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Abstract

We prove that there are finitely many families, up to isomorphism in codimension
one, of elliptic Calabi–Yau manifolds Y → X with a rational section, provided that
dim(Y ) ≤ 5 and Y is not of product type. As a consequence, we obtain that there are
finitely many possibilities for the Hodge diamond of such manifolds. The result follows
from log birational boundedness of Kawamata log terminal pairs (X,Δ) with KX + Δ
numerically trivial and not of product type, in dimension at most four.

1. Introduction

Smooth varieties with trivial canonical bundle constitute one of the fundamental building blocks
in the birational classification of algebraic varieties. Hence, it is an important problem to under-
stand their possible algebraic and topological structures. By a well-known result of Beauville
and Bogomolov [Bea83], every smooth variety with trivial canonical bundle can be decomposed
(after a finite étale cover) as a product of abelian, hyperkähler or Calabi–Yau varieties. A smooth
projective variety Y with trivial canonical bundle is Calabi–Yau if it is simply connected and
H i(Y,OY ) = 0 for 0 < i < dimY .

While we have a clear understanding of the algebraic and topological structures of abelian
varieties, the situation is far from being settled in the other two cases. In dimension two,
Calabi–Yau surfaces are K3 surfaces and admit a unique topological model, though in order
to show this one has to take into account non-projective models. In higher dimension the prob-
lem of determining the number of deformation types of Calabi–Yau manifolds is wide open;
nonetheless, every Calabi–Yau manifold of dimension at least three is automatically projective.

The problem of understanding whether there are finitely many algebraic families of
Calabi–Yau varieties for each fixed dimension n ≥ 3 is the main motivation of this paper. A class
of varieties that can be described by finitely many families is said to be bounded ; see § 2.3. In
particular, we study the boundedness of those Calabi–Yau varieties admitting an elliptic fibra-
tion, that is, a projective morphism with connected fibres, whose general fibre is one-dimensional
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Birational boundedness of elliptic Calabi–Yau varieties

of genus one. This class of varieties has already been understood in dimension ≤ 3 and it is of
particular interest for its applications in theoretical physics, as we explain below.

In dimension two, the question of boundedness has a negative answer, since there are infinitely
many algebraic families of projective elliptic K3 surfaces. On the other hand, if we consider elliptic
K3 surfaces admitting a section, it is not hard to show that boundedness holds for this class of
varieties.

Surprisingly, the lack of boundedness for general Calabi–Yau elliptic fibrations appears to
be a behaviour peculiar to surfaces only: M. Gross showed that there are indeed finitely many
families, up to birational equivalence, of Calabi–Yau 3-folds possessing a non-isotrivial elliptic
fibration over a rational base; see [Gro94]. In the three-dimensional case, when the base of the
fibration is not rational, then it is an Enriques surface and the total space behaves like a product,
the fibration being isotrivial. In his work, Gross showed that the problem of boundedness can be
split into two steps: studying the boundedness of those surfaces that appear as bases of elliptic
fibrations together with the study of elliptic curves defined over the function field of the possible
bases. A similar behaviour is expected to hold in higher dimension.

The main result of this paper is a generalization of Gross’s theorem to elliptic varieties
of dimension at most five with terminal singularities and numerically trivial canonical class,
provided that the fibration admits a rational section.

Theorem 1.1. Let 2 ≤ n ≤ 5 be an integer. Then there are finitely many families, up to

isomorphism in codimension one, of elliptic fibrations Y → X such that

(i) Y is terminal projective of dimension n and KY ≡ 0,

(ii) Y is not of product type, and

(iii) there exists a rational section X ��� Y .

The condition that Y be not of product type should be thought as an analogue of the
non-isotriviality required in Gross’s theorem. For a precise definition we refer the reader to
Definition 2.24. If Y is of product type, then Y is birationally isomorphic to the quotient of a
product; cf. Theorem 2.22.

Once we require the existence of a section, our proof shows that even elliptic K3 surfaces
are bounded. The proof of Theorem 1.1 heavily relies on the existence of a section to produce a
suitably positive divisor, more precisely a big and nef divisor, on the total space with bounded
volume; see §§ 4 and 5. The need for a section is the main reason why we are not able to
recover the full statement proved by Gross in dimension three, although we expect Gross’s
result to generalize to higher dimension. After the completion of this work, Birkar and the
authors obtained an extension of Theorem 1.1 to any dimension (see [BDS20]), while Filipazzi
and the second named author [FS20] extended the ideas contained in this paper to the case of
n-dimensional varieties of Kodaira dimension n− 1; cf. also [Fil20c].

Theorem 1.1, combined with results from motivic integration, implies uniform boundedness
of Hodge numbers for elliptic Calabi–Yau manifolds.

Corollary 1.2. Let 2 ≤ n ≤ 5 be an integer. Then there exists a positive integer Mn such that

hp,q(Y ) ≤Mn for any p, q, where Y is a smooth manifold satisfying the conditions of Theorem 1.1.

Elliptic Calabi–Yau 4-folds with a section seem to be the most relevant in F-theory and
bounding their Hodge numbers is a central problem in string theory; see, for example, [TW15].
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The key ingredient in the proof of Theorem 1.1 is a boundedness statement for the base of
an elliptic fibration. If Y has an elliptic fibration Y → X then, by a general version of Kodaira’s
canonical bundle formula, X carries the structure of a Calabi–Yau pair, which means that there
exists an effective divisor Δ such that (X,Δ) is Kawamata log terminal (klt) and KX + Δ is
numerically trivial; see § 2.5. In order to understand boundedness of elliptic Calabi–Yau varieties,
we first need to understand if those Calabi–Yau pairs appearing as the base of such fibrations
indeed belong to a bounded family. One crucial observation is that we have some control on the
coefficients of Δ, as was already clear to Kodaira; indeed, the coefficients vary in a finite set,
which is the first fundamental hint and step towards boundedness; cf. Section 2.3.

Let us observe that the set of 3-folds of the form S × P1, where S is a K3 surface, forms
an unbounded family of Calabi–Yau pairs. On the other hand, a result of Kollár and Larsen in
[KL09] implies that the base of an elliptic Calabi–Yau manifold Y is rationally connected when
Y is not a product. A conjecture of McKernan and Prokhorov [MP04, Conjecture 3.9] predicts
that the set of rationally connected varieties X admitting a Calabi–Yau pair structure (X,Δ)
is bounded in any fixed dimension if we restrict the type of singularities of the pair; see also
[CDHJS21, Conjecture 1.3]. Our next result offers a first important piece of evidence for this
conjecture in dimension up to four.

Theorem 1.3. Fix a positive integer n ≤ 4 and a finite set I ⊂ [0, 1]. Then the set D of pairs

(X,Δ) such that

(i) X is a projective variety of dimension n,

(ii) (X,Δ) is klt with coefficients of Δ in I and Δ �= 0,

(iii) KX + Δ is numerically trivial, and

(iv) (X,Δ) is not of product type

forms a log birationally bounded family. More precisely, there exists a bounded family of

Calabi–Yau pairs D′ such that each pair in D is isomorphic in codimension one to a pair in D′.

The condition that (X,Δ) is not of product type is analogous to that of Theorem 1.1 and
is necessary in order to avoid the examples of unbounded Calabi–Yau pairs from the previous
paragraph. We can show that this condition can be characterized by studying possible outcomes
of runs of the minimal model program (MMP), as shown in Theorem 1.8. Roughly speaking,
(X,Δ) is of product type if a run of the MMP ends with a special type of generically isotrivial
fibration. Let us also point out that the condition that (X,Δ) is klt cannot be relaxed, as shown
in Example 1.11.

An immediate corollary of what we have discussed so far is the birational boundedness of
bases of elliptic Calabi–Yau manifolds in low dimension. We have already seen that this is a
fundamental step in the proof of Theorem 1.1.

Corollary 1.4. Let n ≤ 5 be an integer. Then there are finitely many families, up to birational

equivalence, of bases X of elliptic fibrations Y → X such that

(i) Y is terminal projective of dimension n and KY ≡ 0, and

(ii) Y is not of product type.

Combining the previous results, we get effective control of the torsion index for the canonical
class KY of Y .
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Corollary 1.5. Fix a positive integer n ≤ 5. Then there exists a positive integer m0 = m0(n)
such that if

(i) Y is a terminal projective of dimension n and KY ≡ 0,

(ii) there exists an elliptic fibration Y → X, and

(iii) Y is not of product type,

then h0(Y,OY (m(KY ))) �= 0 for any m divisible by m0.

Theorem 1.3 implies also uniform boundedness of the Picard number and effective non-
vanishing of the log plurigenera of Calabi–Yau pairs.

Corollary 1.6. Fix a positive integer n ≤ 4 and a finite set I ⊂ [0, 1] ∩ Q. Then there are

integers ρ and m0 depending on n and I such that for any (X,Δ) as in Theorem 1.3, we have

ρ(X) ≤ ρ and h0(X,OX(m(KX + Δ))) �= 0 for any m divisible by m0.

All of the statements illustrated so far follow from the main technical result of this paper,
Theorem 1.9. Roughly speaking, this result shows that a family of Calabi–Yau pairs is bounded
provided that each pair is endowed with a Mori fibration whose base also varies in a bounded
family. It is not hard to see, thanks to standard results in the MMP [BCHM10], that, given a
Calabi–Yau pair, it is always possible to pass to a birational one that is endowed with a Mori
fibration. Hence, in view of this result, the original boundedness problem for Calabi–Yau pairs
is turned into a boundedness problem for the bases of Mori fibrations for which the total space
admits a Calabi–Yau pair structure. The bases of such fibrations are, in turn, Calabi–Yau pairs,
although we lack control on the coefficients of the possible boundaries.

Theorem 1.9 holds in any dimension and hence might constitute a possible inductive step
in the generalization of this paper’s main results to dimension greater than five. In fact, it is
not unreasonable to expect that the approach we employed to prove Theorem 1.3 extends to
higher dimension. Indeed, this holds true automatically if we assume a well-known conjecture in
birational geometry: after Birkar’s proof of the Borisov–Alexeev–Borisov (BAB) conjecture (cf.
Theorem 2.12), assuming the effective base-point freeness conjecture [PS09, Conjecture 7.13.3]
would immediately imply Theorem 1.3 in any dimension. Theorem 1.9 has recently been refined
by Birkar [Bir18] using slightly different techniques to generalize the strategy formulated in this
paper and extend Theorem 1.3 to higher dimension.

We expect Theorem 1.9 to have a wide range of applications. For example, combining it with
the main theorem in [HX15], we obtain the following result.

Corollary 1.7. Fix a positive integer n and a finite set I ⊂ [0, 1] ∩ Q. Let D the set of pairs

(X,Δ) satisfying the following conditions:

(i) (X,Δ) is a projective klt pair of dimension n;

(ii) the coefficients of Δ belong to I;

(iii) KX + Δ ≡ 0;

(iv) there exists a contraction morphism f : X → Z with dimZ < dimX;

(v) Δ is big over Z; and

(vi) f has maximal variation.

Then there exists a bounded family of Calabi–Yau pairs D′ such that each pair in D is isomorphic

in codimension one to a pair in D′.

1769

https://doi.org/10.1112/S0010437X2100717X Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X2100717X


G. Di Cerbo and R. Svaldi

The variation of f is said to be maximal if there is a non-empty open set of Z over which
the isomorphism equivalence classes of pairs given by a fibre F and the restriction of Δ to F

are finite. Intuitively, f has maximal variation if the image of the rational map from the base
of the fibration to the moduli space of the fibres (F,Δ|F ) has maximal dimension. In particular,
the moduli part in the canonical bundle formula is a big divisor; see § 2.5 for more details, in
particular Remark 2.20.

Let us conclude with a remark. In all statements of this Introduction, the assumption of the
existence of a finite set in which the coefficients for the divisor Δ may vary can be weakened
to the existence of a set of coefficients satisfying the descending chain condition; see § 2 for the
definition. This is a now standard reduction in view of the fundamental results of [HMX14]. In
particular, all the results of this paper work in this more general setting and their proofs will
accordingly reflect this.

1.1 Strategy of the proof
The proof of Theorem 1.3 consists of three main steps which we now proceed to summarize. The
first two steps work in any dimension, and only to complete the final one do we need to impose
the extra condition that the dimension of the Calabi–Yau pairs be at most four.

The first step of the proof is to show that, given a Calabi–Yau pair, we can find a suitable
birational model that allows us to adopt an inductive strategy of proof. This is done by deriving
the following structure theorem for Calabi–Yau pairs.

Theorem 1.8. Let (X,Δ) be a projective klt Calabi–Yau pair not of product type with Δ �= 0.

Then there exists a birational contraction

π : X ��� X ′

to a Q-factorial projective klt Calabi–Yau pair (X ′,Δ′ := π∗Δ) with Δ′ �= 0 and a tower of

morphisms

X ′ = Y0

p0
�� Y1

p1
�� Y2

p2
�� . . .

pk−1
�� Yk

such that each morphism pi : Yi → Yi+1 is a KYi-Mori fibre space and Yk is Fano with klt

singularities.

Once we are in this framework, we proceed to prove that the set of Calabi–Yau pairs endowed
with a Mori fibre space structure where the base belongs to a bounded family is also bounded.
This is in fact our second step.

Theorem 1.9. Fix a positive integer n, a descending chain condition (DCC) set I ⊂ [0, 1] and

a bounded family F of projective varieties. Then the set of pairs (X,Δ) satisfying

(i) (X,Δ) is a projective klt pair of dimension n,

(ii) the coefficients of Δ belong to I,

(iii) KX + Δ ≡ 0,

(iv) there exists a contraction f : X → Z with dimZ < dimX,

(v) −KX is f -ample, and

(vi) Z ∈ F

forms a bounded family.
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As Δ is relatively ample over Z, it is natural to consider ample divisors of the form δΔ + f∗H,
0 < δ 
 1, where H is a very ample Cartier divisor with bounded volume, coming from the
boundedness of Z. In order to prove boundedness for the pairs (X,Δ) in the statement of
Theorem 1.9, by results of Hacon, McKernan and Xu (see §§ 2.2 and 2.3), it suffices to show that
we can choose a value of δ for which we can control the singularities of (X, (1 + δ)Δ + f∗H) as
well as bound the volume of δΔ + f∗H uniformly on all the pairs. Control on the singularities
follows from the fact that we are working with Calabi–Yau pairs and the coefficients of Δ vary
in a DCC set; cf. Theorem 2.8 and Corollary 2.9. Instead, the volume estimate is achieved by
reducing inductively to estimating the volume of the restriction of Δ to the general fibre F of
f (cf. Proposition 4.7); as F is Fano and (F,Δ|F ) is klt Calabi–Yau with DCC coefficients, the
boundedness of the volume of Δ|F is just Theorem 2.7.

