bounded linear functionals on Mε, M
p(·), L(Rn) and, for any f ∈ (Mε, M

p(·), L(Rn))∗

and g ∈ Mε, M
p(·), L(Rn), 〈f, g〉M denotes the duality between (Mε, M

p(·), L(Rn))∗ and

Mε, M
p(·), L(Rn).

Definition 4.1. Let p(·) ∈ P(Rn) with p+ ∈ (0, 1], M ∈ N and L satisfy Assumptions
2.2 and 2.3. An element f ∈ MM, ∗

p(·), L(Rn) is said to belong to BMOM
p(·), L∗(Rn) if

‖f‖BMOM
p(·), L∗ (Rn) := sup

B⊂Rn

|B|1/2

‖χB‖Lp(·)(Rn)

[ ∫
B

|(I − e−r2
BL∗

)M (f)(x)|2 dx
]1/2

<∞,

(4.2)

where the supremum is taken over all balls of R
n.

Remark 4.2.

(i) We point out that (4.2) is well defined. Indeed, since {e−tL}t>0 satisfies Assumption
2.3, it is easy to see that, for any ball B ⊂ R

n, φ ∈ L2(B), ε ∈ (0, ∞) and M ∈ N,
(I − e−t2L)M (φ) ∈ Mε, M

p(·), L(Rn). For any f ∈ MM, ∗
p(·), L(Rn), define〈

(I − e−t2L∗
)M (f), φ

〉
:= 〈f, (I − e−t2L)M (φ)〉M. (4.3)

Then we know that there exists a positive constant C(t, B), depending on t, rB and
dist (B, B(�0n, 1)), such that

|〈(I − e−t2L∗
)M (f), φ〉| ≤ ‖f‖(Mε, M

p(·), L
(Rn))∗‖(I − e−t2L)M (φ)‖Mε, M

p(·), L
(Rn)

≤ C(t, B)‖f‖(Mε, M
p(·), L

(Rn))∗‖φ‖L2(B).

By the Riesz theorem, we further conclude that, for any ball B ⊂ R
n and t ∈ (0, ∞),

(I − e−t2L∗
)M (f) ∈ L2(B)

and

〈(I − e−t2L∗
)M (f), φ〉 =

∫
B

(I − e−t2L∗
)M (f)(x)φ(x) dx.

Thus, (4.2) is well defined.

(ii) An element f ∈ MM, ∗
p(·), L∗(Rn) is said to belong to BMOM

p(·), L(Rn) if it satisfies (4.2)
with L∗ replaced by L.
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The following proposition shows that elements of Mε, M
p(·), L(Rn) are just (p(·), M, ε)L-

molecules of Hp(·)
L (Rn) and vice versa.

Proposition 4.3. Let p(·) ∈ C log(Rn) with p+ ∈ (0, 1], ε ∈ (0, ∞) and M ∈ N. If μ ∈
Mε, M

p(·), L(Rn), then μ is a harmless positive constant multiple of a (p(·), M, ε)L-molecule

associated with the ball B(�0n, 1). Conversely, if m is a (p(·), M, ε)L-molecule, associated

with ball B ⊂ R
n, then m ∈ Mε, M

p(·), L(Rn).

Proof. If μ ∈ Mε, M
p(·), L(Rn), then, by (4.1), we find that, for any j ∈ Z+ and k ∈

{0, . . . , M},
‖L−k(μ)‖L2(Uj(B(�0n, 1))) � 2−jε|2jB(�0n, 1)|1/2‖χB(�0n, 1)‖−1

Lp(·)(Rn)
,

which implies that μ is a harmless positive constant multiple of a (p(·), M, ε)L-molecule
associated with the ball B(�0n, 1).

Conversely, if m is a (p(·), M, ε)L-molecule associated with ball B := B(xB, rB) ⊂ R
n

with xB ∈ R
n and rB ∈ (0, ∞), then, by Definition 3.5, we know that, for any j ∈ Z+

and k ∈ {0, . . . , M},
‖L−k(m)‖L2(Uj(B)) ≤ 2−jεr2k

B |2jB|1/2‖χB‖−1
Lp(·)(Rn)

. (4.4)

Moreover, it is easy to see that there exist l1, l2 ∈ N, depending on B, such that

B(�0n, 1) ⊂ B(xB, 2l1rB) and B(xB, rB) ⊂ B(�0n, 2l2). (4.5)

By this and Lemma 3.9, we have

2−l1(n/p−)‖χB(�0n, 1)‖Lp(·)(Rn) � ‖χB(xB , rB)‖Lp(·)(Rn) � 2l2(n/p−)‖χB(�0n, 1)‖Lp(·)(Rn).

Combining this, (4.4) and (4.5), we find that there exists a positive constant C(l1, l2, B),
depending on l1, l2 and B, such that, for any j ∈ Z+ ∩ [l2 + 1, ∞) and k ∈ {0, . . . , M},

‖L−k(m)‖L2(Uj(B(�0n, 1))) ≤ ‖L−k(m)‖L2(2j+l1B(xB , rB)\2j−1−l2B(xB , rB))

≤
l1∑

l=−l2

2−(j+l)εr2k
B |2j+lB(xB, rB)|1/2‖χB(xB , rB)‖−1

Lp(·)(Rn)

≤ C(l1, l2, B)2−jε|2jB(�0n, 1)|1/2‖χB(�0n, 1)‖−1
Lp(·)(Rn)

.

Similarly, when j ∈ {0, . . . , l2}, it holds true that

‖L−k(m)‖L2(Uj(B(�0n, 1))) � 2−jε|2jB(�0n, 1)|1/2‖χB(�0n, 1)‖−1
Lp(·)(Rn)

,

where the implicit positive constant depends on l1, l2 and B. Therefore, we obtain

‖m‖Mε, M
p(·), L

(Rn) <∞.

This implies that m ∈ Mε, M
p(·), L(Rn), which completes the proof of Proposition 4.3. �
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To prove the main result of this section, we need the following lemmas, which are,
respectively, slight variants of [34, Lemmas 8.1 and 8.4] (see also [37, Lemmas 4.1 and
4.3]), the details being omitted.

Lemma 4.4. Let p(·) ∈ C log(Rn) with p+ ∈ (0, 1] and M ∈ N. Then f ∈
BMOM

p(·), L(Rn) is equivalent to that

‖f‖BMOM, res
p(·), L

(Rn) := sup
B⊂Rn

|B|1/2

‖χB‖Lp(·)(Rn)

{ ∫
B

∣∣[I − (I + r2BL)−1]M (f)(x)
∣∣2 dx

}1/2

<∞,

where the supremum is taken over all balls of R
n. Moreover, there exists a positive

constant C such that, for any f ∈ BMOM
p(·), L(Rn),

C−1‖f‖BMOM
p(·), L

(Rn) ≤ ‖f‖BMOM, res
p(·), L

(Rn) ≤ C‖f‖BMOM
p(·), L

(Rn).

Lemma 4.5. Let p(·) ∈ C log(Rn) with p+ ∈ (0, 1], ε̃, ε ∈ (0, ∞), M ∈ N and M̃ >

M + ε̃+ n
4 . Suppose that f ∈ MM, ∗

p(·), L(Rn) satisfies

∫
Rn

|[I − (I + L∗)−1]M (f)(x)|2
1 + |x|n+ε̃

dx <∞. (4.6)

Then, for any (p(·), M̃ , ε)L-molecule m, it holds true that

〈f, m〉M = C(M)

∫∫
R

n+1
+

(t2L∗)Me−t2L∗
(f)(x)t2Le−t2L(m)(x)

dxdt
t

,

where C(M) is a positive constant depending on M .

