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Solitary waves in turbulent open-channel flow
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Two-dimensional turbulent free-surface flow is considered. The ensemble-averaged
flow quantities may depend on time. The slope of the plane bottom of the channel
is assumed to be small. The roughness of the bottom is allowed to vary with
the space coordinate, leading to small variations in the bottom friction coefficient.
An asymptotic analysis, which is free of turbulence modelling, is performed for
large Reynolds numbers and Froude numbers close to the critical value 1. As a
result, an extended Korteweg–deVries (KdV) equation for the surface elevation is
obtained. Other flow quantities, such as pressure, flow velocity components, and
bottom shear stress, are expressed in terms of the surface elevation. The steady-state
version of the extended KdV equation has eigensolutions that describe stationary
solitary waves. Time-dependent solutions of the extended KdV equation provide
a means for discriminating between stable and unstable stationary solitary waves.
Solutions of initial value problems show that there are transient solutions that approach
asymptotically the stable stationary solitary wave, whereas other transient solutions
decay asymptotically with increasing time.
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1. Introduction
The behaviour of solitary waves in turbulent open-channel flow is studied in the

present work, with the particular aim of investigating whether solitary waves may
exist in steady flow, i.e. as stationary solitary waves. On the basis of momentum
considerations it may be expected that stationary solitary waves cannot exist in
turbulent open-channel flow over plane bottoms with constant roughness. The present
results will confirm that presumption, cf. § 4.1. Thus the following analysis will
allow for varying bottom roughness. The law of momentum can then be satisfied by
compensating the combined effects of the additional weight and the velocity decrease
in the solitary wave by a suitable increase of the friction coefficient.

Various ad-hoc approximations have been commonly applied, often quite
successfully, in open-channel hydraulics, cf. the classical work by Hager & Hutter
(1984), or the more recent examples due to Castro-Orgaz & Chanson (2011),
Mohamed (2010), Castro-Orgaz & Hager (2011), and Bose, Castro-Orgaz & Dey
(2012). Furthermore, a variety of models for bottom friction has been applied, cf.
Miles (1983a,b), Caputo & Stepanyants (2003), Grimshaw, Pelinovsky & Talipova
(2003), El, Grimshaw & Kamchatkov (2007), and Castro-Orgaz (2010). In contrast,
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FIGURE 1. A solitary wave in turbulent open-channel flow.

the present analysis is based on a rigorous asymptotic expansion for large Reynolds
numbers and Froude numbers close to the critical value 1.

The main result of the asymptotic analysis will be an extended Korteweg–deVries
(KdV) equation. Special cases of the present result have been obtained previously. For
constant bottom roughness, the steady-state version of the extended KdV equation was
derived by Grillhofer & Schneider (2003) in an analysis of the undular hydraulic jump.
Later the analysis was extended to account for the possibility of non-developed flow
far upstream, leading to the steady-state version of an extended KdV equation with a
constant ‘forcing’ term, cf. Schneider (2005), Jurisits, Schneider & Bae (2007), and
Jurisits & Schneider (2012). In addition, a variable forcing term in the steady-state
version of an extended KdV equation was obtained under the condition that the surface
pressure is subject to a space-dependent perturbation (Schneider, Jurisits & Bae 2010).
On the basis of that equation, an asymptotic iteration procedure was developed for the
numerical solution of the full equations of motion of near-critical free-surface flows,
and the method was applied to the undular jump. Finally, it should be mentioned
that an extended KdV equation of the present type, yet without the forcing term, has
already been obtained as the result of an asymptotic analysis of undular hydraulic
bores (Kang 2009).

Since the KdV equation and its extensions serve to model a large variety of
physical processes, cf. Newell (1985), Christov & Velarde (1995), Scott (2003) and
the references given therein, there are also a large number of papers dealing with the
solutions or methods of solution. In the present context the monographs by DeKerf
(1988), Johnson (1997) or Scott (2003), as well as the survey articles by Grimshaw
(2005, 2007, 2010) are of particular interest. Equations similar to the present one
have been considered by Ott & Sudan (1970), Leibovich & Randall (1971, 1973),
Knickerbocker & Newell (1980), Caputo & Stepanyants (2003), Grimshaw, Zhang &
Chow (2007), Chardard et al. (2011) and Abd-el-Malek & Helal (2011), among others.

2. Governing equations
2.1. Reference quantities and non-dimensional variables

Two-dimensional turbulent free-surface flow over a plane bottom with small, constant
slope α is considered, see figure 1. Surface tension will be neglected. Ensemble-
averaged quantities will be denoted by an overbar, fluctuations around the average by
a prime. The main goal of the analysis is to determine the averaged surface height, h̄,
as a function of time and space coordinates. A Cartesian coordinate system is chosen
such that the x-axis is in the bottom plane, while the y-axis points upwards. The flow
velocity components in the (x, y) coordinate system are u and v, respectively. The flow
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Solitary waves in turbulent open-channel flow 139

far upstream is assumed to be in a steady state and fully developed, i.e. ū= ū(−∞, y),
v̄ ≡ 0, and h̄ = h̄r = const as x→ −∞. Note that in the present paper the term
‘fully developed’ implies mechanical equilibrium of gravity and bottom-friction forces,
in accord with the definition commonly used in theoretical fluid mechanics. Some
experimentalists, however, use a weaker definition, i.e. the flow is said to be fully
developed when the edge of the boundary layer that originates at the bottom reaches
the surface.

For introducing non-dimensional variables, the flow far upstream is chosen as a
reference state, which is denoted by the subscript r. Thus h̄r serves as reference length,
while the volumetric mean velocity ūr, ūr = V̇/h̄r, is chosen as the reference velocity,
with V̇ being the constant volume flow rate per unit width of the channel. As has been
shown previously for the related problem of undular jumps (Grillhofer & Schneider
2003), choosing the volumetric mean velocity as the reference velocity is essential for
keeping the analysis free of turbulence modelling. Concerning further dimensionless
quantities, the pressure is referred to the hydrostatic pressure at the bottom of the
channel far upstream, i.e. gρh̄r, where g is the acceleration due to gravity and ρ is the
constant density of the fluid. The Reynolds stresses are referred to the wall shear stress
far upstream, which may be written as ρu2

τ r, where uτ r is the reference value of the
friction velocity, uτ . Since the wall shear stress balances the tangential component of
the gravity force in fully developed flow, uτ r is given by

uτ r =
√

gαh̄r. (2.1)

It is well known that inviscid solitary waves with amplitudes of the order of ε, with
ε � 1, have wavelengths of the order of 1/

√
ε in terms of the depth of the fluid

layer. Anticipating that the same relationship for the orders of magnitude will also
hold in the case of turbulent flows at large Reynolds numbers, a small parameter δ is
introduced as

δ = 3
√
ε (2.2)

for the purpose of stretching the longitudinal coordinate, x. The coefficient 3 has been
chosen merely in the interest of simplifying the final equation.