It is well understood that Theorem 1.9 fails without the klt assumption. For example,
Hirzebruch surfaces give an example of an unbounded family of log canonical (lc) Calabi–Yau
pairs admitting Mori fibre space structures over P1. Hence, in these hypotheses, we can-
not admit singularities worse than klt, as shown in Example 1.11. In the case of 3-folds,
a similar boundedness result has been obtained by Jiang [Jia18] under slightly different
assumptions.

The final step is to run induction on the number of factors appearing in Theorem 1.8. The
base case can be done in any dimension using the BAB conjecture proved for surfaces by Alexeev
[Ale94], and in general by Birkar [Bir21].

Corollary 1.10. Fix a DCC set I ⊂ [0, 1] and a positive integer n. Then the set D of pairs

(X,Δ) satisfying

(i) (X,Δ) is a projective klt pair of dimension n,

(ii) the coefficients of Δ belong to I,

(iii) KX + Δ ≡ 0,

(iv) there exists a contraction f : X → Z with dimZ < dimX,

(v) −KX is f -ample, and

(vi) Z is normal and −KZ is big,

forms a bounded family.

Unfortunately, the final inductive step in the proof of Theorem 1.3 can be carried out only
in low dimension. The main issue here arises when the tower of Mori fibre spaces constructed in
Theorem 1.8 contains more than one step and the relative dimension of the morphism is > 1. In
this case we are not able to conclude that the intermediate varieties appearing in the tower carry
a structure of Calabi–Yau pair with DCC coefficients (a condition which would allow us to run
our argument inductively). As the effective base-point freeness conjecture has been verified for
morphisms of relative dimension one by Prokhorov and Shokurov [PS09], this does not constitute
an issue in dimension up to four.

Let us conclude this section by showing by means of a simple example that Theorem 1.3
cannot be generalized to lc pairs.

Example 1.11. Let X = Fe be the eth Hirzebruch surface and let Δ =
∑

i≥0 δiΔi be an effective
divisor such that KX + Δ ≡ 0. We can assume that Δ0 = C0, where C0 is the section with
C2

0 = −e. By [Har77, Proposition V.2.20], for i ≥ 1, we have that Δi ≡ aiC0 + bif with ai ≥ 0

1771

https://doi.org/10.1112/S0010437X2100717X Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X2100717X


G. Di Cerbo and R. Svaldi

and bi ≥ aie, where f is the generic fibre. The Calabi–Yau condition implies that⎧⎪⎪⎪⎨
⎪⎪⎪⎩
δ0 +

∑
i≥1

δiai = 2,

∑
i≥1

δibi = e+ 2.

Then

e+ 2 =
∑
i≥1

δibi ≥
∑
i≥1

δiaie = e(2 − δ0).

In particular, (1 − δ0)e ≤ 2. If we allow δ0 to be 1, the family of Hirzebruch surfaces is an
unbounded family of Calabi–Yau pairs with lc singularities. On the other hand, if we impose
that δ0 is uniformly bounded away from 1, the family is bounded. We remark that we are only
requiring that (X,Δ) is klt along the generic fibre and as, we will see later, this is a very important
property for our strategy; cf. § 4.

The paper is organized as follows. In § 2 we introduce the basic definitions and preliminary
results that will be used in the rest of the paper. In § 3 we prove Theorem 1.8. In § 4 we study Mori
fibrations with bounded bases and prove those results that are needed for the proof Theorem 1.9.
Finally, the proofs of the results of the paper appear in §§ 5 and 6.

2. Preliminaries

Let I ⊂ R be a subset of the real numbers. We say that I satisfies the descending (ascending)
chain condition if any non-increasing (non-decreasing) subsequence of numbers in I is eventually
constant.

2.1 Minimal model program
We follow the notation and definitions used in [KM98]. Moreover, we will make use of the
minimal model program (MMP) mostly for varieties with non-pseudo-effective canonical class.
In this case, the existence and termination of the MMP have been established by Birkar, Cascini,
Hacon and McKernan.

Theorem 2.1 [BCHM10, Corollary 1.3.3]. Let (X,Δ) be a Q-factorial klt pair. Assume KX +
Δ is not pseudo-effective. Then we may run a (KX + Δ)-MMP g : X ��� X ′ that terminates

with a Mori fibre space f : X ′ → Z.

Let us recall the definition of a Mori fibre space.

Definition 2.2. Let (X,Δ) be a klt pair and f : X → Z be a projective morphism of normal
varieties with dimZ < dim(X) and f∗OX = OZ . Then f is a (KX + Δ)-Mori fibre space if

(i) X is Q-factorial,
(ii) f is a primitive contraction (i.e. the relative Picard number ρ(X/Z) = 1) and
(iii) −(KX + Δ) is f -ample.

The conditions that ρ(X/Z) = 1 and X is Q-factorial readily imply that Z is also Q-factorial;
see [KM98, Proposition 3.36].
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2.2 Boundedness of pairs
We recall important definitions and results related to the notion of boundedness for log pairs;
cf. [HMX14, Definition 3.5.1].

Definition 2.3. A set D of projective log pairs is bounded if there exist a pair (Z,B) and a
projective morphism f : Z → T with T of finite type such that any (X,Δ) ∈ D is isomorphic to
the fibre (Zt, Bt) of f for some closed point t ∈ T .

A set D of log pairs is log birationally bounded if there exists a pair (Z,B), where the
coefficients of B are all 1, and a projective morphism f : Z → T with T of finite type, such that
for any (X,Δ) ∈ D, there exist a closed point t ∈ T and a birational map g : Zt ��� X such that
the support of Bt contains the support of the strict transform of Δ and any g-exceptional divisor.

To show that a given set of log pairs is log birationally bounded, we will mainly use the
following theorem which is a combination of results in [HMX13, HMX14].

Theorem 2.4 [HMX13, Theorem 3.1], [HMX14, Theorem 1.3]. Fix two positive integers n and

V and a DCC set I ⊂ [0, 1]. Then the set of pairs (X,Δ) satisfying

(i) X is a projective variety of dimension n,

(ii) (X,Δ) is lc,

(iii) the coefficients of Δ belong to I, and

(iv) 0 < Vol(KX + Δ) ≤ V ,

is log birationally bounded.

The reader can find the definition of the volume Vol(D) of a divisor D in [Laz04, Definition
2.2.31].

In certain special cases it is possible to deduce boundedness from log birational boundedness.

Theorem 2.5 [HMX14, Thorem 1.6]. Fix a positive integer n and two positive real numbers δ

and ε. Let D be a set of log pairs (X,Δ) such that:

(i) X is a projective variety of dimension n;

(ii) KX + Δ is ample;

(iii) the coefficients of Δ are at least δ; and

(iv) the log discrepancy of (X,Δ) is greater than ε.

If D is log birationally bounded then D is a bounded set of log pairs.

2.3 Boundedness of Calabi–Yau pairs
In this subsection we recall some of the results on boundedness of log pairs that we will need in
the rest of this paper.

A first key result in [HMX14] is the following lemma which will play a fundamental role
in § 4.

Lemma 2.6 [HMX14, Lemma 6.1]. Fix a positive integer n and a set I ⊂ [0, 1] satisfying the

DCC. Then there exists a constant ε = ε(n, I) > 0 satisfying the following property. Let (X,Δ)
be a pair such that

(i) X is a projective variety of dimension n,

(ii) (X,Δ) is klt,
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(iii) the coefficients of Δ belong to I,

(iv) Δ is a big divisor, and

(v) KX + Δ is numerically trivial.

If Φ is a divisor with KX + Φ ≡ 0 and Φ ≥ (1 − δ)Δ for some δ < ε, then (X,Φ) is klt.

A generalization of this result appeared in [CDHJS21, Lemma 4.3].
Lemma 2.6 easily implies that the boundary divisor of any klt Calabi–Yau pair has bounded

volume, once its coefficients belong to a DCC subset of [0, 1].

Theorem 2.7 [HMX14, Theorem B]. Fix a positive integer n and a set I ⊂ [0, 1] satisfying the

DCC. Then there exists a positive integer M = M(n, I) such that if (X,Δ) is a pair with

(i) X is a projective variety of dimension n,

(ii) (X,Δ) is klt,

(iii) the coefficients of Δ belong to I, and

(iv) KX + Δ is numerically trivial,

then Vol(X,Δ) ≤M .

As a consequence of these results, we can even bound the singularities of Calabi–Yau pairs,
by showing that the coefficients of Calabi–Yau pairs actually belong to a finite set.

Theorem 2.8 [HMX14, Theorem 1.5]. Fix a positive integer n and a set I ⊂ [0, 1] satisfying

the DCC. Then there is a finite subset I0 ⊆ I with the following properties. If (X,Δ) is a log

pair such that

(i) X is a projective variety of dimension n,

(ii) (X,Δ) is lc,

(iii) the coefficients of Δ belong to I, and

(iv) KX + Δ is numerically trivial,

then the coefficients of Δ belong to I0.

We will need the following well known generalization of the above theorem; see, for example,
[Bir19, Lemma 2.48].

Corollary 2.9. Fix a positive integer n and a set I ⊂ [0, 1] satisfying the DCC. Then there

exists a positive real number ε = ε(n, I) such that any n-dimensional projective klt Calabi–Yau

pair (X,Δ) is ε-lc.

Imposing more conditions on the set of pairs, it is possible to deduce stronger boundedness
statements. For example, in [HMX14], the following result is proved.

Theorem 2.10 [HMX14, Theorem 1.7]. Fix a positive integer n, a real number ε > 0 and a set

I ⊂ [0, 1] satisfying the DCC. Let D be the set of all pairs (X,Δ) such that

(i) X is a projective variety of dimension n,

(ii) the coefficients of Δ belong to I,

(iii) the total log discrepancy of (X,Δ) is greater than ε,
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(iv) KX + Δ is numerically trivial, and

(v) −KX is ample.

Then D forms a bounded family.

In a similar fashion, Hacon and Xu proved the following result.

Theorem 2.11 [HX15, Theorem 1.3]. Fix a positive integer n and a DCC set I ⊂ [0, 1] ∩ Q. Let

D be the set of all pairs (X,Δ) such that

(i) X is a projective variety of dimension n,

(ii) (X,Δ) is klt with coefficients of Δ in I,

(iii) KX + Δ is numerically trivial, and

(iv) Δ is big.

Then D forms a bounded family.

The above theorems can be thought as a first step towards results predicted by the famous
BAB conjecture, which has recently been solved by Birkar.

Theorem 2.12 [Bir21, Corollary 1.2]. Fix a positive integer n and a positive real number ε.

Then the set of n-dimensional projective varieties X such that

(i) there exists an effective divisor Δ such that the pair (X,Δ) is an ε-lc Calabi–Yau pair, and

(ii) Δ is big

forms a bounded family.

In dimension two, Alexeev proved a more general statement, which we will use in § 5.

Theorem 2.13 [Ale94, Theorem 6.8]. Let ε be a positive real number. Let D be the set of

projective surfaces X such that there exists an R-divisor Δ on X with (X,Δ) ε-klt and −(KX +
Δ) is nef, where we exclude those surfaces X for which at the same time KX is numerically

trivial and X has at worst Du Val singularities. Then D is bounded.

2.4 Generalized pairs
For the definition of b-divisor and related notions, we refer the reader to [BZ16]. There, the
authors also introduced the notion of generalized pairs. Let us recall that a b-R-divisor N is said
to descend to the divisor N ′ on a model X ′ if N equals the Cartier closure of its trace NX′ on
X ′ and NX′ = N ′.

Definition 2.14. Let T be a variety. A generalized polarized pair over T is a tuple (X ′ →
X,B,M ′) consisting of the following data:

(i) a normal variety X → T projective over T equipped with a projective birational morphism
φ : X ′ → X;

(ii) an effective R-Weil divisor B on X;
(iii) a b-R-Cartier b-divisor M over X which descends on X ′ such that M ′ := MX′ is nef over

T ; and
(iv) KX +B +M is R-Cartier, where M := φ∗M ′.
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When no confusion arises, we refer to the pair by saying that (X,B +M) is a generalized
pair with data X ′ → X → T and M ′. We call M ′ the nef part of the generalized pair.

Similarly to log pairs, we can define discrepancies and singularities for generalized pairs; cf.
[BZ16, Definition 4.1].

2.5 Log canonical trivial fibrations
Since in this paper we deal mostly with Mori fibrations of Calabi–Yau pairs, in this subsec-
tion we collect some specific results about lc-trivial fibrations which can be applied to our
setting.

An lc-trivial fibration is a contraction f : X → Z of normal varieties, with dimZ > 0, for
which there is an effective divisor Δ on X such that the pair (X,Δ) is klt over the generic
point of Z and KX + Δ ∼f,R 0. We will denote this by saying that f : (X,Δ) → Z is an lc-trivial
fibration. For more details, we refer to [Amb04, Amb05], and to [FG12, Theorem 3.1] for the
case of real coefficients. The main result which we will need is the following theorem, also known
as the canonical bundle formula.

Theorem 2.15. Let f : (X,Δ) → Z be an lc-trivial fibration. Then there exist an effective divi-

sor BZ on Z and a b-divisor M descending to a nef divisor M ′ := MZ′ on a higher model Z ′ → Z

such that the tuple (Z ′ → Z,BZ ,M) is a generalized pair. Moreover, if (X,Δ) is klt then there

exists an effective divisor 0 ≤ M̄ ∼R MZ such that (Z,BZ + M̄) is klt.

In the rest of the paper we will refer to BZ (respectively, MZ) as the boundary part (respec-
tively, the moduli part) of the fibration f . It is actually possible to define divisors BZ′ ,MZ′

on every birational model Z ′ → Z over Z that are analogues of BZ ,MZ and that capture the
behaviour of the pullback of the fibration f to Z ′. Moreover, the collection of all BZ′ (respectively,
MZ′) fit together to form a so-called b-divisor; see [Amb04, § 2] for more details.

We quickly recall the definition of BZ : we set

BZ :=
∑

(1 − lD)D, (1)

where the sum is taken over every prime divisor D on Z, and lD is the lc threshold of f∗D with
respect to (X,Δ) over the generic point of D.

The following lemma shows that in many cases we can control the coefficients of the boundary
part.

Lemma 2.16. Let I be a DCC set. Let (X,Δ) be a pair such that the coefficients of Δ
are contained in I. Let f : (X,Δ) → Z be an lc-trivial fibration with KX + Δ ∼f,R 0. Then

there exists a DCC set J such that the coefficients of the boundary part BZ are contained

in J .

