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Abstract

Social networks, wherein the edges represent nonbehavioral relations such as friendship, power, and influ-
ence, can be difficult to measure and model. A powerful tool to address this is cognitive social structures
(Krackhardt, D. (1987). Cognitive social structures. Social Networks, 9(2), 109-134.), where the perception
of the entire network is elicited from each actor. We provide a formal statistical framework to analyze
informants’ perceptions of the network, implementing a latent space network model that can estimate,
e.g., homophilic effects while accounting for informant error. Our model allows researchers to better
understand why respondents’ perceptions differ. We also describe how to construct a meaningful sin-
gle aggregated network that ameliorates potential respondent error. The proposed method provides a
visualization method, an estimate of the informants’ biases and variances, and we describe a method for
sidestepping forced-choice designs.
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1. Introduction

Researchers studying social networks have typically fallen along a spectrum between two camps
described by Koskinen (2004) as relativist and essentialist. The former treats a social network as
a cognitive construct existing only in the minds of the network actors, whereas the latter assumes
there is some interpersonal reality acting as a stimulus for the informants. Researchers of both
camps have used cognitive social structures (CSS) to better answer a wide range of research
questions. CSS, introduced in Krackhardt (1987), are obtained by asking each network actor to
enumerate all the relationships in the network, thereby providing their perceptions of the net-
work. Thus, while in typical social network analyses one deals with a single n x n sociomatrix, CSS
provides n such sociomatrices, where 7 is the number of actors in the network. Analyzing such
data can be difficult, as these involve O(n?) observations. Since the introduction of CSS, many
researchers have used ad-hoc approaches or performed subsequent network analyses on aggrega-
tion techniques introduced by Krackhardt. However, there have certainly been some important
statistical methodological developments in this area worth noting.

Leaning toward the relativist side of the spectrum is work done by Bond Jr. et al. (1997). These
authors developed an extension of the social relations model of Kenny (1994) and Warner et al.
(1979), using an ANOVA-like decomposition to explain how perceptions vary. Swartz et al. (2015)
continued this work, putting it within a Bayesian framework and providing researchers more
sophisticated analytic tools to compare actors’ self-perceptions in relation to how others see them.

Much more work has been done from the essentialist perspective. Batchelder & Romney
(1988, 1989) developed their cultural consensus analysis methodology; although this work was
not designed specifically for CSS data, it was nonetheless quite applicable and was tuned to CSS
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by work developed in Batchelder et al. (1997). The authors provided methodology to estimate an
underlying true network by focusing on informants’ “hit” and “false alarm” rates, i.e., true and false
positive rates in reporting edges between individuals. In a series of unpublished papers, Koskinen
furthered these models. Koskinen (2002b) placed a slightly tweaked version of Batchelder et al.
(1997) within a Bayesian framework, Koskinen (2002a) incorporated covariates into this model,
and Koskinen (2004) described how to perform model selection in this context via a Markov chain
Monte Carlo (MCMC) approximation of the marginal likelihood. The hierarchical network accu-
racy model (HNAM) of Butts (2003) also used a Bayesian approach which, while distinct, has a
similar flavor as these others. Butts (2003) assumed an underlying but unknown network, and
provided estimation by accounting for false positive and false negative probabilities for each indi-
vidual. Almquist (2012) provided a similar approach for egocentric network data. Additionally,
Siciliano et al. (2012) developed a method of estimating a network by asking a subset of the net-
work actors to enumerate the entire network. This last method, however, assumes that each actor
reports with perfect accuracy his or her own ties—an assumption repeatedly shown to be faulty
(Bernard et al., 1982; Brewer, 2000; Brewer & Webster, 2000).

Others have studied multiple replications of networks outside of the context of CSS. This type
of problem occurs when researchers are looking at network-valued samples from a population
(e.g., Durante et al., 2017), or performing meta-analyses (e.g., Butts, 2011). As these settings often
deal with different types of data and focus on very different research questions, these works are
somewhat less relevant to our present purpose.

Our proposed method provides an inferential framework on network perception data (i.e.,
CSS’s) using a latent space model, a class of models first introduced by Hoff et al. (2002). Previous
studies have shown “forgetting is a pervasive, non-trivial phenomenon in the recall-based elici-
tation of personal and social networks pertaining to a broad variety of social relations” (Brewer,
2000, p.29). By performing inference on the data generating process using our proposed model,
relativists may be able to account for this potential informant error, or test-retest variability,
by focusing on the probabilities of their responses, thereby obtaining a better understanding
of the actors’ perceptions of the network. The latent space framework can capture the complex
dependence structure in the data, thereby obtaining better estimates of these underlying response
probabilities. Additionally, our proposed latent space model captures specific features allowing
the relativist to better understand why the network perceptions may differ. Similarly, essentialists
who define the ground truth in terms of commonly used aggregation structures may have an alter-
native which is more robust to inherent variability in the individuals’ responses. In addition, by
implementing a latent space approach, essentialists have a very natural interpretation of the latent
positions, namely that of a low-dimensional representation of the underlying social reality.

Sosa & Rodriguez (2018+) also proposed another latent space model for network perception
(LSMNP) data, relying on a bilinear operationalization and assuming respondent-specific sets of
latent positions. Explicitly modeled is whether or not a respondent has the same network percep-
tion as that held by the majority of the actors in the network. The proposed work contains some
ideas similar to this, but holds several distinctions. First, the parameter space of the proposed
method is dramatically more parsimonious than that of Sosa & Rodriguez which grows quadrati-
cally with n. In addition, our proposed approach captures each actor’s overall level of confidence
in his/her perceptions, the variability within each respondent’s uncertainties about the (}) pairs of
actors, each actor’s overall tendency to under or overreport edges, and we also describe a sensible
mechanism for estimating the effect of covariates on respondents’ network perceptions.

