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The compressibility effects on the structural evolution of the transitional high-speed
planar wake are studied. The relative Mach number (Mar) of the laminar base flow
modifies two fundamental features of planar wake transition: (i) the characteristic
length scale defined by the most unstable linear mode; and (ii) the domain of influence
of the structures within the staggered two-dimensional vortex array. Linear stability
results reveal a reduced growth (approximately 30 % reduction up to Mar = 2.0)
and a quasilinear increase of the wavelength of the most unstable, two-dimensional
instability mode (approximately 20 % longer over the same Mar range) with increasing
Ma. The primary wavelength defines the length scale imposed on the emerging
transitional structures; naturally, a longer wavelength results in rollers with a greater
streamwise separation and hence also larger circulation. A reduction of the growth
rate and an increase of the principal wavelength results in a greater ellipticity of
the emerging rollers. Compressibility effects also modify the domain of influence of
the transitional structures through an increased cross-wake and inhibited streamwise
communication as characteristic paths between rollers are deflected due to local
Ma gradients. The reduced streamwise domain of influence impedes roller pairing
and, for a sufficiently large relative Ma, pairing is completely suppressed. Thus,
we observe an increased two-dimensionality with increasing Mach number: directly
contrasting the increasing three-dimensional effects in high-speed mixing layers.
Temporally evolving direct numerical simulations conducted at Ma = 0.8 and 2.0,
for Reynolds numbers up to 3000, support the physical insight gained from linear
stability and vortex dynamics studies.

Key words: compressible turbulence, transition to turbulence, wakes

1. Introduction
Understanding high-speed transitional wakes is of great interest in scramjet engines,

aero-optic laser diffraction and transonic turbomachinery. At the heart of this interest
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lies the desire to modify, predict and/or control the large-scale coherent structures
originating during transition. This is especially important as wakes interact with
other canonical flows in most applications (Wu et al. 1999; Wu & Hickey 2012).
From an engineering perspective, these highly anisotropic transitional structures are
important for their mixing enhancement potential as they are the main contributors
to the large-scale entrainment (Brown & Roshko 1974), a generally desired attribute
for fuel injector systems. At the same time, these structures are one of the primary
sources of aeroacoustic disturbances resulting from the large pressure gradients and
vortical reconnection (Sandham 1994; Virk, Hussain & Kerr 1995; Bastin, Lafon
& Candel 1997; Hussain & Duraisamy 2011) which, downstream, may lead to
combustion oscillations in supersonic propulsion systems (Choi, Ma & Yang 2005).
In order to control these conflicting characteristics, the effects of compressibility on
the transitional high-speed wake need to be much better understood.

Characterizing compressibility effects. Insight into compressibility effects (understood
herein as Mach number effects) in free-shear flows has historically been gained
through the study of the high-speed mixing layer – a simple and ubiquitous free
shear flow. The most intriguing effect is the reduced lateral spreading with increased
convective Mach number, Mac. From early experiments, the reduced turbulent kinetic
energy (TKE) could qualitatively explain the lower spread rate; density variations
only have a second-order effect (Brown & Roshko 1974). What is less clear is the
exact mechanism by which compressibility limits TKE growth. From the governing
equations, the evolution of TKE for a compressible flow is written as

dK
dt
= P+Σd − εs − εd, (1.1)

where P, Σd, εs and εd are respectively the production, pressure-dilatation correlation,
solenoidal dissipation and dilatational dissipation. Early works attributed the lower
turbulent kinetic energy to a negative pressure–dilatational and dilatational dissipation
terms in shear flows (Zeman 1990; Sarkar, Erlebacher & Hussaini 1991). But the
dilatation alone cannot account for the extent of the TKE reduction as the increased
dilatation with Ma is modest apart from a very limited region of the flow found
within a shock wave. Breidenthal (1992) proposed a novel structural explanation
for the reduced spread rate using a sonic-eddy model to account for the reduced
entrainment of high-speed flows. Numerical simulations have led us to conclude that
the reduction of the pressure–strain term implicitly inhibits the turbulence production
by reducing the transfer among velocity components (Blaisdell, Mansour & Reynolds
1993; Vreman, Sandham & Luo 1996; Pantano & Sarkar 2002; Foysi & Sarkar 2010).
Naturally, the delayed return to isotropy caused by the finite propagation speed of the
acoustic waves modifies the near-field anisotropy of the flow (Pantano & Sarkar 2002).
Pantano & Sarkar (2002) showed, using an analysis based on the wave equation of
a pressure perturbation, that the pressure–strain term decreases monotonically with
increasing Ma as the acoustic interaction time increases.

Fewer studies have specifically tackled compressibility effects in the planar wake.
This is partly because the compressibility effects, characterized by the relative Mach
number Mar = Uo/c∞ (where Uo is the centreline velocity defect and c∞ the free-
stream speed of sound), are not constant and, therefore, more difficult to isolate than
in the mixing layer. As Mar monotonically decreases with the wake evolution, so
does the influence of compressibility. The coupling between the compressibility and
the wake evolution raises an important question on the scaling of the wake. On one
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Structural evolution of transitional high-speed planar wakes 7

hand, if compressibility inhibits the spread rate through reduction of the pressure–
strain term, as is the case for the mixing layer, the wake half-width appears to be
an ill-suited non-dimensionalization parameter, as the spread rate would reduce with
reducing compressibility as the wake evolves. On the other hand, if the spread rate
remains invariant to the decreasing Mar with the wake evolution (in the mid- and far-
wake when compressibility may still be non-negligible), a structure-based explanation
must be sought for the contrast with the mixing layer results. Even though the wake
tends toward a fully incompressible state as the velocity defect becomes null, it does
not necessarily mean that the self-similar states of the incompressible and high-speed
wakes are identical. Since free-shear flows maintain a ‘memory’ of their origin, it
can be inferred that a differing far-wake structural organization and statistics found
by Bonnet et al. (1991) and Hickey, Hussain & Wu (2013) may be related to the
near-wake and/or transitional evolution.