Proof. Given a prime divisor D on Z, the coefficient μDBZ of D in BZ satisfies μDBZ = 1 − lD,
where lD is the lc threshold of f∗D with respect to (X,Δ) over the generic point of D; see (1).
As lD is computed over the generic point of D, we can assume that the coefficients of f∗D belong
to N>0. Since also the coefficients of Δ belong to a DCC set, [HMX14, Theorem 1.1] implies that
there exists an ascending chain condition set J ′ = J ′(dimX, I,N>0) such that lD belongs to J ′.
Defining J := {1 − t | t ∈ J ′}, then J is a DCC set and μDBZ belongs to J . �
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It is important for induction purposes to be able to control the singularities of the base of
an lc-trivial fibration. By a theorem of Birkar, it is possible to do so under some conditions on
the singularities of the generic fibre.

Theorem 2.17 [Bir16, Theorem 1.4]. Let n be a positive integer, ε > 0 be a real number and

let D be a bounded set of pairs. Then there is a real number δ = δ(n, ε,D) > 0 satisfying the

following assertion. Let (X,Δ) be a projective log pair and f : X → Z be a contraction such

that:

(i) (X,Δ) is ε-lc of dimension n;

(ii) KX + Δ ∼f,R 0;

(iii) the general fibre F of f is of Fano type; and

(iv) (F,Δ|F ) ∈ D.

Then we can choose an R-divisor MZ ≥ 0 representing the moduli part so that (Z,BZ +MZ) is

δ-lc.

Remark 2.18. Birkar’s solution of the BAB conjecture [Bir19, Bir21] implies that for a fixed
positive integer n, and fixed positive real numbers ε, η, the set Dn,ε,η of pairs (Z,Γ) such that

(i) (Z,Γ) is ε-lc of dimension n,
(ii) KZ + Γ ∼R 0, and
(iii) Z is projective of Fano type and the coefficients of Γ are ≥ η

is bounded. Hence, Theorem 2.17 holds for D = Dn,ε,η. The positive real number δ whose
existence is claimed in the theorem will then depend on n, ε, η.

It is conjectured in [PS09] that, after passing to a birational model Z ′ → Z of the base, a
fixed power of the moduli part MZ′ , only depending on the coefficients of Δ, is base-point-free. In
the same paper, the authors prove the conjecture in the special case where the relative dimension
of the lc-trivial fibration is one.

Theorem 2.19 [PS09, Theorem 8.1]. Fix two positive integers n and r and a DCC set of

rational coefficients I ⊂ Q ∩ (0, 1). Let (X,Δ) be a projective klt pair with coefficients in I

and assume that there exists an lc-trivial fibration f : X → Z with n = dimX = dimZ + 1
and r(KX + Δ)|F ∼ 0, where F is the generic fibre of f . Then there exist a positive integer

m = m(n, r, I) and a birational morphism Z ′ → Z with |mMZ′ | base-point-free.

Both the boundary and moduli part reflect the geometry of the fibration and can be used to
deduce important information about the total space and the variation of the fibres. In general, we
can use the moduli part to measure the variation of the fibres. More precisely, let f : (X,Δ) → Z

be an lc-trivial fibration. By [Amb05, Theorem 3.3], there exists a diagram

(X,Δ)

f

��

(X !,Δ!)

f !

��
Z Z̄τ

��
ρ

�� Z !

(2)
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where τ is generically finite and surjective, ρ is surjective, and f ! is an lc-trivial fibration such
that there exists a non-empty open set U ⊆ Z̄ over which

(X,Δ) ×Z Z̄|U
� ��

�������������
(X !,Δ!) ×Z! Z̄|U

��������������

U

(3)

where the top horizontal arrow is an isomorphism of pairs; furthermore, the moduli part MZ! of
f ! is big and nef and τ∗(MZ) = ρ∗(MZ!). The variation of f is defined to be the dimension of Z !

in (2).

Remark 2.20. We say that the morphism f has maximal variation if the map ρ in (2) is quasi-
finite, that is, if Z, Z ! have the same dimension. By the above discussion, if f has maximal
variation then MZ̄ is big and the same holds for MZ , since τ∗MZ̄ is a multiple of MZ , by
construction.

Definition 2.21. Let (X,Δ) be a klt pair. Let f : (X,Δ) → Z be an lc-trivial fibration.

(i) We say that f is generically isotrivial if there exists a non-empty open set U ⊂ Z over which
the pairs (Xz,Δ|Xz), z ∈ U , are all isomorphic and Z ! is a point in (2).

(ii) We say that f is strongly generically isotrivial if it is generically isotrivial and, moreover,
we can take the map τ in the diagram in (2) to be étale in codimension one.

Being generically isotrivial immediately implies that the moduli part is numerically trivial,
in view of the diagram in (3). On the other hand, the notion of strong generic isotriviality of an
lc-trivial fibration is more rigid and can be characterized through the following result which is a
simple extension of [Amb05, Theorem 4.7].

Theorem 2.22. Let f : (X,Δ) → Z be an lc-trivial fibration. Assume that BZ = 0 and

MZ ∼R 0. We denote by F a general fibre of f . Then the morphism τ : Z̄ → Z in (2) can

be taken to be a finite Galois covering satisfying the following properties:

(i) τ is étale in codimension one; and

(ii) there exist a non-empty open subset U ⊂ Z̄ and an isomorphism

(X,Δ) ×Z Z̄|U → (F,Δ|F ) × Z̄|U

over U .

Proof. If Δ is a Q-divisor andMZ ∼Q 0, then the statement of the theorem is implied by [Amb05,
Theorem 4.7] and there is nothing prove.

We then assume that Δ is an R-divisor. Following the proof of [FG12, Theorem 3.1], it is
possible to find effective Q-divisors Δ1, . . . ,Δk such that for any i, (X,Δi) is klt over the generic
point of Z, and there exists 0 < ri < 1, ri ∈ R, such that

KX + Δ =
k∑

i=1

ri(KX + Δi) and
k∑

i=1

ri = 1. (4)
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Moreover, the divisors Δi can be chosen so that for any i, f : (X,Δi) → Z is an lc trivial
fibration.

Claim. For all i = 1, 2, . . . , k, KX + Δi ∼Q f∗KZ .

Proof. By Theorem 2.15, for all i = 1, 2, . . . , k, there exist an effective Q-divisor BZ,i and a
pseudo-effective Q-divisor MZ,i such that

KX + Δ ∼Q f∗(KZ +BZ,i +MZ,i). (5)

Then, by (4) and (5),

f∗KZ ∼R KX + Δ =
k∑

i=1

ri(KX + Δi) ∼Q f∗
(
KZ +

k∑
i=1

riBZ,i +
k∑

i=1

riMZ,i

)
.

As
∑k

i=1 riBZ,i is effective and
∑k

i=1 riMZ,i is pseudo-effective, this implies that for all i, MZ,i ≡
0 = BZ,i. Finally, [Flo14, Theorem 1.3] implies that MZ,i ∼Q 0, which concludes the proof of the
claim. �

Applying [Amb05, Theorem 4.7] to f : (X,Δi) → Z, it follows that for any i there exists a
finite Galois covering τi : Z̄i → Z satisfying the following properties:

(i) τi is étale in codimension one; and
(ii) there exist a non-empty open subset Ui ⊂ Z̄i and an isomorphism

(X,Δi) ×Z Z̄i|Ui → (F,Δi|F ) × Z̄i|Ui

over Ui.

By passing to the simultaneous Galois closure of the composition of the Galois field extensions
induced by the morphisms τi, there exists a finite Galois covering τ : Z̄ → Z such that:

(i) τ is étale in codimension one;
(ii) for any i, τ factors through τi; and
(iii) there exist a non-empty open subset U ⊂ Z̄ and isomorphisms

(X,Δi) ×Z Z̄|U → (F,Δi|F ) × Z̄|U

over U .

By the diagram in property (3) above and by (4), it then follows that over U the morphism

(X,Δ) ×Z Z̄|U → (F,Δ|F ) × Z̄|U

is an isomorphism, which concludes the proof. �

Remark 2.23. (i) Theorem 2.22 implies that under the condition of the theorem f : (X,Δ) → Z

is a strongly birationally isotrivial lc-trivial fibration; cf. Definition 2.21. In fact, property (ii) in
the statement of Theorem 2.22 implies that in the diagram (2) Z ! can be taken to be a point,
as it suffices to define (X !,Δ!) := (F,Δ|F ).

(ii) It follows from (1)–(3) that the converse of the statement of Theorem 2.22 holds as well:
namely, given a pair (X,Δ) and an lc-trivial fibration f : (X,Δ) → Z, for which conditions (i)–(ii)
of Theorem 2.22 hold, BZ = 0 by the definition in (1), and MZ ∼R 0 by (3) and condition (ii).
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Theorem 2.22 motivates the following definition.

Definition 2.24. Let X be a normal variety.

(i) Let (X,Δ) be a klt pair. We say that (X,Δ) is of product type if there exists a birational
contraction π : X ��� X ′ such that (X ′, π∗Δ) admits a strongly generically isotrivial lc-
trivial fibration.

(ii) We say that X is of product type if there exists an effective divisor Δ such that (X,Δ) is
a klt pair which is of product type.

By Theorem 2.22, if (X,Δ) is of product type then X is birational to a quotient of a product.

2.6 Birational transformations of fibred Calabi–Yau manifolds
In § 5 we will be interested in modifying the base X of an elliptic fibration f : Y → X by means
of a birational contraction X ��� X ′ and show that X ′ is also the base of a terminal elliptic
variety with numerically trivial canonical class. To this end, we prove the following result.

Proposition 2.25. Let Y be a projective terminal variety with KY ≡ 0. Let f : Y → X be

a contraction of terminal varieties. Let s : X ′ → X be a small morphism. Then there exist a

Q-factorial terminal Calabi–Yau variety Y ′ and a surjective morphism f ′ : Y ′ → X ′. In particular,

Y ′ is isomorphic to Y in codimension one.

Proof. We denote by T (respectively, T ′) the exceptional locus of s−1 (respectively, s) on X

(respectively, X ′), so that X \ T is isomorphic to X ′ \ T ′.

Claim. There exist a terminal Q-factorial variety Ȳ , a birational contraction p : Ȳ → Y , and a

contraction f̄ : Ȳ → X ′ for which the following diagram commutes.

Y

f

��

Ȳ
p

��

f̄
��

X X ′s��

(6)

Moreover, f̄(Ē) ⊂ T ′, where Ē is the divisorial part of the exceptional locus of p.

Proof of the claim. Let Γ ⊂ Y ×X ′ be normalization of the main component of the Zariski
closure of the graph of the morphism s−1 ◦ f : Y ��� X ′. We denote by

Γ
p2

���
��

��
��

�
p1

����
��

��
��

Y X ′

the restrictions of the projections to the two factors of Y ×X ′. By construction, p1 is birational
and it is an isomorphism over the Zariski open set X \ T ⊂ X.

Let Ỹ be a resolution of Γ. Then we can run the KỸ -MMP relatively over Γ with scaling of an
ample divisor which terminates with a relatively minimal model π : Ȳ → Γ, where Ȳ is a terminal
Q-factorial projective variety. We denote p := p1 ◦ π, f̄ := p2 ◦ π. As Y is terminal and p1 is an
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isomorphism over X \ T , then defining U := f−1(X \ T ), it follows that p|p−1(U) : p−1(U) → U is
a small Q-factorial model, by minimality of Ȳ over Γ. Hence, the centre on Y of all p-exceptional
divisors is contained in Y \ U = f−1(T ), which then implies the second part of the statement. �

Since Y is terminal, it follows that

KȲ = p∗KY + E ∼Q E, (7)

where E is an effective divisor whose support coincides with Ē. By the claim, E is f ′-exceptional
in the sense of [Lai11, Definition 2.9], since f̄(E) has codimension ≥ 2 in X ′, as f̄(E) ⊂ T ′. By
construction, the general fibre F ′ of f ′ has a good minimal model, by (7) and since KF ∼Q 0
on a general fibre F of f ; and F is terminal by adjunction. Hence, by [HX13, Theorem 1.1], it
follows that there is a good minimal model for KȲ over X ′. Then [HX13, Corollary 2.9] implies
that any run of the relative KȲ -MMP with scaling of an ample divisor terminates. Running one
such MMP, we can assume that there exists a minimal model Y ′ → X ′. By [Lai11, Lemma 2.10],
as E is f ′-exceptional, it follows that the relative KȲ -MMP over X ′ contracts E and hence it
terminates with a variety Y ′ such that KY ′ ≡ 0 and Y ′ is terminal.

The final claim in the statement of the proposition follows from the fact that we have con-
tracted all and only the divisors in the support of E whose support coincided with the exceptional
locus of p. �

A similar result holds if we modify the base of an elliptic fibration by means of a birational
contraction.

Proposition 2.26. Let Y be a projective terminal variety with KY ≡ 0. Let f : Y → X be a

contraction of normal varieties. Assume that X is a Q-factorial variety and let t : X ��� X ′ be a

birational contraction to a normal projective variety X ′. Then there exist a Q-factorial terminal

Calabi–Yau variety Y ′ and a surjective morphism f ′ : Y ′ → X ′. In particular, Y ′ is isomorphic

to Y in codimension one.

Proof. Let H ′ be an ample Cartier divisor on X ′, so that X ′ = Proj R(X ′, H ′), where R(X ′, H ′)
is the ring of section of H ′. Let H be the pullback of H ′ on X.1 As t is a birational contraction, we
have that R(X ′, H ′) = R(X,H). As f has connected fibres, R(X ′, H ′) = R(X,H) = R(Y, f∗H).

If we consider the pair (Y, εf∗H), 0 < ε
 1, then KY + f∗H is abundant since H is big on
X and KY ∼Q 0. By [GL13, Theorem 4.3], (Y, εf∗H) has a good minimal model, and [HX13,
Corollary 2.9] implies that any run of the (KY + εf∗H)-MMP with scaling of an ample divisor
terminates. Hence, running one such MMP, we can assume that there exists a minimal model
Y ��� Y ′′ for (Y, εf∗H). Denoting by G′′ the strict transform of f∗H on Y ′′, G′′ is nef on Y ′′, and
moreover, by [GL13, Proposition 3.13, Corollary 3.14], it is also abundant. Hence, as KY ∼Q 0,
[Fuj11a, Theorem 1.1] implies that G′′ is semiample on Y ′′. As by construction R(Y ′′, G′′) =
R(Y, f∗H) = R(X ′, H ′), there exists a morphism Y ′′ → X ′. Passing to a terminalization Y ′ → Y ′′

of (Y ′′, 0) yields the desired model.
The final claim follows from [KM98, Corollary 3.54], as Y ′ is also terminal projective with

KY ′ ≡ 0 since in going from Y ′′ to Y ′ we only extracted divisors of discrepancy 0 with respect
to KY ′′ . �

1 As X is projective, the map t is defined over a big open set U ⊂ X over which the pullback HU of H ′ is defined;
then, as the complement of U in X has codimension at least two, it suffices to take the H to be the Zariski closure
of HU .
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We complete this section by proving a result that illustrates a criterion to determine when a
projective terminal variety with trivial canonical class is of product type.

