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This paper is about the determination of a free surface wave profile from a given
pressure distribution at the bottom. For a two-dimensional irrotational steady surface
water wave propagating over a flat horizontal bed, this problem is solved analytically
in an implicit form. Explicit solutions can be easily obtained numerically via fixed
point iterations, whose convergence is outlined mathematically and numerically. This
new surface reconstruction procedure does not involve the resolution of a differential
or an integral equation, i.e. the surface is given by algebraic local relations. Thus, this
formulation permits the free surface recovery in a simpler and more efficient way than
previous methods.
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1. Introduction
Within the framework of incompressible, homogeneous and inviscid flow modelling

of water waves, the pressure plays an important role in establishing various qualitative
properties of travelling waves. The pressure is essential in quantitative studies because
often in practice the elevation of a surface water wave is determined from pressure
data obtained at the sea bed (see, e.g., Tsai et al. 2005). Indeed, measuring a free
surface wave motion without intrusive probes is of great importance for practical
applications, and one way to achieve this is to use pressure gauges at the sea bed.
From these pressure measurements, the question is then how can one reconstruct
the free surface. This problem has long been of interest and has recently attracted
attention (e.g. Constantin 2012; Deconinck, Oliveras & Vasan 2012; Oliveras et al.
2012; Clamond & Constantin 2013).

The first approaches to reconstructing the free surface from pressure measurements
consisted of assuming that the hydrostatic approximation is sufficiently accurate.
However, for waves of moderate amplitude, prediction errors are significant (Bishop
& Donelan 1987). These inaccuracies are due to the fact that the hydrostatic
approximation ignores even linear wave effects. Taking into account the wave effect to
the linear approximation, one can derive a better approximation (Escher & Schlurmann
2008), but the benefit is limited for waves of moderate amplitude (Tsai et al. 2005).
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548 D. Clamond

These considerations motivated the quest for a reconstruction formula that accounts
for all nonlinear effects and that is thus applicable to waves of moderate and large
amplitude. Nonlinear non-local equations relating the dynamic pressure on the bed and
the wave profile were obtained without approximation from the governing equations
(Constantin 2012; Oliveras et al. 2012).

Very recently, other exact tractable relations have been obtained (Clamond &
Constantin 2013), allowing mathematical analysis and straightforward numerical
procedures for deriving the free surface from the pressure at the bed. This surface
reconstruction method requires the resolution of an ordinary differential equation.
Although the numerical resolution of this differential equation is numerically easy,
it is actually possible to solve it analytically in an implicit form, thus providing an
even simpler reconstruction procedure. The purpose of the present paper is to show
how and to provide mathematical insights of the efficiency of this new approach, as
well as some numerical evidence.

This paper is organized as follows. In § 2, the hypothesis and notation are introduced
for steady irrotational surface waves on constant depth. In order to make the present
paper self-contained, the main results of Clamond & Constantin (2013) are given in
§ 3. A new, purely local, expression for the free surface is then derived in § 4. It
requires the introduction of a new holomorphic which can be easily calculated, as
demonstrated in § 5. The convergence properties of the new formula for the surface are
outlined in § 6. Finally, numerical examples are provided in § 7.

2. Hypothesis and notation
The physical hypothesis and most mathematical notation are identical to those of

Clamond & Constantin (2013). For the sake of completeness, they are briefly recalled
here.

We consider a steady irrotational wave motion due to a surface gravity wave of
permanent form. Let (x, y) be a Cartesian coordinate system moving with the wave,
x being the horizontal coordinate and y the upward vertical coordinate. The wave
is (2π/k)-periodic in the x direction, solitary waves corresponding to the limiting
case k→ 0. Here y = −d, y = η(x) and y = 0 denote the equations of the horizontal
impermeable bottom, of the impermeable free surface and of the mean water level,
respectively. The latter equation expresses the fact that 〈η〉 = 0 for the smooth
(2π/k)-periodic wave profile η, where 〈·〉 is the Eulerian average operator over one
wavelength, i.e.