Transition of planar wakes. As for all shear flows, the compressibility has a stabilizing
effect in the wake (Behrens 1968; Demetriades 1971), a finding confirmed by
hydrodynamic stability calculations (Chen, Cantwell & Mansour 1990; Watanabe
& Maekawa 2004). In contrast to the obliquity of the primary instability mode in
the high-speed mixing layer (above Mac = 0.6), a two-dimensional anti-symmetric
mode is found to be dominant for all Mach numbers in the planar wake (Chen et al.
1990). This result was nuanced by Papageorgiou (1990) who questioned the validity
of the parallel flow assumption inherent in the temporal stability calculations and
showed that a three-dimensional wave inclined at 60◦ has the highest growth rate
for spatially evolving wakes with a Gaussian velocity profile at Ma∞ = 3.0. The
obliquity of the transitional mode was experimentally observed by Lysenko (1999) by
artificially forcing a splitter-plate wake at Ma∞ = 2.0. It is unclear why the observed
oblique perturbation undergoes the largest growth. It could be related to one of
the following reasons: (i) the growth of the most unstable oblique mode, as found
by Papageorgiou (1990); (ii) as hypothesized by Lysenko (1999), a receptivity of
an inclined symmetric mode which emerges for Mar > 1.2 (Watanabe & Maekawa
2004); (iii) a secondary acoustic mode which resonates between the sonic lines of
the wake as in the boundary layer (Mack 1990); or (iv) a triadic nonlinear interaction
as observed in the H-type transition in the boundary layer (Hebert 1988). The debate
surrounding the origin of the three-dimensional modes remains open and central to
the understanding of the transitional mechanism of the planar wake.

Structures in high-speed flows. There has been some debate on the presence (or
absence) of transitional spanwise coherent rollers in the planar wake. Kendall (cited
in Laufer (1975)) noted a clear absence of structures in the transitional region.
More recently, experiments by Clemens & Smith (1998) found that the high-speed
wake shares many structural similarities with its incompressible counterpart, most
importantly in terms of the two-dimensionality of the transitional rollers connected
by rib-like structures. From experiments, it is difficult to establish the origin of the
transitional structures, as they may emerge due to linear growth of an unstable mode
or due to the receptivity of the unsteady Kutta condition (Barone & Lele 2005).
Alternatively, the structures may also originate from the two-dimensional convective
instability in the base flow (Sandham & Sandberg 2009). What is clear, is that the
wake and the transitional structures are highly sensitive to the splitter-plate design
(Althaus 1990). In the intermediate and far wake, the two-dimensionality of the
structures has been well established (Bonnet & Chaput 1986; Nakagawa & Dahm
2006) having a Strouhal number of 0.3 (Behrens & Ko 1971; Gai, Hughes & Perry
2002).
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Direct numerical simulations of idealized wakes help clarify the transitional
mechanisms and structures. Using a laminar base flow with eigenmode perturbations,
Chen et al. (1990) and Watanabe & Maekawa (2004) showed many qualitative
similarities with the low-speed wake: two-dimensional and staggered spanwise rollers
connected by rib-like structures. This apparent structural invariance to Ma contrasts the
emergence of Λ-type structures in the high-speed mixing layer (Kourta & Sauvage
2002). When the base flow was perturbed with broadband random fluctuations
(Watanabe & Maekawa 2004), an oblique mode briefly dominates the early wake
evolution before being overtaken by the growth of the primary two-dimensional
mode: clearly an unexpected finding based on linear stability results. Unfortunately,
the available direct numerical simulations of high-speed planar wakes (Chen et al.
1990; Watanabe & Maekawa 2004) are inadequate to fully understand the origin of
the three-dimensional modes. More specifically, it is unclear if they are caused by an
oblique principal mode, or by the receptivity of a secondary symmetric mode. The
reasons for the inadequacy of existing DNS simulations are: (i) the limited streamwise
and spanwise computational domains (Lx twice the most unstable wavelength (Chen
et al. 1990)) cannot capture the symmetric instability mode which is over twice the
streamwise wavelength at Ma= 2.0, (ii) the low Reynolds number of the simulations
(Re=300 in Chen et al. (1990) and up to Re=1000 in Watanabe & Maekawa (2004))
limits the growth of the oblique instability mode, which is shown herein to be very
sensitive to viscous effects at low Reynolds numbers. These shortcomings invite
a closer investigation of transitional mechanisms with modern day computational
resources with a canonical set-up, free of trailing edge effects.