Remark 4.6. We point out that, for any ε̃ ∈ (n(1 + (2/p−) − (2/p+)), ∞), M ∈ N

and f ∈ BMOM
p(·), L∗(Rn), f satisfies (4.6). Indeed, by Lemma 4.4, we obtain

sup
B⊂Rn

|B|1/2

‖χB‖Lp(·)(Rn)

{ ∫
B

|[I − (I + r2BL
∗)−1]M (f)(x)|2 dx

}1/2

<∞. (4.7)

We write ∫
Rn

|[I − (I + L∗)−1]M (f)(x)|2
1 + |x|n+ε̃

dx

=
∞∑

j=0

∫
Uj(B(�0n, 1))

|[I − (I + L∗)−1]M (f)(x)|2
1 + |x|n+ε̃

dx

≤
∞∑

j=0

2−j(n+ε̃)

∫
Uj(B(�0n, 1))

|[I − (I + L∗)−1]M (f)(x)|2 dx. (4.8)
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For any j ∈ Z+, we choose a family {Bk}cn2jn

k=1 of balls with radius rBk
≡ 1, where the

positive constant cn := �nn/2 − 2−n� + 1, such that, for any k ∈ {1, . . . , cn2jn},

Bk ⊂ B(�0n,
√
n2j), Uj(B(�0n, 1)) ⊂

cn2jn⋃
k=1

Bk (4.9)

and, for any x ∈ R
n,

∑cn2jn

k=1 χBk
(x) ≤ 3. From this, (4.7), (4.9) and Lemma 3.9, it follows

that { ∫
Uj(B(�0n, 1))

|[I − (I + L∗)−1]M (f)(x)|2 dx
}1/2

≤
cn2jn∑
k=1

{ ∫
Bk

|[I − (I + L∗)−1]M (f)(x)|2 dx
}1/2

�
cn2jn∑
k=1

‖χBk
‖Lp(·)(Rn)‖f‖BMOM

p(·), L∗ (Rn)

� 2jn(1+(1/p−)−(1/p+))‖χB(�0n, 1)‖Lp(·)(Rn)‖f‖BMOM
p(·), L∗ (Rn).

Combining this, (4.8) and the fact that ε̃ ∈ (n(1 + (2/p−) − (2/p+)), ∞), we have∫
Rn

|[I − (I + L∗)−1]M (f)(x)|2
1 + |x|n+ε̃

dx �
∞∑

j=0

2−j(n+ε̃)22jn(1+(1/p−)−(1/p+))‖f‖2
BMOM

p(·), L∗ (Rn)

� ‖f‖2
BMOM

p(·), L∗ (Rn) <∞.

Therefore, the above claim holds true.

By Lemma 4.4, we obtain the following technical lemma. The proof of Lemma 4.7 is
similar to that of [34, Lemma 8.3], the details being omitted.

Lemma 4.7. Let p(·) ∈ C log(Rn) with p+ ∈ (0, 1] and M ∈ N. Then there exists a
positive constant C such that, for any f ∈ BMOM

p(·), L(Rn),

sup
B⊂Rn

|B|1/2

‖χB‖Lp(·)(Rn)

[ ∫∫
B̂

|(t2L)Me−t2L(f)(x)|2 dxdt
t

]1/2

≤ C‖f‖BMOM
p(·), L

(Rn),

where the supremum is taken over all balls B of R
n.

We are now ready to establish the duality between H
p(·)
L (Rn) and BMOM

p(·), L∗(Rn).

In what follows, let (Hp(·)
L (Rn))∗ be the dual space of Hp(·)

L (Rn), namely, the set of all
bounded linear functionals on Hp(·)

L (Rn).

Theorem 4.8. Let p(·) ∈ C log(Rn) with p+ ∈ (0, 1], ε ∈ (n/p−, ∞) and M ∈ N ∩
(n/2[(1/p−) − (1/2)], ∞). Then (Hp(·)

L (Rn))∗ coincides with BMOM
p(·), L∗(Rn) in the

following sense:
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(i) Let g ∈ (Hp(·)
L (Rn))∗. Then g ∈ BMOM

p(·), L∗(Rn) and, for any f ∈ H
p(·), 2, ε
L, fin, M (Rn), it

holds true that g(f) = 〈g, f〉M. Moreover, there exists a positive constant C such

that, for any g ∈ (Hp(·)
L (Rn))∗,

‖g‖BMOM
p(·), L∗ (Rn) ≤ C‖g‖

(H
p(·)
L (Rn))∗ .

(ii) Conversely, let g ∈ BMOM
p(·), L∗(Rn). Then, for any f ∈ H

p(·), 2, ε
L, fin, M (Rn), the lin-

ear functional lg, given by lg(f) := 〈g, f〉M, has a unique bounded extension

to H
p(·)
L (Rn) and there exists a positive constant C such that, for any g ∈

BMOM
p(·), L∗(Rn),

‖lg‖(H
p(·)
L (Rn))∗ ≤ C‖g‖BMOM

p(·), L∗ (Rn).

Remark 4.9. If p(·) ≡ p ∈ (0, 1] is a constant and L is a one-to-one non-negative
self-adjoint operator (respectively, a second-order divergence form elliptic operator),
then Theorem 4.8 coincides with [38, Theorem 4.1] in the case when the underlying
space X := R

n and the Orlicz function ω(t) := tp for all t ∈ [0, ∞) (respectively, with
[37, Theorem 4.1] in the case with the same aforementioned Orlicz function ω).

Proof of Theorem 4.8. We first prove (i). Let g ∈ (Hp(·)
L (Rn))∗. Then, for any f ∈

H
p(·)
L (Rn), we have

|g(f)| ≤ ‖g‖
(H

p(·)
L (Rn))∗‖f‖H

p(·)
L (Rn)

. (4.10)

By Proposition 3.10, we know that, for any ε ∈ (n/p−, ∞) and (p(·), M, ε)L-molecule m,

‖m‖
H

p(·)
L (Rn)

� 1.

From this and (4.10), it follows that, for any (p(·), M, ε)L-molecule m,

|g(m)| � ‖g‖
(H

p(·)
L (Rn))∗ . (4.11)

Moreover, by Proposition 4.3, we find that, for any μ ∈ Mε, M
p(·), L(Rn) with

‖μ‖Mε, M
p(·), L

(Rn) = 1, μ is a harmless positive constant multiple of a (p(·), M, ε)L-molecule

associated with the ball B(�0n, 1). Let 〈g, μ〉 := g(μ). This, together with (4.11), implies
that g ∈ (Mε, M

p(·), L(Rn))∗ for any ε ∈ (0, ∞). Hence, g ∈ MM, ∗
p(·), L(Rn) and

〈g, μ〉M = 〈g, μ〉 = g(μ). (4.12)

Next, we show that
‖g‖BMOM

p(·), L∗ (Rn) � ‖g‖
(H

p(·)
L (Rn))∗ . (4.13)

We first claim that, for any B ⊂ R
n, ϕ ∈ L2(B) with ‖ϕ‖L2(B) = 1,

|B|1/2

‖χB‖Lp(·)(Rn)

(I − er2
BL)M (ϕ)

is a harmless positive constant multiple of a (p(·), M, ε)L-molecule. If this claim holds
true, then, by Proposition 4.3, (4.3), (4.12) and (4.11), we conclude that, for any ϕ ∈
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L2(B) with ‖ϕ‖L2(B) = 1,

∣∣∣∣ |B|1/2

‖χB‖Lp(·)(Rn)

∫
B

(I − e−r2
BL∗

)M (g)(x)ϕ(x) dx
∣∣∣∣

=
∣∣∣∣〈g, |B|1/2

‖χB‖Lp(·)(Rn)

(I − e−r2
BL)M (ϕ)

〉
M

∣∣∣∣ � ‖g‖
(H

p(·)
L (Rn))∗ ,

which implies that, for any ball B ⊂ R
n,

|B|1/2

‖χB‖Lp(·)(Rn)

[ ∫
B

∣∣(I − e−r2
BL∗

)M (g)(x)
∣∣2 dx

]1/2

� ‖g‖
(H

p(·)
L (Rn))∗ .

Thus, (4.13) holds true.
Therefore, to prove (4.13), it remains to show the above claim. Indeed, when k ∈

{0, . . . , M}, by the Minkowski inequality and Remark 2.5(iii), we find that, for any
j ∈ Z+ ∩ [2, ∞),

∥∥∥∥ |B|1/2

‖χB‖Lp(·)(Rn)

(r−2
B L−1)k(I − e−r2

BL)M (ϕ)
∥∥∥∥

L2(Uj(B))

=
|B|1/2

‖χB‖Lp(·)(Rn)

∥∥∥∥r−2k
B

[ ∫ rB

0

· · ·
∫ rB

0

2kt1 · · · tke−(t21+···+t2k)L dt1 · · · dtk
]

◦ (I − er2
BL)M−k(ϕ)

∥∥∥∥
L2(Uj(B))

≤ |B|1/2

‖χB‖Lp(·)(Rn)

r−2k
B

[ ∫ rB

0

· · ·
∫ rB

0

2kt1 · · · tk

× ∥∥e−(t21+···+t2k)L(I − e−r2
BL)M−k(ϕ)

∥∥
L2(Uj(B))

dt1 · · · dtk
]

� |B|1/2

‖χB‖Lp(·)(Rn)

r−2k
B

∫ rB

0

· · ·
∫ rB

0

2kt1 · · · tke−c((2jrB)2/r2
B)‖ϕ‖L2(B) dt1 · · · dtk

� |B|1/2

‖χB‖Lp(·)(Rn)

e−c22j � |B|1/2

‖χB‖Lp(·)(Rn)

2−jε. (4.14)

Similarly, when k ∈ {0, . . . , M}, we know that, for any j ∈ {0, 1},
∥∥∥∥ |B|1/2

‖χB‖Lp(·)(Rn)

(r−2
B L−1)k(I − e−r2

BL)M (ϕ)
∥∥∥∥

L2(Uj(B))

� |B|1/2‖χB‖−1
Lp(·)(Rn)

.

