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ABSTRACT

In this paper, we study an optimal insurance problem in the presence of back-
ground risk from the perspective of an insured with higher-order risk attitudes.
We introduce several useful dependence notions to model positive dependence
structures between the insurable risk and background risk. Under these depen-
dence structures, we compare insurance contracts of different forms in higher-
order risk attitudes and establish the optimality of stop-loss insurance form. We
also explicitly derive the optimal retention level. Finally, we carry out a compar-
ative analysis and investigate how the change in the insured’s initial wealth or
background risk affects the optimal retention level.
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1. INTRODUCTION

Since the seminal work of Arrow (1963), great attention has been drawn to study
optimal insurance problems in the past half century. See, for example, Raviv
(1979), Huberman et al. (1983), Young (1999), Kaluszka (2001), Bernard et al.
(2015a), and references therein. While these papers enhance the understanding
of the insurance demand, they are confined to the single-risk framework. On the
other hand, in practice, an insured is usually confronted with multiple sources
of risk. In addition to the major insurable risk under consideration, there could
be investment risk, human capital risk and other uninsurable risks. This phe-
nomenon calls for the development of the insured’s risk transfer strategy from
a holistic perspective, by taking multiple sources of risk into consideration.

The importance of comprehensive risk management has been recognized by
many scholars in the past 30 years. For example, the optimal proportion rate of
quota-share insurance is studied together with the demand of financial assets in
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Mayers and Smith (1983). Doherty and Schlesinger (1983) instead investigate
the optimal retention level of stop-loss insurance by assuming that the insured’s
initial wealth is random. Assuming that the alternatives satisfy the principle of
indemnity,1 Gollier (1996) finds that under the expected value premium princi-
ple the optimal contract may contain a “disappearing deductible”, which may
result in the marginal indemnity strictly larger than one. Moreover, by treating
other sources of risk as the background risk, Dana and Scarsini (2007) general-
ize Raviv (1979)’s optimal insurance model, and obtain some qualitative prop-
erties of optimal solutions under several special assumptions on the dependence
between the insurable risk and background risk. Focusing on some special util-
ity functions, Huang et al. (2013) find explicit optimal solutions. Recently, Chi
and Tan (2015) find these optimal contracts may lead to ex post moral hazard,
which would prevent their applications in practice. They further apply the mean-
variance analysis to derive the optimal insurance that preclude ex post moral
hazard in the sense of Huberman et al. (1983).

In many of the afore-mentioned studies, the optimization criterion is either
to maximize the expected utility of the insured’s final wealth or to minimize the
insured’s risk exposure under some risk measure. A common feature of these
optimization criteria is to preserve the second degree stochastic dominance. In
other words, the insured is often assumed to be risk averse. In addition to risk
aversion, many other notions have also been developed to explain behaviors
reflecting higher-order risk attitudes. For example, Kimball (1990) finds that
the precautionary saving motive is closely related to the convex first derivative
of utility function. This condition is referred to as prudence in the literature.
Interestingly, Noussair et al. (2014) carry out an experiment with a large de-
mographically representative sample of participants to test the risk attitudes of
an individual. They observe that the majority of the participants’ decisions are
consistent with risk aversion, prudence and temperance, which is characterized
by the concave second derivative of the individual’s utility function. We refer to
Eeckhoudt and Schlesinger (2013) and Denuit and Eeckhoudt (2013) for com-
prehensive reviews of higher-order risk attitudes.

In some other studies, higher-order risk attitudes of the insured have already
been considered in the analysis of insurance demand with background risk.
Specifically, assuming that the insured is risk-averse and prudent, Eeckhoudt
and Kimball (1992) find that the existence of background risk will make the in-
sured raise the coinsurance rate or reduce the retention level if the background
risk increases with respect to the insurable risk in the sense of the third increas-
ing convex order. Note that their studies focus only on two specific types of in-
surance contracts, namely quota-share insurance or stop-loss insurance, which
limits their applications in practice. On the other hand, Mahul (2000) consid-
ers a quite general class of admissible insurance contracts that are assumed to
follow the principle of indemnity. He obtains a similar result as Gollier (1996)
in favor of disappearing deductible even if a more general positive dependence
structure between background risk and the insurable risk is assumed. More pre-
cisely, when background risk is increasing with respect to the insurable loss in the
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sense of nth increasing convex order, the optimality of disappearing deductible
is obtained for the insured with the risk preference preserving (n + 1)th degree
stochastic dominance. While this result sounds very interesting, it may be inap-
propriate to be used in practice because Huberman et al. (1983) point out that
this optimal contract introduces an incentive for the insured to underreport the
actual loss and benefit himself/herself. To make the optimal solutions applicable,
it is necessary to impose some constraints to reduce the ex post moral hazard.

In this paper, we revisit the optimal insurance design with background risk
and higher-order risk attitudes, assuming that the admissible insurance contract
follows the principle of indemnity and has an increasing2 retained loss function.
As in the literature, we further assume that the insurance premium is calculated
based only upon the expected indemnity. Once the retained insurable loss for
two contracts can be ordered in convex order, it is shown that the insured’s fi-
nal wealth can also be ranked in the opposite order in the sense of (n + 1)th
degree stochastic dominance when the background risk increases with respect
to the insurable loss in the nth increasing convex order. If the contracts under
comparison are subject to more strict constraints, this result also holds even if
the dependence assumption between the background risk and the insurable loss
is relaxed to be right tail increasing. For both positive dependence structures,
the stop-loss insurance is always a preferred choice of the insured with the risk
preference preserving the (n+1)th degree stochastic dominance. Further, within
the expected utility framework, we derive the optimal retention level of stop-loss
insurance explicitly, which is found to heavily rely on the insured’s initial wealth
and background risk.

It should be emphasized that Lu et al. (2012) also investigate the compari-
son of insurance contracts with possibly different types in the presence of back-
ground risk. Specifically, using the results in Cai and Wei (2012), they show
that the stop-loss insurance is an optimal choice of a risk-averse insured when
the background risk is stochastically increasing in the insurable loss. In this pa-
per, we extend their study to a more general stochastic dependence between the
background risk and the insurable risk at the cost of a constraint imposed on the
insured’s higher-order risk attitudes. On the other hand, it is worth mentioning
that this constraint is quite weak as it is naturally satisfied by the insured with
mixed risk aversion. The concept of mixed risk aversion is introduced by Ca-
ballé and Pomansky (1996) and is met by most commonly used utility functions
in finance and economics. Furthermore, it is necessary to point out that Mahul
(2000) also considers the optimal insurance design with higher-order risk at-
titudes and a rather general dependence structure. In contrast, we impose an
additional constraint on the admissible insurance contract such that it has an
increasing retained loss function. By comparing Mahul’s optimal insurance so-
lutions with ours, it is easy to find that this constraint plays a critical role in
optimal insurance design with background risk and makes the optimal solution
change from disappearing deductible to the stop-loss insurance .

The rest of the paper is organized as follows. In Section 2, we introduce an
optimal insurance model with background risk, where the insurance premium
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is calculated based on the expected indemnity. Some notions of positive depen-
dence between the insurable risk and background risk are introduced and their
relationships are discussed in Section 3. Under these dependence assumptions,
Section 4 compares insurance contracts of different types, and finds that the
stop-loss insurance is the optimal choice of the insured with higher-order risk
attitudes. Section 5 gives an explicit expression for the optimal retention level
and investigates how it is affected by the change in the insured’s initial wealth or
the background risk. Some concluding remarks are provided in Section 6. Fi-
nally, the appendix collects the proofs to propositions established in the paper.