With regard to the time t it would be straightforward to introduce h̄r/ūr or, in view
of the large wavelengths, δ−1h̄r/ūr as a reference time. But neither of those reference
times would characterize the time scale of the slow decay of the solitary wave due to
the effects of turbulence at large Reynolds numbers. Thus we introduce another small
parameter, σ , with the purpose of stretching the time such that the time-derivative term
in the non-dimensional final equation is of the same order of magnitude as the terms
containing space derivatives. As the analysis will show, this aim can be achieved with
the choice

σ = (9/2) ε3/2, (2.3)

where the coefficient 9/2 serves to simplify the final equation.
Non-dimensional variables are then introduced as follows:

X = δ x/h̄r, Y = y/h̄r, T = σ (ūr/h̄r) t, H̄ = h̄/h̄r, Ū = ū/ūr, V̄ = δ−1v̄/ūr,

(2.4a)

P̄= p̄/gρh̄r, U′2 = u′2/u2
τ r, U′V ′ = u′v′/u2

τ r, V ′2 = v′2/u2
τ r, Uτ = uτ/uτ r.

(2.4b)
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140 W. Schneider

Note that H̄ and Uτ are unknown functions of X and T , while the other flow quantities
depend also on Y .

Concerning viscosity effects, very large Reynolds numbers will be considered. It is
common practice in the asymptotic analysis of turbulent flow to define the Reynolds
number in terms of the reference friction velocity, i.e.

Reτ = uτ rh̄r/ν = (gα)1/2h̄3/2
r ν−1, (2.5)

where ν is the kinematic viscosity. In the limit of large Reynolds numbers the flow
field is composed of two layers, i.e. the defect layer and the thin viscous wall
layer at the bottom. Concerning the latter, a universal solution is known to exist
for steady flow, cf. Gersten & Herwig (1992), Kluwick (1998), or Schlichting &
Gersten (2000). For the present unsteady flow, the estimate given in appendix A shows
that the time-derivative term in the equations of motion of the viscous wall layer is of
O(εδ Re−1

τ ln Reτ )→ 0 as ε→ 0 and Reτ →∞. Thus the universal wall layer solution
is applicable to the present case, and it is sufficient to consider only the defect layer in
what follows.

2.2. Equations of motion
In terms of the present non-dimensional variables, the continuity equation reads

ŪX + V̄Y = 0. (2.6)

Here, and in what follows if convenient, derivatives are indicated by subscripts.
Since viscous stresses are negligible in the defect layer, whereas the Reynolds

stresses are of essential importance, the momentum equations for the ensemble-
averaged quantities become

Fr2

(
3ε
2
∂Ū

∂T
+ Ū

∂Ū

∂X
+ V̄

∂Ū

∂Y

)
=−∂P̄

∂X
+ α
δ
− α
δ

(
δ
∂U′2

∂X
+ ∂U′V ′

∂Y

)
, (2.7a)

δ2Fr2

(
3ε
2
∂V̄

∂T
+ Ū

∂V̄

∂X
+ V̄

∂V̄

∂Y

)
=−∂P̄

∂Y
− 1− α

(
δ
∂U′V ′

∂X
+ ∂V ′2

∂Y

)
, (2.7b)

with the Froude number

Fr = ūr/

√
gh̄r. (2.8)

Note that the momentum equations would contain additional terms if time-averaged,
instead of ensemble-averaged, quantities were used, see Schlichting & Gersten (2000),
p. 644.

2.3. Boundary and matching conditions
The system of basic equations (2.6), (2.7a) and (2.7b) is to be solved subject to
appropriate boundary conditions. Since the viscous wall layer is very thin, the normal
velocity component in the defect layer has to satisfy the conventional boundary
condition at the bottom, i.e.

V̄(X, 0,T)= 0. (2.9)

Matching the defect-layer solution to the wall-layer solution will be accomplished
by making use of the well-known logarithmic ‘overlap law’, commonly also known as
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Solitary waves in turbulent open-channel flow 141

the ‘law of the wall’. Following Schlichting & Gersten (2000), p. 534, the following
expression for the non-dimensional surface velocity is obtained:

Ū(X, H̄,T)=√αFr−1Uτ [(1/κ) ln(ReτUτ H̄)+ C+(X)+ C̄(X,T)], (2.10)

where κ is von Kármán’s constant, commonly taken to be 0.41, while

C̄(X,T)=
∫ H̄

0

(
Fr√
αUτ

∂Ū

∂Y
− 1
κY

)
dY. (2.11)

C+ is an empirical function of the non-dimensional roughness, k+s , with k+s =
ksuτ/ν =

√
gαh̄rksUτ/ν, where ks is the sand roughness height, cf. Schlichting &

Gersten (2000), pp. 526–528. As an alternative to the sand roughness, the non-
dimensional technical roughness may be used, cf. also Schlichting & Gersten (2000),
pp. 529–532. In the present analysis, the roughness is allowed to vary with X, leading
to C+ = C+(X). For a hydraulically smooth bottom (k+s � 1), the generally accepted
value of C+ is C+ = 5.0, while in the limiting case of a fully rough bottom (k+s →∞)
C+ varies according to the relationship C+ = (1/κ) ln(1/k+s )+ 8.0.

A further matching condition is required for the Reynolds shear stress. Written in
non-dimensional variables it becomes

−U′V ′ = U2
τ as Y→ 0. (2.12)

At the free surface, kinematic and dynamic boundary conditions have to be satisfied.
The kinematic boundary condition is prescribed in the conventional form, i.e.

V̄(X, H̄)= 3
2εH̄T + Ū(X, H̄)H̄X. (2.13)

Equation (2.13) defines the averaged surface such as to ensure that an element of the
ensemble-averaged surface Y = H̄(X,T) remains in the surface as it moves with the
ensemble-averaged velocity (Ū, V̄). With respect to the dynamic boundary conditions,
which express continuity of stresses at the free surface, we follow the conventional
approach, cf. Rodi (1993). With surface tension and viscous stresses being neglected,
but Reynolds stresses being taken into account, the dynamic boundary conditions with
respect to the X- and Y-directions, respectively, then become

−[P̄(X, H̄,T)+ αU′2(X, H̄,T)] sinϑ + αU′V ′(X, H̄,T) cosϑ = 0, (2.14a)

[P̄(X, H̄,T)+ αV ′2(X, H̄,T)] cosϑ − αU′V ′(X, H̄,T) sinϑ = 0, (2.14b)

where ϑ is the inclination angle of the averaged free surface with respect to the
horizontal, i.e. tanϑ = δ H̄X . The application of ‘conventional’ boundary conditions at
the free surface, i.e. (essentially) vanishing Reynolds shear stress at the surface, has
been justified, among others, by Komori et al. (1993) and Handler et al. (1993). It
is in agreement with measurements due to Nezu & Rodi (1986) and Lennon & Hill
(2006), though (rather small) deviations have also been detected, see Brocchini &
Peregrine (1998) and Svendsen et al. (2000).