This paper makes the following contributions. First, we propose a formal statistical framework
for understanding CSS data. Rather than first estimating the underlying “actual” network and
then performing subsequent analyses while ignoring any possible estimation error in the first
stage, our approach provides a unifying framework in which one may implement the commonly
used latent space model directly on the network perception, or CSS, data, thus estimating, e.g.,
homophilic effects without introducing unaccounted estimation error. Second, our modeling
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framework allows researchers to directly understand multiple salient features of informants’
responses. Specifically, our model decomposes the deviations in the informants’ responses into
two meaningful ways: bias and variance. The bias corresponds to an overall tendency toward
reporting a more or less dense network. The variance corresponds to the respondents’ confidence
in their network perceptions, and importantly this variance is allowed to be a function of distance
in the network space between the informant and the actors being reported on. Covariates can be
used to explain why actors perceive the network in the way that they do. Third, we describe how
to take the output of the analysis and construct a single meaningful aggregated network reflecting
specific researcher questions in the form of what we refer to as locally aggregated probabilities
(LAPs). Fourth, we discuss how to expand the proposed approach in order to relax the commonly
used forced-choice design in which each actor is forced to enumerate the entire network. This is
important for future studies, particularly those involving large networks, in that the actors of the
network are no longer forced to give a response for each pair of actors. Particularly in the case of
large networks (e.g., the social network of students on a large college campus), it is unreasonable
to assume that each respondent holds the same level of knowledge about each other pair of actors,
and hence a forced-choice design is in effect forcing the respondents to add noise to the data.
Finally, the proposed method provides a visualization method for the network perception data,
condensing an n X n x n array into a single intuitive and statistically meaningful figure.

This paper is organized as follows. Section 2 provides a short background on CSS. In Section 3,
we describe our statistical model of CSS data, our method of estimation, how to incorporate
covariate information into the model, how to use the model to construct networks based on
varying definitions, and how our methods might be applied to larger networks for which CSS
is currently infeasible. Section 4 describes a simulation study. Section 5 describes an analysis of
the advice-seeking relationship data from Krackhardt (1987). We end with a brief discussion in
Section 6.

2. Background

Freeman et al. (1987) (p.310) stated “survey methods are at the core of most sociological research.”
While technological advances have in more recent times changed the collection of network data
whether it be online data, mobile-phone data, or data collected via proximity sensors, it is still
true that many network data sets are being collected via surveys or interviews (e.g., Lorant et al.,
2015; Shakya et al., 2015; Perry & Pescosolido, 2015; Shoham et al., 2016). Freeman et al. go on to
describe how informant inaccuracy with respect to an observable truth is a serious problem that
should not be ignored. This problem was first seriously brought to light through several papers
by Bernard, Killworth and Sailer (BKS) (Killworth & Bernard, 1976, 1977, 1979; Bernard et al.,
1979, 1982), in which a very pessimistic picture was put forth on the usefulness of social net-
work data collected via informants, making statements such as “we have been unable to show
... that cognition is related to behavior in any meaningful way whatever” (Bernard et al., 1979,
p.209). This picture put forth by BKS is fairly extreme, and while informant accuracy is an impor-
tant issue that has been remarked upon by many others (e.g., Hammer, 1985; An & Schramski,
2015), it should be stated that other work has shown the value of self-reported network data (e.g.,
Romney & Faust, 1982). For example, Freeman & Romney (1987) and Freeman et al. (1987) have
shown that self-reports may be more trustworthy when treated as representations of a “stable pat-
tern of repeated events” (Freeman et al, 1987, p.310) Additionally, in other instances, reliability
has been less egregious (e.g., Bell et al., 2000, noted a higher degree of reliability of drug sharing
partnerships).

Hildum (1986) responded to the apparent disconnect between self-reports and observed behav-
iors by relating this sociological issue to those commonly dealt with by linguists. Hildum describes
how just as an individual may paraphrase a statement previously made by himself/herself by using
language, i.e., a vocabulary and set of syntactic rules that exists in the individual’s head, so too may
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a network actor report on network interactions about which he or she is uncertain by using an
abstracted or idealized network that is a cognitive construct of that individual. Hildum (p.85)
states the extreme relativist perspective: “The behavior is true in the precise and limited sense
that it is observable and subject to observer agreement. But the network exists and is ‘true’ only
in the participant’s mind.” The next year, Krackhardt (1987) introduced CSS, describing how the
actors’ network perceptions may be compared with one another and how focusing on the cognitive
reconstructions themselves allows researchers to test social theories such as Heiderian structural
balance (Wasserman & Faust, 1994). These and other works helped broaden the study of infor-
mant responses to their relationship with cognition rather than just behavior. Indeed, it could
easily be argued that behaviors ought to be modeled in a very different framework, such as the
relational event model (Butts, 2008).

Many researchers, taking the essentialist stance, have assumed that there is in fact some
underlying truth acting as a stimulus for social cognition. Krackhardt himself published papers
assuming an “actual” network structure defined by whether or not two actors both agree that
a relation exists between them (e.g., Krackhardt, 1990; Kilduff et al., 2008). This type of aggre-
gated network (more on this in Section 3.4) has been used as a ground truth in a large number of
studies (e.g., Casciaro, 1998; Casciaro et al., 1999; Johnson & Orbach, 2002; Aarstad et al., 2011;
Neal et al., 2014, 2016) to study informant accuracy or network topologies. As mentioned in the
introduction, others such as Batchelder et al. (1997), Koskinen (2002b), and Butts (2003) have
developed statistical methods of inferring an underlying true sociomatrix. Still others have con-
structed a low-dimensional representation of the social reality rather than estimating an n x n
matrix; for example, Kumbasar et al. (1994),Romney et al. (1996), and Batchelder (2002) used
correspondence analysis to obtain a low-dimensional structure to visualize and analyze.

As the intention of this paper is to advance methodological developments rather than perform
a systematic review of CSS, what has been presented here is necessarily brief. For more details, we
suggest looking at Pattison (1994) or Brands (2013).

3. Methodology
3.1 Model

We assume that we have collected network perceptions on a random subset S € {1, 2, ..., n} of
K (=|S8]) individuals, where # is the total number of actors in the network (note that in historical
CSS data S often equals the full set of actors). For each individual in S we collect a report of the
network which may be represented as an n x n adjacency matrix; we will denote these as {Ax}kes-
The ith row jth column entry Ay ;; represents individual k's reporting of whether or not an edge
exists from actor i to actor j. The notation we will use assumes directed edges, but it should be
trivial to adapt the methods of this section to the undirected case.