〈η〉 ≡
k

2π

∫ π/k
−π/k

η(x) dx= 0. (2.1)

Let u, v, φ and ψ be the horizontal velocity, the vertical velocity, the velocity
potential and the stream function, respectively, such that u = φx = ψy and v = φy =

−ψx. Also let the complex potential f = φ + iψ and the complex velocity w = u − iv
(with i2

= −1) be holomorphic functions of the complex abscissa z = x + iy, i.e.
f = f (z) and w = df /dz. The mass conservation and the irrotational character of the
flow are identically fulfilled with the requirement that f and w are holomorphic
functions throughout the fluid domain. The flow being steady, the bottom and surface
boundaries being impermeable, the stream function ψ = Im{f } is constant at y = −d
and at y = η. Thus, vs = ηxus (with ηx = dη/dx) and vb = 0, where subscripts ‘s’ and
‘b’ denote the restrictions at the free surface and at the bed, respectively.
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Easy surface recovery from bottom pressure 549

The momentum equation can be expressed by means of the Bernoulli condition

2p+ 2gy+ u2
+ v2
= B, x ∈ R,−d 6 y 6 η, (2.2)

for some Bernoulli constant B, and where p = p(x, y) is the pressure divided by the
(constant) density. At the free surface, the surface tensions are neglected and the
pressure is zero, i.e. ps = 0. From (2.1) and (2.2), we get relations for the Bernoulli
constant

B=
〈
u2

s + v
2
s

〉
=
〈
u2

b

〉
> 0, (2.3)

the second equality in (2.3) being a classical result (see, e.g. Longuet-Higgins 1975;
Clamond & Constantin 2013). The relations (2.2) and (2.3) yield in turn

〈p〉 = gd, (2.4)

where p(x)≡ p(x,−d)= pb(x) is the normalized pressure at the bed.
We also define the wave phase velocity c such that c = −〈ub〉, so that the wave

travels with phase speed c in the frame of reference where the mean horizontal
velocity is zero at the bed, and where c > 0 if the wave travels toward the increasing
x direction. For smooth waves, the inequality u/c < 0 occurs everywhere in the fluid
and at the free surface, a stagnation point (where u= v = 0) being possible only at the
angular crests of the highest waves. Note that B = c2 in deep water (d→∞) and for
solitary waves (k→ 0), but B 6= c2 in general.

3. Principle of the surface recovery
Following Clamond & Constantin (2013), let be the holomorphic function P such

that

P(z)≡ 1
2 B+ gd − 1

2 w2(z)

=
1
2 B+ gd − 1

2(u
2
− v2)+ iuv, (3.1)

having thus restriction at the flat bed y=−d with zero imaginary part and real part p,
i.e. p(x)=Pb =P(x− id)= gd + (B− u2

b)/2, thus P(z)= p(z+ id). Here p coincides
with the real function Re{P} only on y = −d because p is not a harmonic function
(Constantin 2006; Constantin & Strauss 2010).

Using the surface impermeability and (2.2) on the free surface y= η(x), where p= 0
and vs = usηx, we have

(us − ivs)
2
= (1− iηx)

2u2
s = (1+ η

2
x)u

2
s (1− iηx)/(1+ iηx)

= (u2
s + v

2
s )(1− iηx)/(1+ iηx)= (B− 2gη)(1− iηx)/(1+ iηx). (3.2)

Multiplying this relation by (1+ iηx) and using (3.1), we obtain at once

gη(1− iηx)+ iBηx = (Ps − gd)(1+ iηx), (3.3)

with Ps = P(zs) = P(x + iη(x)). The real and imaginary parts of (3.3) give the two
equations

gη = Re{Ps} − gd − ηxIm{Ps} =
1
2(B− u2

s − v
2
s ), (3.4)

(B− gη)ηx = (Re{Ps} − gd)ηx + Im{Ps} =
1
2(B+ u2

s + v
2
s )ηx (3.5)

where the second equalities are obtained using (3.1) and vs = ηxus.
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550 D. Clamond

The wave amplitude a is obtained by evaluating (3.4) at the wave crest located at
x= 0 (where ηx = 0 and η = a > 0) leading to the implicit equation

a= g−1Re{P(ia)} − d. (3.6)

Similarly, at the wave trough located at x = π/k (where ηx = 0 and η =−b 6 0, a + b
being thus the total wave height), we have the corresponding implicit equation

b= d − g−1Re{P(π/k − ib)}. (3.7)

The crest height a is obtained as the unique solution to (3.6), as proven by Clamond &
Constantin (2013). The convergence of (3.7) is discussed in § 6 below.