In this work, we seek to elucidate the influence of compressibility on the transitional
structures of the planar high-speed wake. We shed light on some lingering questions:
what is the effect of compressibility on the structures in the transitional flow?
How does the Ma influence the structural pairing of rollers? What is the effect
on the turbulence anisotropy? What is the influence of compressibility on the
three-dimensionality of the wake? The present investigation rests on a combined
study using linear stability analysis, vortex dynamics and direct numerical simulations
of the transitional high-speed wake to gain insight into the flow physics. The paper
is organized as follows. The details of the linear stability analysis and numerical
simulations are presented in the § 2. The stability results are detailed in § 3. Based
on these findings and an idealized understanding of the wake, we infer the structural
features of the nonlinear stage of transition in § 4. These theoretical results are
supplemented by direct numerical simulations of the transitional high-speed wakes in
which the statistics and structural evolution are respectively presented in §§ 5 and 6.

2. Numerical details
2.1. Viscous linear stability theory

A viscous, compressible linear stability analysis tool was developed to study the
transitional characteristics of the high-speed planar wake based on the previous work
by Chen et al. (1990) and Watanabe & Maekawa (2004). A periodic disturbance,
with given streamwise and spanwise wavelengths, is applied to a laminar base
flow. The temporal growth of the perturbation is computed from the linearized
three-dimensional Navier–Stokes equations (conservation of mass and momentum)
and the energy equation in non-conservative form. To assure the validity of the linear
assumption, we impose a very low-amplitude perturbation to the base flow of the
form: Φ = Φ̂ exp(i(αx+ βy−ωt)), where Φ represents a vector of the primitive
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Structural evolution of transitional high-speed planar wakes 9

variables: [ρ, u, v, w, T]. For a temporal stability calculation, α and β are real
and respectively the streamwise and spanwise wavenumbers, while ω is complex
with the imaginary part being the temporal growth rate of the given perturbation.
Assuming a parallel flow, we consider the stability characteristics of an initial
Gaussian velocity profile: U(y) = U∞ − U0 exp (−ln(2)y2), where U∞ and U0 are
respectively the free-stream velocity and centreline defect. These values are chosen
to compare our results with the previous investigations (Chen et al. 1990; Watanabe
& Maekawa 2004). The thermodynamic quantities are related through the ideal
gas equation of state where the non-dimensionalized static pressure was assumed
to be constant across the wake. The initial temperature and density profiles were
determined using the Crocco–Busseman relation with a unitary Prandtl value. In the
cross-wake direction, a hyperbolic tangent stretching was used to convert the doubly
infinite domain to a finite computational domain defined on ζ = [0, 1] using the
spectral mapping techniques by Cain, Ferziger & Reynolds (1984). The linearized
equation set can be solved as a simple eigenvalue problem of the form L Φ̂ = ωΦ̂

where L is a linear operator acting on the eigenvector Φ̂ = [ρ̂, û, v̂, ŵ, T̂] for a
given eigenvalue, ω. The eigenvalue with the largest imaginary part represents the
maximal growth of the imposed perturbations. By investigating the resulting real part
of the eigenvectors of the equation, we distinguish between the symmetric (varicose)
and anti-symmetric (sinuous) modes. The complete mathematical formulation of
the problem can be found in Watanabe & Maekawa (2004) and is not repeated.
Numerically, the eigenvalue calculations are performed using the LAPACK scientific
library. A gradient-based sequential least-squares programming algorithm (SLSQP),
implemented through the pyOpt package (Perez, Jansen & Martins 2012), was used
to reduce the computational time required to identify the optimal growth over the
solution domain. We confirmed the validity of our linear stability code by comparing
our results with previously calculated linear stability statistics from Chen et al. (1990)
and Watanabe & Maekawa (2004). The linear stability source code can be found in
Hickey (2012).

2.2. Direct numerical simulation details
2.2.1. Governing equations

The solved equation set for direct numerical simulation, written in conservative
form, consists of the equations for mass, momentum and total energy along with
an additional passive scalar equation. The equations are non-dimensionalized by the
free-stream velocity, U = U∞ and the initial wake half-width, L = b0. The other
parameters are non-dimensionalized with the free-stream values. The corresponding
non-dimensional pressure and energy are respectively p= p∗ρ0c2

0/γ and E= E∗/ρ0U2,
while the Reynolds, Prandtl and Mach numbers are

Re= ρ0UL
µ0
; Pr= µ0cp

κ0
; Ma= U

c0
. (2.1a−c)

The non-dimensionalized governing equations are

∂ρ

∂t
+ ∂(ρui)

∂xi
= 0

∂(ρui)

∂t
+ ∂

∂xj
(ρuiuj + p/(γMa2)δij)= 1

Re
∂σij

∂xj
,

∂E
∂t
+ ∂

∂xi
[(Eui + p/(γMa2))] = 1

PrRe(γ − 1)Ma2

∂

∂xi

(
κ
∂T
∂xi

)
+ 1

Re
∂ujσij

∂xi
,


(2.2)
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where σij = µ(∂ui/∂xj + ∂uj/∂xi − (2/3)(uk/xk)δij). The above equation set is closed
with the normalized equation of state: p = ρT . The energy term represents the
total energy, which is the sum of the internal and kinetic energies, such that
E= p/((γ − 1)γMa2)+ (1/2)ρ(uiui). The normalized viscosity is uniquely a function
of temperature and follows a power law of the form µ= T0.76.