2. THE MODEL

Suppose that in a fixed time period, an insured endowed with initial wealth w

faces two sources of risk X and Y, where X is insurable and non-negative and
Y is the background risk and may be negative. Both X and Y are defined on
a probability space (�,F, P) with finite means. To reduce the risk exposure,
the decision-maker would seek to purchase an insurance contract, in which an
amount of risk f (X) is ceded to an insurer and the residual risk I(X) = X −
f (X) is retained. The function I(x) is usually called the retained loss function.
As in Cai and Wei (2012), we assume that the admissible insurance contract
follows the principle of indemnity and has an increasing retained loss function.
Specifically, the set of admissible retained loss functions is given by

C = {0 ≤ I(x) ≤ x : I(x) is an increasing function} .

Obviously, the retained loss function of disappearing deductible does not belong
to the above set. To cover the potential loss for the insured, the insurer will need
to collect premium. As in most of the literature, we assume that the insurer is
risk-neutral, and calculates the insurance premium based only on the expected
indemnity. Using π(.) to represent the premium principle, the insurance pre-
mium is calculated as

π( f (X)) = P (E[ f (X)]) , (2.1)

for some differentiable functionP(.) withP(0) = 0 andP ′
(x) ≥ 1 for any x ≥ 0.

Particularly, if P(x) = (1 + θ)x for some θ > 0, we recover the expected value
premium principle. We remark that the assumption of the expected indemnity-
based premium principle plays a critical role in determining the optimal contract
in this paper. Notably, this premium principle may be not realistic from a practi-
cal perspective. However, it has been frequently used in the literature, mainly be-
cause of its mathematical tractability. Under other premium principles, optimal
insurance problems, especially in the presence of the background risk, become
very challenging, as evidenced in Young (1999). Therefore, we simply use the ex-
pected indemnity based premium principle in this paper. For a comprehensive
review of different premium principles, readers are referred to Young (2004).
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Notably, Bernard and Vanduffel (2014) and Bernard et al. (2015b) used a dif-
ferent approach to price insurance claims by taking financial market into con-
sideration. They also proved that an insurance contract is not necessary when
the payoff can be replicated through financial derivatives.

With an insurance arrangement, the insured’s final wealth WI(X,Y) has the
following expression:

WI(X,Y) = w − Y− I(X) − π(X− I(X)).

Usually, the objective is to maximize the expected utility of the insured’s final
wealth. Mathematically, the optimization problem is formulated as

max
I∈C

E[u(WI(X,Y))]. (2.2)

There are many choices for the utility function u. In the early literature, the
utility function is assumed to be increasing and concave, reflecting the risk aver-
sion of an individual. Such an optimization criterion aims to work for a general
increasing concave utility function, or equivalently maximize the final wealth in
the sense of second degree stochastic dominance (SSD, see Definition 2.1), see
for example Gollier and Schlesinger (1996). Later, in order to explain certain
behaviors of a risk averse agent, higher-order risk attitudes, such as prudence
and temperance, have been considered. In fact, all these optimization criteria
can be summarized in terms of higher-degree stochastic dominance, as defined
below.

Definition 2.1 (Ekern 1980). Random wealth W1 is said to dominate random
wealth W2 in nth degree stochastic dominance, denoted as W1 ≥n-SD W2, if
E[u(W1)] ≥ E[u(W2)] for any u(·) ∈ Un-icv provided that the expectations exist,
where

Un-icv = {
u(·) : (−1)k−1u(k)(·) ≥ 0 for all k = 1, 2, . . . , n

}
.

Here, u(k)(·) is the kth derivative of function u(·).
The above definition introduces a sequence of notions about stochastic domi-
nance and thus develops a general framework to study higher-order risk atti-
tudes. The cases of n = 2, 3, 4 have already been extensively discussed in the
literature. Specifically, n = 2 corresponds to the SSD and reflects general risk
aversion. The third and fourth degree stochastic dominance rules, respectively,
reflect prudence and temperance, see Eeckhoudt and Schlesinger (2013). It is
worth mentioning that, the limiting case U∞-icv denotes the collection of com-
pletely monotone utility functions, which describe the mixed risk aversion atti-
tude. For more details about mixed risk aversion, readers are referred to Caballé
and Pomansky (1996).

Note that nth degree stochastic dominance is also called nth increasing con-
cave order. Another closely related concept is nth increasing convex order, with
its definition stated below.
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Definition 2.2 (Shaked and Shanthikumar 2007). Random variable Z1 is said to
be less than Z2 in nth increasing convex order, denoted as Z1 ≤n-icx Z2, if
E[v(Z1)] ≤ E[v(Z2)] for any v(·) ∈ Vn-icx provided that the expectations exist,
where

Vn-icx = {
v(·) : v(k) ≥ 0 for all k = 1, 2, . . . , n

}
.

Note that v(·) ∈ Vn-icv if and only if −v(−·) ∈ Un-icx. In this sense, the nth in-
creasing convex order and the nth increasing concave order (nth degree stochas-
tic dominance) are dual concepts. For more detailed discussions of higher
degree increasing convex/concave orders, readers are referred to Shaked and
Shanthikumar (2007) or Müller and Stoyan (2002).

3. POSITIVE DEPENDENCE NOTIONS BASED ON HIGHER-DEGREE STOCHASTIC
ORDERS

In insurance practice, positive dependence between risks commonly exists. For
example, a driver is required to insure against the liability loss but not necessarily
the collision and comprehensive damage (for his/her own vehicle). In this case,
the collision and comprehensive damage could serve as a background risk. Both
losses will depend on the severity of the accident and are likely to vary in the
same direction. Readers are also referred to Dana and Scarsini (2007) for more
examples in property insurance as well as health insurance. In these examples,
one common feature is that one risk is likely to be large when the other is large,
and vice versa. According to the literature, such a feature can be modeled by
the notion of stochastic increasingness (see Definition 3.1), as seen in Dana and
Scarsini (2007), Cai and Wei (2012), and references therein. In this paper, we
aim to relax the assumption of stochastic increasingness and study the optimal
insurance problem with more general positive dependence notions. To this end,
we shall introduce the notions of right tail increasingness and stochastic increas-
ingness based on high-degree stochastic orders (↑RTI

n-icx and ↑n-icx, respectively,
see Definitions 3.1 and 3.2). Notably, some special cases of these notions have
already been considered in Eeckhoudt and Kimball (1992) and Mahul (2000).

Below, we present the mathematical definitions of the dependence notions
mentioned above.

Definition 3.1. Y is said to be increasing with respect to X in the nth increasing
convex order, denoted as Y ↑n-icx X, if E[v(Y)|X = x] is increasing over the set
S(X) for any v ∈ Vn-icx such that E[|v(Y)|] < ∞, where S(X) is the support
of X.