With the wave amplitude a determined by solving (3.6) iteratively, η is subsequently
obtained by re-expressing (3.5) as the ordinary differential equation

ηx = Im{Ps}/ (B− gη − Re{Ps} + gd) , (3.8)

with initial data η(0) = a. The right-hand side of (3.8) being smooth, the solution can
be obtained by a standard iterative procedure, as proven and illustrated by Clamond
& Constantin (2013). It is however possible to derive a local simpler expression
which does not require the resolution of the differential equation. In other words, the
differential equation (3.8) can be solved analytically in an implicit form, leading to an
algebraic equation for η, as shown in the next section.

The surface reconstruction procedure described above is mathematically valid for all
Stokes waves, as proven by Clamond & Constantin (2013). Although the procedure
is likely also valid for all regular waves, a rigourous mathematical proof is lacking.
Note that, by ‘Stokes waves’, Constantin (2006), Constantin & Strauss (2010) and
Clamond & Constantin (2013) mean all regular periodic symmetric waves with
one crest and one trough per wavelength. According to this definition, solitary
waves are a limiting case of Stokes waves. This is not the case with the more
conventional definition, where ‘Stokes waves’ are approximations derived from a
Poincaré–Lindstedt perturbation scheme that breaks down in shallow water and thus
cannot describe solitary waves.

4. New equations for the surface recovery
Let Q be yet another holomorphic function such that

Q(z)≡
∫ z

z0

[
P(z′)− gd

]
dz′ =

∫ z

z0

1
2

[
B− w(z′)2

]
dz′, (4.1)

where z0 is an arbitrary constant. Taking z0 at the origin of the free surface (i.e. x = 0,
y = a, thus z0 = ia) and choosing the free surface as integration path, the definition
(4.1) yields

Qs(x)=
∫ x

0

[
P(x′ + iη(x′))− gd

]
[1+ iηx(x

′)] dx′, (4.2)

thus, substituting (3.3) and after some elementary algebra,

Qs(x)=
∫ x

0
gη(x′) dx′ + i [η(x)− a]

[
B−

1
2

ga−
1
2

gη(x)

]
. (4.3)

It is worth noting that the choice of z0 in the definition of Q is obviously unessential,
with z0 = ia being chosen above for convenience. In particular, if z0 is any point at the
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free surface (i.e. z0 = x0 + iη0 with η0 = η(x0)), then one obtains a relation similar to
(4.3) with

∫ x
0 replaced by

∫ x
x0

and a replaced by η0.
The imaginary part of (4.3) provides a quadratic algebraic equation in η, relating the

latter to Im{Qs}. Solving this quadratic equation for η, one immediately obtains

η = g−1

[
B−

√
(B− ga)2 − 2gIm{Qs}

]
, (4.4)

where the minus sign in front of the radical is chosen (instead of the plus sign) in
order to fulfil the relation η(0) = a. In (4.4), substituting Im{Qs} obtained from (4.2),
we have a local algebraic (i.e. neither differential nor integral) relation defining the
free surface η because, in practice, the integral in (4.2) can be computed analytically
in closed form (see the examples in § 5).

The relation (4.4) is an exact solution of (3.8) written in implicit form, as one can
easily check directly from the derivative of (4.4) and using (4.2), i.e.

ηx =
[Im{Qs}]x√

(B− ga)2 − 2gIm{Qs}

=
Im{Ps} + (Re{Ps} − gd) ηx

B− gη
, (4.5)

then solving (4.5) for ηx, yielding (3.8) precisely.
For practical applications, the relation (4.4) is obviously a major improvement

compared with (3.8). Indeed, using (3.8) requires the numerical resolution of a
nonlinear differential equation of the form ηx = Φ(x, η), while with (4.4) we have
to solve an equation of the form η = Ψ (x, η). Thus, the latter gives access to the free
surface at a single point x = x0 without computing η at the neighbouring points, while
using (3.8) requires the determination of η over the whole period.

Note that analytic (explicit or implicit) solutions are not necessarily useful in
practice if they involve hard-to-compute special functions or/and slowly convergent
series. This is not the case here since, for practical surface recovery, few elementary
functions are involved in (4.4), as shown below.