2.2.2. Numerical scheme
We developed and validated a high-order predictor/corrector finite difference

solver, which was used to compute the compressible Navier–Stokes equations.
The spatial scheme is fourth-order accurate inside the domain with a one-sided
third-order scheme at the finite boundaries. The high-order MacCormack-like scheme
was chosen as the biased stencil on the convective terms provides a robust and
efficient method to deal with the high gradients (without adding artificial viscosity)
while offering acceptable dispersion and dissipative qualities (see Hickey (2012)
for details). The greater resolution required to account for the slightly inferior
numerical qualities compared to spectral or Padé schemes, for example, is offset
by the computational efficiency, parallelisability and small memory footprint. The
time-dependent compressible Navier–Stokes equations are solved in conservative form
with skew-symmetric convective terms for robustness and reduced aliasing errors. The
time was advanced using a second-order explicit scheme in which the time step was
set by an imposed acoustic Courant number. The numerical code was extensively
verified against the analytical solution of a viscous shock, Taylor–Green vortex and
decaying compressible isotropic turbulence. Validation with experimental wake data
in the incompressible limit was performed in Hickey et al. (2013).

2.2.3. Grid, boundary and initials conditions
A homogeneous grid was used in the streamwise and spanwise directions. In the

cross-wake direction, the grid was clustered about the centreline using a hyperbolic
tangent mapping. The grid resolution was chosen to resolve down to the Kolmogorov
scale for the entire evolution of the wake. As the flow is temporally evolving, periodic
boundary conditions were set in the streamwise (x) and spanwise (z) directions.
In the cross-wake direction (y), non-reflecting boundary conditions (Thompson
1990), supplemented with sponge layers, were used to attenuate spurious numerical
oscillations at the boundaries. The domain size was selected to be at least eight
times the most unstable anti-symmetric wavelength in the streamwise direction and
four times the most unstable oblique symmetric mode in the spanwise direction.
Consequently, the domain sizes are Mach number dependent. In the cross-wake,
the domain height was chosen large enough to accommodate at least six wake
half-widths at all times during the simulation. The very large computational domain
was justified by the need to enhance the sampling of higher-order statistics, to reduce
the dependence of the domain size on the developing instability modes and to allow
the growth of the long-wavelength, oblique varicose mode.

The simulations are temporally evolving. Although temporal simulations remain of
great scientific interest, they fall short in faithfully reproducing the transition of wake
flows. On the one hand, the temporal simulations require a parallel flow assumption,
which is not entirely valid in the case of transitional wakes. In addition, the instability
modes are unable to spatially grow, as would occur in a spatial simulation or
experimental set-up, and are constrained by the computational domain. A final
issue concerns the infinite propagation in the streamwise and spanwise direction of
acoustical, vortical and entropic perturbations. These perturbations then recontaminate
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Structural evolution of transitional high-speed planar wakes 11

Ma Re Grid size Domain size η/1x|min

0.8 3000 1600× 496× 596 67.9× 20× 26.1 0.61
2.0 3000 1792× 496× 696 78.3× 20× 29.9 0.88

TABLE 1. Characteristics of the numerical simulations of the transitional wake. The
η/1x|min represents the minimal value over the domain, during the entire transitional
simulation.

the computational domain, whereas in the spatial case, they are simply advected
out of the domain. Despite these valid concerns, the study of temporal transition
of free-shear flow remains valuable in understanding transitional mechanism. Many
temporal studies of high-speed free-shear flows have shown convincing quantitative
matching of experimental results (e.g. Pantano & Sarkar 2002). Furthermore, the
correct physical mechanisms of the temporally evolving simulations are extensively
reported (Rempfer 2003). In addition, the temporal wake evolves without a receptive
trailing edge and therefore we are able to isolate the intrinsic wake transition from
the wake generating body. Furthermore, given the lengthy transition caused by the
increasing stability of the high-speed wake, we are able to simulate higher Reynolds
number flows than could be afforded by a spatial simulation.

The wakes were simulated at a constant Reynolds number of 3000, based on the
initial wake half-width and initial velocity defect, at two different initial relative
Mach numbers: Ma = 0.8 and 2.0 (herein, the wakes are identified by their initial
Mar; for clarity, the subscript ‘r’ from Mar is dropped). To fully resolve all
the scales of turbulence, a grid of 473 and 619 million nodes, respectively, was
needed, see the numerical details in table 1. A laminar initial velocity profile was
used: 〈u(y)〉 = U∞ − Ud exp(−ln(2)y/b)2 where U∞, Ud and b are respectively
the free-stream velocity, the initial deficit velocity and the initial wake half-width.
Admittedly, the choice of a Gaussian, instead of a double Blasius profile, may inhibit
the development of near-wake instability modes originating from a double boundary
layer profile (Papageorgiou & Smith 1989; Papageorgiou 1990). In Hickey et al.
(2013), the evolution of a Gaussian and double Blasius wake profile were compared
in the incompressible limit; other than a delayed transition, the main characteristic
structures and statistics remain surprisingly similar. Based on these conclusions, we
deemed that an initial Gaussian profile allows the greatest generality for the study
of the temporally evolving wake. The laminar base flow velocity and temperature
fields were related through the Crocco–Busemann relationship. The initial wake
profile is perturbed by broadband velocity fluctuations for the components in x- and
y-directions with an r.m.s. value of 1.5 % of the velocity deficit, in order to break the
symmetry about the centreline. The broadband perturbations have a greater generality
but result in a longer transition compared to specific mode forcing. The initial
wake half-width was unity resulting in a constant mass flux defect of ṁ ≈ 1. The
computations were conducted at the High Performance Computing Virtual Laboratory
(HPCVL) in Kingston, Ontario using 128 processors and required a wall clock time
of approximately 45 days per simulation. In addition to these computations, we
conducted numerous lower Reynolds number simulations at Re = 1500 on a fixed
computational domain (Lx, Ly, Lz= 50, 25, 12.5) and grid (56 million grid points) for
Ma= 0.3, 0.8, 1.2 and 2.0. These fully resolved simulations are used to validate the
generality of our results at different relative Mach numbers. Grid convergence and
resolution tests are presented in the Appendix.
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FIGURE 1. (Colour online) Influence of compressibility and viscosity on the maximal
growth rate of the instability modes (two-dimensional, anti-symmetric mode). The maximal
exponential growth for Reynolds numbers of 500, 1000, 2000 and 4000 are compared
with the inviscid results by Chen et al. (1990). The streamwise wavenumber of the most
unstable mode (squares) is shown on the right-hand side.