This, combined with (4.14), implies the above claim.
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Next, we prove (ii). To this end, we only need to show that, for any g ∈ BMOM
p(·), L∗(Rn)

and f ∈ H
p(·), ε
L, fin, M (Rn) with ε ∈ (0, ∞) and M ∈ N,

|〈g, f〉M| � ‖g‖BMOM
p(·), L∗ (Rn)‖f‖H

p(·)
L (Rn)

. (4.15)

Indeed, since the space Hp(·), ε
L, fin, M (Rn) is dense in H

p(·)
L (Rn) with respect to the quasi-

norm ‖ · ‖
H

p(·)
L (Rn)

(see Proposition 3.13 and Theorem 3.14), from (4.15), we deduce that

the linear functional lg given by lg(f) := 〈g, f〉M, initially defined on Hp(·), ε
L, fin, M (Rn), has

a unique bounded extension to Hp(·)
L (Rn) and

‖lg‖(H
p(·)
L (Rn))∗ � ‖g‖BMOM

p(·), L∗ (Rn).

To prove (4.15), let f ∈ H
p(·), ε
L, fin, M (Rn). Then it is easy to see that f ∈ H

p(·)
L (Rn) ∩

L2(Rn). This, together with (2.14), implies that

t2Le−t2L(f) ∈ T p(·)(Rn+1
+ ) ∩ T 2(Rn+1

+ ).

By Lemma 3.3 and Remark 3.4(i), we conclude that there exist {λj}∞j=1 ⊂ C and a family
{aj}∞j=1 of (p(·), ∞)-atoms, associated with balls {Bj}j∈N of R

n, such that

t2Le−t2L(f) =
∞∑

j=1

λjaj in T p(·)(Rn+1
+ ) ∩ T 2(Rn+1

+ )

and

A({λj}j∈N, {Bj}j∈N) ∼ ‖t2Le−t2L(f)‖T p(·)(Rn+1
+ ) ∼ ‖f‖

H
p(·)
L (Rn)

.

From this, Lemma 4.5, the Hölder inequality, the fact that {aj}j∈N are (p(·), ∞)-atoms,
Lemma 4.7 and Remark 3.4(ii), we deduce that, for any f ∈ H

p(·), ε
L, fin, M (Rn),

|〈g, f〉M| =
∣∣∣∣CM

∫∫
R

n+1
+

(t2L∗)Me−t2L∗
(g)(x)t2Le−t2L(f)(x)

dxdt
t

∣∣∣∣
�

∞∑
j=1

|λj |
∫∫

R
n+1
+

|(t2L∗)Me−t2L∗
(g)(x)||aj(x, t)| dxdt

t

�
∞∑

j=1

|λj |
[ ∫∫

B̂j

|(t2L∗)Me−t2L∗
(g)(x)|2 dxdt

t

]1/2[ ∫∫
B̂j

|aj(x, t)|2 dxdt
t

]1/2

�
∞∑

j=1

|λj |‖g‖BMOM
p(·), L∗ (Rn)‖χBj

‖Lp(·)(Rn)|Bj |−(1/2)‖aj‖T 2(Rn+1
+ )
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�
∞∑

j=1

|λj |‖g‖BMOM
p(·), L∗ (Rn) � A({λj}j∈N, {Bj}j∈N)‖g‖BMOM

p(·), L∗ (Rn)

∼ ‖f‖
H

p(·)
L (Rn)

‖g‖BMOM
p(·), L∗ (Rn).

That is, (4.15) holds true. This finishes the proof of Theorem 4.8. �

5. Variable Hardy spaces associated with second-order divergence form
elliptic operators

In this section, we study the variable Hardy spaces Hp(·)
L (Rn) associated with second-

order divergence form elliptic operators L as in (2.5). By making good use of the special
structure of the divergence form elliptic operator, we establish the non-tangential maximal
function characterizations of Hp(·)

L (Rn). Moreover, we establish the boundedness of the
associated fractional integrals and Riesz transforms on Hp(·)

L (Rn).
Since L in (2.5) satisfies Assumptions 2.2 and 2.3 (see Remark 2.6(i)), a corresponding

theory of the variable Hardy space Hp(·)
L (Rn) with L as in (2.5), including its molecular

characterization, can be obtained as a special case of all results presented in the previous
sections. Moreover, by (2.6), we have the following observation.

Remark 5.1. Let L be as in (2.5). By [34, Lemma 2.6], we know that, for any p ∈
(p−(L), p+(L)), the square function SL, k, with k ∈ N, in (2.13) is bounded on Lp(Rn),
where the positive constants p−(L) and p+(L) are, respectively, as in (2.7) and (2.8).

5.1. Non-tangential maximal function characterization of H
p(·)
L (Rn)

In this subsection, we establish the non-tangential maximal function characterization
of Hp(·)

L (Rn) with L as in (2.5). We begin with recalling some notions from [34].
For any α ∈ (0, ∞), the non-tangential maximal function N (α)

h , associated with the
heat semigroup generated by L, is defined by setting, for any f ∈ L2(Rn) and x ∈ R

n,

N (α)
h (f)(x) := sup

(y,t)∈Γα(x)

[
1

(αt)n

∫
B(y, αt)

|e−t2L(f)(z)|2dz
]1/2

,

where Γα(x) is as in (1.2). In particular, when α = 1, we simply write Nh instead of N (α)
h .

Similar to Definition 2.10, we introduce the Hardy space Hp(·)
Nh

(Rn) as follows.

Definition 5.2. Let p(·) ∈ P(Rn) satisfy p+ ∈ (0, 1], and L be the second-order diver-
gence form elliptic operator as in (2.5). The Hardy space H

p(·)
Nh

(Rn) is defined as the
completion of the set

{f ∈ L2(Rn) : ‖f‖
H

p(·)
Nh

(Rn)
:= ‖Nh(f)‖Lp(·)(Rn) <∞}

with respect to the quasi-norm ‖ · ‖
H

p(·)
Nh

(Rn)
.

The following theorem establishes the non-tangential maximal function characteriza-
tion of Hp(·)

L (Rn).
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Theorem 5.3. Let p(·) ∈ C log(Rn) satisfy p+ ∈ (0, 1] and L be the second-order diver-

gence form elliptic operator as in (2.5). Then H
p(·)
L (Rn) and H

p(·)
Nh

(Rn) coincide with
equivalent quasi-norms.

Remark 5.4.

(i) The proof of Theorem 5.3 divides into two steps. Step 1 is to show H
p(·)
Nh

(Rn) ⊂
H

p(·)
L (Rn), and step 2 is the proof of the inverse inclusion. The proof of step 1

relies on some known results, from [11,54], which are essentially deduced from a
good-λ inequality for Nh, whose proof is mainly based on the special structure of
the operator L = −div(A∇), namely, the divergence form, and on some particular
partial differential equation techniques (for example, the Caccioppoli inequalities
for the solutions of parabolic and elliptic systems; see also [34] for some details).
If L is merely an abstract operator satisfying Assumptions 2.2 and 2.3, by an
argument similar to that used in step 2 (see also [37, § 5.3] and [11, Theorem 7.5]),
we can establish the inclusion Hp(·)

L (Rn) ⊂ H
p(·)
Nh

(Rn) (see [32, Proposition 4.7] for a
similar result). However, we do not know how to prove the inverse inclusion without
invoking the special structure of L, which is still open.

(ii) Recently, Song and Yan [52] established the non-tangential maximal function
characterization, via the atomic characterization, of Hardy spaces associated
with non-negative self-adjoint operators L̃ having Gaussian upper bounds (see
Remark 2.6(ii)), which was further generalized to the variable Hardy spaces
H

p(·)
L̃

(Rn) in [60]. Their proof depends on a modification of a technique by Calderón
[15], which is different from the technique used in the setting of second-order
divergence elliptic operators (see, for example, [34,37]).