Intuitively, Y ↑n-icx X means that [Y|X = x1] ≤n-icx [Y|X = x2] for any
x1, x2 ∈ S(X) with x1 ≤ x2. It is easy to see that Y ↑n-icx X implies Y ↑m-icx X
for any positive integer m larger than n. When n = 1, Y ↑n-icx X reduces to
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TABLE 1

JOINT PROBABILITY FUNCTION OF (X,Y).

y\x 0 1 2

0 2/15 1/6 1/30
1 1/5 1/6 3/10

TABLE 2

CONDITIONAL PROBABILITY MASS FUNCTION OF Y GIVEN {X > x− δ}.

y\x 0 1 2

0 1/3 3/10 1/10
1 2/3 7/10 9/10

Y ↑SI X, a dependence notion introduced by Lehmann (1966) and referred to
as “stochastic increasingness”.

Definition 3.2. Y is said to be right tail increasing with respect to X in the nth
increasing convex order, denoted as Y ↑RTI

n-icx X, if E[v(Y)|X > x] is increasing in
x for any v ∈ Vn-icx such that E[|v(Y)|] < ∞.

Similar to the notion of ↑n-icx, Y ↑RTI
n-icx X means that [Y|X > x1] ≤n-icx

[Y|X > x2] for any x1 ≤ x2. It is easy to see that Y ↑RTI
n-icx X implies Y ↑RTI

n+1-icx X
for any n = 1, 2, · · · . In particular, Y ↑RTI

n-icx X for n = 1 is referred to as Y right
tail increasing with respect to X, also denoted as Y ↑RTI X. This concept was
proposed and discussed by Barlow and Proschan (1975).

Proposition 3.3. The dependence notions defined above have the following
implications:

Y ↑SI X =⇒ Y ↑n-icx X
⇓ ⇓

Y ↑RTI X =⇒ Y ↑RTI
n-icx X,

for any positive integer n.

We remark that all these implications are strict, as demonstrated by the fol-
lowing examples.

Example 3.4. Y ↑RTI X does not imply Y ↑SI X.
Let (X,Y) be a discrete bivariate random vector with probability function

P{X = x,Y = y} given in Table 1. Simple calculations yield that P{Y > 0|X =
1} = 0.5 < 0.6 = P{Y > 0|X = 0}, which implies that Y is not stochastically
increasing with respect to X.

On the other hand, the conditional probability mass function P{Y = y|X >

x− δ} for x = 0, 1, 2 is given in Table 2, where δ is an arbitrarily small positive
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TABLE 3

CONDITIONAL PROBABILITIES: P{Y = y|X = x}.

x\y 0 1 2

0 0.2 0.5 0.3
1 0.3 0.3 0.4

TABLE 4

CONDITIONAL EXPECTATIONS: E[(Y− y)+|X = x].

x\y 0 1 2

0 1.1 0.3 0
1 1.1 0.4 0

number. Noting that for a fixed y, P{Y = y|X > x} takes only three possible
values as listed in Table 2, it is easy to verify that Y ↑RTI X.

Example 3.5. Y ↑2-icx X does not imply Y ↑SI X.
Let (X,Y) be a discrete bivariate random vector with conditional probability

function P{Y = y|X = x} given in Table 3. Further, assume that P{X = 0} =
P{X = 1} = 0.5. Note that P{Y > 0|X = 0} = 0.8 > 0.7 = P{Y > 0|X = 1},
which disproves that Y is stochastically increasing with respect to X.

On the other hand, the conditional expectations E[(Y−y)+|X = x] are given
by Table 4, where (z)+ = max{z, 0}. As functions of t, both E[(Y− t)+|X = 0]
and E[(Y− t)+|X = 1] are piecewise linear continuous functions with changing
points at 0, 1 and 2. Therefore, it is easy to see that E[(Y− t)+|X = 0] ≤ E[(Y−
t)+|X = 1] for all t, which means Y ↑2-icx X.

4. COMPARISON OF INSURANCE CONTRACTS

In this section, we will identify the optimal insurance form by comparing ad-
missible insurance contracts for an insured with higher-order risk attitudes. To
proceed, we first introduce the convex order to compare the indemnities.

Definition 4.1. Random variable Z1 is said to be smaller than Z2 in the convex
order, denoted as Z1 ≤cx Z2, if E[h(Z1)] ≤ E[h(Z2)] for any convex function h(z)
provided that the expectations exist.

By comparing the notions of convex order and the nth increasing convex
order, it is easy to see that Z1 ≤cx Z2 if and only if Z1 ≤2-icx Z2 and E[Z1] =
E[Z2]. If two indemnities are able to be ranked according to this stochastic order,
then the corresponding final wealth levels of the insured can be ordered in some
sense, as stated in the following proposition.
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Proposition 4.2. Let I1(x) and I2(x) be two retained loss functions in C such that
I1(X) ≤cx I2(X). If Y ↑n-icx X, then WI1(X,Y) ≥n+1-SD WI2(X,Y).

Remark 4.3. It is worth mentioning the special case of Proposition 4.2 with n =
1. Specifically, if Y ↑SI X, then I1(X) ≤cx I2(X) implies WI1(X,Y) ≥2-SD
WI2(X,Y). Note that E[WI1(X,Y)] = E[WI2(X,Y)]. From an economic perspec-
tive, this result indicates that the change of insurance strategy from I1 to I2 re-
sults in an increase in risk of the insured’s final wealth, see Rothschild and Stiglitz
(1971). This special case also recovers Lemma 3.3 of Cai and Wei (2012).

It is well-known from the literature that for any I ∈ C, there exists a non-
negative d such that Id(X) ≤cx I(X), where

Id(x) = min{x, d}. (4.1)

Therefore, Proposition 4.2 implies the optimality of stop-loss insurance, as
stated in the following corollary.

Corollary 4.4. If Y ↑n-icx X, then a solution to the optimization problem (2.2)
with u(·) ∈ Un+1-icv is given by

I∗(x) = min{x, d∗}

for some non-negative d∗.

We remark that Corollary 4.4 generalizes Theorem 3.1 of Lu et al. (2012),
which proves the optimality of stop-loss insurance under the assumption of
Y ↑SI X. Furthermore, by comparing the above optimal insurance form with
that in Mahul (2000), it is easy to find that the increasing constraint on the
retained loss function has an important influence on the optimal insurance so-
lution, which is changed from the disappearing deductible to the stop-loss insur-
ance. On the other hand, when this monotonic condition is imposed, we know
from the above corollary and Arrow (1963) that the introduction of background
risk Y satisfying Y ↑n-icx X does not change the optimality of stop-loss insur-
ance. Intuitively, if Y ↑n-icx X, both sources of risk are positively dependent and
have no internal hedges, then the risk-averse insured will choose to cede all the
tail risk under the premium principle based on the expected indemnity.

Even if the dependence assumption of Y ↑n-icx X is weakened to Y ↑RTI
n-icx X,

the same approach can be applied to rank some admissible insurance contracts,
as illustrated in the following proposition.

Proposition 4.5. Let I1(·) and I2(·) be two differentiable retained loss functions in
C satisfying the following conditions:

(i) E[I1(X)] = E[I2(X)], and
(ii) there exists an x0 ≥ 0 such that (I ′

2(x) − I ′
1(x))(x− x0) ≥ 0 for all x ≥ 0.