3. Linear stability of high-speed wakes
Given the symmetry of the laminar base flow, two classes of instability modes

arise. The anti-symmetric (or sinuous) mode is defined at the centreline as û= 0 and
dv̂/dy= 0 while the symmetric (or varicose) mode is defined as v̂= 0 and dû/dy= 0.
Both modes have exponentially unstable components in the two-dimensional planar
wake.

3.1. Sinuous instability mode
As in the incompressible wake, the highest exponential growth is achieved for a
purely two-dimensional, anti-symmetric (sinuous) perturbation for all Mach numbers.
This perturbation results in the formation of two rows of staggered spanwise coherent
rollers, sharing many characteristics with the classical Kármán vortex street in the
wake of a bluff body. From previous investigations (Chen et al. 1990; Watanabe
& Maekawa 2004), an increasing Mach number decreases the maximal exponential
growth of the primary disturbance. Between free-stream Mach numbers of Ma= 0.01
and 2.0, the exponential growth rate is reduced by approximately 30 %, see figure 1;
a modest decrease compared with the very drastic drop in growth rates observed
in the mixing layer (a reduction of approximately 18 % from the incompressible
growth rate at Mac = 0.4 % and 72 % at Mac = 1.2 (Sandham & Reynolds 1990)).
The viscosity has a slightly stabilizing effect on the high-speed wake. Although the
stabilizing effect of viscosity is minimal compared with the inflectional instability of
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FIGURE 2. (Colour online) Eigenvectors of the most unstable mode at Re = 10 000 at
Ma = 1.92 (α = 0.239, β = 0.264). The real (red line, dashed-dot), imaginary (blue line,
dashed) and the magnitude (black line, full) are presented for û (a), v̂ (b) and ρ̂ (c).
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FIGURE 3. (Colour online) Influence of compressibility and viscosity on the varicose
(two- and three-dimensional, symmetric perturbation) mode in the high-speed wake. The
viscosity has a strong stabilizing effect on the growth (top). The streamwise and spanwise
wavenumbers of the most unstable symmetric mode for Re= 10 000 are presented along
with the corresponding angle of the optimal disturbance.

the mean profile. As noted by Watanabe & Maekawa (2004), there is less than 2 %
difference between growth rate at Re= 1000 and the fully inviscid case for all Mach
numbers studied, see figure 1. Overshadowed in the previous studies is the striking
correlation between the growth rate and the wavelength of the most unstable mode.
The wavelength of the most unstable mode is similarly approximately 18 % longer
at a Mach number of 2.0 compared to the incompressible baseline. The concomitant
effects of an increased wavelength are discussed in the following sections and are
central to our understanding of high-speed wake transition.

3.2. Varicose instability mode
The symmetric (varicose) mode plays a secondary role in the transitional mechanism
of the high-speed wake, as the growth rate is less than a third of the primary
anti-symmetric instability. Nonetheless, the importance of the symmetric mode
cannot be neglected as it may modulate the anti-symmetric mode, as noted in the
incompressible case by Wygnanski, Champagne & Marasli (1986). For completeness,
figure 2 shows the eigenvectors of the most unstable varicose mode. The influence
of this mode is particularly important for high-speed wakes as it shifts from a purely
two-dimensional to an oblique perturbation at approximately Ma= 1.2 (see figure 3)
as previously observed by Chen et al. (1990) and Watanabe & Maekawa (2004).
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This raises the question of why the symmetric mode has a drastic jump in the
appearance of a cross-wise component to the instability. This observation recalls the
onset of three-dimensionality in the transitional high-speed mixing layer above a
convective Mach number of 0.6. To the best of the authors’ knowledge the exact
physical mechanism of this jump in the mixing layer remains elusive. Similar to
the primary mode, the symmetric instability mode is damped by both viscous and
compressibility effects. The viscous effects play an important role in impeding the
growth of this mode. Figure 3 shows that at Re = 1000, the exponential growth
rate is 10 % lower than the inviscid case at Ma = 0.001 – at Mach number 2.0,
it is 30 % lower. The varicose mode is nearly completely suppressed for Reynolds
numbers under 250. In addition to the stabilizing effect of viscosity, the wavelength
of the symmetric mode is over twice that the anti-symmetric mode over all the Mach
numbers investigated. The combined effects of an inhibited growth rate caused by
viscosity and the longer instability wavelength may have hindered the observation
of the emergence of this three-dimensional mode in the previous direct numerical
simulations of transitioning high-speed wakes. Those simulations at Re = 300 (Chen
et al. 1990) and 1000 (Watanabe & Maekawa 2004) were on computational domains
clearly too small to capture the varicose modes. As a result, the effects of the
three-dimensional symmetric mode were probably inhibited. These observations invite
a new investigation, at higher Reynolds number and on a larger domain in order to
accommodate the longer wavelengths.