An equation for the Bernoulli constant is derived averaging the imaginary part of
(4.3) and using (2.1)

2aB= g
(
a2
−
〈
η2
〉)
− 2 〈Im{Qs}〉 . (4.6)

This equation for B is simpler than that derived by Clamond & Constantin (2013).
However, the relation (4.6) involves integrations and is therefore non-local. An
alternative explicit closed-form expression for B is obtained if both a and b are
already known from, respectively, the local relations (3.6) and (3.7). Indeed, from (4.4)
written at the trough (x= π/k, η =−b), one obtains

B= 1
2 g(a− b)− (a+ b)−1Im{Q(π/k − ib)}, (4.7)

that is a very simple expression for B once a, b and Q are known.
With the pressure at the bottom being known, it is trivial to obtain P and

subsequently Q, as indicated in the next section. Once a, b and Q have been
determined, an explicit expression for η can be obtained numerically via fixed-point
iterations of (4.4), whose convergence is studied in § 6.

5. Examples of analytic approximations for the function Q

For the recovery of the surface wave profile η, given the pressure p at the seabed,
one can proceed as in the two examples below.
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552 D. Clamond

5.1. Fourier reconstruction
For periodic waves, the pressure measurements at the bed can be approximated by a N
th-order Fourier polynomial and the function P is obtained immediately:

p(x)≈ gd +
N∑
|n|>0

pn exp(inkx) ⇒ P(z)= gd +
N∑
|n|>0

pn
exp(inkz)

exp(nkd)
, (5.1)

with p−n = pn since p is real. The amplitude a and the trough height b are then
determined from (3.6) and (3.7). The function Q is subsequently easily obtained as

Q(z)=
N∑
|n|>0

pn

ink

exp(inkz)− exp(−nka)

exp(nkd)
, (5.2)

showing that the determination of Q from p is a trivial matter. Note that the
antiderivative, required to determine Q, has a natural smoothing effect (i.e. the Fourier
coefficient of Q decay faster than those of P) that is an interesting feature for
practical applications. The Bernoulli constant B is then computed from (4.7) and,
finally, one obtains the free surface for −b< η < a iterating (4.4).

5.2. Cnoidal-like reconstruction
The Fourier polynomial approximation (5.1) is not the only possible approximation
and it is not suitable in shallow water, especially for solitary waves. Clamond &
Constantin (2013) suggested another simple approximation able to deal with waves in
shallow water. It is derived from the shallow-water approximation and involves the
Jacobian elliptic functions {sn, cn, dn} and the elliptic integrals K and E of parameter
m (Abramowitz & Stegun 1965), i.e.

p(x)≈ gd + A
[
dn2(κx | m)− E(m)/K(m)

]
, (5.3)

where the (real) parameters d, A, κ and m have to be determined from the
experimental data, for instance via a least-squares minimization. Note that the
approximation (5.3) assumes a wave crest at abscissa x = 0; if this is not the case,
a phase shift parameter has to be introduced and determined from the data. Note also
that, with (5.3), the condition (2.4) is fulfilled identically because the squared bracket
averages to zero exactly (for all m and κ).

The holomorphic function P is then obtained replacing x by z+ id in (5.3), i.e.

P(z)= gd + A
[
dn2(κ(z+ id) | m)− E(m)/K(m)

]
, (5.4)

and the function Q is subsequently derived at once substituting (5.4) into (4.1):

Q(z)= (A/κ) [Z(κ(z+ id) | m)− Z(iκ(a+ d) | m)] , (5.5)

where Z is the Jacobi zeta function (Abramowitz & Stegun 1965). For (2π/k)-
periodic waves, we have κ = kK(m)/π, and for solitary waves (i.e. k→ 0, m→ 1)
the approximation (5.5) becomes

Q(z)= (A/κ) [tanh(κ(z+ id))− i tan(κ(a+ d))] . (5.6)

This example also shows that the calculation of Q is a simple matter.

5.3. Remarks
Other basis of functions can be used to represent the pressure at the bottom p, but the
two examples above are a priori the more relevant for practical applications.
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FIGURE 1. (Colour online) Numerical fixed-point iterations of (3.6) (upward triangles) and
(3.7) (downward triangles) for the fifth-order Fourier reconstruction.

The convergence of (5.1) as N →∞ has already been addressed by Clamond
& Constantin (2013). Their numerical example also shows that this Fourier
approximation can be used in numerical applications. Further numerical examples
are provided in § 7.

The validity of approximations (5.4)–(5.5) is not limited to shallow water. Indeed,
this kind of approximation is quite accurate for all depths, even for waves of large
amplitude (Clamond 1999, 2003). Further evidence is given in § 7 below. If more
accuracy is required, then higher-order cnoidal-like approximations can be introduced
(Fenton 1979; Clamond & Fructus 2003).