A key component of our approach is based on latent space models for network data. While
conceptually researchers had embedded network data into low-dimensional spaces (e.g., Nakao
& Romney, 1993; Kumbasar et al., 1994; Romney et al., 1996; Batchelder, 2002), this approach
was formalized by Hoff et al. (2002) and Hoff (2005), and has since been further developed in
a plethora of works (e.g., Handcock et al., 2007; Hoft, 2009; Durante & Dunson, 2014; Sewell &
Chen, 2016). Our parameterization of the likelihood will be based in large part on Krivitsky et al.
(2009). These latent positions will be denoted by the n x p matrix Z = (Zy, ..., Z,)’, as well as
the n x 1 vectors of actor-specific sender effects s and receiver effects r, corresponding to social
activity and popularity, respectively.

Latent space models introduce nonlinear random effects into the model to account for sophis-
ticated dependence structures in the data. For example, using a latent space approach can capture
third-order dependencies (for details, see Hoff, 2005), and could, should it be desired, explicitly
capture clustering effects (Handcock et al, 2007; Sewell & Chen, 2017). In our work, these
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random effects correspond to the positions of the actors in some underlying (latent) network
space in conjunction with the actors’ social activity and popularity. Following the tradition of the
latent space literature, we assume that the inherently complex dependencies are fully induced by
the latent variables; thus, conditional on these latent variables, the dyads are independent.

Before giving the model formulation, we first highlight some key concepts we wish to incor-
porate into the model. We will then give the mathematical representation of the model and
subsequently tie the components of the model back to these concepts. First, we wish to capture
some notion of a commonality, or the facets of the network that are perceived in a common way
across informants. These components will allow us to leverage information across networks in
order to better estimate each informant’s true response probabilities. For the essentialist, the com-
monality may also be interpreted as a low-dimensional representation of the underlying “true”
social reality that is fixed but unknown.

Second, we wish to capture two ways in which individual perceptions deviate from one another.
The first way is that an individual can exhibit bias, by which we mean the tendency for an indi-
vidual to report either a higher or lower number of edges overall in the network than the average
informant. The second way is for an informant to hold varying degrees of variability, or equiv-
alently precision, in his or her perceptions. This can be thought of as akin to the confidence an
informant has in his or her knowledge of the network; if an informant is very confident, then
that informant is unlikely to give different answers when asked at multiple times, whereas if an
informant has no confidence in their knowledge of an edge, then he or she may just end up guess-
ing, leading to much more variability if the informant were to be asked multiple times about the
existence of the edge (low test-retest reliability).

Lastly, and highly related to this last concept, one’s confidence or knowledge about an edge
ought to be local in nature. That is, there ought to be local variability that depends on some form of
distance between the respondent and the two actors about whom the respondent is reporting. This
is reflective of previous findings of associations between informants’ responses and degree central-
ity (Romney & Faust, 1982), social distance (Krackhardt & Kilduff, 1999), path length (Adams &
Moody, 2007), and Brewer (2000) found that people tended to forget weak ties more often than
strong ties.

Below is our proposed LSMNP. The likelihood is given as follows:

7T ({AktkeslZ, s, v, {ak, Boktkes> P1) = 1_[ 1_[ 7 (Akij|Zis Zj, sis ¥, ks Boks B1)» (1)
keS i#j

where oy, Bk, and f; are unknown parameters that will be described shortly. We utilize a probit
model, which dictates that the probability of k reporting an edge between i and j is given by

1/2
n(Ak,ij - 1|Zi’ Z]) Si» rj) 273 ,BOIO :31) = (Tk,l/'j (Olk + Si + l‘j —d (Zi’ Z])))

= (47> 012 25055 € ok B ), )

where for some normally distributed auxiliary random variable A} i

ind _
Az,ij|zi> Z]> ok Bok> P1 ~ N (ak + i+ rj— d(Z;, Z])> Tk,i})’ (3)
ok ﬁ’gN(a, o?), (4)
(sr) N (0, ), (5)
Tkij = Bok - exp {—B1(d(Zi, Z;) + d(Zi, Z;)) }, (6)
Bok ~ Ga(0/2,60/2), (7)
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Figure 1. Illustration of variability. The curves
correspond to the distribution ofA;’,... The solid
line corresponds to average variance, the dot-
ted line corresponds to a high level of vari-
ance, i.e., nearly a 50/50 guess, and the dashed
line corresponds to a high level of precision in
reporting. The areas of the shaded regions give
-4 -2 0 2 4 6 the probability of Ay j; =0.

and where ®(-) is the cumulative distribution function for a standard normal random vari-
able, d(-, ) is a dissimilarity measure such that d: % x RP > R+ U {0}, N(u, ) is the normal
distribution with mean u and covariance matrix X, and Ga(a, b) is the gamma distribution with
shape a and rate b. Note that we have ensured model identifiability by constraining the mean of
Bko to equal 1 and the mean of s and r to equal 0. For the remainder of this paper, we will use
the Euclidean distance as the measure of dissimilarity between Z; and Z;, although other choices
could be employed such as the negative of the bilinear term ZZ; or for directed networks Z; , Z; ,
where Z; = (Z;’l, Z;,z)/~

Now we will tie the parameters of the LIMNP to the concepts described previously. First, the
commonality is captured in Z, s, and r. These components capture the shared perception of how
close actors are in the network, and how certain actors tend to send or receive more or fewer
edges. Note that an individual’s sender and receiver effects are assumed to be correlated through
3. The notion of bias is captured by o. For two actors k and ¢ such that o < a, when looking
at a particular dyad in the network, actor k will, all other things being equal, be less likely to
report an edge associated with the dyad than will £. Variability is captured through the precision
parameter 7 ;. As this value decreases to zero, the probability that k will claim a link between
actors i and j converges to a coinflip, i.e,, limg o P(Ag;; = 1| -) = 1/2. As this value increases
to infinity, the probability converges to either 0 or 1, depending on the sign of ]E(A:’ij). This is

illustrated in Figure 1. An individual’s overall variability is described by the parameter Sk, where
a larger value indicates a higher level of precision for all dyadic pairs. The idea of local variability
is reflected through the second term on the right hand side of (6) (we shall constrain §; to be
nonnegative). Variance thus increases as the respondent reports on actors farther away in the
network space. If the researcher has reason to believe that respondents tend to bias their result
as uncertainty grows rather than simply guessing, then instead of putting the exponential term
of (6) in the precision parameter one may instead parameterize the mean of Ail] to include 1 —

exp {,31(||Zk —Zi|| + 1Zy — Zj||)} (or some other monotonically decreasing function in ||Z; —
Z;|| and || Z) — Z;||) for a bias toward zero, and the negative of this for a bias toward one. That is, if
when i knows nothing about the relationship between j and k, i will be more likely to report, say,
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a zero, then it may be more reasonable to have a more sophisticated model of the mean structure
of A} i rather than a more sophisticated model of the precision.