4. Domain of influence in the transitional wake
In free-shear flows, the wavelength imposed by the fastest growing instability mode

characterizes the length scale of the emerging transitional structures. Based on the
results from linear stability theory § 3 (assuming no external forcing), it comes as
no surprise that the rollers emerge as purely two-dimensional structures with an
increasing wavelength with increasing Ma number. The increased wavelength of the
primary instability mode leads to two, seemingly trivial, features of the high-speed
wake transition: (i) increased streamwise separation between neighbouring rollers on
the same row; and hence (ii) increased circulation of each roller. For a fixed wake
half-width of the base flow, b, compressibility decreases the ratio of the cross-wake
to streamwise separation, h/λ, where h represents the cross-wake separation between
rows (which is, to a close approximation, a function of the wake half-width, b) and
λ the streamwise separation between neighbouring rollers (being related the most
unstable wavelength). In the present section, we consider the compressibility effects
on the acoustic propagation and the domain of influence in the laminar base state of
the high-speed planar wake.

4.1. Domain of influence in the transitional compressible wake
The staggered array of spanwise vortices, forming a Kármán vortex-like street, has
been shown to be unstable to infinitesimal perturbations for two-dimensional vortex
filaments in the inviscid case, except for the well-known neutrally stable configuration
of h/λ = 0.28055. Using an inviscid hollow vortex model, Crowdy & Green (2011)
showed a cross-over point at an aspect ratio of h/λ= 0.34–0.36. Above this threshold,
pairing occurs between neighbouring rollers on the same side, as typically observed
in most low-speed transitioning wakes. Below this threshold, it occurs between rollers
from across the centreplane (merger between rollers with opposite circulation, clearly
breaking up and then decimating both rollers due to cross-diffusion of vorticity). The
stability properties of such flows were considered in Llewellyn Smith & Crowdy
(2012).
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Although it is tempting to infer the stability features from incompressible vortex
dynamics, this approach is invalid for high-speed flows as the domain of influence of
each roller is no longer global. The classic Biot–Savart induction law is not directly
applicable to compressible flows, partly because of the dilatational component of the
flow, but more importantly, because the induced velocity follows the characteristic
lines (Smits & Dussauge 2006) which are modified by the gradient of the mean flow.
To address this issue, we approximate the characteristic lines (which we assume to be
the communication path) of a single point within a laminar wake profile in order to
infer the domain of influence of a compact roller.

The path of communication in compressible flows follows the characteristic lines.
In a high-speed free-shear flow, the mean Mach gradient modifies the path of the
characteristic wavefronts. As a result, communication between two neighbouring
rollers may be hindered, possibly even completely cutoff. Despite the simplicity
of the approach, the geometric evaluation of the ray paths have been shown by
Papamoschou (1994) to offer a good qualitative and quantitative comparison with
the characteristic-based computations from the linearized equations of motion. In
order to investigate the compressibility effects on the communication paths in the
high-speed wake, we extend the analysis of the mixing layer (Papamoschou 1993,
1994; Papamoschou & Lele 1993) to consider the symmetric profile of the high-speed
wake. Assuming a constant speed of sound, the generalized form of Snell’s law
relating the direction of acoustic propagation to the local Ma is

sin θ = sin θo

1+ (Ma−Mao) sin θo
, (4.1)

where θ is the angle from the vertical and the subscript ‘o’ represents the Mach
number and angle at the origin (Mao, θo). Based on classical ray tracing theory, the
trajectory can be defined as a simple ordinary differential equation in two dimensions:

dx
dt
=U(y)− a sin θ; dy

dt
=±a cos θ. (4.2a,b)

Herein, we are interested in understanding the path of information propagation.
For simplicity, we assume a laminar Gaussian distribution of velocity: a valid
assumption even during emergence of transitional spanwise rollers. We developed
a two-dimensional ray tracing tool using an explicit time advancement based on
a fourth-order Runge–Kutta scheme, similar to Papamoschou (1993); the source
code can be found in Hickey (2012). Figure 4 shows the path of propagation of
a perturbation emitted from a source at the wake half-width (a,c,e) and at the
centreplane (b,d, f ). For the computations, we neglect the effect of wave dispersion
or attenuation.

The path of communication is greatly influenced by the Mach number gradient of
the base flow. If we approximate a single roller as a compact vortical source at the
wake half-width (figure 4a,c,e), a clear increased cross-wake information is observed
with increasing Ma; simultaneously, the streamwise communication is inhibited. An
important region of near-silence develops upstream (to the left) of the source, while
a region of weak acoustic intensity develops downstream of the source (to the right).
The increased cross-wake influence can also be seen in the increasing inclination
of the wavefronts with Ma. The constitutive shear layers of the wake act as a
waveguide, as such, the perturbations within the wake are internally reflected, raising
the possibility of the emergence of an acoustic instability modes as in the boundary
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FIGURE 4. (Colour online) Propagation path of an omnidirectional acoustic disturbance
in laminar wake (Gaussian profile shown in a,b) at Mar = 0.0, 0.5 and 1.0 (rows top to
bottom) for a source at the upper inflection point of the mean velocity profile (a,c,e) and
at the centreline (b,d, f ). The contour lines represent the wavefronts. The dashed vertical
lines represent the streamwise locations of signal intensity measurements in figure 5.

layer (Mack 1975, 1990). Interestingly, the information which does exit the waveguide
is preferentially inclined to the free stream with an increasing streamwise orientation
with Mach number, recalling the findings of acoustic waves in the free stream by
Watanabe & Maekawa (2004) and Maekawa, Takiguchi & Watanabe (2006).