(iii) Notice that, in [34, § 7], Hofmann and Mayboroda established equivalent character-
izations of the Hardy spaces H1

L(Rn) associated with the second-order divergence
form elliptic operators L via both Nh and the non-tangential maximal function NP

associated with the Poisson semigroup {e−t
√

L}t>0, which is defined by setting, for
any f ∈ L2(Rn) and x ∈ R

n,

NP (f)(x) := sup
(y, t)∈Γ(x)

[
1
tn

∫
B(y, t)

|e−t
√

L(f)(x)|2 dx
]1/2

,

where Γ(x) is as in (1.2) with α = 1 (see also [37, § 5] and [11, Theorem 7.5]).
Motivated by this, we can define the Hardy spacesHp(·)

NP
(Rn) in a way similar to that

used in Definition 5.2. It is natural to ask whether or not these spaces Hp(·)
L (Rn)

and H
p(·)
NP

(Rn) coincide with equivalent quasi-norms. More generally, if L is an
abstract operator satisfying Assumptions 2.2 and 2.3, motivated by [11,32,34,37],
it is natural to ask whether or not one can characterize Hp(·)

L (Rn) via the square
function SP, L associated with the Poisson semigroup {e−t

√
L}t>0. To restrict the

length of this article, we address these problems in another forthcoming article.
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(iv) Particularly, if p(·) ≡ p ∈ (0, 1] is a constant, then Theorem 5.3 was already
obtained in [37, Theorem 5.2].

To prove Theorem 5.3, we first recall some auxiliary functions introduced in [34]. For
any f ∈ L2(Rn) and x ∈ R

n, let

Rh(f)(x) := sup
t∈(0,∞)

[
1
tn

∫
B(x, t)

|e−t2L(f)(y)|2 dy
]1/2

and

S̃h(f)(x) :=
[ ∫∫

Γ(x)

|t∇e−t2L(f)(y)|2 dy dt
tn+1

]1/2

,

where Γα(x) is as in (1.2).
Let q ∈ [1, ∞). Recall that a non-negative and locally integrable function w on R

n is
said to belong to the class Aq(Rn) of Muckenhoupt weights, denoted by w ∈ Aq(Rn), if,
when q ∈ (1,∞),

Aq(w) := sup
B⊂Rn

1
|B|

∫
B

w(x) dx
{

1
|B|

∫
B

[w(x)]−(1/q−1) dx
}q−1

<∞

or

A1(w) := sup
B⊂Rn

1
|B|

∫
B

w(x) dx{ess inf
x∈B

w(x)}−1 <∞,

where the suprema are taken over all balls B of R
n.

We also need the following lemma, which is called the extrapolation theorem for
Lp(·)(Rn) (see, for example, [21, Theorem 1.3] and [25, Theorem 7.2.1]) and plays a
key role in the proof of Theorem 5.3.

Lemma 5.5 (Diening et al. [25]). Let F be a family of pairs of measurable functions
on R

n, and Ω ⊂ R
n an open set. Assume that, for some p0 ∈ (0, ∞) and any w ∈ A1(Rn),∫

Ω

|f(x)|p0w(x) dx ≤ C(w)

∫
Ω

|g(x)|p0w(x) dx for any (f, g) ∈ F ,

where the positive constant C(w) depends only on A1(w). Let p(·) ∈ C log(Rn) be such
that p− ∈ (p0, ∞). Then there exists a positive constant C such that, for any (f, g) ∈ F ,

‖f‖Lp(·)(Rn) ≤ C‖g‖Lp(·)(Rn).

We are now in a position to prove Theorem 5.3.
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Proof of Theorem 5.3. We first prove that, for any f ∈ H
p(·)
Nh

(Rn) ∩ L2(Rn),

‖f‖
H

p(·)
L (Rn)

� ‖f‖
H

p(·)
Nh

(Rn)
. (5.1)

Indeed, by [37, Lemma 5.2] (see also [34, Lemma 5.4]), we find that, for any f ∈ L2(Rn)
and x ∈ R

n, SL(f)(x) � S̃h(f)(x). Hence, for any f ∈ H
p(·)
Nh

(Rn) ∩ L2(Rn),

‖SL(f)‖Lp(·)(Rn) � ‖S̃h(f)‖Lp(·)(Rn). (5.2)

Conversely, from [11, p. 116], we deduce that, for any w ∈ A1(Rn), there exists a positive
constant C(w), depending on A1(w), such that, for any f ∈ H

p(·)
Nh

(Rn) ∩ L2(Rn),∫
Rn

[S̃h(f)(x)]p0w(x) dx ≤ C(w)

∫
Rn

[Nh(f)(x)]p0w(x) dx,

where p0 ∈ (0, p−) and p− is as in (2.10). Combining this and Lemma 5.5, we obtain

‖S̃h(f)‖Lp(·)(Rn) � ‖Nh(f)‖Lp(·)(Rn).

By this and (5.2), we find that, for any f ∈ H
p(·)
Nh

(Rn) ∩ L2(Rn),

‖SL(f)‖Lp(·)(Rn) � ‖Nh(f)‖Lp(·)(Rn).

This implies (5.1). Therefore,

[Hp(·)
Nh

(Rn) ∩ L2(Rn)] ⊂ [Hp(·)
L (Rn) ∩ L2(Rn)].

Next, we show the inverse inclusion. To this end, it suffices to prove that, for any
f ∈ H

p(·)
L (Rn) ∩ L2(Rn),

‖f‖
H

p(·)
Nh

(Rn)
� ‖f‖

H
p(·)
L (Rn)

. (5.3)

Indeed, from [11, p. 117], we deduce that, for any w ∈ A1(Rn), there exists a positive
constant C(w), depending on A1(w), such that, for any f ∈ H

p(·)
L (Rn) ∩ L2(Rn),∫

Rn

[Nh(f)(x)]p0w(x) dx ≤ C(w)

∫
Rn

[Rh(f)(x)]p0w(x) dx,

where p0 ∈ (0, p−). From this and Lemma 5.5, it follows that, for any f ∈ H
p(·)
L (Rn) ∩

L2(Rn),

‖Nh(f)‖Lp(·)(Rn) � ‖Rh(f)‖Lp(·)(Rn). (5.4)

Now we prove that, for any f ∈ H
p(·)
L (Rn) ∩ L2(Rn),

‖Rh(f)‖Lp(·)(Rn) � ‖f‖
H

p(·)
L (Rn)

. (5.5)

To this end, by the fact that Rh is bounded on L2(Rn) (see [34, p. 82]) and Corollary 3.16,
we know that it suffices to prove that, for any given M ∈ N ∩ (n/2[(1/p−) − (1/2)],∞)
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and ε ∈ (n/p−, ∞), there exists a positive constant θ ∈ (n/p−, ∞) such that, for any
(p(·), M, ε)L-molecule m, associated with ball B := B(xB, rB) ⊂ R

n with xB ∈ R
n and

rB ∈ (0, ∞), and j ∈ Z+,

‖Rh(m)‖L2(Uj(B)) � 2−jθ|2jB|1/2‖χB‖−1
Lp(·)(Rn)

, (5.6)

where, for each j ∈ Z+, Uj(B) is as in (1.3).
Indeed, when j ∈ {0, . . . , 10}, by the boundedness of Rh on L2(Rn), we know that,

for any given θ ∈ (n/p−, ∞),

‖Rh(m)‖L2(Uj(B)) ≤ ‖m‖L2(Rn) � 2−jθ|2jB|1/2‖χB‖−1
Lp(·)(Rn)

.

When j ∈ N ∩ [11, ∞), for any x ∈ Uj(B), we write

Rh(m)(x) ≤
{

sup
t∈(0, 2aj−2rB ]

+ sup
t∈(2aj−2rB ,∞)

}[
1
tn

∫
B(x, t)

|e−t2L(m)(y)|2 dy
]1/2

(5.7)

=: Ij(x) + IIj(x),

where a ∈ (0, 1) is a positive constant to be fixed below.
To handle Ij , let Sj(B) := (2j+3B) \ (2j−3B),

Rj(B) := (2j+5B) \ (2j−5B) and Ej(B) := [Rj(B)]�.