Note also that as all ay’s tend toward « and as all Byx’s tend toward oo, the responses of all
informants will match with probability converging to one. Hence, an individual’s accuracy, a com-
monly studied measure (e.g., Bondonio, 1998; Casciaro, 1998; Aarstad et al., 2011), can be defined
by these two parameters, and moreover can be broken down by bias and variability.

In summary, the commonality is provided by the actor’s positions within the network space,
given by Z, and the social activity and popularity of the actors, defined by s and r, respectively. An
informant can deviate from the commonality in two ways, bias and variance. The notion of bias
is captured by a. The notion of variance/precision is modeled as an individual’s overall level of
precision, captured by By, and the degree to which this variability is local is captured by ;.

3.2 Estimation
Estimation of the model parameters is done within a Bayesian framework. The goal is to obtain
samples from the posterior distribution for all unknowns. We first place the following priors on
the unknowns:

olo? ~ Nt va0?), B1 ~ ENG, vp),
o~ 1G(Y5 /2,15 /2), iid 2
Z;~ N(0,021,),
X ~IW(ys, ), ,
0 ~ EN(g, o), o, ~1G(yz/2,n2/2),

where IG(a, b) is the inverse gamma distribution with shape a and scale b, IW(a, B) is the inverse
Wishart distribution with degrees of freedom a and scale matrix B, and £N(a, b) is the log normal
distribution with log-mean a and log-variance b.

As the sample sizes associated with this type of problem are small, the computation time associ-
ated with a random scan Metropolis—Hastings-within-Gibbs MCMC algorithm, while nontrivial,
will typically not be prohibitive. The code we used in our analyses, which is on the author’s website
as an R package, took 70 s to run 50,000 iterations on the data of Section 5 (n = 21) on a machine
with a 3.6-GHz processor and 32 GB of RAM.! Most of the full conditional distributions can be
found in closed form, but for Z, 6, and ; we must implement Metropolis—Hastings (MH) steps
in order to obtain posterior draws. These full conditionals of the algorithm used in Sections 4 and
5 are given in the Supplementary Material along with a few other details.

Also included in the Supplementary Material are the details on how we initialized the MCMC
algorithm in the analyses presented in Sections 4 and 5. We also analyzed the data of Section 5 after
initializing the MCMC algorithm with the Maximum a Posteriori estimators of the parameters
and latent positions. This was done via an Iterated Conditional Modes algorithm, using Lagrange
multipliers to constrain the means of s and r to be zero and of the By;’s to be one. There was no dis-
cernible effect on the posterior distribution of the parameters based on the initialization scheme.
A figure comparing the two posterior distributions is given in the Supplementary Material. Hence,
while further work would be required to show just how poor one€’s initialization must be before
the MCMC algorithm is affected, in this analysis it appeared that a reasonable ad-hoc initialization
performed just as well as a very good initialization.

An important note in any estimation scheme is that Z is not identifiable, as the likelihood is
invariant to rotations, reflections, and translations. This is not an issue in computing the poste-
rior distribution of the distance matrix associated with Z, but there are problems with computing
the posterior distribution of Z itself. This has previously been addressed by implementing the
Procrustes transformation on each MCMC draw (e.g., Hoff et al., 2002; Sewell & Chen, 2015).
Specifically, after a burn in period of the MCMC algorithm, we choose the first draw as a target
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matrix, Z*. Each subsequent draw of Z in the chain is then subjected to a Procrustes trans-
formation, which first finds the rotation matrix R such that the Frobenius norm of ZR — Z* is
minimized, and then sets Z to equal ZR.

3.3 Adding covariates

Frequently the researcher’s objective is to investigate the effect of independent variables on dyadic
relations. However, when considering actors’ perceptions of the network, it is not obvious how
best to account for this. In the past, covariates have been used descriptively (Batchelder, 2002)
and to estimate the accuracy of one’s perceptions (Bondonio, 1998) (though arguably using sta-
tistically inappropriate techniques). Koskinen (2002a) incorporated covariates within the formal
statistical model built off of the previous work by Batchelder et al. (1997) and Koskinen (2002b). In
Koskinen’s work, covariates were included in a linear predictor term for the informants’ response
probabilities. As we note at the end of this section, this same strategy may be taken here, but we
favor a different approach.

While we believe it reasonable to think that each actor has an understanding of the network
space (i.e., the commonality), it would not be reasonable in general to expect each actor to know
all actor-level covariates. It might be reasonable to assume that each informant has some under-
standing of how close the friendships are in the network but may not know, for example, who
has and has not been raised in a single-parent home. Therefore, the stimulus of each informant’s
responses ought not to be the covariates themselves, but rather that which acts as the stimulus
ought to be affected by the covariates. To address this, one may augment the proposed methods in
Section 3.1 by incorporating ideas described by Austin et al. (2013). Austin et al. proposed using
covariates to predict the latent positions as well as the sender and receiver effects. It seems arguable
as to whether or not this approach is most appropriate in the context of nonnoisy network data,
e.g., mobile phone network data or social media network data, where we could incorporate the
covariates directly into the likelihood function. In the context of observing network perceptions,
however, these ideas seem ideally suited. Importantly, this approach also allows us to estimate
homophilic effects on the low-dimensional representation of the underlying social reality, Z, as
well as the covariates™ effects on the social activity s and popularity r, i.e., the propensity for
informants to attribute more or fewer edges to an actor.

The intuition behind what we are now proposing is that each actor may know which actors are
close to each other, but they may or may not know why; similarly, each actor may know which
actors are popular/socially active and which are not, but they may or may not know why. Thus,
as before, each actor’s perception is determined by both the commonality as well as their own
deviations from the other actors’ perceptions. Now, however, we assume that the commonality
itself is associated with the covariates. That is, actors may perceive that i and j are close or that k
is popular, but the closeness itself and the popularity is, unbeknown to the actors, associated with
some set of salient variables. The stimulus for the informants’ responses is based primarily on the
commonality which is impacted by the actors’ characteristics, as opposed to the stimulus for the
informants’ responses being the actors’ characteristics themselves.