We recall that the acoustic intensity is proportional to the separation between
two adjacent traces for an omnidirectional acoustic source (Papamoschou 1993): the
closer two adjacent traces are to each other, the stronger the signal (valid under
the assumption of zero wave dispersion or attenuation). Hayes (1968) formalized
the energy conservation law for geometric acoustics in a moving medium. From
figure 4 at Ma = 0.5 and 1.0, we can infer the important effect of compressibility
on the intensity of the acoustic disturbance. A very weak acoustic signal is found
between 1.5 and 3.5 wake half-widths downstream (to the right of the source),
which represents the typical streamwise separation between adjacent rollers in the
transitional high-speed wakes. To quantify this effect, the intensity of the acoustic
signal is computed at three streamwise locations (shown as vertical dashed lines in
figure 4a,c,e) for an acoustic source at the inflection point of the wake. The relative
acoustic intensity profile is shown in figure 5. For the fully incompressible case, the
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FIGURE 5. (Colour online) Relative intensity profile of an omnidirectional acoustic source
at (x/b, y/b)= (0,0.5) at various streamwise locations for a free-stream Mach number of 0
(solid line), 0.5 (dashed line) and 1.0 (dotted line): (a) x/b= 0.5; (b) x/b= 1.25; (c) x/b=
2.0. The streamwise locations are identified in figure 4(a,c,e) by dashed vertical lines.

relative intensity of the signal is directly proportional to the distance from the source
which can be seen in the Gaussian distribution of the acoustic intensity at various
streamwise locations. As the free-stream Mach number increases, the relative intensity
of the acoustic signal along the same row (y/b = 0.5) decreases with respect to the
incompressible baseline. Simultaneously, the signal strength increases on the opposite
side of the wake (y/b=−0.5).

Following the approach by Papamoschou (1993), the integrated intensity of the
acoustic signal crossing the centreplane of the wake is shown in figure 6(a). Similar
to the shear layer, the integrated acoustic intensity crossing the wake centreplane
decreases monotonically with the free-stream Ma (for an omnidirectional source
located at the wake half-width). But compressibility effects modify the distribution
of the acoustic intensity along the centreplane. The acoustic intensity becomes
increasingly localized with increasing compressibility of the base flow. Figure 6(b)
shows the normalized acoustic energy distribution along the centreplane. The angle
of the peak acoustic intensity varies from 90◦ in the incompressible case to below
50◦ at Ma = 2.0. The zone of influence of a receiver located on the centreplane
of a wake is shown in figure 7. As the emerging instability modes in the wake
are anti-symmetric, the increasing obliquity of the zone of influence promotes a
cross-wake communication between the emerging coherent structures.

5. Numerical simulation: transitional statistics
5.1. Defining compressibility effects

The global compressibility effect is characterized by the relative Mach number Mar,
which is the ratio of the centreline velocity defect to the free-stream speed of sound:
Mar = Ma∞ − Mao = (U∞ −U0)/c∞. Unlike the mixing layer case, the level of
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FIGURE 6. Integrated acoustic energy crossing the wake centreplane and angle with the
centreplane of the peak intensity (a). Normalized acoustic intensity distribution along the
centreplane (b) from an omnidirectional source located at the wake half-width.
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FIGURE 7. (Colour online) The Mach number effect on the zone of influence for a
receiver located at (0,0): (a) Ma = 0; (b) Ma = 0.5; (c) Ma = 2.0. The isocontour lines
represent the intensity of the acoustic signal at the receiver point.

compressibility in the wake decays with its evolution; the decay in time of Mar is
shown in figure 8. Given a long enough evolution, the relative Mach number, as
well as the velocity defect, asymptotically tend toward zero and the wake essentially
becomes incompressible. This is not to say that the far wake of the compressible
and incompressible wakes are identical. Bonnet et al. (1991) and Gatski & Bonnet
(2009) noted clear differences in turbulence statistics in the far field between low-
and high-speed wakes, the most notable difference is the peak turbulence intensity
which is located further from the centreplane with increasing compressibility. Since
the mean compressibility is small in the far wake, the differences are most likely
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FIGURE 8. (Colour online) Evolution of the relative Mach number (a) and of the maximal
turbulent Mach number (b). The dashed lines represent the Re= 1500 simulations.

caused by the ‘memory effects’ which are imparted to the flow in the near wake. A
comprehensive study of the memory effects in incompressible wakes can be found in
Hickey et al. (2013).