Lemma 2.27. Let Y be a terminal projective variety with KY ≡ 0. Let f : Y → Z be a

contraction of normal projective varieties.

(i) If 0 < dimZ < dimY and KZ ≡ 0, then Y is of product type.

(ii) If Z is of product type, then Y is also of product type.

Proof. (i) As KY ≡ 0, the canonical bundle formula KY ∼Q 0. Hence, by the canonical bun-
dle formula (Theorem 2.15), BZ = 0 and MZ ∼Q 0. But this implies that f is strongly
generically isotrivial by Theorem 2.22 (see Remark 2.23), and Y is of product type by
Definition 2.24.

(ii) As Z is of product type, there exists a boundary Δ such that (Z,Δ) is of product type.
Hence, there exist a birational contraction Z ��� Z ′ and a contraction Z ′ →W ′ which is strongly
generically isotrivial, by Definition 2.24. In particular, KW ′ ∼Q 0.

By Proposition 2.25, we can assume that Z is Q-factorial. Hence, by Proposition 2.26 there
exist a birational terminal projective variety Y ′ with KY ′ ≡ 0, and a contraction f : Y ′ →W ′.
But then part (i) implies that Y ′ is product type and the same holds for Y since it is isomorphic
in codimension one to Y ′. �

3. A structure theorem for Calabi–Yau pairs

We would like to characterize Calabi–Yau pairs which behave like a product of lower-dimensional
varieties. In this section we prove a structure theorem for Calabi–Yau pairs which is inspired by
the following theorem of Kollár and Larsen.

Theorem 3.1 [KL09, Theorem 3]. Let X be a smooth, simply connected projective Calabi–Yau

variety and f : X ��� Y a dominant map such that Y is not uniruled. Then one can

write

X
π �� X1

g
����� Y ,

where π is a projection to a direct factor of X ∼= X1 ×X2 and g : X1 ��� Y is generically

finite.

Any run of a KX -MMP with scaling of an ample divisor on a Calabi–Yau pair (X,Δ), with
Δ > 0, terminates with a Mori fibre space structure. If the base of this fibration is a vari-
ety with trivial canonical class then the pair (X,Δ) is of product type by Definition 2.24.
If that is not the case, we can repeat the same procedure on the base of the Mori fibre
space.

By iterating this procedure, we can obtain the following description of Calabi–Yau pairs
which is the main result of this section.

Theorem 3.2. Let (X,Δ) be a projective klt Calabi–Yau pair with Δ �= 0. Then there exists a

birational contraction

π : X ��� X ′
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to a projective Calabi–Yau pair (X ′,Δ′ = π∗Δ), Δ′ �= 0, and a tower of morphisms

X ′ = Y0

p0
�� Y1

p1
�� Y2

p2
�� . . .

pk−1
�� Yk (8)

such that:

(i) for any i, Yi is Q-factorial;

(ii) for any 1 ≤ i < k, there exists a boundary Δi �= 0 on Yi such that (Yi,Δi) is a projective

klt Calabi–Yau pair;

(iii) for any 0 ≤ i ≤ k the morphism pi : Yi → Yi+1 is a KYi-Mori fibre space (in particular,

ρ(Yi/Yi+1) = 1); and

(iv) Yk is a projective klt Calabi–Yau variety, that is, KYk
≡ 0 and Yk has klt singularities.

If dimYk > 0, then (X,Δ) is of product type.

Moreover, if X is Q-factorial, then the birational contraction X ��� X ′ is a composition of

divisorial contractions and (KX + Δ)-flops.

Proof. We prove the statement of the theorem by induction on the dimension of X, which we
denote by n.

When n = 1, we have that X = P1 and it suffices to consider the constant morphism to a
point. Let us now assume that n > 1 and that the theorem holds for any pair of dimension < n

satisfying the hypotheses of the statement.
By [Kol13, Corollary 1.37], we can replace (X,Δ) with a small Q-factorial model without

losing the klt Calabi–Yau condition; it suffices to prove the result for this new pair, as it is
isomorphic in codimension one to (X,Δ). Abusing notation, we denote this new model by (X,Δ),
so that we can assume that the pair (X,Δ) is Q-factorial. Since Δ �= 0, KX is not pseudo-effective
and, by Theorem 2.1, we can run a KX -MMP with scaling of an ample divisor

X
π ����� X̄

m̄ �� Y, (9)

which terminates with a KX̄ -Mori fibre space m̄ : X̄ → Y .
Let us note that since X is Q-factorial, the same holds for X̄ and Y as they are outcomes

of a run of the MMP. Furthermore, Δ̄ = π∗Δ �= 0 because we are running a KX -MMP and
KX + Δ ∼R 0. Hence, KX̄ + Δ̄ ∼R 0 and (X̄, Δ̄) is klt, and Theorem 2.15 implies that there
exists an effective divisor Γ on Y such that (Y,Γ) is klt and KY + Γ ∼R 0.

If Γ = 0 then KY ≡ 0 and we are done, by taking Y0 = X̄, Y1 = Y . Otherwise, Γ �= 0 and by
inductive hypothesis there exists a diagram

Y
q0

����� Y1

p1
�� Y2

p2
�� . . .

pk−1
�� Yk,

such that q0 is a birational contraction and the tower of morphisms

Y1

p1
�� Y2

p2
�� . . .

pk−1
�� Yk

satisfies conditions (i)–(iv) in the statement of the theorem.
The statement of the theorem then follows if we show that there exist a Q-factorial

klt Calabi–Yau pair (X ′,Δ′) with Δ′ �= 0, a birational contraction π′ : X̄ ��� X ′ which is a
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composition of divisorial contractions and (KX̄ + Δ̄)-flops, and a KX′-Mori fibre space m′ : X ′ →
Y1 such that the following diagram commutes.

X
π ����� X̄

m′
��

π′
����� X ′ =: Y0

m′=:p0

��
Y

q0
������ Y1

p1

��
Y2

p2

��
...

pk−1

��
Yk

(10)

By inductive hypothesis, as Y is Q-factorial, the birational contraction q0 can be decomposed as
a sequence of divisorial contractions and (KY + Γ)-flops

Y = Y (0)

q0

		� � � � � � 	 	 	 
 
 
 � � � � � � � � �    � � �
s1 ����� Y (1)

s2 ����� Y (2)
s3 ����� . . .

sj−1
����� Y (j−1)

sj
����� Y (j) = Y1

Thus, it suffices to prove the following claim. We will use the notation (X(0),Δ(0)) :=
(X̄, Δ̄).

Claim. For any 0 ≤ t ≤ j, there exist a Q-factorial klt Calabi–Yau pair (X(t),Δ(t)), with Δ(t) �=
0, and a KX(t)-Mori fibre space m′

t : X
(t) → Y (t) such that the following diagram commutes:

(X(0),Δ(0))

rj◦rj−1◦···◦r2◦r1=:π′



� � �  � � 	 � � � �
r1 �����

m′=:m′
0

��

(X(1),Δ(1))
r2 �����

m′
1

��

. . .
rj
����� (X(j),Δ(j)) = Y0

m′
j=:p0

��

Y = Y (0)

q0

		� � � 	 	 
 � � � �  � �
s1 ������� Y (1)

s2 ������� . . .
sj

������� Y (j) = Y1

and also Δ(t) := rt∗Δ(t−1) and rt is a birational contraction that is a composition of divisorial

contractions and (KX(t−1) + Δ(t−1))-flops.

Proof of the claim. We use induction on t ∈ {0, 1, . . . , j}.
For t = 0, there is nothing to prove. Thus, we can assume that the statement of the claim

holds up to t− 1 and we shall prove that it holds for t as well. By inductive hypothesis, we can
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assume that the diagram

(X(0),Δ(0))
r1 �����

m′
0

��

(X(1),Δ(1))
r2 �����

m′
1

��

. . .
rt−1
����� (X(t−1),Δ(t−1))

m′
t−1

��

Y = Y (0)
s1 ������� Y (1)

s2 ������� . . .
st−1

������� Y (t−1)

exists and satisfies the conditions in the statement of the claim.
Hence it suffices to show that the diagram

(X(t−1),Δ(t−1))

m′
t−1

��

Y = Y (t−1)
st ������ Y (t)

can be completed to give a diagram

(X(t−1),Δ(t−1))

m′
t−1

��

rt ����� (X(t),Δ(t))

m′
t

��

Y = Y (t−1)
st �������� Y (t)

(11)

where rt is a composition of divisorial contractions and (KX(t−1) + Δ(t−1))-flops and m′
t is a

KX(t)-Mori fibre space. Since st is either a divisorial contraction or a (KY (t−1) + Γ(t−1))-flop by
inductive hypothesis, where Γ(t−1) is the strict transform of Γ on Y (t−1), the existence of the
diagram in (11) follows from Lemmas 3.3 and 3.4. �

If dimYk > 0 then Definition 2.24 immediately implies that (X,Δ) is of product type;
in fact, as KY k ∼Q 0, the lc-fibration (X ′,Δ′) → Y k that we have constructed is strongly
birationally isotrivial by Theorem 2.22 (see Remark 2.23), and π′ ◦ π is a birational
contraction.

If X is Q-factorial, then the birational contraction π′ ◦ π : X ��� X ′ is a composition of divi-
sorial contraction and (KX + Δ)-flops. The map π : X ��� X̄ in (9) is constructed by running a
KX -MMP, hence it is a composition of divisorial contractions and KX -flips; as KX + Δ ∼R 0,
those KX -flips are also (KX + Δ)-flops. On the other hand, π′ : X̄ → Y0 in (10) is in turn
a composition of divisorial contractions and (KX̄ + Δ̄)-flops, as shown in the proof of the
claim. As π is crepant with respect to (X,Δ), then those (KX̄ + Δ̄)-flops are also (KX + Δ)-
flops. �

In the previous proof we used the following two lemmas.

Lemma 3.3. Let (X,Δ) be a projective klt Calabi–Yau pair with Δ �= 0. Let p : X → Y be a

KX -Mori fibre space of Q-factorial varieties. Let q : Y → Y ′ be a divisorial contraction. Then

there exist a Q-factorial projective klt Calabi–Yau pair (X ′,Δ′), with Δ′ �= 0, a KX′-Mori fibre

space p′ : X ′ → Y ′, and a birational contraction f : X ��� X ′ which is a composition of a finite
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number of (KX + Δ)-flops followed by a divisorial contraction, such that the following diagram

commutes.

X
f

�����

p

��

X ′

p′
��

Y
q

�� Y ′

Proof. Since p is aKX -Mori fibre space, we have that dim N1(X/Y ′) = 2. Let F be the irreducible
divisor contracted by q on Y and let E = p∗(F ). As, for 0 < ε
 1, (X,Δ + εE) is klt, KX +
Δ + εE ∼R εE, and Δ is relatively big, we can run the E-MMP with scaling relatively over Y ′

and this must terminate. But then, as E is effective and q(p(E)) has codimension ≥ 2 in Y ′,
[Lai11, Lemma 2.10] implies that this run of the relative E-MMP must terminate by contracting
E to a Q-factorial model X ′ of X, and E is irreducible since ρ(X ′/Y ′) = 1. Hence, the birational
contraction f : X → X ′ is a composition of E-flips, followed by a divisorial contraction. As
KX + Δ ∼R 0, those E-flips are also (KX + Δ)-flops.

Finally, the claim that Δ′ �= 0 follows because Δ is relatively big over Y ′, hence, 0 �= f∗
Δ = Δ′. �

Lemma 3.4. Let (X,Δ) be a projective klt Calabi–Yau pair with Δ �= 0. Let p : X → Y be a

KX -Mori fibre space of Q-factorial varieties with KX + Δ ∼R p
∗(KY +G), and (Y,G) is a klt

pair. Let q : Y ��� Y ′ be a (KY +G)-flop. Then there exist a projective klt Calabi–Yau pair

(X ′,Δ′), with Δ′ �= 0, a KX′-Mori fibre space p′ : X ′ → Y ′, and an isomorphism f : X ��� X ′ in

codimension one such that the following diagram commutes.

X
f

�����

p

��

X ′

p′
��

Y
q

����� Y ′

Proof. Let π : Y → Z, π′ : Y ′ → Z be the flopping contractions associated to q and let H be an
effective relatively anti-ample Cartier divisor on Y over Z. We denote H̄ := p∗H. We want to
produce a map f which is an isomorphism in codimension one and that makes the following
diagram commute.

X
p

����
��

��
��

f
��������� X ′

p′

���
��

��
��

�

Y
π

������������������
q

������������������ Y ′
π′

������������������

Z

As, for 0 < ε
 1, (X,Δ + εH̄) is klt, KX + Δ + εH̄ ∼R εH̄, and Δ is relatively big, we can run
the H̄-MMP with scaling of an ample divisor relatively over Z, and this must terminate with a
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Q-factorial relatively minimal model

X

π◦p �
��

��
��

�

f
��������� X ′

s′����
��

��
��

Z

The strict transform H̄ ′ of H̄ on X ′ is semiample since Δ′ is big over Z, where Δ′ := f∗Δ.
As

Y ′ = ProjOZ
(⊕n≥0π∗OY (nH)) = ProjOZ

(⊕n≥0(π ◦ p)∗OX(nH̄)),

the relative Iitaka fibration of H̄ ′ over Z induces a morphism p′ : X ′ → Y ′, since, for any n ≥ 0,

π∗OY (nH) = (π ◦ p)∗OX(nH̄)) = s′∗OX′(nH̄ ′),

as f is constructed as the run of an H̄-MMP and f∗H̄ = H̄ ′.
We have that ρ(X ′/Z) ≤ 2 since f is a birational contraction and q is an isomorphism

in codimension one of Q-factorial varieties. Since also ρ(Y ′/Z) = 1 ≤ ρ(X ′/Y ′), we have that
ρ(X ′/Z) = 2; moreover, as X ′ is Q-factorial we have that X, X ′ are again isomorphic in
codimension one, as f by construction is a birational contraction and ρ(X ′/Z) = ρ(X/Z).

Finally the claim that Δ′ �= 0 follows because Δ is relatively big over Y ′, hence, 0 < f∗
Δ = Δ′. �

We conclude this section with a remark on the differences between the property of being
rationally connected and the property of having product type.