3. Derivation of an extended KdV equation by asymptotic analysis
3.1. Asymptotic expansions

Solitary waves with small amplitudes of the order ε are known to move in an inviscid,
quiescent fluid with a velocity that corresponds to a slightly supercritical Froude
number, i.e. Fr = 1+O(ε). Thus the following relationship between the Froude number
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142 W. Schneider

and the small parameter ε is postulated, introducing a coefficient 3/2 that serves for
later convenience:

Fr = 1+ 3
2ε (0< ε� 1). (3.1)

So far, two small parameters, i.e. ε and α, have been introduced. Their relative size
is now chosen as follows. Since it is one of the aims of the present work to determine
how turbulence affects the existence and propagation of solitary waves, it is necessary,
on the one hand, that the leading terms due to turbulence, though small, are retained in
the analysis. On the other hand, it is intended to keep the analysis free of turbulence
modelling by appropriately limiting the magnitude of the Reynolds stresses. These two
requirements turn out to be satisfied if α is of the order of ε2. Therefore the coupling
parameter

A= α/ε2 (3.2)

is introduced, and in performing an asymptotic expansion for small values of ε it is
assumed that A= O(1).

The dependent variables are now expanded in terms of powers of ε, e.g.

H̄(X,T)= H0 + εH1(X,T)+ ε2H2(X,T)+ o(ε2), (3.3)
Ū(X,Y,T)= U0(Y)+ εU1(X,Y,T)+ ε2U2(X,Y,T)+ o(ε2), (3.4)

U′V ′(X,Y,T)= (U′V ′)0(Y)+ ε (U′V ′)1(X,Y,T)+ ε2(U′V ′)2(X,Y,T)+ o(ε2). (3.5)

To keep the analysis free of turbulence modelling, several important points have
to be observed. First, the volumetric mean velocity of the fully developed flow far
upstream has to be taken as the reference velocity, as already noted above. Secondly,
the surface height of the fully developed flow, i.e. the reference height h̄r, ought to
be known for given values of bottom slope, α, and volume flow rate, V̇ . This implies
that the friction coefficient of the channel with unperturbed bottom roughness, cfr, is

known, as the force balance gives h̄r = (cfrV̇2/2gα)
1/3

. Thirdly, the non-dimensional
‘velocity defect’ 1U = 1U(Y) will be introduced such that the local value of Ū in
the fully developed flow far upstream differs from its volumetric mean, i.e. 1, by the
amount

√
α 1U. This quantity could be considered as known from experiments (e.g.

Nezu & Rodi 1986), but it will turn out that the final result does not contain it. In
addition, the perturbation of the defect velocity profile, which leads to a perturbation
of C̄ as defined by (2.11), will appear only in terms of higher-order than presently
considered. Finally, it is of importance to apply the logarithmic ‘law of the wall’
(‘overlap law’) in a suitable form, such as (2.10). On that basis, the asymptotic
analysis, which requires some subtle manipulations, can be performed as follows.

3.2. First-order equations
With the basic state given by the simple relations

H0 = 1, U0 = 1, V0 = 0, P0 = 1− Y, (U′V ′)0 = Y − 1, (3.6)

the expansion of the continuity equation (2.6) leads to U1X + V1Y = 0, which can be
integrated to obtain

V1 =−
∫ Y

0
U1X dY, (3.7)

where the boundary condition at the bottom, (2.9), has already been satisfied.
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Solitary waves in turbulent open-channel flow 143

Before expanding the momentum equations (2.7a) and (2.7b) for small values of ε,
the small parameters δ and α are expressed in terms of ε according to (2.2) and (3.2),
respectively. Expanding then (2.7b) gives P1Y ≡ 0, i.e.

P1 = P1(X,T). (3.8)

Then expanding (2.7a), one obtains U1X = −P1X . This can also be integrated. The
free function of integration is determined from relations characterizing the fully
developed flow far upstream, i.e. P1 ≡ 0, U1 =

√
A1U(Y) as X→−∞. 1U(Y) is

the non-dimensional velocity defect, which is introduced as described in the last
paragraph of the preceding section. Therewith one obtains the relation

U1(X,Y,T)=−P1(X,T)+√A1U(Y). (3.9)

Next, the following relations follow from the dynamic boundary conditions (2.14b)
and (2.14a), in this order:

P1(X,T)= H1(X,T), (3.10)
(U′V ′)1(X, 1,T)=−H1(X,T). (3.11)

Taking (3.9) and (3.10) into account, the integration in (3.7) can be performed, with
the result

V1 = Y H1X. (3.12)

Finally, the logarithmic law (2.10) is expanded together with (2.11). Concerning the
expansion of the latter equation it suffices to formally write C̄(X,T)= C̄r + εC̄1(X,T),
where C̄r denotes the value of C̄ in the reference state, i.e. for the fully developed flow.
Using (2.5) and (2.12), one obtains the following relation:

1+ εU1(X, 1,T)+ · · · =
√
α

Fr

1
κ

ln

√
gαh̄3

r

ν
+ C+ + C̄r


+ ε
√
α

Fr

−1
2
(U′V ′)1(X, 0,T)

1
κ

ln

√
gαh̄3

r

ν
+ C+ + C̄r + 1

κ

+ H1

κ
+ C̄1

+ · · · .
(3.13)

Far upstream, the velocity perturbation is given by the velocity defect of the
fully developed flow, the perturbation of the Reynolds shear stress vanishes, and
the roughness is equal to the constant reference value, i.e.

X→−∞ : U1 =
√

A1U(Y); (U′V ′)1 ≡ 0; C+ = C+r ; C̄1 = 0. (3.14)

The value of C+ in the reference state, i.e. far upstream, is denoted by C+r and
assumed to be constant. The bottom far upstream may, or may not, be hydraulically
smooth. In the former case, the value C+r = 5.0 is appropriate, as mentioned above, cf.
the first paragraph following (2.11).