6. Convergence outline
A remaining open question is whether or not the iterations of (3.7) and (4.4)

converge. Numerical investigations suggest that converge occurs (see § 7), this
convergence is supported by the theoretical investigation of this section.

Following Clamond & Constantin (2013), the convergence of (3.7) is investigated
introducing the functional iterations

y= F(y)≡
Re{P(π/k + iy)}

g
− d = y+

p(π/k, y)

g
, y ∈ [−d,−b]. (6.1)

Iterations of (6.1) converge if F is a contraction, i.e. convergence is ensured if
−1 < Fy < 1, divergence occurs if |Fy| > 1 and if |Fy| = 1 iterations may converge
or not depending on F (Devaney 1989). For (6.1), convergence is thus guaranteed if
−2g < py < 0 for y ∈ [−d,−b]. With the results by Constantin (2006) and Constantin
& Strauss (2010) yielding a rigourous proof of the inequality py 6 −g under the
troughs of Stokes waves, the upper bound for contractivity is fulfilled. The lower
bound py > −2g is obviously satisfied for solitary waves (since then py → −g as
x→ ±∞), but a rigourous proof for general waves is apparently not available in
the literature. Numerical experiments (see figure 1 below) suggest that iterations (3.7)
converge, even faster than iterations (3.6).
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In order to investigate the convergence of (4.4), let the functional iterations be

y= G(y)≡
B

g
−

√
(B− ga)2 − 2gIm{Q(x+ iy)}

g
, y ∈ [−d, η(x)], (6.2)

for a known holomorphic function Q at a fixed abscissa x and for given a and B.
Iterations of (6.2) converge if G is a contraction (i.e. if −1< Gy < 1), the definition of
G giving

Gy =
[Im{Q}]y√

(B− ga)2 − 2gIm{Q}
=

[Im{Q}]y

B− gy
. (6.3)

From the definitions (3.1) and (4.1) of, respectively, the functions P and Q, using the
Cauchy–Riemann relations and the Bernoulli equation (2.2), we have

[Im{Q}]y = Re{P} − gd = 1
2 B− 1

2 u2
+

1
2v

2
= p+ gy+ v2, (6.4)

so the relation (6.3) can be rewritten

Gy =
p+ gy+ v2

B− gy
=

p+ gy+ v2

2p+ gy+ u2 + v2
. (6.5)

The upper bound for contraction condition Gy < 1 yields the inequality p + u2 > 0
that is always satisfied, except at the (angular) crest of the highest wave where
p = u = v = 0 (stagnation point at the crest). Conversely, the lower bound Gy > −1
yields the inequality p + v2

+ B > 0 that is obviously always satisfied. Therefore, G
is a contraction everywhere in the bulk and at the free surface and the iterations (6.2)
converge to a unique solution (Devaney 1989), except perhaps at stagnation points of
the free surface (angular crests forming a 120◦ inner angle).

Note that this analysis is valid for all regular waves, periodic or not, with one or
more crests and troughs per period, symmetric or not. In other words, this proof is not
limited to Stokes waves, unlike the proof for (3.6) and the incomplete proof for (3.7)
(although convergences of these iterations likely also occur for more general solutions).
Note also that, with Gy being independent of a (i.e. independent of the choice of z0 in
the definition of Q), the convergence proof for the iterations (6.2) is valid wherever z0

is chosen in the fluid.

7. Numerical example
We illustrate the new reconstruction procedure with the same numerical example

used by Clamond & Constantin (2013). Thus, we consider an exact surface wave with
a wave height/depth ratio equal to 0.25 and wavelength/depth ratio equal to 5 (i.e.
a/d ≈ 0.25, ka≈ 0.314), which is a wave of significant amplitude in rather deep water.
This exact solution is computed numerically solving the Euler equations (Fenton 1988)
and the exact pressure at the bed is thus obtained. We take 32 samples of the bottom
pressure equally spaced over one wavelength. These are the pressure ‘measurements’
we use for the reconstruction. We suppose that ρ and g are known parameters, the
other parameters having to be computed from the data.

Similarly to the approach of Clamond & Constantin (2013), we do not make
any attempt to introduce sophisticated numerical techniques. We use basic numerical
implementation of the analytical formulae given above.
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FIGURE 2. (Colour online) Error of the recovered amplitude a (upward triangles) and trough
height b (downward triangles) for various-order Fourier reconstructions.