In this framework, Equations (1)-(7) are unchanged, with the exception of equation (5). For
ann x q matrix of covariates X, we now assume that

~N , X2®I,], (8)
r XB,

Z~ Nuxp (XB;, (021)) ® I), )

and
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where B, and B, are g x 1 vectors of unknown parameters, B, is a ¢ X p matrix of unknown
parameters, and X ~ Nyx,(M, ¥ ® W) indicates X follows the matrix normal distribution (i.e.,
vec(X) ~ Nyp(vec(M), ¥ ® W)). The model specification used by Austin et al. assumed that Z was
a deterministic linear function of the covariates. We allow more flexibility by setting this linear
function as the mean of a random variable.

To perform estimation, we need to first assign priors to Bs, By, and B;. The priors used in the
analyses in this paper were flat multivariate normal distributions:

B
<5>~N@Ji%y (10)
B,

B, ~ Nyxp (0,1, ® (05.15)). (11)

Several of the full conditional distributions for the other parameters will be altered by the inclusion
of covariates into the model. See the Supplementary Material for details.

Model identifiability again becomes an issue when we incorporate covariates. To maintain
identifiability, we constrain the columns of X to be centered (mean zero). Note that this inher-
ently removes any intercept from the design matrix X. This implies that ), E(s;) = >, E(r;) =
> iE(Zy)=0forall ¢ €{1,2,...,p}. Finally, we again need to address the likelihood’s invariance
to rotations. We must also consider B, since for some rotation matrix R we have

D
7 (Z, B, -[{Akdkes) =7 (ZR, B:R, - [{Ag}kes)-

We need to only slightly modify the procrustes procedure described in Section 3.2 to eliminate
identifiability issues with B,. Specifically, if we rotate a new draw of the latent positions by some
rotation matrix R which minimizes ||ZR — Z*||r for some target matrix Z, then we necessarily
need to rotate B, by the same rotation matrix. Hence if we reset Z to be ZR, we must also reset the
current value of B, to be B,R.

3.4 Locally aggregated probabilities

With CSS data, we are sometimes required to aggregate data to obtain useful results. For example,
if we assume an underlying network (from the essentialist perspective) we often times wish to
better understand the topology of the network (e.g., Johnson & Orbach, 2002; Kilduff ef al., 2008;
Grippa & Gloor, 2009, aggregate CSS data to investigate network features). Yet how do we do this?
Do we construct an edge between actors i and j only if i claims a relationship toward j, or perhaps
only if j claims a relationship from i? Do we construct such an edge if either i or j claim an edge
from i to j, or perhaps only if both i and j claim that the directed edge exists? The primary question
one must answer is “what is it we are trying to measure?” The answer to this should provide the
answers to the former questions.

Krackhardt (1987) introduced the notion of “locally aggregated structures” (LASs), which
are reductions of CSS that make inference on the relationship (relationship s in the context of
digraphs) between two actors i and j based only on the responses of i and j. Here “locally” is
used in the sense that the structure is constructed from the responses of the two most local actors
of the network, i and j themselves. LASs have been widely used to define a reference network,
often described as the “true,” “actual,” or “benchmark” network (Krackhardt, 1990; Bondonio,
1998; Casciaro et al., 1999, and references therein) and hence are important to be able to estimate
accurately.

Here we point out two ways in which our context and methods differ from that of Krackhardt’s.
First, we do not assume we have data on all members of the network, and so we cannot always
completely reconstruct a network using LASs. Second, due to the noisiness of survey network
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data (Brewer, 2000), we are interested in the underlying probabilities of the LASs in the hope of
obtaining representations more robust to low test-retest reliability. We therefore present LAPs
which closely mirror the original LASs of Krackhardt.

+ Row-dominated LAP: P(A;;; = 1),

o Column-dominated LAP: P(4;;; = 1),
« LAP intersection rule: P(A;;; N Aj i),
o LAP union rule: P(Ai,,‘j U Aj,ij)-

To quote Krackhardt (p.116), row-dominated LAP corresponds to the question “who are you
related to in this way?”, and the column-dominated LAP corresponds to the question “who is
related to you in this way?” The intersection and union rules correspond, respectively, to the
questions “Do both individuals agree that they are related in this way?”, or “Does at least one of the
individuals claim such a relation?” LASs thus generalize data collected in traditional sociometry
and enable researchers to answer more precise questions based on how one defines the network.

It is important to note that like the LASs, LAPs are focused on how a pair of actors would
respond, but unlike LASs, LAPs leverage information from everyone in the network since these
probabilities are in large part constructed from the commonality (they also, of course, depend
on the individual deviations of i and j, thereby accounting for the bias and variance of these two
actors). Using the LAPs allows one to make either hard or soft predictions of the responses of the
actors, and in so doing construct a network according one of the above notions. Note that the soft
predictions may be used as a weighted network to be further analyzed.

The LAPs can be estimated in the usual ways, such as the posterior mean. For example, the
posterior mean of the LAP intersection rule for the pair (4, j) is estimated by

M
1 © (.0, 0, 0 ©) (0
ME |:<I>( T (ai +s; 7+ —d(Z; ,Zj ))
=1

o (., @0 (0 () (0)
. [@ ( Tiij (aj +s; +rj —d(Z; ,Zj )))}
where M is the number of MCMC draws and the superscript ) indicates the ¢ draw.

3.5 Forced-choice

In many network settings, particularly as the size of the network grows, it can be expected that
each actor will have only a partial knowledge of the network. Indeed, we have tried to somewhat
account for this already by letting the precision decrease with distance as seen in (6). At some
point, the respondent is clearly only guessing. To quote Butts (2003) (p.136), “one might also
argue that [standard practice in network research] occasionally prompts us to collect too much
[data on ties between actors].” The respondents will, for some edges, not feel knowledgeable, yet,
in the forced-choice framework, they must give some answer.

It would be reasonable, then, to include the option for the respondent to claim ignorance
regarding a pair of actors. In our current framework, it is obvious (we hope) what would lead
a respondent k to declare such ignorance: the two actors in question are simply too far away in
the network space for k to have any common knowledge about them (recall that the commonality
is primarily reflected in Z). In other words, there is a perception radius about which k has a local
perception of the network, but beyond which the respondent knows very little.