Remark 3.5. If (X,Δ) is a projective klt Calabi–Yau pair not of product type then Theorem 3.2
proves that X is rationally connected, as X is decomposed into a tower of morphisms with
rationally connected fibres. On the other hand, if (X,Δ) is of product type andX is not rationally
connected, then Theorem 3.2 provides the maximally rationally connected fibration. Let us point
out that if (X,Δ) is of product type it is not always the case that X is not rationally connected;
there are examples of rationally connected varieties Y with klt singularities and KY ≡ 0 (see
[OT15]).

As we saw in the Introduction, log birational boundedness of Calabi–Yau pairs does not hold
if we allow ourselves also to consider product-type pairs. Nonetheless, it is possible that the
boundedness can still be proven if we consider n-dimensional product-type pairs (X,Δ) with X
rationally connected and the coefficients of Δ vary in a fixed DCC set; see [CDHJS21, Conjecture
1.3]. A proof of this fact appears in [BDS20, Theorem 1.4].

4. Boundedness of Mori fibre spaces

In this section we prove the main technical result needed for Theorem 1.3. More precisely, we
show that if we fix a bounded set of varieties D, then the set of klt Calabi–Yau pairs endowed
with a Mori fibre space structure mapping to one of the varieties in D is bounded as well. The
strategy is to lift a very ample divisor with bounded volume from the base to the total space,
suitably perturb it by means of the boundary of the klt Calabi–Yau pair and then use the results
from § 2.2 to show that boundedness must hold for the Calabi–Yau pairs.
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4.1 Boundedness of volume for Mori fibre spaces of generalized pairs
The main aim of this subsection is to prove Theorem 4.3 which represents a first step towards
proving the boundedness of Calabi–Yau pairs endowed with a Mori fibre space whose base belongs
to a bounded family. Here, we will work in the more comprehensive setting of generalized pairs.
For the definition and basic properties of generalized pairs, the interested reader can check
[BZ16, § 4].

We start by first recalling the following theorem of Birkar which is one of the fundamental
tools in his proof of Theorem 2.12.

Theorem 4.1 [Bir21, Theorem 1.6]. Let n, r be positive integers and ε a positive real number.

Then there exists a positive real number t = t(n, r, ε) satisfying the following assertion. Assume

that:

• (F,B) is a projective ε-lc pair of dimension n;

• A is a very ample divisor on F with An ≤ r;

• A−B is ample; and

• M ≥ 0 is an R-Cartier R-divisor with |A−M |R �= ∅.

Then

lct(F,B, |M |R) ≥ lct(F,B, |A|R) ≥ t.

Let us also recall the following immediate consequence of Birkar’s proof of the BAB
conjecture; see [Bir19, Bir21].

Lemma 4.2. Fix a positive integer n and a positive real number ε. Then, there exist posi-

tive integers mn,ε = m(n, ε), sn,ε = s(n, ε) such that, for any n-dimensional ε-lc Fano variety X,

−mn,εKX is a very ample Cartier divisor on X of degree at most sn,ε.

In particular, sn,ε also provides a bound for the volume of −mn,εKX . We can always assume
that mn,ε ≥ 2.

Proof. Theorem 2.12 and [Bir19, Lemma 2.24] imply that there exists t = t(n, ε) such that −tKX

is Cartier. As −KX is ample, [Kol93, Theorem 1.1 and Lemma 1.2] imply that there exists
l = l(n, ε) such that −ltKX is very ample. Hence, we can define mn,ε := ln.

The existence of sn,ε follows from the previous part and the bound on the volume of −KX

that was established in [Bir21, Theorem 2.11]. �

We are now ready to state the main result of this section. We remind the reader that the
definition of generalized pair can be found in § 2.4

Theorem 4.3. Fix a positive real number ε, a DCC set I, and positive integers n, p, d, l. Let D

be the set of pairs (X ′,Δ′ + (1/l)G) satisfying the following properties:

(i) there exists an n-dimensional projective generalized klt pair (X → X ′,Δ′,M);
(ii) the coefficients of Δ′ belong to I, and pM is Cartier;

(iii) KX′ + Δ′ +M ′ ≡ 0;

(iv) there exists Γ ∼R M such that (X ′,Δ′ + Γ′) is ε-klt;

(v) there exists a contraction f : X ′ → Z on X ′, with dimZ < dimX ′;
(vi) −KX′ is f -ample;
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(vii) there exists a very ample Cartier divisor H such that Vol(Z,H) ≤ d; and

(viii) G ∼ lf∗H and the coefficients of (1/l)G are in [0, 1].

Then D forms a log birationally bounded family.

We postpone the proof of Theorem 4.3 to the end of this subsection.
Theorem 4.3 can be deduced from [BZ16, Theorem 1.3] together with the following technical

result which shows for suitable generalized pairs of Calabi–Yau type, endowed with a fibration,
that the volume of the anticanonical class is bounded from above, thus generalizing the result of
Theorem 2.7.

Proposition 4.4. Fix a DCC set I, a positive real number ε and positive integers n, p. If

(X → X ′,Δ′,M) is a projective n-dimensional generalized klt pair such that

(i) the coefficients of Δ′ are in I and pM is Cartier,

(ii) there exists a morphism f : X ′ → Z, 0 < dimZ < dimX ′, and −KX′ is f -ample,

(iii) there exists a very ample Cartier divisor H on Z such that

KX′ + Δ′ +M ′ ∼Q f∗H, and KZ +H is big,

(iv) there exists 0 ≤ Γ ∼R M such that (F, (Δ′ + Γ′)|F ) is ε-klt where F is a general fibre of f

and Γ′ is the pushforward of Γ on X ′,

then there exists a constant k = k(I, ε, p, n) such that

Vol(X ′,Δ′ +M ′) ≤ kVol(Z,H).

Proof. If Vol(X ′,Δ′ +M ′) = 0 there is nothing to prove. Hence, we can assume that Δ′ +M ′ is
big and consequently that also its restriction to a general fibre of f is big. We can also assume
that X ′ is Q-factorial by passing to a small Q-factorial modification as that does not alter any
of the hypotheses in the statement of the proposition.

We will prove that there exists a constant k′ = k′(I, ε, p, n, j) such that the conclusion of
the proposition holds for k′ instead of k, where j = dimZ. The statement of the theorem then
follows by taking

k(I, ε, p, n) := max
0<j<n

k′(I, ε, p, n, j).

To define k′, we will work by induction on the set of ordered pairs of integers (n, j), n > j > 0,
with the lexicographic order.

The pair (F,ΔF := (Δ′ + Γ′)|F ) is generalized ε-klt and KF + ΔF ∼R 0, by adjunction. In
particular, F belongs to a bounded family, by Theorem 2.12. Let us also fix mdim F,ε = mn−j,ε =
m(n− j, ε), sdim F,ε = sn−j,ε = s(n− j, ε), the two natural numbers defined in Lemma 4.2. Apply
Theorem 4.1 to the pair (F,ΔF ) with A := −mdim F,εKF , r := sdim F,ε. Then we define t = t(n−
j, sn−j,ε, ε). In particular, for any effective divisor G ∈ | −KF |R, (F,ΔF + tG) is klt. We define
t̄ := min{1

2 , t/2}.

Claim. Vol(X ′, t̄(Δ′ + Γ′) − 2f∗H) = 0.

Proof. In fact, if that is not the case, then t̄(Δ′ + Γ′) − 2f∗H is big. Thus, there exists an effective
R-divisor E ∼R t̄(Δ′ + Γ′) − 2f∗H. Let us define

Θ := (1 − t̄)(Δ′ + Γ′) + E,
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so that KX′ + Θ ∼R −f∗H. Since E|F ∼R −t̄KF by construction, by the above discussion
(F,Θ|F ) is klt. Hence, (X ′,Θ) is klt over the generic point of Z, and, by Theorem 2.15, there
exists an effective divisor ΓZ on Z such that

−f∗H ∼R KX′ + Θ ∼R f
∗(KZ + ΓZ).

This immediately gives a contradiction since KZ +H is supposed to be big, while we have just
proved that KZ + ΓZ +H ∼R 0. �

We fix a general element H ′ ∈ |H| and define H ′′ := f−1H ′, so that H ′′ ∼ f∗H.
Lemma 4.6 implies that

Vol(X ′, t̄(Δ′ + Γ′)) ≤ Vol(X ′, t̄(Δ′ + Γ′) − 2f∗H) + 2nVol(H ′′, t̄(Δ′ + Γ′)|H′′).

Hence, as Vol(X ′, t̄(Δ′ + Γ′) − 2f∗H) = 0 and Γ′ ∼M ′

Vol(X ′,Δ′ +M ′) ≤ 2nt̄−1Vol(H ′′, (Δ′ +M ′)|H′′).

If j = 1, then H ′′ =
∑h

i=1 Fi where h = degZ(H) = Vol(Z,H) and Fi is a general fibre of f
for each i. Hence, (Fi, (Δ′ + Γ′)|Fi) is ε-klt log Calabi–Yau pair of dimension dimX − 1. By
Theorem 2.12,

Vol(H ′′, (Δ′ +M ′)|H′′) =
h∑

i=1

Vol(Fi,−KFi) ≤
sn−1,ε

mn−1
n−1,ε

Vol(Z,H).

Hence, we may take

k′(I, ε, p, n, 1) := 2nt̄−1 sn−1,ε

mn−1
n−1,ε

,

thus proving the starting step of the induction, as j = 1.
When j > 1, let us consider the map g := f |H′′ : H ′′ → H ′. Then, by adjunction, H ′′ supports

a generalized klt pair (H ′′′ → H ′′,Δ′|H′′ ,M |H′′′), such that:

• H ′′′ is a divisor in X, by possibly passing to a higher model of X;
• dimH ′ = j − 1 > 0;
• the coefficients of Δ′|H′′ are in I which is DCC, by adjunction and freeness of |g∗H|;
• pM |H′′′ is Cartier and Γ|H′′′ ∼R M |H′′′ , by restricting;
• (Δ′ + Γ′)|H′′ is ε-klt along the general fibre of g, by adjunction and freeness of |f∗H|;
• KH′′ = (KX′ +H ′′)|H′′ by adjunction, since H ′′ is Cartier and general in a base-point-free

linear system;
• −KH′′ is g-ample since H ′′ ∼g 0; and
• KH′′ + Δ|H′′ ∼R 2g∗(H|H′), and KH′ ∼ (KZ +H)|H′ is big.

Thus, by inductive hypothesis, since dimH ′′ = dimX − 1,

Vol(H ′′, (Δ′ +M ′)|H′′) ≤ k′(I, ε, p, n− 1, j − 1)Vol(H ′, 2H|H′)

= 2j−1k′(I, ε, p, n− 1, j − 1)Vol(Z,H).

Taking
k′(I, ε, p, n, j) := 2jnt̄−1k′(I, ε, p, n− 1, j − 1),

the proof is complete. �
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Remark 4.5. From the point of view of the proof of Proposition 4.4 there seem to be quite a few
points where the strategy could be improved if we had better knowledge and understanding of
the features of generalized pairs.

For example, it would be nice to show that it is possible to write down a canonical bundle
formula for generalized pairs that would make it possible to drop hypothesis (iv) on the existence
of an effective member of the linear system |M | with bounded singularities.

For instance, for the purpose of the above proof, it would be enough to know that for
a generalized klt pair (X → X ′,Δ′,M) and a morphisms f : X ′ → Z such that KX′ + Δ′ +
M ′ ∼f,R 0, there exist a klt pair (Z,Γ) and a pseudo-effective divisor P for which

KX′ + Δ′ +M ′ ∼R f
∗(KZ + Γ + P ).

After the completion of this paper, it was shown in [Fil20a, HL19] that a canonical bundle
formula exists for generalized pairs in full generality.

In the course of the proof of Proposition 4.4 we used the following easy generalization of
[Jia18, Lemma 2.5].

Lemma 4.6. Let X be a projective normal variety and let D be an R-Cartier R-divisor on X.

Let S be a base-point-free Cartier prime divisor on X. Then for any rational number q > 0,

Vol(X,D + qS) ≤ Vol(X,D) + q · dimX · Vol(S,D|S + qS|S).

Proof. When D is a Q-Cartier Q-divisor on X, this is the original statement of [Jia18, Lemma
2.5].

When D instead is an R-Cartier R-divisor, then it suffices to choose a sequence of Q-Cartier
Q-divisors approximating D in the Néron–Severi group and notice that by virtue of continuity of
the volume function the inequality in the statement of the Lemma is preserved in the limit. �

When working with log pairs, rather than generalized ones (i.e. when M = 0), the statement
of Proposition 4.4 can be immediately reduced to the following one.

Proposition 4.7. Fix a DCC set I ⊂ [0, 1) and an integer n. If (X,Δ) is a pair such that

(i) X is a projective variety of dimension n,

(ii) (X,Δ) is klt and the coefficients of Δ are in I,

(iii) there exists a morphism f : X → Z, 0 < dimZ < dimX, and −KX is f -ample, and

(iv) there exists a very ample Cartier divisor H on Z such that KX + Δ ∼R f
∗H and KZ +H

is big,

then there exists a constant k = k(I, n) such that

Vol(X,Δ) ≤ kVol(Z,H).

Proof. Hypotheses (i)–(iii) of Proposition 4.4 are automatically satisfied. Corollary 2.9 then
implies that there exists 0 < ε = ε(dimX − dimY, I) such that (F,Δ|F ) is ε-klt and this implies
that condition (iv) in Proposition 4.4 is satisfied as well, by adjunction to a general fibre of f . �

Proof of Theorem 4.3. Given a pair (X ′,Δ′ + (1/l)G) ∈ D, let us consider the generalized pair

(X → X ′,Δ′,M + H̄),
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where H̄ is the pullback of H to X. Since (X → X ′,Δ′,M) is generalized klt, the same holds for
(X → X ′,Δ′,M + H̄). Moreover, we can assume that X is a log resolution of (X ′,Δ′ + Γ) where
M descends. We will denote by G̃ (respectively, Δ̃′) the strict transform of G (respectively, Δ′)
on X, and Ḡ := Supp(G̃). In particular, since G ∼ lf∗H and the coefficients of (1/l)G are in
[0, 1],

Ḡ ≤ lH̄. (12)

Let us fix H1 ∈ |H| sufficiently general. Let us define H ′ := f−1H1 on X ′ and let H ′′ be the
strict transform of H ′ on X. Thus, H ′′ ∈ |H̄|, for a sufficiently general element.

By adjunction, up to choosing a sufficiently high model X → X ′, there exists a generalized
pair structure (H ′′ → H ′,Δ′|H′ , (M + H̄)|H′′) satisfying the following conditions:

(i) the coefficients of Δ′|H′ are in the DCC set I, since H ′ is a general element of a base-
point-free linear system;

(ii) p(M + lH̄)|H′′ is Cartier, for all l ∈ N;
(iii) Γ|H′′ ∼R M |H′′ ;
(iv) (H ′, (Δ′ + Γ′)|H′) is ε-klt by Bertini’s theorem for log pairs;
(v) the restriction of f to H ′ gives a morphism fH′ : H ′ → H1, dimH1 < dimH ′;
(vi) the trace of H̄|H′′ on H ′ is just f∗H′(H|H1), by construction; and
(vii) for all l ∈ N and for the very ample Cartier divisor H|H1 on H1, KH′ + (Δ′ + Γ′ +

lH̄)|H′ ∼Q (1 + l)f∗H′(H|H1).