7.1. Fourier recovery

An analytic approximation of the pressure at the bottom is obtained by fitting, via
least-squares minimization, a fifth-order Fourier polynomial among the pressure data at
the bed. The accuracy of this reconstruction is illustrated by Clamond & Constantin
(2013) with various data and graphics. Thus, we focus here on the iterations (3.7)
required to compute the trough height b.

Starting with initial guess b(0) = −a, so that it is guaranteed to lie in the fluid
domain, the fixed-point iterations of (3.7) converge, even faster than those of (3.6),
as illustrated in figure 1. This result provides numerical evidence of convergence, but
a rigourous mathematical proof is still lacking. Note that the rate of convergence
is linear here because we use simple fixed-point iterations, but more sophisticated
algorithms (e.g. Newton, Halley) will easily provide faster rates of convergence.

For the reconstruction of the whole surface, the formula (4.4) provides the same
result (within tiny numerical errors) as the more involved resolution of (3.8) used
by Clamond & Constantin (2013). This is to be expected because (4.4) is an exact
solution of (3.8). The speed of the two methods is very different, however.

Using M = 1024 equally spaced nodes and fast Fourier transforms, the differential
equation (3.8) is solved iteratively via a pseudo-spectral method in O(M log M)
operations. This is the fastest possible accurate algorithm. Another resolution of
comparable accuracy using, say, a Runge–Kutta method, would be much slower
(typically in O(M2) operations). Conversely, the fixed-point iterations of (4.4) give
the same result in O(M) operations. For the example considered here, the surface is
obtained about 13 times faster using (4.4) than using (3.8). This gain is consistent with
the value log2(1024) = 10 (characterizing the different number of operations) and the
fact that the Bernoulli constant is implicit using (3.8), thus requiring nested loops to
compute the solution (Clamond & Constantin 2013), while it is explicitly known in the
new algorithm.

We also investigated the effect of the number of harmonics N in the reconstruction
of the free surface. Figure 2 shows that the accuracy increases with the number of
harmonics, and that the trough height b is always a fixed point of (3.7).
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FIGURE 3. (Colour online) Recovery using the cnoidal-like ansatz (5.3): (a) profile of
pressure at the bed; (b) difference between fitted and exact pressure at the bed; (c) Fourier
spectrum of pressure at the bed; (d) profile of the recovered free surface; (e) recovered free
surface error.

7.2. Cnoidal-like recovery
We analyse here the relevance of the cnoidal-like ansatz (5.3). It should be emphasized
that using this ansatz is a priori difficult because we are dealing with a wave in rather
deep water.

The parameters involved in (5.3) being obtained by least-squares minimization,
the pressure at the bed (figure 3a) is well-approximated by the ansatz (5.3), i.e.
the accuracy is about four digits (figure 3b) and the Fourier analysis shows a
spectral content matching the exact one (figure 3c). The reconstructed free surface
is reasonably accurate (figure 3d,e), although not as accurate as the fifth-order Fourier
reconstruction.

However, the fifth-order Fourier approximation has more free parameters to be
adjusted than the cnoidal-like approximation. For a fair contest, we should compare
two ansatz having exactly the same number of free parameters. Therefore, in that

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
3.

25
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2013.253


Easy surface recovery from bottom pressure 557

0

0.5

1. 0

1.5

2.0

(× 10–3)

0 0.5 1.0 1.5 2.0 2.5
–0.5

2.5

FIGURE 4. (Colour online) Free surface difference between cnoidal-like and second-order
Fourier recoveries.

respect, we should compare (5.3) with a second-order Fourier approximation, that
is (5.1) with N = 2. We thus find that these two approximations have comparable
accuracies (figure 4).

8. Conclusion
We have derived some new exact relations for the reconstruction of the free surface

wave profile from pressure measurements at the bed. These new relations allow an
easy and fast reconstruction, which is interesting for practical applications. This
was possible thanks to the introduction of the holomorphic function Q. Indeed, the
function Q yields a reformulation of the problem into a much simplified, but still
exact, form. Efficient algorithms and easy proofs then follow at once. It remains to
determine whether the present reconstruction procedure works for limiting waves with
a stagnation point at the angular crest. This is a problem of more theoretical than
practical interest. For practical applications, the method efficiency is illustrated with
some numerical examples.

The recovery procedure described here is promising. It would be interesting to see
whether a similar approach could be achieved to treat other water wave problems,
such as unsteady flows and varying bottom. These matters will be the focus of future
investigations.
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