Then m = mχRj(B) +mχEj(B). When t ∈ (0, 2aj−2rB ], it is easy to see that, for any
x ∈ Uj(B), B(x, t) ⊂ Sj(B) and dist (Sj(B), Ej(B)) ∼ 2jrB . By this, Assumption 2.3
and the fact that m is a (p(·), M, ε)L-molecule, we conclude that∥∥∥∥ sup

t∈(0, 2aj−2rB ]

[
1
tn

∫
B(·, t)

|e−t2L(mχEj(B))(y)|2 dy
]1/2∥∥∥∥

L2(Uj(B))

≤
∥∥∥∥ sup

t∈(0, 2aj−2rB ]

[
1
tn

∫
Sj(B)

|e−t2L(mχEj(B))(y)|2 dy
]1/2∥∥∥∥

L2(Uj(B))

�
∥∥∥∥ sup

t∈(0, 2aj−2rB ]

t−(n/2)e−c((2jrB)2/t2)‖m‖L2(Ej(B))

∥∥∥∥
L2(Uj(B))

� sup
t∈(0, 2aj−2rB ]

t−(n/2)

(
t

2jrB

)N

|2jB|1/2‖m‖L2(Ej(B))

� 2−j[N(1−a)+(n/2)]|2jB|1/2‖χB‖−1
Lp(·)(Rn)

, (5.8)

where N ∈ N ∩ (n/2, ∞) is fixed below. By the fact that Rh is bounded on L2(Rn), we
obtain ∥∥∥∥ sup

t∈(0, 2aj−2rB ]

[
1
tn

∫
B(·, t)

|e−t2L(mχRj(B))(y)|2 dy
]1/2∥∥∥∥

L2(Uj(B))

≤ ‖Rh(mχRj(B))‖L2(Rn) � ‖m‖L2(Rj(B)) � 2−jε|2jB|1/2‖χB‖−1
Lp(·)(Rn)

.
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This, together with (5.8), implies that

‖Ij‖L2(Uj(B)) � {2−jε + 2−j[N(1−a)+(n/2)]}|2jB|1/2‖χB‖−1
Lp(·)(Rn)

. (5.9)

Now we consider the term IIj . For any j ∈ N ∩ [11, ∞) and x ∈ Uj(B), we have

IIj(x) = sup
t∈(2aj−2rB ,∞)

[
1
tn

∫
B(x, t)

|(t2L)Me−t2L(t−2ML−M (m))(y)|2 dy
]1/2

� 2−2aMj

× sup
t∈(2aj−2rB ,∞)

[
1
tn

∫
B(x, t)

|(t2L)Me−t2L(r−2M
B L−M (m))(y)|2 dy

]1/2

� 2−2aMjR(M)
h (r−2M

B L−M (m))(x), (5.10)

where R(M)
h is defined by setting, for any f ∈ L2(Rn) and x ∈ R

n,

R(M)
h (f)(x) := sup

t∈(0,∞)

[
1
tn

∫
B(x, t)

|(t2L)Me−t2L(f)(y)|2 dy
]1/2

.

From (5.10), the boundedness of R(M)
h on L2(Rn) (see [34, p. 82]) and Remark 3.6, we

deduce that

‖IIj‖L2(Uj(B)) � 2−2aMj‖R(M)
h (r−2M

B L−M (m))‖L2(Rn)

� 2−2aMj‖(r−2
B L−1)M (m)‖L2(Rn) � 2−j(2aM+(n/2))|2jB|1/2‖χB‖−1

Lp(·)(Rn)
.

Combining this, (5.9) and (5.7), we find that, for any (p(·), M, ε)L-molecule m and
j ∈ N ∩ [11, ∞),

‖Rh(m)‖L2(Uj(B)) � [2−jε + 2−j[N(1−a)+n/2] + 2−j(2aM+(n/2))]|2jB|1/2‖χB‖−1
Lp(·)(Rn)

.

Let

θ := min
{
ε, N(1 − a) +

n

2
, 2aM +

n

2

}
.

By fixing some M ∈ N ∩ (n/2[(1/p−) − (1/2)],∞), a ∈ (0, 1), N ∈ N ∩ (n/2, ∞) and ε ∈
(n/p−, ∞), we have θ ∈ (n/p−, ∞). Thus, we obtain (5.6), which further implies (5.5).
By (5.5) and (5.4), we conclude that (5.3) holds true. This, together with (5.1) and a
density argument then finishes the proof of Theorem 5.3. �

5.2. Boundedness of fractional integral L−α

In this subsection, we show that the fractional integral L−α is bounded from H
p(·)
L (Rn)

to Hq(·)
L (Rn). We begin with recalling some notions and well-known results.

Let L be the second-order divergence form elliptic operator as in (2.5) and α ∈ (0, n/2).
Recall that the generalized fractional integral L−α is defined by setting, for any f ∈
L2(Rn) and x ∈ R

n,

L−α(f)(x) :=
1

Γ(α)

∫ ∞

0

tα−1e−tL(f)(x) dt.
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Remark 5.6. Let p−(L) and p+(L) be, respectively, as in (2.7) and (2.8). Then, by
[4, Proposition 5.3], we know that, for any p−(L) < p < q < p+(L) and α = n/2((1/p) −
(1/q)), L−α is bounded from Lp(Rn) to Lq(Rn).

To establish the boundedness of L−α on H
p(·)
L (Rn), we need the following technical

lemma, which is a slight modification of [50, Lemma 5.2], with cubes therein replaced by
balls here. The proof of Lemma 5.7 is direct, the details being omitted.

Lemma 5.7. Let η ∈ (0, n) and p(·) ∈ C log(Rn) with p+ ∈ (0, n/η). Define q(·) ∈
C log(Rn) by setting, for all x ∈ R

n, 1/q(x) := (1/p(x)) − (η/n). Then there exists a
positive constant C such that, for any sequence {Bj}j∈N of balls in R

n and {λj}j∈N ⊂ C,∥∥∥∥∑
j∈N

|λj ||Bj |η/nχBj

∥∥∥∥
Lq(·)(Rn)

≤ C

∥∥∥∥ ∑
j∈N

|λj |χBj

∥∥∥∥
Lp(·)(Rn)

.

Theorem 5.8. Let α ∈ (0, 1/2] and p(·), q(·) ∈ C log(Rn) with p+, q+ ∈ (0, 1]. Assume
that, for any x ∈ R

n, it holds true that 1/q(x) = (1/p(x)) − (2α/n). Then there exists a

positive constant C such that, for any f ∈ H
p(·)
L (Rn), ‖L−α(f)‖

H
q(·)
L (Rn)

≤ C‖f‖
H

p(·)
L (Rn)

.

Proof. Since Hp(·)
L (Rn) ∩ L2(Rn) is dense in Hp(·)

L (Rn), to prove Theorem 5.8, we only
need to show that, for any f ∈ H

p(·)
L (Rn) ∩ L2(Rn),

‖SL(L−α(f))‖Lq(·)(Rn) � ‖f‖
H

p(·)
L (Rn)

. (5.11)

From Proposition 3.12, we deduce that, for any f ∈ H
p(·)
L (Rn) ∩ L2(Rn), M ∈ N and

ε ∈ (0, ∞), there exist {λj}j∈N ⊂ C and a family {mj}j∈N of (p(·), M, ε)L-molecules,
associated with balls {Bj}j∈N of R

n, such that

f =
∞∑

j=1

λjmj in L2(Rn) (5.12)

and

A({λj}j∈N, {Bj}j∈N) � ‖f‖
H

p(·)
L (Rn)

. (5.13)

Let 1/s := (1/2) − (2α/n). Then s ∈ (2, 2n/(n− 2)] ⊂ (p−(L), p+(L)) because α ∈
(0, 1/2], and hence, by Remark 5.6, we know that L−α is bounded from L2(Rn) to Ls(Rn).
This, together with (5.12), implies that

L−α(f) =
∞∑

j=1

λjL
−α(mj) in Ls(Rn). (5.14)

By the fact that s ∈ (2, p+(L)) ⊂ (p−(L), p+(L)), we find that SL is bounded on Ls(Rn)
(see Remark 5.1). Combining this, (5.14) and the Riesz theorem, we know that there
exists a subsequence of {SL(

∑N
j=1 λjL

−α(mj))}N∈N (without loss of generality, we
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may use the same notation as the original sequence) such that, for almost every x ∈
R

n, SL(L−α(f))(x) = limN→∞ SL(
∑N

j=1 λjL
−α(mj))(x). Thus, for almost every x ∈ R

n,
SL(L−α(f))(x) ≤ ∑∞

j=1 |λj |SL(L−α(mj))(x), which further implies that

‖SL(L−α(f))‖Lq(·)(Rn) ≤
∥∥∥∥ ∞∑

j=1

|λj |SL(L−α(mj))
∥∥∥∥

Lq(·)(Rn)