A simple way to incorporate this into the methods described so far could be the following: let
Yy,ij equal one if k claims knowledge about an edge between i and j, and zero if k claims ignorance.
Then P(Ag;; = 1|Yg;;=1,-) would be of the same form as (2), and P(Ay;; = 1|Yy;; =0) = py
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(e.g., px = 1/2). Of course, if Y} ;; =0 then Ay ;; is missing, but since we do not care to perform
inference on the py’s, this does not matter. A reasonable form for the distribution of Yj ;; that
follows the same logic as the proposed model would be

1
P(Yy=1]-) =@ <5k - Eé(IIZk —Zill + 12y — Zjll)>, (12)

where £( > 0) is a scale parameter and §x( > 0) can be thought of as k’s radius which marks the
boundary of how far the (scaled) distances can be before there is a less than 50% chance of k
claiming knowledge about the link between i and j.

This leads to the following likelihood that is proportional to the parameters of interest:

TTITI® 5k — 12k — Zill + 1Zi — Z1))] ™ [1 — @ (8¢ — £ (1Zk — Zill+1Zi — Zil))]

keS i#j

[cp (rklff(ak tsitr—Zi—Z ||))]

lfYk,ij

Yy z]Ak ij

Yieij(1—=Agij)
X [1 (Tkz] (g +si+1j— ||Z,-—Zj||))] . (13)

Estimation can be performed much as before, though we do not go into further detail here. To the
author’s knowledge, there is no publicly available data set collected in this way, though with this
methodology one may be able to collect CSS-like data on medium to large networks.

4. Simulation studies
4.1 Setting the hyperparameters
Very often we wish for the prior distribution to have minimal impact on the inference, and hence
choose flat priors. In the next simulation study (Section 4.2) and the real data analysis of Section
5, we chose priors to be flat. Specifically, we set j1y =0, vy = 100, Y = 0.001, 5 = 0.001, y5 =2,
I's =0.0011, g = 0,v9 =3, up =0, vg = 100, ¥, = 0.001, n, = 0.001, agsy =100, and agz = 100.
To determine how sensitive the posterior mean estimates were to the choice of hyperparame-
ters, we analyzed the data of Section 5 100 times, where each time we randomly simulated a set
of hyperparameters. These hyperparameters were drawn according to the distributions given in
Table 1. For example, for each of the 100 analyses we draw 1, from a normal distribution cen-
tered at zero with standard deviation equal to 2. We then computed the correlation between the
posterior means and the hyperparameters over the 100 analyses. These correlations are also given
in Table 1. From this table, we see that in almost all cases the effect of the hyperparameter has
a small relationship with the parameter estimate. The exceptions to this are § and B;. However,
neither of these had very large variation in the posterior means (coefficient of variation equal to
0.62 and 0.19, respectively), rendering these stronger correlations less worrisome.

4.2 Choosing the dimension of the latent space

An important facet of fitting any latent space network model is choosing the dimension of the
latent space p. We performed a simulation study to evaluate the Deviance Information Criterion
(DIC) (Spiegelhalter et al., 2002) as a method for dimension selection. We simulated 100 data sets
in the following manner. First, we fit the data described in Section 5. We then used the posterior
mean of the model parameters for p = 3 to generate data according to the generative model given
by Equations (2)-(7). We then ran the random scan MH-within-Gibbs MCMC algorithm for each
of the 100 data sets for p equal to 1, 2, ..., 10 (for a total of 100 data sets and 1,000 model fits). For
each data set, we computed the DIC for these 10 fits and chose the f) with the smallest DIC.
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Table 1. Results from a simulation study testing the effect of hyperparameters on the posterior mean estimate of the param-
eters. One hundred analyses of the same data were performed where for each analysis the hyperparameters were drawn from
the distribution given in the third column. The fourth column provides the correlation between the hyperparameters and the
parameter estimates

Parameter Hyperparameter Distribution Correlation
a Wi N(0, 4) 0.10
o B .l,)a . . G‘b(l;o,‘o'l)” e o
.,G.z, I B ‘;}(, . . G”a(li,l(‘)'o)” e 008
N B ;7,0 . . G.,a(l,, 160)” e o
.,9., R B l.,w . . ”N((i),4‘)i e ok
AN B .‘,}9 . . 60(1,0;5) e 07
log (B1) e N(0, 4) 0.47
BhCh - A B .‘;ﬂ . . 60(1,0;5) e Coss
.,GZ.Z, I B .J,/z . . G”a(li,l(‘)'o)” e o0
o B .],72 . . G.,a(l,, 160)” e o
”Aée (éen‘der‘) . . | . e s
lifénﬁlrei(‘seh‘dér‘) 00O 7009 -
., Méniégék(siénd‘er)u OO 002 -
., bép{j(één&ef)‘ 00000 009 -
 Dept3 (sender) 010
 Dept4 (sender) 007
”Aéei(‘reé‘eiv'e‘r)u O J.,Bzy,. B 60(1,001) e 7018 -
., Tévnu‘fe (.r,ec.ew,er), S e e . 70.05,
., Méné,gek,(réce,ive,r) e e e e e ,70.02
., Dépti (réceivér) et e e . ,%0,
., Dépté (réceivér) e et e e e . 007
., Déptéi(réceivér) SO e e 20,08

The true dimension therefore was 3 and we would hope that DIC would choose p = 3 more
often than any other value. Indeed, this was the case, as 3 was chosen correctly 77% of the time. The
dimension was chosen by DIC to be either 3 or 4 97% of the time, and never was the dimension
chosen to be greater than 5. In 95% of the cases p = 3 was in the smallest two DIC values, 99% in
the smallest three, and always within the smallest four. Figure 2 shows the rankings over the 100
simulations for each p € {1, 2, .. ., 10}. Each line corresponds to a value of p (labeled at its highest
point), the horizontal axis corresponds to the ranking (lowest to highest DIC), and the vertical
axis corresponds to the proportion of simulations that each p achieved that particular ranking.
Interestingly, from this figure we can see that p =1 and p = 2 were almost always the largest and
second largest DIC, respectively, despite it being closer to the truth than p € {6, . . ., 10}, implying
that while DIC does a good job at selecting either the correct dimension or one dimension too
large, it is highly unlikely that DIC will lead one to underfit the data.