If Y ↑RTI
n-icx X, then WI1(X,Y) ≥n+1-SD WI2(X,Y).
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Remark 4.6. For I1(x) and I2(x) satisfying conditions in Proposition 4.5, it is
easy to see that the function I2(x) up-crosses the function I1(x), then Lemma 3
in Ohlin (1969) implies I1(X) ≤cx I2(X). Therefore, comparing Proposition 4.2
with Proposition 4.5, we find that the cost to relax the assumption of stochastic
dependence between the insurable risk and background risk is to impose a more
stringent constraint on the insurance contracts to be compared.

For any admissible retained loss function I(x) with 0 ≤ I ′(x) ≤ 1, there
exists an Id(x) in (4.1) such that Id(x) and I(x) satisfy conditions in Proposi-
tion 4.5, and hence I(x) is inferior to Id(x) for an insured with risk preference
preserving (n + 1)th degree stochastic dominance. Note that, however, not all
retained loss functions in C satisfy the condition 0 ≤ I ′(x) ≤ 1. To establish
the optimality of stop-loss insurance over the set C under the assumption of
Y ↑RTI

n-icx X, we need the following proposition.

Proposition 4.7. If Y ↑RTI
n-icx X, then WId (X,Y) ≥n+1-SD WI(X,Y) for any

I(x), Id(x) ∈ C such that E[I(X)] = E[Id(X)].

We remark that Proposition 4.7 implies Corollary 4.4. That means, when the
dependence assumption is weakened from Y ↑n-icx X to Y ↑RTI

n-icx X, the stop-
loss insurance still keeps its optimality under an optimization criterion preserv-
ing (n + 1)th degree stochastic dominance. Therefore, for any utility function
u ∈ Un+1-icv, if Y ↑RTI

n-icx X, then the study of the optimal insurance model (2.2)
reduces to deriving the optimal retention level of stop-loss insurance. Mathe-
matically, it is equivalent to solving the following maximization problem

max
d≥0

E [u (w − Y− min{X, d} − P(E[(X− d)+]))] . (4.2)

The solution to the above optimization problem will be discussed in detail in the
next section.

5. OPTIMAL RETENTION LEVEL AND COMPARATIVE ANALYSIS

In this section, we focus on stop-loss insurance contracts. We shall first find the
optimal retention level to solve the problem (4.2), and then investigate how the
insured’s initial wealth and background risk affect the optimal stop-loss insur-
ance by carrying out a comparative analysis.

To avoid tedious discussions, we assume X is continuously distributed
throughout this section. We further make the following assumption:

Assumption 5.1.

(i) The insured has a utility function u ∈ Un+1-icv;
(ii) Y is right tail increasing in X with respect to the nth increasing convex

order, i.e., Y ↑RTI
n-icx X;
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(iii) The insurance premium is calculated by (2.1), where P is convex and twice
differentiable with P(0) = 0 and P ′

(x) ≥ 1 for any x ≥ 0;

Define

φ(d) = P{X > d} × P ′(E[(X− d)+]), 0 ≤ d < ess sup X, (5.1)

where ess sup X = inf{y ≥ 0 : P{X > y} = 0}. Here, inf ∅ = ∞ by convention.
Under Assumption 5.1, φ(d) is a decreasing and continuous function with

{
φ(d) > 1, 0 ≤ d < ds;
φ(d) ≤ 1, otherwise,

where ds = inf{d ≥ 0 : φ(d) ≤ 1}. Under the stop-loss insurance contract, the
insured’s final wealth varies with the retention level. To emphasize this depen-
dence, we rewrite the insured’s final wealth as

Wd(X,Y) = w − Y− min{X, d} − P(E[(X− d)+]).

Now, an optimal choice of the retention level of stop-loss insurance can be
given in the following proposition.

Proposition 5.1. Under Assumption 5.1, define

�(d) = P ′(E[(X− d)+]) × E[u′(Wd(X,Y))]
E[u′(Wd(X,Y))|X > d]

, ∀ 0 ≤ d < ess sup X,

(5.2)

then�(d) is decreasing over the interval [ds, ess sup X), and the optimal retention
level that solves Problem (4.2) is given by

d∗ = inf {d ∈ [ds, ess sup X) : �(d) ≤ 1} . (5.3)

Different from Lu et al. (2012), the above proposition derives the optimal
retention level of stop-loss insurance explicitly, which appears to rely heavily on
the insured’s risk preference, the stochastic dependence between the background
risk and the insurable risk, and the insurance price. In particular, when the in-
surance price is actuarially fair, i.e., P(x) = x, it is of interest to investigate the
demand for insurance in the literature. In that case, we have φ(d) ≤ 1 for any d
and thus ds = 0. Furthermore, it is easy to see that

�(0) = E [u′(w − Y− E[X])]
E [u′(w − Y− E[X])|X > 0]

≤ 1,

where the inequality follows from the assumptions of u(·) ∈ Un+1-icv andY ↑RTI
n-icx

X. Therefore, we conclude that d∗ = 0. In other words, the optimal strategy for
the insured is to cede all the insurable risk. Formally, this result is stated in the
following corollary.
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Corollary 5.2. Under Assumption 5.1 withP(x) = x, full insurance is the optimal
strategy for the insured.

The above corollary indicates that full coverage is optimal for the insured
if the insurance contract is fairly priced. This result extends Mossin’s theorem
by taking background risk into consideration. It also generalizes Proposition
3 of Doherty and Schlesinger (1983) and Proposition 3.5 of Lu et al. (2012),
whose assumptions about the dependence structure are special cases of Assump-
tion 5.1(ii).

In the following, we shall investigate how the optimal retention level is af-
fected by the change of the insured’s initial wealth or background risk. This is
a very challenging task under a general dependence structure. In order to carry
out the comparative analysis, we shall assume some special dependence struc-
tures characterized by the hazard rate order, which is formally defined below:

Definition 5.3 (Müller and Stoyan 2002). Random variable Z1 is said to be less
than Z2 in the hazard rate order, denoted as Z1 ≤hr Z2, if

P{Z2>z}
P{Z1>z} is increasing

in z.

In insurance economics, it is of great interest to analyze how the optimal
retention level of stop-loss insurance is affected by the insured’s initial wealth.
Schlesinger (1981) is the first to study this problem in the absence of background
risk, and finds that the insured with a lower level of initial wealth will choose
a smaller retention level if his/her preference exhibits decreasing absolute risk
aversion (DARA).3 This result can be easily extended to the case with a back-
ground risk independent of the insurable risk, because Corollary 3 in Gollier
(2001) indicates that the DARA is preserved by the introduction of an inde-
pendent background risk. In fact, this result also holds in the presence of some
positive dependence structures between the background risk and the insurable
risk, as shown in the following proposition.

Proposition 5.4. Assume that the preference of the risk-averse insured exhibits
DARA and that P(x) is convex and twice differentiable with P(0) = 0 and
P ′(x) ≥ 1 for any x ≥ 0. The optimal retention level d∗ to Problem (4.2) is
increasing in the initial wealth w if (X,Y) satisfies the following conditions:

(i) [Y|X = x1] ≤hr [Y|X = x2] for any x1, x2 ∈ S(X) such that x1 ≤ x2;
(ii) [Y+ a|X = x] ≤hr [Y+ b|X = x] for any x ∈ S(X) and a ≤ b.