Comparing (3.14) with (3.13) shows that the logarithmic terms in the latter equation
may be substituted according to the relation

√
α

Fr

1
κ

ln

√
gαh̄3

r

ν
+ C+r + C̄r

 = 1+ ε√A1U(1), (3.15)
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to obtain

(U′V ′)1(X, 0,T)= 2[H1 +
√

A(C+ − C+r )], (3.16)

where Fr has been replaced by 1 at leading order,
√

A1U(1) has been eliminated with
the help of (3.9) and (3.10), and the assumption has been made that (C+−C+r )= O(1),
with (C+ − C+r )→ 0 as X→ ±∞. Note that Y = 0 refers to the channel bottom
in terms of defect-layer coordinates, i.e. −(U′V ′)1(X, 0,T) is equal to the first-order
perturbation of the bottom shear stress, cf. (2.12).

With (3.9)–(3.12) and (3.16), the results of the expansion up to first order are
complete. Obviously, either H1(X,T) or P(X,T) remain free in the framework of
the first-order equations. Thus, the second-order equations have to be inspected for
solvability.

3.3. An extended KdV equation as solvability condition of the second-order equations
Expanding, first, the momentum equation (2.7b) up to second order, making use of
the first-order results of § 3.2, integrating with respect to Y and determining a free
function of integration from the dynamic boundary condition (2.14b) at second order,
gives

P2 − H2 = 9
2 H1XX

(
1− Y2

)− A
(

V ′2
)

0
, (3.17)

where the last term on the right-hand side of the equation is a function of Y
only. Secondly, the momentum equation (2.7a) is also expanded up to second order,
retaining the term of the order βε2, where β = A

√
ε/3, to obtain

U2X + P2X =− 3
2 U1T − U1U1X − V1U1Y − 3U1X − β

(
U′V ′

)
1Y
. (3.18)

Concerning the order of magnitude of the term containing the coefficient β see the
discussion following (3.24). U2X may be replaced by −V2Y according to the expanded
version of the continuity equation (2.6), and, furthermore, P2 may be eliminated
using (3.17). The equation hence obtained can then be integrated with respect to Y ,
accounting for the boundary condition at the bottom, (2.9). Introducing, once more, the
first-order results and observing that, by definition,∫ 1

0
1U dY = 0,

∫ 1

0
Y (1U)Y dY =1U(1), (3.19)

one obtains the following relation:

V2(X, 1,T)− H2X =− 3
2 H1T + 3H1XXX −

[
3− H1 −

√
A1U(1)

]
H1X

−β
[
3H1 + 2

√
A(C+ − C+r )

]
. (3.20)

On the other hand, the second-order kinematic boundary condition, which follows
from (2.13) upon expanding, gives

V2(X, 1,T)− H2X = 3
2 H1T −

[
2H1 −

√
A1U(1)

]
H1X. (3.21)

Equations (3.20) and (3.21) are compatible if H1 satisfies the equation

H1XXX + (H1 − 1)H1X − H1T = β[H1 − Γ (X)], (3.22)
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with

β = 1
3 A
√
ε = 1

3αε
−3/2 (3.23)

and

Γ (X)= 2
3

√
A[C+r − C+(X)], (3.24)

where
√

A = √α/ε according to (3.2). Note that 1U(1) has cancelled, so that
knowledge of the velocity defect is not required.

Equation (3.22), which describes the evolution of the surface elevation in a first
approximation, can be recognized as an extended KdV equation. The ‘forcing term’
Γ (X) vanishes far upstream in accordance with previous assumptions, i.e. Γ (X) = 0
as X→−∞. In the present study the case Γ (X) > 0 will be of interest. In general,
positive values of Γ can be obtained with locally enhanced values of roughness, but
small regular roughness elements are an exception, cf. Schlichting & Gersten (2000),
pp. 528 and 529.

According to (3.23) and (2.1) the parameter β is proportional to the square of the
reference friction velocity, uτ r. This indicates that β characterizes dissipation. The
limiting case β = 0 corresponds to inviscid flow, for which (3.22) reduces to the
classical KdV equation.

On the basis of the assumption that A = O(1), it follows from (3.23) that
β = O(ε1/2), i.e. half an order of magnitude smaller than the other terms in (3.22),
which are of order one. This is unavoidable if conventional variables are retained in
the asymptotic analysis. In the notion of Van Dyke (1975), the present asymptotic
expansion is a ‘method of composite equations’, leading to a ‘uniformly valid
differential equation’. For a famous example of uniformly valid differential equations,
Van Dyke (1975) refers to Oseen’s equation for viscous flow at very small Reynolds
numbers. If formal Poincaré expansions were preferred, singular perturbation methods
(e.g. the method of multiple scales) would have to be applied. For steady flow, such
a rather elaborate approach has been pursued by Steinrück, Schneider & Grillhofer
(2003) for the special case Γ ≡ 0, and by Steinrück (2010) for the more general case
Γ = const 6= 0. The latter work also contains a proof of the uniform validity of the
steady-state version of (3.22).

It might be of interest to observe that (3.22) does not resemble the corresponding
equation for laminar flow, which is a Korteweg–deVries–Burgers equation, with
dissipation effects described by a second space derivative of the surface elevation
(Johnson 1972, 1997; Whitham 1999, pp. 482–484; cf. also the triple-deck analysis by
Kluwick et al. 2010). Instead, the dissipation term is a linear function of the surface
elevation itself, corresponding to what Pelinovsky, Stepanyants & Talipova (1993) and
Caputo & Stepanyants (2003) call the ‘Rayleigh model of dissipation’.

Concerning other dissipation models, it may be observed that there is a formal
similarity between (3.22) and the left-hand side of equation (1) of El et al. (2007),
though with different meanings of the coefficients. On the right-hand side of the latter
equation there is a quadratic term that is attributed to ‘Chezy’s model’ of bottom
friction in a turbulent boundary layer. However, Grillhofer (2002) has already shown
that adding a quadratic friction term to the Euler equations for steady flow, and
performing an asymptotic expansion for Froude numbers close to the critical value 1,
leads to the steady-state version of (3.22) for Γ = 0, i.e. to a linear term representing
weak dissipation. Thus, Grillhofer’s result casts doubts on the applicability of Chezy’s
model to describe stationary solitary waves in turbulent open-channel flow.
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146 W. Schneider

It is also remarkable that (3.22) is free of non-local terms, in contrast to results
obtained by Dutykh & Dias (2007) and Dutykh (2009). However, the analysis due
to Dutykh & Dias (2007) and to Dutykh (2009) is based on assumptions that differ
from the present ones. In particular, according to Dutykh & Dias (2007) and Dutykh
(2009) the main source of dissipation is a viscous boundary layer whose thickness is
of the order of 1/

√
Re, where Re is a Reynolds number defined in terms of a constant

viscosity as in laminar flow. That is in contrast to the scaling parameters of the present
analysis of turbulent flow, where the viscous wall layer has a thickness of the order
of 1/Reτ , while an apparent viscosity, if introduced, would not be constant but vary
across the layer. Obviously, those differences between the two types of analyses are
responsible for the lack of non-local terms in (3.22).