As f is a KX′-Mori fibre space, then for 0 < λ
 1, KX′ + (1 + λ)(Δ′ +M ′) + f∗H is ample.
Hence, the divisor

KX + E + �Δ̃′� + 2M + H̄

is big, where E is the exceptional divisor of the birational morphismX → X ′. By [BZ16, Theorem
1.3], there exists a positive integer m = m(I, n, p) such that, for any m′ divisible by m, the linear
system |m′(KX + E + �Δ̃′� + 2M + H̄)| defines a birational map. Up to passing to a higher
birational model of X, we can assume that on X,

|m(KX + E + �Δ̃′� + 2M + H̄)| = |N | + F, (13)

where |N | is a base-point-free linear system inducing a birational morphism and F the effective
fixed part of the linear system.

As the coefficients of Δ′ vary in the DCC set I, there exists a positive integer c = c(I) such
that the coefficients of the divisor cΔ′ are ≥ 1 for any (X ′,Δ′) in D. Thus,

Vol(X ′, cΔ′ +M ′ + f∗H) = cn Vol
(
X ′,Δ′ +

M ′ + f∗H
c

)

≤ cn Vol(X ′,Δ′ +M ′ + f∗H). (14)

Lemma 4.6 implies that

Vol(X ′,Δ′ +M ′ + f∗H) ≤ Vol(X ′,Δ′ +M ′) + n · Vol(H ′, (Δ′ +M ′)|H′ + f∗H|H′)

= Vol(X ′,Δ′ +M ′) + n · Vol(H ′, (Δ′ +M ′)|H′ + f∗H′(H|H1)). (15)
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Hence,

Vol(X,KX + E + �Δ̃′� + 2M + H̄)

≤ Vol(X ′,KX′ + �Δ̃′� + 2M ′ +H ′) (using f∗)

≤ Vol(X ′, cΔ′ +M ′ +H ′) (KX′ + Δ′ +M ′ ≡ 0)

≤ cn Vol(X ′,Δ′ +M ′ +H ′) (by (14))

≤ cn[Vol(X ′,Δ′ +M ′)

+ n · Vol(H ′, (Δ′ +M ′)|H′ + f∗H′(H|H1)],

(16)

where the last inequality follows from (15).

Claim 1. There exists a positive real number C1 = C1(n, ε) such that

Vol(X ′,Δ′ +M ′) ≤ C1.

Proof. We can assume that Vol(X ′,Δ′ +M ′) > 0, otherwise there is nothing to prove. We can
also assume that X ′ is Q-factorial, as passing to a small Q-factorialization does not change
volumes.

Hence, for 0 < η 
 1, (X ′, (1 + η)(Δ′ + Γ′)) is klt and KX′ + (1 + η)(Δ′ + Γ′) ∼R η(Δ′ + Γ′)
is big. Thus, we can run the (η(Δ′ + Γ′))-MMP with scaling of an ample divisor which terminates
with a birational model ψ : X ′ ��� X ′′ such that Δ′′ + Γ′′ is ample onX ′′ and Vol(X ′′,Δ′′ + Γ′′) =
Vol(X ′,Δ′ + Γ′), where Δ′′ := ψ∗Δ′, Γ′′ := ψ∗Γ′. On the other hand, as KX′ + Δ′ + Γ′ ∼R 0 and
(X ′,Δ′ + Γ′) is ε-klt,X ′′ is an ε-klt Fano variety and Vol(X ′′,Δ′′ + Γ′′) = Vol(X ′′,−KX′′). Hence,
it suffices to take C1 to be the constant whose existence is implied by [Bir21, Theorem 2.11]. �

Claim 2. There exists a positive real number C2 = C2(I, ε, p, n) such that

Vol(H ′, (Δ′ +M ′)|H′ + f∗H|H′) ≤ C2.

Proof. We can assume that Vol(H ′, (Δ′ +M ′)|H′ + f∗H|H′) > 0, otherwise there is nothing to
prove. We can assume that H ′ is Q-factorial, as passing to a small Q-factorialization does not
change volumes. We distinguish two cases.

If dimH1 = 0, then H ′ is the disjoint union of s fibres of fH′ , F1, . . . , Fs, where s :=
Vol(Z,H) ≤ d. Furthermore, in this case f∗H′(H|H1) = 0 so that

Vol(H ′, (Δ′ +M ′)|H′ + f∗H′(H|H1)) = Vol(H ′, (Δ′ +M ′)|H′)

=
s∑

i=1

(Δ′ +M ′)dim X′−dim Z · Fi = s(Δ′ +M ′)dim F · F,

where F is a general fibre of f |H′ (equivalently, of f). By hypotheses (iii)–(vi) in the statement
of the theorem, F is an ε-klt Fano and KF ∼R (Δ′ +M ′)|F ; hence, by [Bir21, Theorem 2.11]
there exists a constant C̄ = C̄(ε,dimF ) such that

(Δ′ +M ′)|dim F
H′ · F = Vol(F, (Δ′ +M ′)|F ) = Vol(F,−KF ) ≤ C̄.

We define C2,a := max0<i<dim X′ C̄(ε, i).
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If dimH1 > 0, by properties (vi) and (vii) in the proof of Theorem 4.3,

KH′ + (Δ′ +M ′)|H′ + lf∗H′(H|H1) ∼R f
∗
H′((1 + l)H|H1), ∀ l ≥ 0.

Moreover, Kawamata–Viehweg vanishing and the fact that H|H1 is very ample imply that
KH1 + (n+ 1)H|H1 is big; in fact, for some m ∈ {1, . . . , n}, h0(H1,KH1 +mH|H1) �= 0 as
χ(H1,KH1 +mH|H1) = h0(H1,KH1 +mH|H1) by Kawamata–Viehweg vanishing. Hence, by
properties (i)–(vii) in the proof of the theorem, using Proposition 4.4, we conclude that there
exists k = k(I, ε, p, n− 1) such that

Vol(H ′, (Δ′ +M ′)|H′ + f∗H1
(H|H1)) ≤ Vol(H ′, (Δ′ +M ′)|H′ + nf∗H′(H|H′))

≤ k(n+ 1)n−1 Vol(H1, H|H1)

≤ k(n+ 1)n−1d,

as Vol(H1, H|H1) = Vol(Z,H) ≤ d since H1 ∈ |H|. We define C2,b := k(n+ 1)n−1d.
To complete the proof of the claim, it suffices to take C2 := max{C2,a, C2,b}. �

By [HMX13, Lemma 2.4.2(3)], to show that D forms a log birationally bounded family,
it suffices to show that the set of pairs (X, �Δ̃′ + G̃� + E) is log birationally bounded. Since
|N | in (13) is a base-point-free linear system that induces a birational morphism, by [HMX13,
Lemma 2.4.2(4)] it suffices to show that there exist positive real numbers C3 = C3(I, ε, p, n),
C4 = C4(I, ε, p, n) such that

Vol(X,N) ≤ C3 and (�Δ̃′� + E + Ḡ) ·Nn−1 ≤ C4.

Claims 1 and 2 and (16) imply that

Vol(X,KX + E + �Δ̃′� + 2M + H̄) ≤ cn(C1 + C2). (17)

By construction and (17),

Vol(X,N) ≤ mn Vol(X,KX + E + �Δ̃′� + 2M + H̄) ≤ (cm)n(C1 + C2).

Thus, it suffices to take C3 := (cm)n(C1 + C2).
By [HMX13, Lemma 3.2], denoting N ′ = 2(2n+ 1)N ,

(�Δ̃′� + E + Ḡ) ·Nn−1 ≤ (�Δ̃′� + E + Ḡ) · (N ′)n−1

≤ 2n Vol(X,KX + �Δ̃′� + E + Ḡ+N ′). (18)

Since |m(KX + �Δ̃′� + E + 2M + H̄))| = |N | + F and F ≥ 0, it follows, using (12), that

Vol(X,KX + �Δ̃′� + E + Ḡ+N ′)

≤ Vol(X,KX + �Δ̃′� + E + Ḡ+ 2(2n+ 1)(KX + �Δ̃′� + E + 2M + H̄))

≤ Vol(X,KX + �Δ̃′� + E + lH̄ + 2(2n+ 1)(KX + �Δ̃′� + E + 2M + H̄)). (19)

Thus, (18) and (19) imply that

(�Δ̃′� + E + Ḡ) ·Nn−1

≤ 2n Vol(X,KX + �Δ̃′� + E + lH̄ + 2(2n+ 1)m(KX + �Δ̃′� + E + 2M + H̄))

≤ 2n Vol(X, (2(2n+ 1)m+ l)(KX + �Δ̃′� + E + 2M + H̄)),
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where the last inequality follows from the fact that M and KX + �Δ̃′� + E + 2M are pseudo-
effective. By (17) it suffices to take C4 := 2n(2(2n+ 1)m+ l)ncn(C1 + C2). �

4.2 Boundedness for Mori fibre spaces of log Calabi–Yau type
We can now use the results from the previous subsection to show that, in the case of klt
Calabi–Yau pairs endowed with a Mori fibre space structure with bounded base and singu-
larities, we can produce a very ample divisor with bounded volume on the total space using the
one on the base.

After the completion of this paper, a generalization of this result appeared in [CDHJS21,
Theorem 4.6] which was later further improved in [Bir18, Theorem 1.2].

Theorem 4.8. Fix a DCC set I ⊂ [0, 1] and positive integers n, d. Then the set D of log pairs

(X,Δ) satisfying

(i) (X,Δ) is a projective klt pair of dimension n,

(ii) the coefficients of Δ belong to I,

(iii) KX + Δ ≡ 0,

(iv) there exists a contraction f : X → Z with dimZ < dimX,

(v) −KX is f -ample, and

(vi) there exists a very ample Cartier divisor H on Z with Vol(Z,H) ≤ d,

forms a bounded family.

Proof. By Theorem 2.8, we can assume that I is finite. By Corollary 2.9, there exists ε(n, I) > 0
such that (X,Δ) is ε-lc. As f∗H is base-point-free, by Bertini’s theorem for log pairs (cf. [Kol97,
Theorem 4.8]), there exists an effective prime divisor 0 ≤ G ∼ 2f∗H such that (X,Δ + 1

2G) is
ε′-lc, where ε′ = min{1

2 , ε}; furthermore, the coefficients of Δ + 1
2G are contained in I ′ = I ∪ {1

2}
which is still a DCC set. For any pair (X,Δ) ∈ D, we fix such a choice of G = G(X,Δ).

We define the set of pairs

D′ := {(X,Δ + 1
2G) | (X,Δ) ∈ D, G is the divisor defined above}.

The set D′ is log birationally bounded: in fact, pairs (X,Δ + 1
2G) ∈ D′ satisfy the hypotheses of

Theorem 4.3, since:

• (X,Δ) is trivially a generalized pair by imposing M = 0;
• it suffices to fix the integer l in the statement of Theorem 4.3 to be 2;
• I is a DCC set;
• −KX is f -ample; and
• (X,Δ) is ε-lc.

Since −KX is f -ample, for any 0 < η 
 1,

KX + (1 + η)Δ + 1
2G ∼R ηΔ + 1

2G

is an ample divisor and the pair (X, (1 + η)Δ + 1
2G) is ε′/2-klt. For any pair (X,Δ + 1

2G) ∈ D′,
we fix such a choice of η = η(X,Δ, G).

We define the set of pairs

D′′ := {(X, (1 + η)Δ + 1
2G) | (X,Δ + 1

2G) ∈ D′, η is the positive real number defined above}.
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As D′ is log birationally bounded, and the notion of log birational boundedness does not depend
on the coefficients of the divisor of the pairs in D′ (see Definition 2.3), D′′ is also log birationally
bounded.

Claim. The set D′′ satisfies the hypotheses of Theorem 2.5.

Proof. As the coefficients of Δ + 1
2G are contained in a DCC set, there exists δ = δ(I) > 0 such

that the coefficients of Δ + 1
2G are ≥ δ; a fortiori, the same must hold for the coefficients of

(1 + η)Δ + 1
2G. By construction KX + (1 + η)Δ + 1

2G is ample, and by construction (X, (1 +
η)Δ + 1

2G) is ε′/2-klt for ε′ = ε′(n, I). �

Applying Theorem 2.5, D′′ is a bounded set of pairs. In particular, X belongs to a bounded
family: by the definition of boundedness of D′′ (see Definition 2.3), in particular, there exists a
projective morphism f : Z → T such that T is of finite type and any variety X ∈ D′′ appears
also as one of the fibres of f . Hence, up to decomposing T as a finite disjoint union of
locally closed subsets, we can assume that Z ⊂ Pn × T , which implies, by generic flatness,
that there exists a positive integer d = d(D′′) such that for any X ∈ D′′ one can find a very
ample Cartier divisor HX on X satisfying Hdim X

X ≤ d. Since the coefficients of Δ belong to the
finite set I and Δ ≡ −KX , the set D is a bounded set, again, by the existence of Chow vari-
eties [Kol96, Theorem 3.12], since the degree with respect to HX of each component of Δ is
bounded. �

5. Proof of the theorems

In this section we prove the theorems stated in the Introduction.

Proof of Theorem 1.8. From Theorem 3.2, after a birational contraction, we obtain a tower of
Mori fibre spaces

X ����� X ′ = Y0

p0
�� Y1

p1
�� Y2

p2
�� . . .

pk−1
�� Yk

pk �� Yk+1.

Since X is not of product type, then the same theorem implies that the variety Yk+1 is a point
and, thus, Yk must be Fano. �

Proof of Theorem 1.9. By Theorem 2.8, we can assume that the coefficients of Δ belong to a
finite set I0 ⊂ I.

As the set of varieties Z in the statement forms the bounded family F, there exists a projective
morphism f : Z → T such that T is of finite type and any variety Z ∈ F appears as one of the
fibres of f . Hence, up to decomposing T as a finite disjoint union of locally closed subsets, we
can assume that Z ⊂ Pn × T , for some fixed n = n(F); thus, by generic flatness, that there exists
a positive integer d = d(F) such that for any Z ∈ F there exists a very ample Cartier divisor HZ

on Z satisfying Hdim Z
Z ≤ d.

Then the theorem follows from Theorems 4.8. �

Proof of Theorem 1.3. We prove the theorem by induction on n ≤ 4. By Theorem 2.8, we can
assume that the set I is finite.