Remark 5.5. Among the two conditions on (X,Y) in the above proposition, the
first condition concerns more about the interdependence between Y and X, while
the second condition emphasizes the marginal distribution of Y conditional on X =
x. Intuitively, Condition (i) means that Y increases in X in the sense of hazard rate
order, which implies Y ↑SI X and thus Y ↑RTI

n-icx X for any positive integer n. On
the other hand, Condition (ii) implies that the hazard rate function of [Y|X = x]
is increasing, given that [Y|X = x] has a continuous distribution for any fixed
x ∈ S(X).
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If Y has an increasing hazard rate function and is independent of X, then it is
easy to verify that the random vector (X,Y) satisfies Conditions (i) and (ii) in
Proposition 5.4. Another special dependence structure satisfying these two condi-
tions is comonotonicity. Specifically, if there exists an increasing function B such
that Y = B(X), then Conditions (i) and (ii) are satisfied by (X,Y). Notably,
the two conditions are also satisfied by a structure combining comonotonicity and
independence, namely, Y = Z+ B(X), where random variable Z is independent of
X and has an increasing hazard rate function.

Proposition 5.6. Assume that the preference of the risk-averse insured exhibits
DARA and that P(x) is convex and twice differentiable with P(0) = 0 and
P ′(x) ≥ 1 for any x ≥ 0. The optimal retention level to Problem (4.2) is reduced if
the background risk Y1 is replaced by Y2, where Y1,Y2 and X satisfy the following
two conditions:

(i) [Y1|X = x] ≤hr [Y2|X = x] for any x ∈ S(X);
(ii) The function E[u′(w−Y2)|X=x]

E[u′(w−Y1)|X=x] is increasing in x for any w.

Remark 5.7. Intuitively, Conditions (i) and (ii) indicate that Y2 is “more risky”
than Y1. When Y1 is replaced by Y2, the insured has a more risky portfolio and will
choose to reduce the retention level and thus transfer more risk.

Although these two conditions, especially Condition (ii), look complicated,
two special dependence structures can be easily verified to fall into this category:
independence and comonotonicity. Specifically, if (i) Y1,Y2 are independent of X
and Y1 ≤hr Y2, or (ii) there exist increasing functions B1(·) and B2(·) such that
B1(0) ≤ B2(0), B′

1(x) ≤ B′
2(x) for any x ≥ 0, and Y1 = B1(X),Y2 = B2(X), then

Y1,Y2 and X satisfy Conditions (i) and (ii).

It is worth noting that the effect of background risk on the optimal retention
level of stop-loss insurance has been analyzed in Eeckhoudt and Kimball (1992).
They conclude that the introduction of a zero-mean background risk satisfying
Y ↑3−icx X would reduce the optimal retention level for a risk-averse and pru-
dent insured. Essentially, their result concerns the shift from a zero background
risk (i.e., no background risk) to a positively dependent background risk with
zero mean. Proposition 5.6 studies a different type of shift between background
risks and thus complements the study in Eeckhoudt and Kimball (1992).

6. CONCLUDING REMARKS

In this paper, we employ a few useful notions to model positive dependence and
study the optimal insurance problems with background risk. We manage to con-
duct comparison between different insurance contracts concerning high-order
risk attitudes (Propositions 4.2 and 4.5), and thereby establish the optimality of
the stop-loss insurance form (Corollary 4.4 and Proposition 4.7). These results
significantly contribute to the literature since they deal with more general posi-
tive dependence structures. They also enhance the applicability of the stop-loss
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insurance. Specifically, the stop-loss insurance form has been proved to be op-
timal in the literature, but with relatively restrictive assumptions on the depen-
dence structure (such as independence or stochastic increasingness). Our results
extend this conclusion to a more general setting, which enable practitioners to
use the stop-loss insurance with more confidence.

With the focus on the stop-loss insurance form, we obtain an expression for
the optimal retention level in Proposition 5.1 and thus completely solve the the
optimal insurance problem. In the case when the information about the utility
function or the dependence structure is incomplete or unavailable, Proposition
5.1 gives a lower bound independent of these information and thus provides
a useful guideline for practice. Based on the result derived in Proposition 5.1,
we further conduct a comparative analysis to investigate how a change in the
initial wealth level or a shift in the background risk affects the optimal insurance
design. The results presented in Propositions 5.4 and 5.6 are reasonable and
consistent with intuitions. Specifically, a decrease in the initial wealth or a shift
to a more “dangerous” background risk will increase the insurance demand.
Our contribution is to theoretically justify these intuitions in a relatively general
framework and identify what specific assumptions are needed.

Admittedly, there are unsolved problems. As mentioned in Section 2, the
assumption of the expected indemnity-based premium principle is crucial yet
not quite realistic. It is of practical importance to study the optimal insurance
problems under other premium principles. It will be a challenging task, espe-
cially in the presence of background risk. The comparative analysis in the paper
reveals what specific role the insurance premium plays in determining the op-
timal insurance contract and shall shed some light on further studies. Another
remaining problem is to conduct comparative analysis on other factors, such as
the utility function or the premium principle. Such kind of analysis is of interest
to both academics and practitioners. We leave these problems as future research.
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NOTES

1. The principle of indemnity, which is widely accepted in the insurance practice, requires that
the indemnity is non-negative and less than the insurable loss.
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2. Throughout the paper, “increasing” and “decreasing” mean “non-decreasing” and “non-
increasing”, respectively.

3. The preference of an individual with the utility function u(·) is said to exhibit DARA if
Arrow–Pratt measure of absolute risk aversion Au(z) = − u′′(z)

u′(z) is decreasing.
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CABALLÉ, J. and POMANSKY, A. (1996) Mixed risk aversion. Journal of Economic Theory, 71, 485–
513.

CHI, Y. (2017) On the optimality of a straight deductible under belief heterogeneity. Available at
SSRN: https://ssrn.com/abstract=3018253.

CHI, Y. and TAN, K.S. (2015) Optimal incentive compatible insurance with background risk. Avail-
able at SSRN: https://ssrn.com/abstract=2589438.

DANA, R.A. and SCARSINI, M. (2007) Optimal risk sharing with background risk. Journal of Eco-
nomic Theory, 133, 152–176.

DENUIT, M. and EECKHOUDT, L. (2013) Risk attitudes and the value of risk transformations.
International Journal of Economic Theory, 9(3), 245–254.

DOHERTY, N.A. and SCHLESINGER, H. (1983) The optimal deductible for an insurance policy
when initial wealth is random. Journal of Business, 56(4), 555–565.

EECKHOUDT, L. and KIMBALL, M. (1992) Background risk, prudence, and the demand for in-
surance. In Contributions to Insurance Economics (ed. G. Dionne), pp. 239–254. New York:
Springer.

EECKHOUDT, L. and SCHLESINGER, H. (2013) Higher-order risk attitudes. In Handbook of Insur-
ance, (ed. G. Dionne), pp. 41–57. New York: Springer.