When H1 has been determined as a solution of (3.22), the first-order perturbations
of pressure, P1, normal velocity, V1, and bottom shear stress, −(U′V ′)1(X, 0,T),
follow from (3.10), (3.12), and (3.16), respectively. Furthermore, as the cross-sectional
average of the velocity defect vanishes according to the definition of the reference
velocity, it follows from (3.9) together with (3.10) that the cross-sectional average
(i.e. the volumetric mean) of the tangential velocity perturbation equals −H1, which
expresses conservation of mass in a quasi-steady one-dimensional approximation.
Defining, as usual, the bottom friction coefficient, cf , in terms of the volumetric mean
of the velocity and making use of (3.16), the perturbation of the friction coefficient
due to the increased roughness can be expressed as follows:

(cf − cfr)/cfr = 2
√
α(C+r − C+)= 3ε Γ (X), (3.25)

where cfr is the friction coefficient in the reference state, i.e. far upstream. It is
remarkable that all these results have been obtained without recourse to turbulence
modelling.

The partial differential equation (3.22) is to be solved subject to appropriate
boundary and initial conditions. For investigating how turbulence affects the existence
and evolution of solitary waves, the asymptotic decay of the perturbations far
downstream and far upstream provides the following boundary conditions:

H1→ 0 as X→±∞. (3.26)

The initial conditions will depend on the particular problem to be considered.

4. Stationary solitary waves
4.1. Steady-state version of the extended KdV equation

In case of steady flow, the extended KdV equation (3.22) reduces to the ordinary
differential equation

H1XXX + (H1 − 1)H1X = β[H1 − Γ (X)]. (4.1)

Subscripts are retained to indicate derivatives, though H1 is, of course, a function of X
only in the steady-flow case.

For later convenience, (4.1) may be transformed, following Steinrück (2005), into
the following set of first-order equations:

RX = β[H1 − Γ (X)]; (4.2a)
SX =−βH1[H1 − Γ (X)]; (4.2b)

3(H1X)
2 + H3

1 − 3H2
1 − 6RH1 = 6S. (4.2c)
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An equation of the type of (4.1), but without the term proportional to H1, was
considered by Dias & Vanden-Broeck (2002, 2004) and by Binder, Vanden-Broek &
Dias (2005). Equations similar to (4.1) have also been studied as the steady-state
versions of extended KdV equations, see the introduction for references. As precursors
to the present work, however, the following special cases of (4.1) are of interest.
For Γ ≡ 0, (4.1) was derived, and solved, to describe undular hydraulic jumps in
turbulent flows that are fully developed far upstream (Grillhofer & Schneider 2003;
Steinrück 2005). Generalizations to flows that are not fully developed far upstream of
the undular jump have also been made, leading to Γ = const 6= 0 in (4.1) (Jurisits et al.
2007; Jurisits & Schneider 2012). Since hydraulic jumps, by definition, are associated
with permanent changes of the surface elevation, undular-jump solutions do not satisfy
the homogeneous boundary conditions (3.26).

For the special case β = 0, i.e. inviscid flow, the famous solitary-wave (soliton)
solution satisfies both (4.1) and the boundary conditions (3.26). In the present notation
it reads

H1 = 3sech2[(X − Xm)/2] for β = 0, (4.3)

where Xm is a free constant that locates the maximum surface elevation.
For turbulent flow, however, β 6= 0. Integrating (4.2a) and (4.2b), respectively, from
−∞ to +∞, and observing the boundary conditions (3.26) together with (4.2c) gives
the ‘conservation’ equations ∫ +∞

−∞
(H1 − Γ ) dX = 0, (4.4a)∫ +∞

−∞
H1(H1 − Γ ) dX = 0. (4.4b)

It follows from the integral conditions (4.4a) and (4.4b) that stationary solitary waves
cannot persist in two-dimensional turbulent open-channel flow (β 6= 0) with a plane
bottom of constant roughness (Γ ≡ 0). But, if the bottom roughness varies, i.e.
Γ = Γ (X), the situation is different. To begin with, the classical soliton solution
H(0)

1 according to (4.3) remains a solution of (4.1) also for β 6= 0 if Γ (X) = H(0)
1 (X).

But it is certainly not an easy task to produce the distribution of bottom roughness
necessary to obtain that particular Γ (X), e.g. in a laboratory experiment. Thus we
admit more general roughness distributions and introduce an eigenvalue λ according to
the relation

Γ (X)= λϕ(X), (4.5)

with λ= const= O(1) and ϕ(X)= O(1). For (suitably) given ϕ(X), the eigenvalue λ is
then to be determined such as to permit a non-trivial solution of (4.1) subject to the
boundary conditions (3.26). This nonlinear eigenvalue problem reflects the necessity to
satisfy the condition of conservation of momentum flow, cf. appendix B.

Note that Γ = O(1) implies C+−C+r = O(1), cf. (3.24). Since the friction coefficient,

cf , is of the order of (lnReτ + C+ + C̄)
−2 � 1, cf. Schlichting & Gersten (2000), pp.

534–535, small changes of the reference value of the friction coefficient are sufficient
for the appearance of a stationary solitary wave, provided the roughness distribution is
in accord with the eigenvalue.

As an example that may be of relevance for laboratory experiments, a piecewise-
constant bottom roughness is considered in what follows, i.e.

ϕ(X)≡ 0 for X < 0; ϕ(X)≡ 1 for 0< X < 1; ϕ(X)≡ 0 for X > 1. (4.6)
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Equation (4.1) is to be solved subject to the boundary conditions (3.26), which implies
an asymptotic decay of the form

H1 ∼ exp(kX), (4.7)

with k < 0 as X→∞ and k > 0 as X→−∞. Inserting into (4.1), with Γ ≡ 0 for
X→±∞ as a consequence of (4.5) and (4.6), shows that k has to satisfy the cubic
equation

k(k2 − 1)= β. (4.8)

For small values of β, (4.8) has the following roots that are in accord with the
boundary conditions (3.26):

k1 =−1+ 1
2β + O(β2); k2 =−β + O(β2) for X→∞; (4.9a)

k3 =+1+ 1
2β + O(β2) for X→−∞. (4.9b)

The asymptotic relation (4.7) with (4.9a) and (4.9b), respectively, will turn out to be
useful for testing solutions for uniform validity, cf. § 4.2.