The case n = 1 is immediate as X can only be P1 and I is finite.
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Let us assume that the theorem holds for n− 1. Let (X,Δ) be a pair in D. By Theorem 3.2,
X is birational to the following tower of Mori fibre spaces.

X
r ����� X ′ = Y0

p0
�� Y1

p1
�� Y2

p2
�� . . .

pk−1
�� Yk (20)

For i > 0, if dimYi > 0, then by Theorem 2.15, there exists an effective divisor Δi on Yi such
that (Yi,Δi) is a klt Calabi–Yau pair. The divisor Δi �= 0, otherwise the lc-trivial contraction
pi−1 ◦ · · · ◦ p1 ◦ p0 : (X ′,Δ′) → Yi would be strongly generically isotrivial by Theorem 2.22 (cf.
Remark 2.23); by Definition 2.24, the rational contraction p0 ◦ r : X → Y1 would contradict the
assumption that (X,Δ) is not of product type.

We denote by F the set of pairs (X ′,Δ′ = r∗Δ) just constructed. We first prove that the set
F forms a bounded family. By Theorem 1.9, it suffices to show that the set F1 given by varieties
Y1 appearing in (20) forms a bounded family, since the morphism p0 in (20) is a KX′-Mori fibre
space. To this end, we distinguish several cases depending on the dimension of Y1.

If Y1 is a point, then Y1 is certainly bounded.
If dimY1 = 1, then Y1 = P1, since Δ1 �= 0; thus, Y1 is bounded.
If dimY1 = 2, then by Theorem 2.17 there exist an effective divisor Δ1 �= 0 on Y1 and a

positive real number ε = ε(N, I) such that (Y1,Δ1) is an ε-lc Calabi–Yau surface pair. Then
boundedness of Y1 then follows from Theorem 2.13.

If dimY1 = 3, then by Theorem 2.19 and Lemma 2.16 we can assume that Δ1 is a divisor
on Y1 with coefficients in a DCC set J = J(n, I). Furthermore, by Theorem 2.8, we can assume
that the set J is finite. If Y2 is a point, then Y1 is bounded by Corollary 2.9 and Theorem 2.10. If
dimY2 = 1, then Y2 = P1 as Δ2 �= 0. Hence, Y2 is bounded. If dimY2 = 2, by Theorem 2.17 we can
assume that there exists a positive real number ε such that (Y2,Δ2) is an ε-lc Calabi–Yau surface
pair; as Δ2 �= 0, boundedness of Y2 follows from Theorem 2.13. In both cases dimY2 = 1, 2,
boundedness of Y1 follows from Theorem 1.9 as Y2 belongs to a bounded family.

As the set F forms a bounded family, [HX15, Proposition 2.5] implies that there exists a
bounded family (Z,D) → T such that, for any pair (X ′,Δ′) ∈ F and for any set {E1, . . . , Ek} of
exceptional divisors of discrepancy at most zero over (X ′,Δ′), there exist t ∈ T and a birational
morphism μt : Zt → X ′ which extracts precisely {E1, . . . , Ek} and KZt +Dt = μ∗t (KX′ + Δ′).
We define the set D′ to be the set of klt Calabi–Yau pairs (Zt, Dt) just constructed. Given
(X,Δ) ∈ D′ and the corresponding pair (X ′,Δ′) ∈ F constructed in (20), since KX + Δ ∼R 0
and KX′ + Δ′ ∼R 0, all the exceptional divisors E1, . . . , El for r : X ��� X ′ have discrepancy ≤ 0
with respect to (X ′,Δ′). Hence, by the above construction, there exists (Zt, Dt) ∈ D′ crepantly
extracting the divisors E1, . . . , El; hence, by construction, (Zt, Dt) is isomorphic in codimension
one to (X,Δ), which proves the second part of the statement of the theorem. As D′ forms a
bounded family and pairs in D are isomorphic in codimension one to pairs in D′, [HMX13,
Lemma 2.4.2(3)] implies that D is log birationally bounded. �

Proof of Theorem 1.1. For the sake of presentation we divide this proof into steps.
For 2 ≤ n ≤ 5, we denote by En the set of n-dimensional elliptic fibrations f : Y → X satis-

fying the hypotheses in the statement of the theorem. We fix the value of n. We denote by S the
Zariski closure of the rational section of f whose existence is assumed in the statement of the
theorem.

Step 0. In this step we show that there exists a finite set I ⊂ [0, 1) ∩ Q which only depends on
n such that, for any normal variety X that is the base of an elliptic fibrations f : Y → X in En,
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there exists an effective divisor Δ on X with coefficients in I and (X,Δ) is a klt Calabi–Yau
pair.

Given an elliptic fibration f : Y → X ∈ En, as KY ∼Q 0 and Y is terminal, the canonical
bundle formula (see Theorem 2.15) implies that

KY ∼Q f∗(KX +BX +MX),

whereBX is the boundary part andMX is the moduli part. As the generic fibre of f has dimension
and genus one, Theorem 2.19 implies that there exists m = m(n) for which the moduli part
|mMX̂ | becomes base-point-free, on a suitable birational model X̂ → X of the base of the elliptic
fibration. By Lemma 2.16, the coefficients of BX in turn belong to a DCC set I ′ = I ′(n) ⊂ Q.
By choosing a sufficiently general member M̂ ∈ |mMX̂ |, we can assume that the pair (X,Δ),
Δ := BX + (1/m)M is a klt Calabi–Yau pair, where M is the pushforward of M̂ on X; moreover,
as the coefficients of Δ belong to the DCC set I ′ ∪ {1/m}, Theorem 2.8 implies that those actually
lie in a finite set I ⊂ I ′ ∪ {1/m}. As X is not of product type, Lemma 2.27 implies that KX �∼Q 0,
hence, Δ �= 0.

We denote by Dn the set of (n− 1)-dimensional klt Calabi–Yau pairs (X,Δ) that we have
just constructed.

Step 1. In this step we prove that there exists a bounded set of pairs D′
n such that any pair

(X,Δ) ∈ Dn is isomorphic in codimension one to a Q-factorial klt Calabi–Yau pair (X ′,Δ′) ∈ D′
n.

The hypothesis on the Q-factoriality of the X ′ will be used in step 5.
Since for any Calabi–Yau pair (X,Δ) ∈ Dn, X is not of product type and the coefficients

of Δ lie in a finite set I, by step 0, Theorem 1.3 implies that there exists a bounded set of
pairs D̄n such that any (X,Δ) ∈ Dn is isomorphic in codimension one to a klt Calabi–Yau pair
(X̄, Δ̄) ∈ D̄n. Hence, by definition of boundedness there exist a positive integer C̄ = C̄(n, I) and
a very ample Cartier divisor H̄ on X̄ such that H̄dim X̄ ≤ C̄. Given a pair (X,Δ) ∈ Dn, we define
a pair (X ′,Δ′) ∈ D′

n as follows:

(a) if the variety X̄ defined above is Q-factorial, we take (X ′,Δ′) := (X̄, Δ̄);
(b) otherwise, we consider a small Q-factorialization π̄ : X ′ → X̄ of X̄ together with the strict

transform Δ′ of Δ̄ on X ′.

By construction, we know that the varieties from (a) belong to a bounded set. To show bound-
edness for the pairs (X ′,Δ′) in case (b), let H1 ∈ |2π̄∗H̄| be a sufficiently general member of the
base-point-free linear system of 2π̄∗H̄. The pair (X ′,Δ′ + 1

2H1) is klt by Bertini’s theorem and
KX′ + Δ′ + 1

2H1 is big and nef. The volume of KX′ + Δ′ + 1
2H1 coincides with the volume of

H̄, hence it is an integer that is at most C̄. Thus, [MST20, Theorem 6] implies that the pair
(X ′,Δ′ + 1

2H1) and thus also the pair (X ′,Δ′) belong to a bounded family of pairs. Hence, for
any pair (X ′,Δ′) ∈ D′

n there exist a positive integer C ′ = C ′(n, I) and a very ample Cartier
divisor H ′ on X ′ such that H ′n−1 ≤ C ′.

Step 2. In this step we show that for any elliptic fibration f : Y → X in En there exists an elliptic
fibration f ′ : Y ′ → X ′ satisfying the following properties:

(i) there exists Δ′ such that (X ′,Δ′) ∈ D′
n;

(ii) Y ′ is projective, Q-factorial, terminal, KY ′ ∼Q 0, and Y ′ is isomorphic to Y in codimension
one.
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Given f : Y → X in En, there exists a Q-factorial klt Calabi–Yau pair (X ′,Δ′) in D′
n isomorphic

in codimension one to the pair (X,Δ) constructed in step 1. By Proposition 2.25, given a small
Q-factorialization X̃ → X of X, there exists a terminal Q-factorial projective elliptic variety
f̃ : Ỹ → X̃, and Ỹ is isomorphic to Y in codimension one. As X̃ and X ′ are isomorphic in
codimension one and X̃ is Q-factorial by construction, the existence of a fibration f ′ : Y ′ → X ′

satisfying (ii) is guaranteed by Proposition 2.26. In particular, KY ′ ∼Q 0.
We denote by E′

n the set of elliptic Calabi–Yau fibrations f ′ : Y ′ → X ′ just constructed.
Given any f : Y → X ∈ En and the corresponding f ′ : Y ′ → X ′ ∈ E′

n, we will denote by S′ the
strict transform of S on Y ′. The irreducible divisor S′ is still a rational section for the elliptic
fibration f ′ : Y ′ → X ′ since f ′ is isomorphic to f over a dense open set of X ′ by construction.

Step 3. In this step we show that for any elliptic fibration f ′ : Y ′ → X ′ in E′
n we can run an

S′-MMP over X ′ with scaling of an ample divisor. We show that this MMP terminates with
a relatively minimal model fm : Y m → X ′. Moreover, we show that Y m is terminal, Q-factorial
and isomorphic to Y ′ in codimension one.

Given an elliptic fibration f ′ : Y ′ → X ′ in E′
n, as S′ is a rational section for f ′ and Y ′ is

Q-factorial, S′ is relatively big over X ′. As KY ′ ∼Q 0, for any positive real γ,

KY ′ + γS′ ∼R γS
′. (21)

Since for a general fibre F of f ′, S′ · F = 1, it follows that KY ′ + γS′ is big over X ′, and for any
0 < γ 
 1, (Y ′, γS′) is klt. Thus, we can run the (KY ′ + γS′)-MMP with scaling of an ample
divisor over X ′ and by (21) this is also a run of the S′-MMP. By [BCHM10, Corollary 1.4.2],
this run of the MMP terminates with a relatively minimal model Y ′ ��� Y m since S′ is relatively
big. The strict transform Sm of S′ on Y m is big and nef over X ′. As Y m is a relatively minimal
model, it follows that it is Q-factorial.

By (21), any extremal ray that is contracted in the run of the MMP in this step has negative
intersection with the strict transform of S′. As S′ is irreducible, each step of the MMP must be
a flip. In fact, if that were not the case, then there would be some step of the MMP which is a
divisorial contraction and the exceptional divisor would then be the strict transform of S′; this
is not possible since S′ is big over X ′ and it is irreducible. Hence, KY m ∼Q 0, and Y ′ and Y m

are isomorphic in codimension one. Since the relative dimension of f ′ : Y ′ → X ′ is one and the
birational map Y ′ ��� Y m is the outcome of the run of a relative MMP over X ′, the exceptional
locus of Y ′ ��� Y m is vertical over X ′; in particular, f ′ and fm are isomorphic over a dense open
set of X ′, by construction. Hence, as S′ is a rational section for f ′, the strict transform Sm of S′

on Y m will be a rational section for fm : Y m → X ′.
We denote by Em

n the set of elliptic fibrations fm : Y m → X ′ that we have just constructed.
We define the set

Ln := {Ym | ∃fm : Y m → X ′ ∈ Em
n }.

Step 4. In this step we show that to prove the theorem it suffices to prove that Ln is bounded.
Given any elliptic fibration f : Y → X in En, we have constructed an elliptic fibration

fm : Y m → X ′ in Em
n such that Y m is isomorphic to Y in codimension one, by steps 2 and 3. By

construction, Y m is isomorphic to Y ′ in codimension one, which is in turn isomorphic to Y in
codimension one. If Ln is bounded, then the set of the Y in En is bounded up to isomorphisms
in codimension one, which is what we wish to prove.
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For the remainder of the proof, we fix an elliptic fibration fm : Y m → X ′ in Em
n . We remind

the reader that Sm denotes the rational section of fm constructed in step 3 as the strict transform
of the section S of the corresponding fibration f : Y → X.

Step 5 . In this step we show that (Y m, Sm) is a purely log terminal pair.
By adjunction, it suffices to show that (Y m, Sm) is lc and Sm is the only lc centre. Let us

consider the normalization of Sm, ν : Sν
m → Sm. On Sν

m there is a canonically defined effective
divisor Diff(0) such that KSν

m
+ Diff(0) = ν∗((KY m + Sm)|Sm); see [Kol13, § 4.1]. In particular,

KSν
m

+ Diff(0) is relatively big and nef over X ′. As Y m is terminal and Q-factorial, Lemma 5.1
implies that

(fm ◦ ν)∗ Diff(0) = 0. (22)

Thus, (fm ◦ ν)∗(KS̄ν
m

+ Diff(0)) = KX′ . As, by step 1, X ′ is Q-factorial, the negativity lemma
[KM98, Lemma 3.39] implies that

KSν
m

+ Diff(0) = (fm ◦ ν)∗(KX′) − E,

where E is an effective divisor exceptional over X ′. Thus, the pair (Sν
m,Diff(0)) is klt, since

(X ′, 0) is. Hence, by inversion of adjunction [KM98, Theorem 5.50], Sm is the only lc centre of
the pair (Y m, Sm) which in turn implies that Sm is normal; see [KM98, Proposition 5.51].

Step 6. In this step we fix a general member G ∈ |f∗m(2n+ 1)H ′| and we show that (Y m, 1
2Sm +

1
2G) is 1

2 -klt and KY m + 1
2Sm + 1

2G is nef and big. Here H ′ is the very ample divisor of bounded
volume on X ′ that was constructed at the end of step 1.