5. Advice-seeking network

As an example data analysis, we now apply the proposed methods to an advice-seeking CSS data
set (Krackhardt, 1987). These data come from a manufacturing firm consisting of around 100
employees that produces high-tech machinery. Twenty-one of these employees are part of man-
agement, and these individuals were each given a survey consisting of a series of questions about
who goes to whom for help and advice at work. Hence, we have a 21 x 21 x 21 array of data, where

https://doi.org/10.1017/nws.2019.1 Published online by Cambridge University Press


https://doi.org/10.1017/nws.2019.1

172

D. K. Sewell

1.0

0.8
1

0.6

0.4

0.2

Figure 2. Results from a simulation study eval-
uating the efficacy of DIC to choose the correct
dimension of the latent space. The true dimen-
sionis 3. Each line corresponds to the DIC when
fitting a particular p, p € {1, 2, ..., 10} (labeled
at its highest point); the horizontal axis corre-
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sponds to the ranking (lowest to highest DIC);
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tion of simulations that each p achieved that
10 particular ranking.

the kth slice is the network perception of the kth employee. We also have covariate information

on these individuals. We thus model the mean of the sender and receiver effects and of the latent

positions as linear combinations of age, tenure (i.e., length of employment at the firm), position

(either a vice president or manager), and to which of the four departments the individuals belong.

One individual was the CEO, not belonging to a department. To account for this individual, we

added another (nuisance) factor level variable that was set to 1 for the CEO and 0 for all others.
We fit the LSMNP to the full data set, letting the MCMC run for 3 million iterations, thinning
by keeping every 1, 000th iteration, and using a burn in period of 2 million iterations. We fit the
data with p =1, 2, 3. We were unable to obtain convergence within a reasonable number of itera-
tions for larger values of p. The DIC values for p =1, 2, 3 were, respectively, 7662, 7271, and 7192,
implying that the dimension of the latent space we should select is p = 3. Trace plots, ACF plots,
and CCEF plots are all provided in the Supplementary Material. We performed the Geweke diag-
nostic (Geweke, 1992) to determine convergence of the MCMC chain. This yielded the following
p-values corresponding to the null hypothesis that the samples are drawn from a stationary distri-
bution for «, 2, B, aé, and 0, respectively: 0.59, 0.65, 0.48, 0.76, and 0.16. In order to investigate
the degree to which we may be overfitting the data we also analyzed a subset of size K =4 (hence
we are analyzing an n X n x 4 array, &~ 20% of the data). For this smaller data set, we needed to
run 10 million iterations to ensure the chain had converged. The Geweke diagnostic yielded the
following p-values for &, 0’2, B1, 07, and 6, respectively: 0.15, 0.32, 0.54, 0.67, 0.08.

For each data set (K =21 and K = 4), we estimated the four LAPs described in Section 3.4.
We then evaluated the fit of the LAPs with the corresponding observed LASs via the area under
the ROC curve (AUC) and mean absolute error (MAE). We also computed the AUC and MAE
using HNAM and the methods of Swartz et al. (2015) (which we will refer to as SGM). LASs are
extremely useful and have historically been widely used in practice; the LAPs that have a high
(low) AUC (MAE) demonstrate a strong relationship with these LASs while being more robust to
informant error. Finally, we compared all three methods using DIC. Table 2 provides the results
from these analyses. By both AUC and MAE, SGM performs the best when the full data are fit,

but performs the worst when only part of the data are fit and the measures of fit are dominated
by out-of-sample predictions. This seems to imply that SGM, whose parameter space is O(n?),
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Table 2. AUC and MAE values for comparing LSMNP, SGM, or HNAM with the observed LASs. The values corresponding to the
best performance are bolded.

Row Column Intersection Union

AUC MAE AUC MAE AUC MAE AUC MAE DIC

LSMNP 0.807 0.339 0.895 0.310 0.885 0.235 0.859 0.330 7192

K=n SGM 0.874 0.295 0.897 0.301 0.904 0.223 0.898 0.279 7286
HNAM 0.790 0.360 0.873 0.336 0.881 0.252 0.816 0.358 7805

LSMNP 0.746 0.348 0.775 0.341 0.820 0.248 0.790 0.345 1402

K=4 SGM 0.725 0.401 0.768 0.394 0.816 0.285 0.740 0.369 1778
HNAM 0.759 0.385 0.802 0.381 0.847 0.280 0.802 0.360 1518

tends toward overfitting the data. When we compare LSMNP to HNAM when K = 4, AUC prefers
HNAM, while MAE prefers LSMNP. For both K =21 and K =4, DIC indicates that LSMNP
ought to be preferred. Beyond the conclusions of MAE and DIC, there are several reasons to prefer
the use of the LSMNP. First, this approach provides a much more nuanced understanding of why
network perceptions differ, as described in detail in Section 3.1. Further, the LSMNP can incorpo-
rate covariates directly into the model, allowing for the estimation of homophilic effects without
relying on a two-stage estimation approach. Finally, the model naturally outputs a statistically
meaningful visualization of the array of network perceptions.

We have also considered graphical measures of goodness-of-fit as proposed by Hunter et al.
(2008) in order to validate the LSMNP as a data generating mechanism for the high-tech advice
CSS. Of course this graphical goodness-of-fit was designed with a single network in mind, and
hence we only considered a consensus structure (Krackhardt, 1987) with the threshold set such
that an edge existed in the consensus structure if it was reported by 25% or more of the actors.
That is, the consensus structure is an n x n adjacency matrix Acs defined such that Acs ;; equals
1if ) "}_, Ag;; > threshold and zero otherwise. We considered the out-degree distribution, the
in-degree distribution, the geodesic distance distribution, and triad census (i.e., counts of 16 possi-
ble types of triads as described by Davis & Leinhardt (1972)). We then used the predictive posterior
distribution to simulate 1,000 CSS data sets, computed the consensus structure for each data set,
and then computed the in- and out-degree distributions, the geodesic distributions, and the triad
census. We also did the same for SGM and HNAM. Figure 3 shows the boxplots for the 3,000
data sets (1,000 per method), with the observed in-degree distributions (out-degree looked very
similar and was thus omitted for space), geodesic distance distribution, and triad census given in
the solid line. The solid gray lines indicate marginal 95% credible intervals. From this figure, we
see that the LSMNP appears to be a the best representation of the true data generating process,
as SGM and HNAM mischaracterize the number of dyads that are directly linked as well as the
number of various triad configurations, with the SGM having much smaller mischaracterizations
than HNAM. This figure provides evidence that the LSMNP is a good approximation of the true
data generating mechanism.