4.2. Asymptotic solution for very weak dissipation
Since β is assumed to be a small parameter, cf. (3.23), the limiting case β → 0 is
considered. Thus we write

H1(X;β)= H(0)
1 (X)+ βH(1)

1 (X)+ · · · ; λ(β)= λ(0) + βλ(1) + · · · as β→ 0, (4.10)

to obtain from (4.1)

H(0)
1 = 3sech2[(X − X(0)

m )/2], (4.11)

i.e. of course, the classical soliton solution, while the conservation equation (4.4a)
gives

λ(0) =Φ−1

∫ +∞
−∞

H(0)
1 dX = 12/Φ, (4.12)

with

Φ =
∫ +∞
−∞

ϕ dX. (4.13)

X(0)
m is a free constant that locates the maximum surface elevation in the limit β→ 0.

It is to be determined from the second conservation equation, (4.4b), in the limit
β→ 0, which gives the following condition:∫ +∞

−∞
[H(0)

1 ]
2

dX = λ(0)
∫ +∞
−∞

H(0)
1 ϕ dX. (4.14)

For the case of piecewise-constant bottom roughness according to (4.6), one obtains
from (4.12) with (4.13) the eigenvalue

λ(0) = 12, (4.15)

while (4.14) leads to the condition

tanh
[
(1− X(0)

m )/2
]+ tanh(X(0)

m /2)= 1/3. (4.16)
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X

0 1–2 3 4–3

1

2

3

FIGURE 2. Surface elevation of the stationary solitary waves. Solid line: stable; broken line:
unstable. The bottom roughness is enlarged in the region 0< X < 1.

Making use of well-known relationships for hyperbolic functions, the following dual
solution of (4.16) can be found:

X(0)
m = 1

2 ± arcosh(6sinh 1
2 − cosh 1

2). (4.17)

The numerical evaluation of (4.17) provides the two solutions

X(0)+
m =+1.81635, (4.18a)

X(0)−
m =−0.81635. (4.18b)

According to (4.18a) and (4.18b), respectively, the maximum surface elevation of the
stationary solitary wave is located, in a first approximation, somewhat behind or, by
the same amount, in front of the region of enlarged bottom roughness (0< X < 1), see
figure 2. Whether X(0)+

m and/or X(0)−
m belong to solutions that are stable, or unstable,

will be investigated below (§ 5.2).
Expanding the first-order solution (4.11) for X→±∞ and comparing the result

with the equations (4.7), (4.9a) and (4.9b), respectively, that describe the asymptotic
behaviour of the full equation (4.1), it is easy to see that the first-order solution
(4.11) is uniformly valid for X → ±∞. However, it cannot be expected that the
second-order terms in (4.10) will also be uniformly valid, the reason being that a
formal expansion of the exponential function in (4.7) in terms of small values of
the parameter β contains the secular term βX. To avoid the non-uniformity at the
second order, one could introduce ln H1 as a new dependent variable and perform
the asymptotic expansion for β → 0 in terms of the new variable. That is beyond
the scope of the present work, however. Since the second order will certainly require
a numerical solution of the perturbation equation, it appears preferable to obtain, in
future work, numerical solutions of the full equation (4.1) for arbitrary values of β.

5. Transient-flow solutions
5.1. Evolution equation for slowly varying solitary waves

There are well-established methods for treating slowly varying solitary waves on the
basis of extended KdV equations. Thus (3.22) is transformed into the standard form of
extended KdV equations by the transformation

X = ξ − τ + X0; T =−τ (X0 = const) (5.1)
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which gives

H1ξξξ + H1H1ξ + H1τ = β[H1 − Γ (X)]. (5.2)

For very small values of β, one may follow Scott (2003), p. 294, to obtain for
a piecewise-constant roughness according to (4.5) and (4.6) the following solution in
terms of the original coordinates:

H1(X,T)= 3(1− V)sech2
[
(X − X0 − VT)

√
1− V/2

]
, (5.3)

with the evolution equation

3
β

dV

dT
= 4(1− V)− λ

{
tanh

[
(1− X0 − VT)

√
1− V/2

]
+ tanh

[
(X0 + VT)

√
1− V/2

]}
(5.4)

for the slowly varying wave speed V(T). According to (4.15), the eigenvalue λ can be
replaced by λ = λ(0) = 12. Note that the maximum surface elevation (‘amplitude’ of
the solitary wave) is equal to 3(1 − V). Note also that the maximum surface elevation
is located at Xm = X0 + VT , i.e. at each moment the wave moves as if V were constant,
with X = X0 being the locus of the maximum surface elevation at time T = 0. For the
special case T ≡ 0 see appendix C.

For V ≡ 0, (5.4) reduces to

tanh[(1− X0)/2] + tanh(X0/2)= 1/3. (5.5)

A comparison with (4.16) shows that X0 = X(0)
m , and (5.3) leads to the solution (4.11)

for the stationary solitary wave, in accordance with the vanishing wave speed.

5.2. Small perturbations of the stationary solitary waves

Equation (4.16) has the two solutions X(0)+
m and X(0)−

m , respectively, as given by (4.18a)
and (4.18b). Assuming small perturbations of either one of the two stationary solitary
waves due to a small initial velocity V(0), with |V(0)| � 1, the evolution equation
(5.4) may be linearized. Making use of (5.5) and integrating, one obtains

V = V(0) exp[β(K1T + K2T2)], (5.6)

with

K1 =− 4
3 + (1− X(0)

m )sech2
[
(1− X(0)

m )/2
]+ X(0)

m sech2(X(0)
m /2), (5.7)

K2 = sech2[(1− X(0)
m )/2] − sech2(X(0)

m /2). (5.8)

With X(0)
m given by (4.17), the above constants become K1 =−1.153 and K2 =±0.369.

According to (5.6), K2 characterizes the development of the perturbations for T � 1,
as long as the perturbations remain small. For X(0)

m = X(0)+
m , K2 = K+2 = 0.369 > 0,

i.e. the wave speed grows beyond bounds with increasing time T , indicating that the
stationary solitary wave with X(0)

m = X(0)+
m is unstable. For X(0)

m = X(0)−
m , in contrast,

K2 = K−2 = −0.369 < 0, i.e. the wave speed decays and, according to (5.3), the
perturbed solitary wave returns to the stationary position.

The results may be understood on the basis of the following reasoning. Let us
first consider the solution with X(0)

m = X(0)−
m < 0 according to (4.18b) and assume that

the solitary wave is shifted slightly upstream due to a perturbation. Since, in this
case, the maximum surface elevation is in front of the region of enlarged roughness,
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FIGURE 3. Comparison of numerical solutions of the evolution equation (5.4) (β = 0.1,
dashed lines) with the analytical solution (5.6) (solid lines). Curves I are for X0 = X(0)+

m : solid
line, K1T + K+2 T2; upper dashed line, V(0) = −β; lower dashed line, V(0) = +β. Curves II
are for X0 = X(0)−

m : solid line, K1T + K−2 T2; upper dashed line, V(0)=+β; lower dashed line,
V(0)=−β.

the perturbation leads to a reduction of the surface elevation and an increase of the
flow velocity in the region of enlarged roughness. This increases dissipation, and the
perturbed wave is swept downstream, i.e. back to the original position. If, on the other
hand, the perturbation is a downstream shift, the opposite effect drives the wave back
to the original position. However, in the case of the solution with X(0)

m = X(0)+
m > 1

according to (4.18a), similar reasoning leads to the conclusion that the perturbed wave
is swept away from the original position.