=
∥∥∥∥ ∞∑

j=1

∞∑
k=0

|λj |SL(L−α(mj))χUk(Bj)

∥∥∥∥
Lq(·)(Rn)

. (5.15)

To prove Theorem 5.8, it suffices to show that there exist some M ∈ N, ε ∈ (0, ∞) and
a positive constant θ ∈ (n/p−, ∞) such that, for any (p(·), M, ε)L-molecule m, associated
with a ball B of R

n, and k ∈ Z+,

‖SL(L−α(m))‖L2(Uk(B)) � 2−kθ|2kB|1/q‖χB‖−1
Lp(·)(Rn)

, (5.16)

where (1/q) − (1/2) = 2α/n. Indeed, if (5.16) holds true, then, by the Hölder inequality,
we find that, for any fixed r ∈ (1, 2), j ∈ N and k ∈ Z+,

‖SL(L−α(mj))χUk(Bj)‖Lr(Rn) � |2kBj |(1/r)−(1/2)‖SL(L−α(mj))‖L2(Uk(B))

� 2−kθ|2kBj |(1/r)−(1/2) |2kBj |1/q

‖χBj
‖Lp(·)(Rn)

∼ 2−kθ|2kBj |2α/n |2kBj |1/r

‖χBj
‖Lp(·)(Rn)

,

which implies that∥∥∥2kθ
‖χBj

‖Lp(·)(Rn)

|2kBj |2α/n
SL(L−α(mj))χUk(Bj)

∥∥∥
Lr(Rn)

� |2kBj |1/r.

From this, (5.15), Remark 2.7(iii), the fact that p− < q− ∈ (0, 1) and Lemmas 3.8 and
5.7, it follows that

‖SL(L−α(f))‖Lq(·)(Rn)

≤
∥∥∥∥{ ∞∑

j=1

∞∑
k=0

[|λj |SL(L−α(mj))χUk(Bj)]
q−

}1/q−∥∥∥∥
Lq(·)(Rn)

�
{ ∞∑

k=0

2−kθq−

∥∥∥∥ ∞∑
j=1

[ |λj ||2kBj |2α/n

‖χBj
‖Lp(·)(Rn)

χ2kBj

]q−∥∥∥∥
Lq(·)/q− (Rn)

}1/q−

�
{ ∞∑

k=0

2−kθq−

∥∥∥∥ ∞∑
j=1

[ |λj |
‖χBj

‖Lp(·)(Rn)

χ2kBj

]q−∥∥∥∥
Lp(·)/q− (Rn)

}1/q−

�
{ ∞∑

k=0

2−kθq−

∥∥∥∥{ ∞∑
j=1

[ |λj |
‖χBj

‖χ2kBj

]p−}1/p−∥∥∥∥q−

Lp(·)(Rn)

}1/q−

. (5.17)
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Notice that, for any x ∈ R
n,

χ2kBj
(x) ≤ 2knM(χBj

)(x). (5.18)

By the fact that θ ∈ (n/p−, ∞), we can choose a positive constant r ∈ (0, p−) such that
θ ∈ (n

r ,∞). From this, (5.18), (5.17), Remark 2.7(iii) and Lemma 2.9, we deduce that

‖SL(L−α(f))‖Lq(·)(Rn)

�
{ ∞∑

k=0

2−kθq−

∥∥∥∥{ ∞∑
j=1

2knp−/r

[
M

( |λj |r
‖χBj

‖r
Lp(·)(Rn)

χBj

)]p−/r}r/p−∥∥∥∥q−/r

Lp(·)/r

}1/q−

�
{ ∞∑

k=0

2−kq−(θ−(n/r))

∥∥∥∥{ ∞∑
j=1

[ |λj |
‖χBj

‖Lp(·)(Rn)

χBj

]p−}1/p−∥∥∥∥q−

Lp(·)(Rn)

}1/q−

∼
{ ∞∑

k=0

2−kq−(θ−(n/r))[A({λj}j∈N, {Bj}j∈N)]q−
}1/q−

� A({λj}j∈N, {Bj}j∈N). (5.19)

From this and (5.13), we deduce (5.11).
To complete the proof of Theorem 5.8, we still need to show (5.16). Indeed, let

ε ∈ (n/q, ∞), M ∈ N and m be a (p(·), M, ε)L-molecule associated with ball B :=
B(xB, rB) ⊂ R

n with xB ∈ R
n and rB ∈ (0, ∞). Since (1/q) − (1/2) = 2α/n and α ∈

(0, 1/2], it follows that q ∈ [2n/(n+ 2), 2) ⊂ (p−(L), 2). Then, by Remark 5.6, we know
that L−α is bounded from Lq(Rn) to L2(Rn). From this, the boundedness of SL on L2(Rn)
(see Remark 5.1), the Hölder inequality and the fact that ε ∈ (n/q, ∞), we deduce that,
when k ∈ {0, . . . , 10},

‖SL(L−α(m))‖L2(Uk(B)) � ‖m‖Lq(Rn) ∼
∞∑

j=0

‖m‖Lq(Uj(B))

�
∞∑

j=0

|2jB|(1/q)−(1/2)‖m‖L2(Uj(B))

�
∞∑

j=0

2−j(ε−(n/q))|B|1/q‖χB‖−1
Lp(·)(Rn)

� |B|1/q‖χB‖−1
Lp(·)(Rn)

. (5.20)

When k ∈ Z+ ∩ [11, ∞), we write

‖SL(L−α(m))‖L2(Uk(B))

≤ ∥∥SL

(
L−α

[
I − e−r2

BL
]M (m)

)∥∥
L2(Uk(B))

+
∥∥SL

(
L−α

[
I − (

I − e−r2
BL

)M]
(m)

)∥∥
L2(Uk(B))
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�
∥∥SL

(
L−α

[
I − e−r2

BL
]M (m)

)∥∥
L2(Uk(B))

+ sup
1≤l≤M

∥∥SL

(
L−α

[
l

M
r2BLe

−(l/M)r2
BL

]M(
r−2
B L−1

)M (m)
)∥∥

L2(Uk(B))

=: I + II. (5.21)

To estimate the term I, let Sk(B) := (2k+2B) \ (2k−3B) for k ∈ Z+ ∩ [11, ∞). Then we
have

I ≤ ‖SL(L−α[I − e−r2
BL]M (mχSk(B)))‖L2(Uk(B))

+ ‖SL(L−α[I − e−r2
BL]M (mχ[Sk(B)]�))‖L2(Uk(B)) =: I1 + I2.

For I1, by the fact that q ∈ (p−(L), 2) and (2.6), we find that, for any t ∈ (0, ∞), e−tL

is bounded on Lq(Rn). From this, the boundedness of SL on L2(Rn) (see (2.14)), the
boundedness of L−α from Lq(Rn) to L2(Rn) and the Hölder inequality, it follows that

I1 � ‖L−α(I − e−r2
BL)M (mχSk(B))‖L2(Rn)

� ‖(I − e−r2
BL)M (mχSk(B))‖Lq(Rn) � ‖m‖Lq(Sk(B))

� ‖m‖L2(Sk(B))|2kB|(1/q)−(1/2) � 2−kε|2kB|1/q‖χB‖−1
Lp(·)(Rn)

. (5.22)

For I2, by an argument similar to that used in [35, pp. 774–777], we conclude that

I2 � 2−2kM (2krB)2α‖m‖L2(Rn).

From this and Remark 3.6, we deduce that

I2 � 2−2k(M−α)r
n((1/q)−(1/2))
B |B|1/2‖χB‖−1

Lp(·)(Rn)
� 2−k(2M+(n/2))|2kB|1/q‖χB‖−1

Lp(·)(Rn)
.

This, together with (5.22), implies that

I � [2−kε + 2−k(2M+(n/2))]|2kB|1/q‖χB‖−1
Lp(·)(Rn)

. (5.23)

By an argument similar to that used in the estimations of I, we also obtain

II � [2−kε + 2−k(2M+(n/2))]|2kB|1/q‖χB‖−1
Lp(·)(Rn)

.

