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Abstract In this short note, we correct and reformulate Theorem 3.1 in the paper published in Pro-
ceedings of the Edinburgh Mathematical Society 58(3) (2015), 617–629.
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Recall that a Banach lattice is said to have a Fatou norm if 0 � xα ↑ x implies ‖xα‖ ↑ ‖x‖.
In [2, Theorem 3.1], if the domain spaces are not atomic, then the range space F should
have a Fatou norm.∗ Actually, [2, Theorem 3.1] can be reformulated as follows.

Theorem 3.1.

Case 1. Let F be a Dedekind complete AM-space. The following are equivalent.

(1) If E, E1, . . . , En are AL-spaces, then Lr(E1, . . . , En; F ) and Pr(nE; F ) are AM-
spaces.

(2) F has a Fatou norm.

Case 2. If F is an AM-space and E, E1, . . . , En are separable atomic AL-spaces, then
Lr(E1, . . . , En; F ) and Pr(nE; F ) are AM-spaces.

∗ The authors thank A. W. Wickstead for pointing out this error in Theorem 3.1 in [2] to which this
note is a correction.
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Proof.

Case 1. To see that (2) implies (1), take T, S ∈ L(E1, . . . , En; F )+, x1 ∈ E+
1 , . . . , xn ∈

E+
n and use the estimates in [2, Theorem 3.1] to show that

∥∥∥∥
∑

i1,...,in

T (u1,i1 , . . . , un,in
) ∨ S(u1,i1 , . . . , un,in

)
∥∥∥∥ � (‖T‖ ∨ ‖S‖) · ‖x1‖ · · · ‖xn‖.

It follows from [2, Proposition 2.1] that
∑

i1,...,in

T (u1,i1 , . . . , un,in) ∨ S(u1,i1 , . . . , un,in) ↑ (T ∨ S)(x1, . . . , xn).

So the Fatou property tells us that
∥∥∥∥

∑

i1,...,in

T (u1,i1 , . . . , un,in) ∨ S(u1,i1 , . . . , un,in
)
∥∥∥∥ ↑ ‖(T ∨ S)(x1, . . . , xn)‖,

from which
‖(T ∨ S)(x1, . . . , xn)‖ � (‖T‖ ∨ ‖S‖) · ‖x1‖ · · · ‖xn‖

and the result follows as in [2].
For the converse, suppose that (1) holds. Then it follows that Lr(E; F ) is an AM-space

for any AL-space E, which implies, by [6, Theorem 2.3], that F has a Fatou norm.

Case 2. In this case, we need no assumption on F . Indeed, E, E1, . . . , En may all
be identified with �1. It follows from [3] that the Fremlin projective tensor product
E1⊗̂|π| · · · ⊗̂|π|En is lattice isomorphic with �1 as well. Now note that �1 is a prime space,
that is, every infinite-dimensional closed complemented subspace of �1 is isomorphic to �1.
Thus, the Fremlin projective symmetric tensor product ⊗̂n,s,|π|E is also lattice isomorphic
to �1. It is essentially well known (as well as explicitly proved in [5, Theorem 10.2])
that for the domain space E = �1 and any Banach lattice F we have that Lr(E, F ) is
a vector lattice, which, in addition, is a Banach space under the regular norm by [4,
Proposition 1.3.6]. Again, by the last part of [5, Theorem 10.2], the lattice operations
in Lr(E, F ) can be calculated by the Kantorovich formulae as in [4, Corollary 1.3.4].
It then follows from the last part of [4, Corollary 1.3.4 (i)] that Lr(E, F ) is a Banach
lattice under the regular norm. Thus, Lr(E1⊗̂|π| · · · ⊗̂|π|En; F ) and Lr(⊗̂n,s,πE; F ) are
Banach lattices. Finally, by similar reasoning to that in [1, Propositions 3.3 and 3.4],
Lr(E1, . . . , En; F ) and Pr(nE; F ) are Banach lattices as well, and from [6, Theorem 2.2]
it follows that these spaces are AM-spaces. �
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