EKERN, S. (1980) Increasing Nth degree risk. Economics Letters, 6, 329–333.
GOLLIER, C. (1996) Optimum insurance of approximate losses. The Journal of Risk and Insurance,

63(3), 369–380.
GOLLIER, C. (2001) The Economics of Risk and Time. Cambridge, MA: MIT Press.
GOLLIER, C. and SCHLESINGER, H. (1996) Arrow’s theorem on the optimality of deductibles: A

stochastic dominance approach. Economic Theory, 7(2), 359–363.
HUANG, H.H., SHIU, Y.M. and WANG, C.P. (2013) Optimal insurance contract with stochastic

background wealth. Scandinavian Actuarial Journal, 2, 119–139.
HUBERMAN, G., MAYERS, D. and SMITH JR, C.W. (1983) Optimal insurance policy indemnity

schedules. The Bell Journal of Economics, 14(2), 415–426.
KALUSZKA, M. (2001) Optimal reinsurance under mean-variance premium principles. Insurance:

Mathematics and Economics, 28(1), 61–67.
KIMBALL, M.S. (1990) Precautionary saving in the small and in the large. Econometrica, 58(1),

53–73.
LEHMANN, E.L. (1966) Some concepts of dependence. The Annals of Mathematical Statistics,

37(5), 1137–1153.
LU, Z.Y., LIU, L.P., ZHANG, J.Y. and MENG, L.L. (2012) Optimal insurance under multiple sources

of risk with positive dependence. Insurance: Mathematics and Economics, 51(2), 462–471.

https://doi.org/10.1017/asb.2018.20 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2018.20


1040 Y. CHI AND W. WEI

MAHUL, O. (2000) Optimal insurance design with random initial wealth. Economics Letters, 69,
353–358.

MAYERS, D. and SMITH JR., C.W. (1983) The interdependence of individual portfolio decisions
and the demand for insurance. Journal of Political Economy, 91(2), 304–311.
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APPENDIX
A. PROOF

Proof of Proposition 3.3. The “horizontal” implications are based on the relationship be-
tween stochastic orders with different degrees and are easy to verify. The implication from ↑SI

to ↑RTI has been established in Barlow and Proschan (1975). Another “vertical” implication
can be proved similarly.

Proof of Proposition 4.2. According to Definition 2.1, it suffices to show that

E [u(w − I1(X) − Y− π(X− I1(X)))] ≥ E [u(w − I2(X) − Y− π(X− I2(X)))]
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for any u ∈ Un+1-icv , provided that the expectations exist. Noting that I1(X) ≤cx I2(X) im-
plies E[I1(X)] = E[I2(X)], we have π(X − I1(X)) = π(X − I2(X)) because the insurance
premium is calculated based only on the expected indemnity. Therefore, it is equivalent to
prove E[v(I2(X) + Y)] ≥ E[v(I1(X) + Y)] for any v ∈ Vn+1-icx.

For any v ∈ Vn+1-icx, its convexity yields that

v(I2(X) + Y) − v(I1(X) + Y) ≥ v′(I1(X) + Y)(I2(X) − I1(X)),

which in turn implies

E[v(I2(X) + Y)] − E[v(I1(X) + Y)] ≥ E[v′(I1(X) + Y)(I2(X) − I1(X))]

= E [p(X)(I2(X) − I1(X))] ,

where p(X) = E[v′(I1(X)+Y)|X]. Since Y ↑n-icx X and v′(·) ∈ Vn-icx, then E[v′(I1(x)+Y)|X]
is an increasing function of X. Noting that I1(x) is increasing, p(X) is also increasing in X.
Using a similar argument as in the proof of Lemma 3.3 of Cai and Wei (2012), one concludes
that E[p(X)(I2(X) − I1(X))] ≥ 0, which implies E[v(I2(X) + Y)] ≥ E[v(I1(X) + Y)]. This
completes the proof.

Proof of Proposition 4.5. Similar to Proposition 4.2, it suffices to show

E[v(I2(X) + Y)] ≥ E[v(I1(X) + Y)] for any v ∈ Vn+1-icx, (A.1)

provided that the expectations exist.
Note that v(X+Y) = ∫ X

0 v′(x+Y)dx+ v(Y) = ∫ ∞
0 v′(x+Y) I{X > x}dx+ v(Y), where

I{A} is the indicator function of an event A. Therefore, for i = 1, 2, we have

E[v(Ii (X) + Y)] = E

[∫ ∞

0
v′(z+ Y) I{Ii (X) > z}dz

]
+ E[v(Y)]

=
∫ ∞

0
E

[
v′(z+ Y) I{Ii (X) > z}] dz+ E[v(Y)], (A.2)

where the interchangeability of the expectation and the integration of the first term on the
right-hand side is due to Tonelli’s theorem, because the expectation exists (implied by the ex-
istence of two other expectations) and the integrand is non-negative. Therefore, (A.1) reduces
to ∫ ∞

0
E[v′(Y+ z) I{I2(X) > z}] dz ≥

∫ ∞

0
E[v′(Y+ z) I{I1(X) > z}] dz. (A.3)

Since (I ′
2(x) − I ′

1(x))(x − x0) ≥ 0 for all x ≥ 0 and I1(0) = I2(0) = 0, there are two
possible positions between I1(x) and I2(x):

(i) I1(x) ≥ I2(x) for all x ≥ 0, or
(ii) there exists an xe ≥ x0 such that (I2(x) − I1(x))(x− xe) ≥ 0 for any non-negative x.

Since E[I1(X)] = E[I2(X)], if (i) is true, then I1(X) and I2(X) are equal almost surely and
(A.3) immediately follows. Otherwise, if (ii) is true, then {I1(X) > z} ⊂ {I2(X) > z} for any
z > I1(xe), and {I2(X) > z} ⊂ {I1(X) > z} for any z < I1(xe). It is easy to verify that

v′(Y+ z)(I{I2(X) > z} − I{I1(X) > z})
≥ v′(Y+ I1(xe))(I{I2(X) > z} − I{I1(X) > z}) for any z. (A.4)
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Again, using Tonelli’s theorem to interchange the order of expectations and integrations,
one obtains that, for i = 1, 2

∫ ∞

0
E[v′(Y+ I1(xe)) I{Ii (X) > z}]dz

= E

[
v′(Y+ I1(xe))

∫ ∞

0
I{Ii (X) > z} dz

]

= E[v′(Y+ I1(xe))Ii (X)]

= E

[
v′(Y+ I1(xe))

∫ ∞

0
I ′
i (t)I{X > t} dt

]

=
∫ ∞

0
E

[
v′(Y+ I1(xe)) I ′

i (t)I{X > t}] dt

=
∫ ∞

0
E

[
v′(Y+ I1(xe))|X > t

]
I ′
i (t)P{X > t} dt

=
∫ ∞

0
ψ(t) I ′

i (t)P{X > t} dt, (A.5)

where ψ(t) = E [v′(Y+ I1(xe))|X > t]. Note that ψ(t) is increasing since Y ↑RTI
n-icx X. Recall-

ing that (I ′
2(x) − I ′

1(x))(x− x0) ≥ 0, one gets

∫ ∞

0
ψ(t) (I ′

2(t) − I ′
1(t))P{X > t} dt

≥
∫ ∞

0
ψ(x0) (I ′

2(t) − I ′
1(t))P{X > t} dt

= ψ(x0)(E[I2(X) − I1(X)]) = 0. (A.6)

The required inequality (A.3) follows from (A.4), (A.5) and (A.6).