Combining this, (5.23), (5.21) and (5.20), we know that, for any k ∈ Z+ and any
(p(·), M, ε)L-molecule m,

‖SL(L−α(m))‖L2(Uk(B)) � 2−kθ|2kB|1/q‖χB‖−1
Lp(·)(Rn)

,

where θ := min{ε, 2M + (n/2)}. Choosing ε ∈ (n/p−, ∞) ⊂ (n/q, ∞) and M ∈ N ∩
(n/2[(1/p−) − (1/2)], ∞), we have θ ∈ (n/p−, ∞). Thus, (5.16) holds true, which com-
pletes the proof of Theorem 5.8. �

Remark 5.9. As a special case of Theorem 5.8, when p(·) ≡ p, q(·) ≡ q and (1/p) −
(1/q) = 2α/n, we know that the operator L−α (α ∈ (0, 1/2]) is bounded from Hp

L(Rn) to
Hq

L(Rn), which was already obtained in [35, Theorem 7.2] (see also [37, Remark 7.3]).
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5.3. Boundedness of the Riesz transform ∇L−1/2

In this subsection, we show that the Riesz transform ∇L−1/2 is bounded fromH
p(·)
L (Rn)

to the variable Hardy spaces, denoted byHp(·)(Rn). We begin with recalling the definition
of the Riesz transform ∇L−1/2 and the definition of Hp(·)(Rn) introduced in [43] (see
also [22, Definition 3.2]).

Let L be the second-order divergence form elliptic operator as in (2.5). The Riesz
transform ∇L−1/2 is defined by setting, for any f ∈ L2(Rn) and x ∈ R

n,

∇L−1/2(f)(x) :=
1

2
√
π

∫ ∞

0

∇e−sL(f)(x)
ds√
s
.

By [5, Theorem 1.4], we know that the domain of L1/2 coincides with the Sobolev space
H1(Rn). Hence, for any f ∈ L2(Rn), L−1/2(f) ∈ H1(Rn) and ∇L−1/2(f), stands for the
distributional derivatives of L−1/2(f).

Let S(Rn) be the space of all Schwartz functions, and S ′(Rn) the space of all Schwartz
distributions. For any N ∈ N, define

FN (Rn) :=
{
ψ ∈ S(Rn) :

∑
β∈Zn

+, |β|≤N

sup
x∈Rn

(1 + |x|)N |Dβψ(x)| ≤ 1
}
,

where, for any β := (β1, . . . , βn) ∈ Z
n
+, |β| := β1 + · · · + βn and Dβ := (∂/∂x1)β1 · · ·

(∂/∂xn)βn . For any N ∈ N, the grand maximal function MF is defined by setting, for
any f ∈ S ′(Rn) and x ∈ R

n,

MN (f)(x) := sup{|ψt ∗ f(x)| : t ∈ (0, ∞), ψ ∈ FN (Rn)},
where, for any t ∈ (0, ∞) and ξ ∈ R

n, ψt(ξ) := t−nψ(ξ/t).

Definition 5.10. Let p(·) ∈ C log(Rn) and N ∈ ((n/p−) + n+ 1, ∞). Then the vari-
able Hardy space Hp(·)(Rn) is defined by setting

Hp(·)(Rn) := {f ∈ S ′(Rn) : ‖f‖Hp(·)(Rn) := ‖MN (f)‖Lp(·)(Rn) <∞}.
Remark 5.11. In [43, Theorem 3.3], Nakai and Sawano introduced the variable Hardy

spaceHp(·)(Rn) with p(·) ∈ C log(Rn) and, in [43, Theorem 3.3], proved that the definition
of Hp(·)(Rn) is independent of N as long as N is sufficiently large. Independently, Cruz-
Uribe and Wang [22] also introduced and studied the variable Hardy space Hp(·)(Rn)
but with some slightly weaker assumptions on p(·); moreover, in [22, Theorem 3.1], they
showed that the definition of Hp(·)(Rn) is independent of the choice of N ∈ ((n/p−) +
n+ 1, ∞).

An important fact of Hp(·)(Rn) is that every element in Hp(·)(Rn) admits an atomic
decomposition (see [22,43]). Let us first recall the definition of (p(·), q, s)-atoms as
follows. Recall that, for any s ∈ R, �s� denotes the maximal integer not greater than s.

Definition 5.12 (Cruz-Uribe and Wang [22], Nakai and Sawano [43]). Let
p(·) ∈ P(Rn), q ∈ (p+,∞] ∩ [1,∞) and s := �(n/p−) − n�. A measurable function a on
R

n is called a (p(·), q, s)-atom associated with ball B of R
n if
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(i) supp a ⊂ B;

(ii) ‖a‖Lq(Rn) ≤ |B|1/q‖χB‖−1
Lp(·)(Rn)

;

(iii) for any α ∈ Z
n
+ with |α| ≤ s,

∫
Rn a(x)xα dx = 0.

The following lemma is just [50, Theorem 1.1], which establishes the atomic decompo-
sition of Hp(·)(Rn) (see also [43]).

Lemma 5.13 (Sawano [50]). Let p(·) ∈ C log(Rn) with p+ ∈ (0, 1].

(i) Let q ∈ [1, ∞] and s := �(n/p−) − n�. Then there exists a positive constant C such
that, for any {λj}j∈N ⊂ C and any family {aj}j∈N of (p(·), q, s)-atoms, associated
with balls {Bj}j∈N of R

n, such that A({λj}j∈N, {Bj}j∈N) <∞, it holds true that
f :=

∑
j∈N

λjaj converges in Hp(·)(Rn) and ‖f‖Hp(·)(Rn) ≤ CA({λj}j∈N, {Bj}j∈N).

(ii) Let s ∈ Z+. For any f ∈ Hp(·)(Rn), there exists a decomposition f =
∑∞

j=1 λjaj in
S ′(Rn), where {λj}j∈N ⊂ C and {aj}j∈N is a family of (p(·), ∞, s)-atoms associated
with balls {Bj}j∈N of R

n. Moreover, there exists a positive constant C such that,
for any f ∈ Hp(·)(Rn),

A({λj}j∈N, {Bj}j∈N) ≤ C‖f‖Hp(·)(Rn).

Remark 5.14. We point out that, in [22], Cruz-Uribe and Wang also established the
atomic characterizations of Hp(·)(Rn). However, the atomic characterization of Hp(·)(Rn)
obtained in [22] is quite different from that of the classical atomic characterization
(and also that of [50, Theorem 1.1]), which was based on the atomic characterization
established by Strömberg and Torchinsky [53] for weighted Hardy spaces.

The following proposition is an analogue of [59, Proposition 4.7] (see also [12,38]), its
proof being omitted.

Proposition 5.15. Let p(·) ∈ P(Rn) with n/(n+ 1) < p− ≤ p+ ≤ 1 and ε ∈ (0, ∞).
Suppose that m ∈ L2(Rn) is a function satisfying

∫
Rn m(x) dx = 0 and there exists a ball

B ⊂ R
n such that, for any j ∈ Z+, ‖m‖L2(Uj(B)) ≤ 2−jε|2jB|1/2‖χB‖−1

Lp(·)(Rn)
. Then

m = C̃

( ∞∑
j=1

2−jεαj

)
in L2(Rn),

where {αj}j∈N is a family of (p(·), 2, 0)-atoms associated with balls {2j+1B}j∈N and C̃
a positive constant independent of m.

To establish the boundedness of ∇L−1/2 on H
p(·)
L (Rn), we also need the following

technical lemma, which was proved in [34, Theorem 3.4].

Lemma 5.16 (Hofmann and Mayboroda [34]). Let L be the second-order diver-
gence form elliptic operator as in (2.5). Then there exist positive constants C and
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M ∈ N with M > n/4 such that, for any t ∈ (0, ∞), closed subsets E, F ⊂ R
n with

dist (E, F ) > 0 and f ∈ L2(Rn) with supp f ⊂ E,

‖∇L−1/2(I − e−tL)M (f)‖L2(F ) ≤ C

(
t

[ dist (E, F )]2

)M

‖f‖L2(E)

and

‖∇L−1/2(tLe−tL)M (f)‖L2(F ) ≤ C

(
t

[ dist (E, F )]2

)M

‖f‖L2(E).

Theorem 5.17. Let p(·) ∈ C log(Rn) with n/(n+ 1) < p− ≤ p+ ≤ 1 and L be the
second-order divergence form elliptic operator as in (2.5). Then there exists a positive

constant C such that, for any f ∈ H
p(·)
L (Rn),

‖∇L−1/2(f)‖Hp(·)(Rn) ≤ C‖f‖
H

p(·)
L (Rn)

. (5.24)

Proof. Since Hp(·)
L (Rn) ∩ L2(Rn) is dense in H

p(·)
L (Rn), to prove Theorem 5.17, we

only need to show that (5.24) holds true for all f ∈ H
p(·)
L (Rn) ∩ L2(Rn).