5.3. Initial value problems
Equation (5.4), with λ = 12, can easily be solved numerically as an initial value
problem for given values of V(0). Once the wave speed, V(T), is known, the wave
amplitude, H1m = 3(1 − V), can easily be determined. Some results are given in
figures 3–8.

Results for small perturbations of the stationary states that are characterized by
X0 = X(0)+

m or X0 = X(0)−
m are given in figure 3. Numerical solutions of (5.4) are plotted

in a way that allows good comparison with the analytical solution (5.6). The relatively
large value β = 0.1 has been chosen for the dissipation parameter in order to make the
differences between numerical and analytical results visible. For substantially smaller
values of β, e.g. β = 0.01, the plots of the numerical and analytical results are
practically indistinguishable.

Figures 4 and 5 show the development of the wave amplitude as a function of
time, with β, which characterizes damping due to dissipation, as the parameter. The
initial amplitude is the same in figures 4 and 5, i.e. equal to the amplitude of the
stationary wave, but the initial position differs. For figure 4, the initial position of the
wave is slightly downstream (upper half of the diagram), or slightly upstream (lower
half of the diagram) of the position that is taken by the stable stationary wave. In
both cases the wave approaches asymptotically the stable stationary state. The situation
is different, of course, if the initial position of the wave is slightly downstream, or
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FIGURE 4. Wave amplitude H1m versus slowly varying time βT , with β as parameter. Initial
amplitude of waves: equal to amplitude of stationary solitary wave. Initial position of waves:
X0 = X(0)−

m +β, i.e. slightly downstream (upper half of diagram), or X0 = X(0)−
m −β, i.e. slightly

upstream (lower half of diagram), of stable stationary solitary wave.
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FIGURE 5. Wave amplitude H1m versus time T , with β as parameter. Initial amplitude of
waves: equal to amplitude of stationary solitary wave. Initial position of waves: X0 = X(0)+

m −β,
i.e. slightly upstream (upper part of diagram), or X0 = X(0)+

m + β, i.e. slightly downstream
(lower part of diagram), of unstable stationary solitary wave. Solid lines: waves approaching
stable stationary solitary wave. Broken lines: decaying waves.

upstream, of the unstable stationary wave (figure 5). As can be expected from the
results of the stability analysis presented above, the wave approaches asymptotically
the stable stationary state in case of a small upstream shift, whereas the wave decays,
while it is swept downstream, in case of a small downstream shift of the initial
position.

For an initial position between the stable stationary wave and the unstable one, the
transient behaviour of the wave is qualitatively the same as shown in figure 4 and in
the upper part of figure 5, provided the initial wave amplitude is the same, i.e. that
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FIGURE 6. Wave amplitude H1m versus time T , with initial amplitude H1m(0) as parameter.
Damping parameter: β = 0.01. Initial position of maximum surface elevation: X0 = 0. Solid
lines: waves approaching stable stationary solitary wave. Broken lines: decaying waves.

of the stationary wave. That appears not surprising. But rather unexpected results are
obtained when β and X0 are fixed, but the initial amplitude is varied, see figure 6.
For initial amplitudes that are larger, or only slightly smaller, than the amplitude of
the stationary wave, the wave approaches asymptotically the stable stationary state
according to the relation

H1m = 3[1+ (X0 − X(0)−
m )T−1 + O(T−2)] as βT→∞, (5.9)

which follows from (5.4) with (4.16) and H1m = 3(1 − V). However, if the initial
amplitude is smaller than a critical value, which is approximately H1m(0)|crit ≈ 2.4676
in the case of figure 6, the wave is swept downstream and decays.

Time versus space diagrams of the maximum surface elevation, H1m, are given in
figure 7 for selected values of initial amplitude, H1m(0), and initial position, X0. Initial
positions that are upstream of the stable stationary wave or downstream of the unstable
stationary wave are included in figure 7. In both cases the wave approaches the stable
stationary wave if the initial amplitude is sufficiently large, whereas the wave moves
downstream, and decays, if the initial amplitude is too small to permit transition to
the stable wave. The other cases shown in figure 7 are in qualitative accord with the
results already discussed above.

Finally, figure 8 gives an idea of the shape of a wave that approaches the stable
stationary wave, compared to a wave that decays slowly while it is swept downstream.

6. Conclusions and discussion
The extended KdV equation (3.22) that is obtained from an asymptotic analysis

without recourse to turbulence modelling has eigensolutions that describe stationary
solitary waves. The eigenvalue characterizes the piecewise-constant perturbation of the
roughness of the channel bottom, while the eigenfunction gives the wave shape. The
results show that the roughness enlargement required to support a stationary solitary
wave is smaller for Froude numbers closer to the critical value 1. For small values
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FIGURE 7. Locus of maximum surface elevation, Xm = X0 + VT , as a function of time,
T , for various initial loci X = X0 at T = 0, i.e. X0 = {−2,X(0)−

m , 1,X(0)+
m , 3}, with initial

amplitude H1m(0) as parameter. Damping parameter: β = 0.01. Solid lines: H1m(0) = 3.75,
waves approach stable stationary solitary wave. Broken lines: H1m(0) = 1.5, waves decay.
Dashed-dotted lines: H1m(0) = 3(1 + β) and H1m(0) = 3(1 − β); the former waves approach
the stable stationary solitary wave, the latter decay.

of a non-dimensional parameter β that characterizes dissipation, the eigenfunctions
are, at first order, the classical solitary wave solutions for two different positions.
The wave at the more downstream position turned out to be unstable with respect
to small perturbations, whereas the other one represents the final state of a large
class of transient solitary waves. Since these results are obtained on the basis of
the assumption of slowly varying solitary waves, numerical investigations of the
extended KdV equation are desirable, in particular concerning the possible appearance
of shelves (cf. Knickerbocker & Newell 1980; Scott 2003), perhaps depending on
the magnitude of the parameter β. Work is in progress to, hopefully, answer those
questions. As in the case of the undular jump (Kalisch & Bjørkavåg 2010), an energy
budget may also lead to interesting conclusions.