Proof of Proposition 4.7. Similar to Proposition 4.2, it suffices to show

E[v(I(X) + Y)] ≥ E[v(Id(X) + Y)] for any v ∈ Vn+1-icx,

provided that the expectations exist.
If P{I(X) > d} = 0, then it follows from the facts 0 ≤ I(x) ≤ x and E[I(X)] = E[Id(X)]

that I(X) = Id(X) almost surely, which immediately implies the desired result.
Otherwise, if P{I(X) > d} > 0, noting that 0 ≤ I(x) ≤ x, we get

{Id(X) > z} = ∅ ⊂ {I(X) > z}, ∀z ≥ d

and
{Id(X) > z} = {X > z} ⊃ {I(X) > z}, ∀z < d.

Therefore, for any v ∈ Vn+1-icx, we have

v′(Y+ z) (I{I(X) > z} − I{Id(X) > z})
≥ v′(Y+ d) (I{I(X) > z} − I{Id(X) > z}) for any z. (A.7)
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Define
I−1(x) = inf{y ≥ 0 : I(y) > x}, ∀x ≥ 0.

Since I(x) is an increasing function with 0 ≤ I(x) ≤ x, then we have

(i) I−1(x) is an increasing function with I−1(x) ≥ x;
(ii) {I(X) > z} is equivalent to either {X > I−1(z)} or {X ≥ I−1(z)}.
Since Y ↑RTI

n-icx X, then it is easy to get

E
[
v′(Y+ d)|I(X) > z1

] ≥ E
[
v′(Y+ d)|I(X) > z2

]
and

E
[
v′(Y+ d)|I(X) > z2

] ≥ E
[
v′(Y+ d)|X > z2

]
,

for any 0 ≤ z2 < z1 with P{I(X) > z1} > 0. Therefore, for any z ∈ [0, d], we have

E
[
v′(Y+ d)(I{I(X) > z} − I{Id(X) > z})]
= E

[
v′(Y+ d)|I(X) > z

]
P{I(X) > z} − E

[
v′(Y+ d)|X > z

]
P{X > z}

≥ E
[
v′(Y+ d)|I(X) > z

]
(P{I(X) > z} − P{X > z})

≥ E
[
v′(Y+ d)|I(X) > d

]
(P{I(X) > z} − P{X > z}) .

On the other hand, for each z > d, it holds that

E
[
v′(Y+ d)I{I(X) > z}] ≥ E

[
v′(Y+ d)|I(X) > d

]
P{I(X) > z}. (A.8)

The above two equations, together with (A.2) and (A.7), lead to

E [v(Y+ I(X))] − E [v(Y+ Id(X))]

=
∫ ∞

0
E

[
v′(Y+ z)(I{I(X) > z} − I{Id(X) > z})] dz

≥
∫ ∞

0
E

[
v′(Y+ d)(I{I(X) > z} − I{Id(X) > z})] dz

≥
∫ ∞

d
E

[
v′(Y+ d)I{I(X) > z}] dz+

∫ d

0
E

[
v′(Y+ d)(I{I(X) > z} − I{Id(X) > z})] dz

≥ E
[
v′(Y+ d)|I(X) > d

] (∫ ∞

d
P{I(X) > z}dz+

∫ d

0
P{I(X) > z} − P{X > z}dz

)

= E
[
v′(Y+ d)|I(X) > d

]
(E[I(X)] − E[Id(X)]) = 0,

which completes the proof.

Proof of Proposition 5.1. The proof of this proposition is a slight modification to that of
Theorem 4.2 in Chi (2017).

First, we show that �(d) defined in (5.2) is decreasing over the interval [ds, ess sup X).
More specifically, denote g1(d) = P ′(E[(X − d)+])E[u′(Wd(X,Y))] and g2(d) =
E[u′(Wd(X,Y))|X > d], then we have

�(d) = g1(d)

g2(d)
and � ′(d) × (g2(d))2 = g′

1(d)g2(d) − g1(d)g′
2(d).
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Note that

g′
1(d) = −SX(d)P ′′(E[(X− d)+])E[u′(Wd(X,Y))]

+SX(d) (P ′(E[(X− d)+]))2
E[u′′(Wd(X,Y))]

−P ′(E[(X− d)+])E[u′′(Wd(X,Y))I{X > d}]
≤ (P ′(E[(X− d)+]))2SX(d)E[u′′(Wd(X,Y))]

−P ′(E[(X− d)+])E[u′′(Wd(X,Y))I{X > d}]
≤ φ(d)P ′(E[(X− d)+])E[u′′(Wd(X,Y))I{X > d}]

−P ′(E[(X− d)+])E[u′′(Wd(X,Y))I{X > d}]
= (φ(d) − 1)P ′(E[(X− d)+])E[u′′(Wd(X,Y))I{X > d}], (A.9)

where SX(d) is the survival function of X and φ(d) is defined in (5.1). The first inequality
holds because of P ′′(·) ≥ 0 and u′(·) ≥ 0, while the second inequality is due to the assumption
u′′(·) ≤ 0. In order to analyze the derivative of g2(d), we introduce an auxiliary function

	(x, y) = E[u′(w − Y− x− P(E[(X− x)+]))|X > y].

Clearly, g2(d) = 	(d, d) and g′
2(d) =

(
∂

∂x + ∂

∂y

)
	(x, y)

∣∣∣
(x,y)=(d,d)

. Since Y ↑RTI
n-icx X and u ∈

Un+1-icv , then it is easy to conclude that 	(x, y) is increasing in y. Therefore, we have

g′
2(d) ≥ ∂

∂x
	(x, y)

∣∣∣∣
(x,y)=(d,d)

= (φ(d) − 1)E[u′′(Wd(X,Y))|X > d]. (A.10)

Combining (A.9) and (A.10), one obtains that for any d ≥ ds ,

� ′(d) × (g2(d))2

= g′
1(d)g2(d) − g1(d)g′

2(d)

≤ (φ(d) − 1)P ′(E[(X− d)+])E[u′′(Wd(X,Y))|X > d] × E
[
u′(Wd(X,Y))I{X > d}]

− (φ(d) − 1)E[u′′(Wd(X,Y))|X > d] × P ′(E[(X− d)+])E[u′(Wd(X,Y))]

= −(φ(d) − 1)P ′(E[(X− d)+])E[u′′(Wd(X,Y))|X > d]E[u′(Wd(X,Y))I{X ≤ d}]
≤ 0,

where the last inequality holds because P ′(·) ≥ 0, u′(·) ≥ 0, u′′(·) ≤ 0 and φ(d) ≤ 1 for any
d ≥ ds . This implies � ′(d) ≤ 0 for any d ∈ [ds, ess sup X).

Following, we denote the objective function of optimization problem (4.2) by

L(d) = E[u(Wd(X,Y))] = E[u(w − Y− min{X, d} − P(E[(X− d)+]))].

Note that

L′(d) = P ′(E[(X− d)+])SX(d)E[u′(Wd(X,Y))] − E[u′(Wd(X,Y))I{X > d}]
≥ φ(d)E[u′(Wd(X,Y))I{X > d}] − E[u′(Wd(X,Y))I{X > d}]
= (φ(d) − 1)E[u′(Wd(X,Y))I{X > d}],
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which in turn implies L′(d) ≥ 0 for any d < ds . Therefore, L(d) is increasing over the interval
[0, ds ]. Further, noting that L′(d) = E[u′(Wd(X,Y))I{X > d}](�(d) − 1), where �(d) is
shown to be decreasing over [ds, ess sup X) , we conclude that the maximum value of L(d) is
attainable at d∗, where d∗ is defined in (5.3). The proof is thus completed.