By Proposition 3.12, we find that, for any f ∈ H
p(·)
L (Rn) ∩ L2(Rn), M ∈ N and

ε ∈ (0, ∞), there exist {λj}j∈N ⊂ C and a family {mj}j∈N of (p(·), M, ε)L-molecules
associated with balls {Bj}j∈N of R

n such that

f =
∞∑

j=1

λjmj in L2(Rn) (5.25)

and

A({λj}j∈N, {Bj}j∈N) � ‖f‖
H

p(·)
L (Rn)

. (5.26)

From (5.25), the boundedness of ∇L−1/2 on L2(Rn) (see [5, Theorem 1.4]) and Riesz
theorem, we deduce that

∇L−1/2(f) =
∞∑

j=1

λj∇L−1/2(mj) in L2(Rn). (5.27)

Here and hereafter, for any g ∈ L2(Rn), let

∇L−1/2(g) :=
(

∂

∂x1
L−1/2(g), . . . ,

∂

∂xn
L−1/2(g)

)
=: (∂1L

−1/2(g), . . . , ∂nL
−1/2(g)).

Let M ∈ N ∩ (n/2[(1/p−) − (1/2)], ∞) and ε ∈ (n/p−, ∞). Next, we show that, for
any (p(·), M, ε)L-molecule m, associated with ball B := B(xB , rB) ⊂ R

n with xB ∈ R
n
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and rB ∈ (0, ∞), and j ∈ Z+,∥∥∥∥[ n∑
l=1

|∂lL
−1/2(m)|2

]1/2∥∥∥∥
L2(Uj(B))

=: ‖∇L−1/2(m)‖L2(Uj(B))

� 2−jθ|2jB|1/2‖χB‖−1
Lp(·)(Rn)

, (5.28)

where θ ∈ (n/p−, ∞).
Indeed, when j ∈ {0, . . . , 10}, from the boundedness of ∇L−1/2 on L2(Rn) (see [5,

Theorem 1.4]) and Remark 3.6, it follows that

‖∇L−1/2(m)‖L2(Uj(B)) � ‖m‖L2(Rn) � |B|1/2‖χB‖−1
Lp(·)(Rn)

.

When j ∈ Z+ ∩ [11, ∞), we write

‖∇L−1/2(m)‖L2(Uj(B))

≤ ‖∇L−1/2(I − e−r2
BL)M (m)‖L2(Uj(B))

+ ‖∇L−1/2[I − (I − e−r2
BL)M ](m)‖L2(Uj(B))

� ‖∇L−1/2(I − e−r2
BL)M (m)‖L2(Uj(B))

+ sup
1≤k≤M

∥∥∥∥∇L−1/2

(
k

M
r2BLe

−(k/M)r2
BL

)M

(r−2
B L−1)M (m)

∥∥∥∥
L2(Uj(B))

=: I + II. (5.29)

We first estimate I. For any j ∈ Z+ ∩ [11, ∞), let Sj(B) := (2j+1B) \ (2j−2B). It is
easy to see that dist ([Sj(B)]�, Uj(B)) ∼ 2jrB . From this, the boundedness of ∇L−1/2

on L2(Rn) (see [5, Theorem 1.4]), Lemma 5.16 and Remark 3.6, we deduce that

I ≤ ‖∇L−1/2(I − e−r2
BL)M (mχSj(B))‖L2(Uj(B))

+ ‖∇L−1/2(I − e−r2
BL)M (mχ[Sj(B)]�)‖L2(Uj(B))

� ‖m‖L2(Sj(B)) +
(

rB
2jrB

)2M

‖m‖L2(Rn)

� [2−jε + 2−j(2M+(n/2))]|2jB|1/2‖χB‖−1
Lp(·)(Rn)

. (5.30)

By an argument similar to that used in the proof of (5.30), we have

II ≤ sup
1≤k≤M

∥∥∥∥∇L−1/2

(
k

M
r2BLe

−(k/M)r2
BL

)M

[(r−2
B L−1)M (m)χSj(B)]

∥∥∥∥
L2(Uj(B))

+ sup
1≤k≤M

∥∥∥∥∇L−1/2

(
k

M
r2BLe

−(k/M)r2
BL

)M

[(r−2
B L−1)M (m)χ[Sj(B)]� ]

∥∥∥∥
L2(Uj(B))
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� ‖(r−2
B L−1)(m)‖L2(Sj(B)) +

(
rB

2jrB

)2M

‖(r−2
B L−1)(m)‖L2(Rn)

� [2−jε + 2−j(2M+(n/2))]|2jB|1/2‖χB‖−1
Lp(·)(Rn)

.

This, together with (5.30) and (5.29), implies (5.28) with

θ := min
{
ε, 2M +

n

2

}
∈

(
n

p−
, ∞

)
.

Moreover, by an argument similar to that used in the proof of [37, Theorem 7.4], we
know that, for any (p(·), M, ε)L-molecule m and l ∈ {1, . . . , n},∫

Rn

∂lL
−1/2(m)(x) dx = 0.

From this, (5.28), Proposition 5.15 and (5.27), it follows that, for any l ∈ {1, . . . , n},

∂lL
−1/2(f) = C̃

( ∞∑
j=1

∞∑
k=1

λj2−kθαj, k

)
in L2(Rn), (5.31)

where {αj, k}j, k∈N is a family of (p(·), 2, 0)-atoms associated with balls {2k+1Bj}j, k∈N,
and C̃ is a positive constant independent of f . Noticing that p− ∈ (n/(n+ 1), 1], we
then know that s := �n((1/p−) − 1)� = 0. From this, Lemma 5.13(i), (5.31), Remark 2.7,
an argument similar to that used in the estimations of (5.17) and (5.19), the fact that
θ ∈ (n/p−, ∞) and (5.26), we deduce that, for any l ∈ {1, . . . , n} and f ∈ H

p(·)
L (Rn) ∩

L2(Rn),

‖∂lL
−1/2(f)‖Hp(·)(Rn) � A({λj2−kθ}j, k∈N, {2k+1Bj}j, k∈N)

∼
∥∥∥∥ ∞∑

k=1

2−kθp−
∞∑

j=1

[ |λj |χ2k+1Bj

‖χ2k+1Bj
‖Lp(·)(Rn)

]p−∥∥∥∥1/p−

Lp(·)/p− (Rn)

�
{ ∞∑

k=1

2−kθp−

∥∥∥∥{ ∞∑
j=1

[ |λj |χ2k+1Bj

‖χBj
‖Lp(·)(Rn)

]p−}1/p−∥∥∥∥p−

Lp(·)(Rn)

}1/p−

�
{ ∞∑

k=1

2−k(θ−(n/r))p− [A({λj}j∈N, {Bj}j∈N)]p−

}1/p−

� A({λj}j∈N, {Bj}j∈N) � ‖f‖
H

p(·)
L (Rn)

,

where r ∈ (0, p−) such that θ > (n/r). Therefore, (5.24) holds true for any f ∈
H

p(·)
L (Rn) ∩ L2(Rn), which completes the proof of Theorem 5.17. �

Remark 5.18. When p(·) ≡ p with p ∈ (n/(n+ 1), 1], Theorem 5.17 was established
in [35, Proposition 5.6] (see also [37, Theorem 7.4]).
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Heidelberg, 2013).

21. D. Cruz-Uribe, A. Fiorenza, J. M. Martell and C. Pérez, The boundedness of
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40. O. Kováčik and J. Rákosńık, On spaces Lp(x) and W k,p(x), Czechoslovak Math. J.
41(116) (1991), 592–618.

41. L. D. Ky, New Hardy spaces of Musielak-Orlicz type and boundedness of sublinear
operators, Integr. Equ. Oper. Theory 78 (2014), 115–150.

42. A. McIntosh, Operators which have an H∞ functional calculus, in Miniconference on
operator theory and partial differential equations (North Ryde, 1986), pp. 210–231, Pro-
ceedings of the Centre for Mathematics and its Applications, Volume 14, ANU, Canberra,
1986.

43. E. Nakai and Y. Sawano, Hardy spaces with variable exponents and generalized
Campanato spaces, J. Funct. Anal. 262 (2012), 3665–3748.

44. H. Nakano, Modulared semi-ordered linear spaces (Maruzen Co. Ltd, Tokyo, 1950).

45. H. Nakano, Topology of linear topological spaces (Maruzen Co. Ltd, Tokyo, 1951).
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