Since |f∗m(2n+ 1)H ′| is base-point-free, Bertini’s theorem implies that (Y m, Sm +G) is lc. On
the other hand, (Y m, 0) is terminal, by step 3. As discrepancies of valuations are linear functions
of the boundary divisor of a pair, it follows that (Y m, 1

2Sm + 1
2G) is 1

2 -klt. As KY m ∼Q 0 and
Sm is relatively big, it follows immediately that KY m + 1

2Sm + 1
2G is big. As, for any t ∈ R,

KY m + tSm + tG ∼R tSm + tG, showing nefness of KY m + 1
2Sm + 1

2G is equivalent to showing
nefness of KY m + Sm +G. Let us assume that KY m + Sm +G is not nef. Then the cone theorem
for lc pairs [Fuj11b, Theorem 1.4] implies the existence of a (KY m + Sm +G)-negative extremal
ray R ⊂ NE(X) which is spanned by the class of a curve C ⊂ Y m such that 0 < −((KY m + Sm +
G) · C) ≤ 2n. As G ∼ f∗m(2n+ 1)H ′ and H ′ is ample and Cartier, G · C is either 0 or ≥ 2n+ 1
and, consequently, (KY m + Sm) · C < 0; moreover, as KY m + Sm is nef over X ′, it follows that C
is not contained in a fibre of fm, thus, G · C ≥ 2n+ 1. As the class of C spans the extremal ray
R, applying the cone theorem with the pair (Y m, Sm), there exists another curve C ′ whose class
spans R, 0 < −(KY m + Sm) · C) ≤ 2n, andG · C ′ ≥ 2n+ 1. This leads to a contradiction, as then
(KY m + Sm +G) · C ′ > 0 while the class of C ′ was assumed to span a (KY m + Sm +G)-negative
extremal ray.

Step 7. In this step we show that there exist positive integers Ci = Ci(n, I), i = 1, 2, such that
C1 ≤ (KY m + 1

2Sm + 1
2G)n ≤ C2.

As KY m + 1
2Sm + 1

2G is big, the existence of a positive lower bound only depending on n and
I for vol(Y m,KY m + 1

2Sm + 1
2G) follows from step 6 and [HMX14, Theorem 1.3]. In step 6 we

have shown that Sm +G is big and nef. As G is nef, it follows that for any t ∈ [0, 1], G+ tSm is
nef. Hence, (G+ tSm)n ≥ 0 for any t ∈ [0, 1], and since G ∼ f∗m(2n+ 1)H ′ it follows that Gn = 0
and

(Sm +G)n = Sm · (Sm +G)n−1 +G · (Sm +G)n−1.
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The adjunction formula for Sm yields (cf. step 5),

(KY m + Sm)|Sm = Sm|Sm = KSm + Diff(0) = (fm ◦ ν)∗(KX′) − E, E,Diff(0) ≥ 0.

By the canonical bundle formula (cf. Theorem 2.15), −KX′ is effective, thus, L := −((fm ◦
ν)∗(KX′) − E) is effective, so that

Sm · (Sm +G)n−1 = (Sm|Sm +G|Sm)n−1 = vol(Sm, G|Sm − L) ≤ vol(Sm, G|Sm)

= vol(Sm, fm|∗Sm
(2n+ 1)H ′)

= vol(X ′, (2n+ 1)H ′) ≤ (2n+ 1)n−1C ′,

where C ′ = C ′(n, I) is the positive integer whose existence has been shown in step 1, and for
which H ′n−1 ≤ C ′.

In order to bound G · (Sm +G)n−1 we prove the following claim.

Claim. For any 0 < k ≤ n,

Gk · (Sm +G)n−k ≤ (n− k)(2n+ 1)n−1C ′.

Proof. We prove the claim by descending induction on k.
The claim holds for k = n, as Gn = 0. Hence we can assume that k < n and that the claim

holds for k + 1.
Then, as in the previous paragraph, we have that

Gk · (Sm +G)n−k = Gk · (Sm +G) · (Sm +G)n−k−1

= Gk+1 · (Sm +G)n−k−1 + Sm ·Gk · (Sm +G)n−k−1

≤ (n− k − 1)(2n+ 1)n−1C ′ + Sm ·Gk · (Sm +G)n−k−1,

where the final inequality follows from inductive hypothesis. Hence, to prove the claim, it suffices
to show that

Sm ·Gk · (Sm +G)n−k−1 ≤ (2n+ 1)n−1C ′.

As above,

Sm ·Gk · (Sm +G)n−k−1 = G|kSm
· (G|Sm − L)n−k−1 ≤ G|n−1

Sm
,

where the last inequality follows from the fact that G|Sm is a semiample divisor and L is effective.
Finally, as we have already seen above, G|n−1

Sm
≤ (2n+ 1)n−1C ′. �

Thus, to conclude the proof of this step, it suffices to take C2 := n(2n+ 1)n−1H ′n−1.

Step 8. In this step, the proof is concluded.
For any Y m ∈ Ln, we have constructed a pair (Y m, 1

2Sm + 1
2G) which is 1

2 -klt. The set of
coefficients of the boundaries of such pairs is the set {1

2}. By steps 6 and 7 and [Fil20b, Theorem
1.3], KY m + 1

2Sm + 1
2G is nef and big and its volume lies in a discrete set J of [C1, C2] ⊂ R>0,

where Ci = Ci(n, I). The set J is discrete and limited in a closed interval, hence finite.
Thus, the set of pairs (Y m, 1

2Sm + 1
2G) constructed in step 6, where Y m ∈ Ln, is bounded by

[MST20, Theorem 6]. In particular, the set Ln itself is bounded and, by step 4, this concludes
the proof. �
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Lemma 5.1. Let g : T → B be a surjective morphism of normal quasi-projective varieties with

dimT − dimB = 1. Assume that (T, 0) is terminal and that there exists a rational section

s : B ��� T . Let S be the Zariski closure of s(B) and let ν : Sν → S be the normalization of

S. Then DiffSν (0) is exceptional over B.

Proof. Since s is a rational section, the finite part in the Stein factorization of g is an isomorphism.
Hence we can assume that g is a contraction.

Since T is terminal, it is smooth in codimension two. In particular, ωT (S) is locally free at each
codimension-one point of S. Let P ∈ S be a codimension-one point such that g|S(P ) = Q ∈ B

and Q is codimension one. As T is smooth at P , it suffices to show that S is normal at P ,
since then ν would be an isomorphism locally around P and the coefficient of DiffSν (0) at the
codimension-one point ν−1(P ) would be 0.

Considering the birational morphism g|S ◦ ν : Sν → B, the generic point P ′ of the strict
transform of the closure of Q on Sν is the unique codimension-one point which is mapped to
Q. Hence, g|−1

S (Q) = P and, furthermore, ν−1(P ) = P ′. Since B is normal quasi-projective, the
map s is well defined at Q, and s(Q) = P since g|S ◦ s is the identity around Q and P is the only
point above Q. Then there exists a lift sν : B ��� Sν which is well defined at Q and such that
ν ◦ sν = s and sν(Q) = P ′ by construction. But then, since Sν is smooth at P ′ and g|S ◦ ν ◦ sν is
the identity of B and a morphism around P , it follows that sν is an isomorphism locally around
P and the same holds for s, which implies that normality of S at P . �

6. Proof of the corollaries

In this section we prove the corollaries stated in the Introduction.

Proof of Corollary 1.10. The canonical bundle formula and Theorem 2.17 imply that there exist
a positive real number δ = δ(n, I) > 0 an effective divisor ΓZ on Z such that (Z,ΓZ) is a δ-klt
Calabi–Yau pair. As −KZ is big, Theorem 2.12 implies that Z belongs to a bounded family.
Finally, Theorem 1.9 concludes the proof. �

Proof of Corollary 1.6. Let D be the set of pairs (X,Δ) satisfying the hypotheses of the state-
ment of the corollary. By Theorem 1.3, there exists a bounded set of pairs D′ such that for
any pair (X,Δ) ∈ D there exists a pair (X ′,Δ′) ∈ D′ such that (X,Δ), (X ′,Δ′) are isomor-
phic in codimension one, so that ρ(X) = ρ(X ′), and for any m ∈ N, h0(X,m(KX + Δ)) =
h0(X,m(KX′ + Δ′)). Moreover, by [MST20, Theorem 6], we can assume that the pairs in D′

are Q-factorial, so that ρ(X ′) ≤ h2(X ′,Q). Hence, it suffices to show that the conclusion in the
statement of the corollary holds for the pairs in D′′. Furthermore, since (X,Δ) ∈ D are not of
product type, Definition 2.24 readily implies that the same holds for (X ′,Δ′) ∈ D′, as these pairs
are isomorphic in codimension one.

By definition of boundedness, there exists a pair (Z,D) → T over a base T of finite type such
that for any pair (X ′,Δ′) ∈ D′′, there exists t ∈ T such that the pair (Zt, Dt) is isomorphic to
(X ′,Δ′). By substituting T with the Zariski closure of the set of points t ∈ T for which (Zt, Dt)
is isomorphic to a pair (X ′,Δ′) ∈ D′, we can then assume that the set of such t is Zariski dense
in T .

Up to decomposing T into a finite union of locally closed subsets, we may assume that there
exists a log resolution ψ : (Z ′, D′) → Z of (Z,D), where D′ is the sum of the strict transform of
D and the exceptional divisor of ψ. Furthermore, up to decomposing T further into a finite union
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of locally closed subsets, we may also assume that, for any t ∈ T , (Z ′
t, D

′|Z′
t
) is a log resolution

of (Zt, D|Zt). In particular, for any t ∈ T , for all m > 0,

H0(Zt,OZt(m(KZt +D|Zt))) = H0(Z ′
t,OZ′

t
(m(KZ′

t
+D′|Z′

t
))).

Then [HMX18, Theorem 4.2] implies that, for any connected component T̄ of T ,
h0(Zt,OZt(m(KZt +D|Zt))) is independent of t ∈ T̄ , for all m > 0. At this point, we discard
those connected components of T such that (Zt, Dt) is isomorphic to one of the pairs in D′. By
construction, then, for a connected component T̄i of T , there exist t̄i ∈ T̄i and a positive integer
m̄i such that m̄i(KZt̄i

+D|Zt̄i
) ∼ 0; thus, by construction,

h0(Zt̄i ,OZt̄i
(m̄i(KZt̄i

+D|Zt̄i
)) = 1, ∀ t̄i ∈ T̄i. (23)

Hence, it suffices to define m0 to be the maximum of the positive integers m̄i just defined; m0 is
well defined as T has only finitely many connected components, being of finite type, by definition
of boundedness.

We turn now to showing that the Picard ranks of the fibres of (Z,D) → T are bounded. Since
for any (X ′,Δ′) ∈ D′, ρ(X ′) ≤ h2(X ′,Q), it suffices to show that there exists a positive integer
ρ such that h2(Zt,Q) ≤ ρ for any t ∈ T . By Verdier’s generalization of Ehresmann’s theorem
[Ver76, Corollaire 5.1], up to decomposing T into a disjoint union of finitely many locally closed
subvarieties, we can assume that Z → T is a locally trivial topological fibration. Hence, on each
connected component T̄i of T , there exists ρ̄i such that

h2(Zt,Q) = ρ̄i, ∀ t ∈ T̄i.

Hence, it suffices to define ρ to be the maximum of the positive integers ρ̄i just defined. �

Proof of Corollary 1.4. Let π : Y → X be an elliptic fibration satisfying the hypotheses of
the statement of the corollary. Using the canonical bundle formula (cf. Theorem 2.15), by
Theorem 2.19 and Lemma 2.16 there exists a divisor Δ on X such that (X,Δ) is a klt Calabi–Yau
pair and the coefficients of Δ are in a DCC set J = J(n, I); by Theorem 2.8, we can assume
that the set J is finite. By Lemma 2.27, as Y is not of product type, Δ �= 0 and (X,Δ) is not of
product type. The result then follows from Theorem 1.3. �

Proof of Corollary 1.5. Then the result follows from Theorem 2.15 and Corollaries 1.4 and 1.6.
�

Proof of Corollary 1.7. By Theorem 2.8, we can assume that the coefficients of Δ belong to a
finite set I0 ⊂ I.

As f has maximal variation, then the moduli part MZ induced by the canonical bundle
formula (Theorem 2.15) for (X,Δ) is big; see Remark 2.20. In particular, −KZ is big, because
KZ +BZ +MZ ∼R 0 and BZ is effective.

As Δ is big over Z, for 0 < η 
 1 we can run the relative (KX + (1 + η)Δ)-MMP, and this
terminates with an ample model f ′ : X ′ → Z on which the strict transform Δ′ of Δ is ample
over Z. We first show that the set of pairs (X ′,Δ′) forms a bounded family.

As the coefficients of Δ′ belong to I0, given a general fibre F ′ of f ′, the pair (F ′,Δ′|F ′)
belongs to a bounded family by Corollary 2.9 and Theorem 2.12. Theorem 2.17 together with
Remark 2.18 implies that there exist δ = δ(n, I0) and a big effective divisor ΓZ on Z such that
(Z,ΓZ) is a δ-klt Calabi–Yau pair and ΓZ is big, since −KZ is big. Thus, Theorem 2.12 implies
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that the set F of varieties Z forms a bounded family. As −KX′ is f ′-ample and F forms a bounded
family, Theorem 1.9 implies that the set D′′ of pairs (X ′,Δ′) forms a bounded family.

As the set of pairs (X ′,Δ′) forms the bounded family D′′, [HX15, Proposition 2.5] implies
that there exists a bounded family (Z,D) → T such that, for any pair (X ′,Δ′) and for any
set {E1, . . . , Ek} of exceptional divisors of discrepancy at most zero over (X ′,Δ′), there exist
t ∈ T and a birational morphism μt : Zt → X ′ which extracts precisely {E1, . . . , Ek} and KZt +
Dt = μ∗t (KX′ + Δ′). Since KX + Δ ∼R 0 and KX′ + Δ′ ∼R 0, all the exceptional divisors for
r : X ��� X ′ have discrepancy ≤ 0 with respect to (X ′,Δ′). In particular, (X,Δ) is birational
in codimension one to a pair (Zs, Ds) for some closed point s ∈ T . Defining D′ to be the set of
pairs (Zs, Ds) just constructed completes the proof. �

Proof Corollary 1.2. By Theorem 1.1 there exists a family X → T such that any elliptic
Calabi–Yau manifold with a section is birational in codimension one to a fibre Xs of the family.
Let Y → X be a log resolution. Since the generic fibre of Y is smooth, there exists a Zariski open
subset U of T such that the E(Ys) does not depend on s ∈ U , where E is the Euler function
of a smooth variety. By the definition of the stringy E-function [Bat99], we have that E(Xs) is
constant over U as well. By Noetherian induction, it follows that we obtain only a finite number
of stringy E-functions from the fibres of X → T .

Let X be a smooth elliptic Calabi–Yau with a section. By Theorem 1.1, X is K-equivalent
to Xs for some s, and [Vey01, Theorem 2.7] implies that they have the same E-function. In
particular, there are finitely many possibilities for the E-function of an elliptic Calabi–Yau with
a section. The Hodge numbers are precisely the coefficients of those functions, and thus they are
uniformly bounded. See [Vey01] for more details. �
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