Experimental verification of the predictions is, of course, desirable. Available
facilities, such as those used by Chanson & Montes (1995), Montes & Chanson
(1998), Ohtsu et al. (2001), Ohtsu, Yasuda & Gotoh (2003), Gotoh, Yasuda & Ohtsu
(2005) and Castro-Orgaz & Hager (2011) in their investigations on undular jumps,
seem to be suitable. The value of β chosen for the examples shown in figures 5 to 7
is well within the reach of the facility used by Ohtsu et al. (2001, 2003) and Gotoh
et al. (2005), and it is also in accord with the experiments reported by Lennon &
Hill (2006). Experiments will have to take into account, however, that the predicted
eigenvalue λ(0) = 12 is only an approximation of the exact eigenvalue, as it is obtained
from an asymptotic expansion of the extended KdV equation for small values of β,
and, furthermore, the extended KdV equation itself is an approximation to the exact
equations of motion.

Numerical solutions of the full equations of motion would also be of interest. For
inviscid flow, numerical solutions of the Euler equations are available, cf. Dutykh
& Clamond (2013). As far as turbulent flow is concerned, previous numerical
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FIGURE 8. Surface elevations H1 of slowly varying solitary waves at various times T .
Damping parameter β = 0.01, initial amplitude H1m(0) = 2.7. Solid lines: initial locus of
maximum surface elevation X0 =−3; solitary wave approaches stable stationary state. Broken
lines: X0 = X(0)+

m + β; solitary wave moves downstream and decays slowly.

investigations of the related problem of the undular jump (Schneider et al. 2010)
showed reasonable agreement between the asymptotic analysis and the numerical
solution of the Reynolds-averaged equations of motion, irrespective of the turbulence
model that was applied; see also the recent work by Rostami et al. (2012).
More advanced numerical methods, e.g. large-eddy simulations of free-surface flows
(Hassanzadeh, Sahin & Ozgoren 2012) could be helpful for evaluating the accuracy of
less elaborate numerical investigations based on turbulence modelling.
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Appendix A. Unsteady viscous wall layer
Since the continuity equation for incompressible flow does not contain a time

derivative and, furthermore, the momentum equation for the lateral direction is of
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lesser concern owing to the small thickness of the viscous wall (bottom) layer, it
suffices to consider the momentum equation for the longitudinal direction to estimate
the importance of terms containing time derivatives. Adding to (2.7a) the term that
accounts for viscosity, one obtains

δFr2

(
3ε
2
∂Ū

∂T
+ Ū

∂Ū

∂X
+ V̄

∂Ū

∂Y

)

=−δ ∂P̄

∂X
+ α − α

(
δ
∂U′2

∂X
+ ∂U′V ′

∂Y

)
+
√
αFr

Reτ

(
δ2 ∂

2U

∂X2
+ ∂

2U

∂Y2

)
. (A 1)

Equation (A 1) is written in terms of the non-dimensional variables introduced in
§ 2 for the analysis of the defect layer. The viscous wall layer, however, is known
to require a stretching of the variables as follows (Schlichting & Gersten 2000, pp.
570–572):

y+ = ReτY; u+ = ū/uτ r = (Fr/
√
α)Ū; v+ = v̄/uτ r = (Fr/

√
α)V̄. (A 2)

From the continuity equation together with the boundary condition V̄ = 0 at Y = 0
it follows that v+ ≡ 0 in the limit of large Reynolds numbers. Introducing, then, the
stretched variables into the momentum equation (A 1) and collecting the first-order
terms on the left-hand side, gives the following equation:

∂2u+

∂y+2
− ∂U′V ′

∂y+
= 3εδFr

2
√
α Reτ

∂u+

∂T
+ δ

Reτ
u+
∂u+

∂X
− 1

Reτ
+ δ

α Reτ

∂P̄

∂X
+ · · · , (A 3)

where the dots stand for higher-order terms. Using (2.1), the first coefficient on the
right-hand side of (A 3) may be re-written as

3εδ
2Reτ

ūr

uτ r
. (A 4)

According to the well-known logarithmic friction law (Schlichting & Gersten 2000,
p. 534), ūr/uτ r is of the order of lnReτ . As ε→ 0, δ→ 0 and Reτ →∞, the time-
derivative term on the right-hand side of (A 3) becomes negligible in comparison with
the terms of order one on the left-hand side. This result justifies the application of
matching conditions as if the flow in the viscous wall layer were steady, and in
particular the use of the logarithmic overlap law.

Appendix B. Conservation of momentum flow rate
Steady flow is considered. Since the flow far upstream (X→−∞), as well as far

downstream (X→+∞), is fully developed, the momentum flow rate far upstream
is the same as far downstream, and the forces acting on the total volume of fluid
must balance. The hydrostatic pressures far upstream and far downstream balance each
other, and the forces that remain to be taken into account in the force balance are the
following:

u2
τ r

∫ +∞
−∞

(U2
τ − 1) dX = gαh̄r

∫ +∞
−∞

(H − 1) dX. (B 1)
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The coefficients in front of the integrals cancel according to (2.1), and introducing
the expansions (2.4a) and (2.4b) gives, to the first order, the integral condition∫ +∞

−∞
[H1 + (U′V ′)1(X, 0,T)] dX = 0. (B 2)

Substituting for (U′V ′)1(X, 0,T) according to (3.16), and introducing Γ as defined
in (3.24), one obtains (4.4a), i.e. the equation that determines the eigenvalue λ and,
after expansion in terms of small values of β, the first-order eigenvalue λ(0).

Appendix C. Constant bottom roughness
If the roughness of the bottom is constant, the forcing term vanishes, i.e. Γ ≡ 0,

and (5.2) reduces to the example considered by Scott (2003), p. 295, with reference
to Ott & Sudan (1970) and Knickerbocker & Newell (1980). By definition, Scott’s
wave speed v is related to the present wave speed V as v = 1 − V , and his time t
corresponds to −T in the present notation. Two different signs cancel, and a solitary
wave that is initially at rest in the present coordinate system, i.e. V(0) = 0, v(0) = 1,
decays according to the relation

v = exp(−4βT/3)→ 0 as βT→∞. (C 1)

The same result can be obtained by integrating (5.4) for the special case λ= 0, which
corresponds to Γ ≡ 0 according to (4.5).

Note, however, that the analysis of the slowly varying solitary waves according
to Scott (2003), p. 295, does not account for a shelf that may be generated behind
the solitary wave, cf. Knickerbocker & Newell (1980) and Grimshaw et al. (2003).
Regarding possible ‘aging’ of solitary waves, see Christov & Velarde (1995).
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STEINRÜCK, H. 2005 Multiple scales analysis of the steady-state Korteweg-de Vries equation

perturbed by a damping term. Z. Angew. Math. Mech. 85, 114–121.
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