Figure 4 shows the posterior means of the sender and receiver effects for each of the 21 actors.
The actor’s covariates have also been indicated graphically in this figure, and from it we can gain
insight into the relationship between an individual’s covariates and the tendency for the actors in
the network to attribute more or fewer edges to that individual (note that more formal inference
comes from looking at B; and B,). We see that there appears to be a positive relationship between
an individual’s sender and receiver effect, and that vice presidents (and the CEO) tend to have
higher sending and receiving effects than do managers. Table 3 provides the posterior means and
95% credible intervals for the coefficients (Bs, B;)'. From this table we can see that, as may be
expected, the more tenure the more likely the individual is to be sought after for advice, and we
also see that managers are less likely to both seek and provide advice than are vice presidents, as
well as some differences in general advice-seeking behavior between departments.
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Figure 3. Graphical goodness-of-fits. Boxplots correspond to the consensus structures from 1,000 CSS data sets generated
from each of the LSMNP (top row), SGM (middle row), and HNAM (bottom row) predictive posterior distribution, the solid gray
lines give the 95% credible intervals, and the solid line gives the observed consensus structure. The columns correspond to
in-degree distribution, geodesic distance distribution, and triad census distribution from left to right, respectively.

Figure 5 shows the MCMC draws of the latent positions after post-processing via the Procrustes
transformation (a color version is available in the Supplementary Material, as well as a similar
plot for the sender and receiver effects). To increase the clarity, we used principal components
analysis (PCA) to plot the postertior means of the latent positions in a two-dimensional space in
Figure 6. An edge was drawn if at least two-thirds of respondents reported it, with the thickness
corresponding to the number of respondents that reported the edge. Again, the covariates are
shown to help understand how the covariates are related to the social locales of the actors. From
this we see that the departments are separated and that within each department vice presidents
tend to be separated from the managers. Table 4 provides the posterior means and 95% credible
intervals for the coefficients B,. From this table, we confirm what we see visually in Figure 6: where
an individual is located in the network space depends primarily on the department to which the
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Table 3. Estimates and 95% credible intervals for Bs and B,. The baseline category corresponding to manager is vice
president

Sender Receiver

Age 0.015 (—5.8 x 10-5,0.029) 0.00085 (—0.018, 0.018)

Dept 4 0.43 (0.092, 0.81) 0.52 (0.12, 0.98)
S g
- °
®
2 o,
3
2
= O
LIJ L1
5o" .
=
A e [}
a
e [ ] L
Figure 4. Sender effects (s) and receiver effects (r) corre-
v | sponding to the advice-seeking network. Circles indicate
T vice presidents and squares indicate managers. The size cor-
. - responds to the age of the individual (larger implies older),
i . . . and similarly the shading corresponds to the tenure (darker
-1.0 -05 00 05 10 15 20 implies longer tenure). The hollow circle corresponds to the

Receiver Effects CEO.

Figure 5. MCMC draws of the three-dimensional latent posi-
tions Z. (A color version is available in the Supplementary
Material.)

individual belongs. There is additional evidence that the position (manager vs. vice president)
also plays a role in an individual’s location in the network space. That is, there is evidence of
assortativity/homophily by the level of management and by department.
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Table 4. Estimates and 95% credible intervals for B;. The baseline category corresponding to manager is vice president

Dim 1 Dim 2 Dim 3
Age 0.033 (—0.010, 0.071) —0.0035 (—0.045, 0.042) —0.0016 (—0.037, 0.052)

. _0031(_00960026) e (_00970018) R 0039(_0037 0089) L
! Manager e (_096 13) e 088(022) 178) i .. _10(_170060) S
! Dept2 R 15(_025225) e (040)24) e 15(093’29) N
! Dept3 [ 051(_07215) e (15)34) e 059(_007721) S
! Dept4 e (_20012) e (11)33) [ 058(_047 21) ——

~ i _
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o
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Figure 6. Latent positions Z corresponding to

L 4 the advice-seeking network. The shape cor-
responds to the department (1 = circle, 2 =

® square, 3 = diamond, 4 = triangle). Vice presi-

dents are circled, whereas managers (and the

Mngr:Dept® veDep @ o CEO) are not. The size of the point corre-

sponds to the age of the individual (larger
implies older), and similarly the shading of the
point corresponds to the tenure (darkerimplies
longer tenure). The black (gray) arrow indi-
cates the direction an individual’s latent posi-
tion mean would change if their age (tenure)
increased by a standard deviation. The hollow
o circleis the CEO.

Mngr:Deptd

6. Discussion

We have provided a statistical model for better understanding network perception data and how
individuals’ perceptions differ. CSS data are extremely rich and provide abundant information to
not just the relativist who requires multiple perceptions with which to compare but also the essen-
tialist who desires repeated observations. We hope that the proposed approach is useful under
either method of interpretation. Specifically, the relativist may better compare the actors’ per-
ceptions that are subject to potential informant error, as well as quantitatively investigate how
informants’ responses deviate from each other through bias and variability. Essentialists may have
better approximations of various aggregation structures, estimate a low-dimensional represen-
tation of the underlying social reality, estimate homophilic effects on this representation, and
estimate informant accuracy.

A comment from an anonymous referee described the potential use of looking at measures
of fit such as AUC as a function of the number of respondents K in informing future studies. If
there exists a certain threshold K* above which the information added to the data by obtaining
K > K* is negligible, then this could save considerable time and expense. It would seem highly
likely, however, that this threshold would be a function of n and the signal-to-noise ratio (e.g., if
6 and o2 vary widely between contexts and environments). Determining this threshold (which
would involve some criterion for determining what is “negligible addition of information”) would
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be a valuable but nontrivial task, and one which would likely require either ample prior data or
some type of adaptive sampling design to achieve.

Section 3.5 discussed relaxing the commonly used forced-choice design. Although our analyses
did not revolve around these types of data, we believe this to be an important future direction for
collecting network perception data. We anticipate that such a relaxed design would not only make
larger studies feasible but also ought to filter out unnecessary noise that otherwise would have
been introduced into the data.
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Note

1 Note that while for p = 1,2 we did not need many iterations to ensure convergence of the MCMC chain, we did need 3
million iterations for p = 3, which required a run time of 56 minutes.
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