Before presenting the proofs to Propositions 5.4 and 5.6, we need to introduce several
auxiliary lemmas. The first lemma, which is reproduced from Theorem 3.4 in Shanthikumar
and Yao (1991), provides a useful characterization of hazard rate order by bivariate functions.

Lemma A.1. Assume that Z1 and Z2 are independent. Z1 ≤hr Z2 if and only if E[g(Z1, Z2)] ≥
E[g(Z2, Z1)] for any bivariate function g such that �g(x, y) is increasing in y for any y ≥ x,
where �g(x, y) = g(x, y) − g(y, x).

With the help of the above characterization of hazard rate order, we have the following
lemma.

Lemma A.2. Let u(·) be an increasing concave utility function with DARA. For any Y1 ≤hr Y2

and w1 ≤ w2, it holds that

E[u′(w1 − Y1)]
E[u′(w2 − Y1)]

≤ E[u′(w1 − Y2)]
E[u′(w2 − Y2)]

. (A.11)

Proof. Without loss of generality, assume Y1 and Y2 are independent. Inequality (A.11)
is equivalent to

E[u′(w1 − Y1)u′(w2 − Y2)] ≤ E[u′(w1 − Y2)u′(w2 − Y1)]. (A.12)

Let g(x, y) = u′(w1 − y)u′(w2 − x), then inequality (A.12) can be rewritten as E[g(Y1,Y2)] ≥
E[g(Y2,Y1)]. According to Lemma A.1, it suffices to prove that ∂

∂y�g(x, y) ≥ 0 for any x ≤ y.

Since u(·) is an increasing concave function, then we have u′(z) ≥ 0 and Au(z) = − u′′(z)
u′(z) ≥

0 for any z. Furthermore, the DARA property of u(·) implies that Au(z) is decreasing, and
hence u′(z) is log-convex. Therefore, for any x ≤ y, it holds that

∂

∂y
�g(x, y) = −u′′(w1 − y)u′(w2 − x) + u′(w1 − x)u′′(w2 − y)

= Au(w1 − y)u′(w1 − y)u′(w2 − x) − Au(w2 − y)u′(w1 − x)u′(w2 − y)

≥ Au(w2 − y)(u′(w1 − y)u′(w2 − x) − u′(w1 − x)u′(w2 − y)) ≥ 0,

where the first inequality is derived by the decreasing property of Au(z) and the second in-
equality is due to log-convexity of u′(·). This completes the proof.

In addition, we have to introduce another useful lemma below.

Lemma A.3. Let h1(·) and h2(·) be two non-negative functions. If h1(x)/h2(x) is increasing in
x, then

E[h1(X)I{X ≤ d}]
E[h2(X)I{X ≤ d}] ≤ E[h1(X)I{X > d}]

E[h2(X)I{X > d}] , ∀d ≥ 0.

Proof. The proof is straightforward by noting that h1(X) ≤ h1(d)

h2(d)
h2(X) for X ≤ d and

h1(X) ≥ h1(d)

h2(d)
h2(X) for X > d.
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Proof of Proposition 5.4. Consider two initial wealth levels w1 ≤ w2. Let d∗
i be the op-

timal retention level corresponding to the initial wealth wi for i = 1, 2. Our task is to show
d∗

1 ≤ d∗
2 .

Define

�i (d) = P ′(E[(X− d)+]) × E[u′(Wi
d(X,Y))]

E[u′(Wi
d(X,Y))|X > d]

for i = 1, 2, where Wi
d(X,Y) = wi − Y − min{X, d} − P (E[(X− d)+]). Since the hazard

rate order is more strict than the usual stochastic order, then it follows from Condition (i)
that Y ↑SI X, which in turn implies that Y is right tail increasing with respect to X. Recalling
from Proposition 5.1 that d∗

i = inf {d ∈ [ds, ess sup X) : �i (d) ≤ 1}, it suffices to show that
�1(d) ≤ �2(d). Simple algebra yields that �1(d) ≤ �2(d) is equivalent to

E[u′(W1
d (X,Y))I{X ≤ d}]

E[u′(W2
d (X,Y))I{X ≤ d}] ≤ E[u′(W1

d (X,Y))I{X > d}]
E[u′(W2

d (X,Y))I{X > d}] .

Let hi (x) = E[u′(Wi
d(X,Y))|X = x] for i = 1, 2 and x ∈ S(X). According to Lemma A.3,

the proof of the above inequality reduces to verifying that h1(x)
h2(x) is increasing in x.

Note that for any 0 ≤ x1 < x2, we have

h1(x1)

h2(x1)
= E[u′(w1 − Y− min{x1, d} − P(E[(X− d)+]))|X = x1]

E[u′(w2 − Y− min{x1, d} − P(E[(X− d)+]))|X = x1]

≤ E[u′(w1 − Y− min{x1, d} − P(E[(X− d)+]))|X = x2]
E[u′(w2 − Y− min{x1, d} − P(E[(X− d)+]))|X = x2]

≤ E[u′(w1 − Y− min{x2, d} − P(E[(X− d)+]))|X = x2]
E[u′(w2 − Y− min{x2, d} − P(E[(X− d)+]))|X = x2]

= h1(x2)

h2(x2)
,

where the first inequality follows from Proposition A.2 and Conditions (i), and the second
inequality follows from Lemma A.2 and Conditions (ii). The proof is thus completed.

Proof of Proposition 5.6. The proof is a slight modification to that of Proposition 5.4.
More specifically, define

�̃i (d) = P ′(E[(X− d)+])

× E[u′(w − Yi − min{X, d} − P(E[(X− d)+]))]
E[u′(w − Yi − min{X, d} − P(E[(X− d)+]))|X > d]

for i = 1, 2,

and we need to show that �̃2(d) ≤ �̃1(d). According to Lemma A.3, it suffices to verify that
h̃2(x)
h̃1(x)

is increasing in x, where

h̃i (x) = E[u′(w − Yi − min{x, d} − P(E[(X− d)+]))|X = x], x ∈ S(X)

for i = 1, 2.
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Note that for any 0 ≤ x1 < x2, it holds that

h̃2(x1)

h̃1(x1)
= E[u′(w − Y2 − min{x1, d} − P(E[(X− d)+]))|X = x1]

E[u′(w − Y1 − min{x1, d} − P(E[(X− d)+]))|X = x1]

≤ E[u′(w − Y2 − min{x1, d} − P(E[(X− d)+]))|X = x2]
E[u′(w − Y1 − min{x1, d} − P(E[(X− d)+]))|X = x2]

≤ E[u′(w − Y2 − min{x2, d} − P(E[(X− d)+]))|X = x2]
E[u′(w − Y1 − min{x2, d} − P(E[(X− d)+]))|X = x2]

= h̃2(x2)

h̃1(x2)
,

where the first inequality is due to Condition (ii) and the second inequality follows from
Condition (i) and Lemma A.2. The proof is thus completed.
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