During the pre-transitional evolution, the centreline defect decreases faster, the
lower the Reynolds number and the greater the initial Mach number. In the early
nonlinear stage of transition, which roughly corresponds to the abrupt change of slope
in figure 8(a) at the time [40–50] (Ma = 0.8) and [70–85] (Ma = 2.0), the relative
Mach number decays at an increasing rate with the Mach number. The maximum
slope of the relative Mach number with respect to time is −0.035 (Ma = 0.8) and
−0.057 (Ma= 2.0). The trend is consistent in the lower Reynolds number simulations:
−0.012 (Ma= 0.3), −0.028 (Ma= 0.8), −0.035 (Ma= 1.2) and −0.036 (Ma= 2.0),
although it is unclear why the Ma should have an effect on the viscous dissipation
caused by the mean flow gradient.

The turbulent Mach number characterizes the compressibility effects due to turbulent
fluctuations and is defined as: Mat=〈u′〉max/c∞. The maximum turbulent Mach number
is reached during transition and corresponds to: 0.1396 (Ma= 0.8) and 0.307 (Ma=
2.0). For the low-Re cases: 0.049, 0.128, 0.183 and 0.250 respectively for Ma= 0.3,
0.8, 1.2 and 2.0. In the far wake the turbulent Mach number monotonically decreases
and follows a decay law, as in the incompressible case of O(t−1/2). Given the initial
level of compressibility of the flow, these turbulent Mach numbers are rather small,
and a priori, should not promote the formation of any shocklets (discussed in more
detail in § 5.7). To put this into context, Sandham & Reynolds (1990) did not observe
any shocklets for three-dimensional mixing layers with a unitary convective Mach
number. Passot & Pouquet (1987) noted that a turbulent Mach number of 0.3 was
the approximate threshold for shocklet formation in decaying isotropic turbulence in
two-dimensional simulations; higher turbulence Mach numbers are needed for three-
dimensional simulations (Lee, Lele & Moin 1991; Samtaney, Pullin & Kosovic 2001).
Note that careful checks of Ma contours failed to reveal the presence of any shocklets
in the flow domain.

5.2. Evolution of Reynolds stresses and energy budgets
The maximal Favre-averaged turbulence statistics in the cross-wake direction (data
is averaged over the periodic directions) at each time step are presented in figure 9.
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FIGURE 9. (Colour online) Evolution of the maximal Favre-averaged normalized Reynolds
stresses. The dashed lines represent Re= 1500 cases for Ma= 0.3, 0.8, 1.2 and 2.0.

Other than the delayed transition, the qualitative evolution of all curves remains
similar. Viscous effects are small but non-negligible when comparing Re = 1500
(dashed lines) and 3000 (full lines), although the relative difference between both
Re increases with Ma. All wakes show a well-defined peak in vv and uv during the
nonlinear stage of the transition; the peak is attributable to the roll-up process during
transition. As for the incompressible cases, the peaks in the streamwise and spanwise
normal stresses are rather blunt, and slowly decay to a far-field plateau which is
approximately half of the peak value (Hickey et al. 2013). One of the principal
quantitative differences in the turbulence statistics is found in the peak values reached
during transition. A 53 % relative difference in the normalized cross-wake peak is
observed between Ma = 0.8 and 2.0. Interestingly, at lower Re, the peak value is
approximately constant (and shows no clear monotonic trend) for Ma between 0.3
and 1.2, while the peak at Ma= 2.0 is almost 19 % higher. As will be discussed in
the next sections, this discrepancy between the low and high Ma peaks is related
to the slightly different structural mechanisms of transition compounded with the
increased anisotropy of turbulent statistics with Ma.

Figure 10 shows the normalized profiles of production, dissipation and transport
at characteristic times during transition. The normalized production profiles nearly
overlap, with identical peaks located at y/b = ±0.45, at both Mach numbers. A
large discrepancy is found in the transport term which is very sensitive to the
compressibility effects. For the higher Ma, the centreplane transport term remains a
significant positive contributor to the TKE at both chosen times during transition. A
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FIGURE 10. (Colour online) Normalized turbulent kinetic energy budget terms during
transition at the peak 〈vv〉 ((a) Ma = 0.8 at t = 50; Ma = 2.0 at t = 80) and at the
approximate peak 〈uu〉 ((b) Ma= 0.8 at t= 80; Ma= 2.0 at t= 122). The normalization
parameter is U3

0/b. Since the flow is not in an equilibrium state, the sum of the energy
budget is not expected to be null. The figures provide a snapshot-averaged value of the
energy budget, the lack of time averaging results in the non-smooth profile of the transport
term.

discussion on the statistics of the transitional wake in the incompressible limit was
undertaken in Hickey et al. (2013).

5.3. Location of the maximal turbulence intensity
The far-wake turbulence statistics by Bonnet et al. (1991) and Gatski & Bonnet
(2009) show a clear outward shift of the location of the normalized TKE peak
with increasing Ma. The peak shifts from approximately y(TKEmax)/b = 0.34 in an
incompressible far wake up to y(TKEmax)/b = 0.51 at Ma = 2.0, where b is the
wake half-width. Since the effects of compressibility are negligible in the far wake,
these statistical features must be imparted to the flow in the near field (where the
compressibility effects are important) and maintained through the memory effects
imparted by the structures. During the early stages leading up to transition, the
normalized TKE peak location remains approximately constant until transition. The
cross-wake location of the normalized TKE peak increases with increasing Ma (see
figure 11); a similarly increasing monotonic trend in the peak location is observed
in lower-Re simulations. As rollers develop, the typical double peaks of the TKE
profile is lost and the maximum turbulence intensity is located about the centreplane,
as seen in figure 12; the double peak is soon regained after transition, see Hickey
et al. (2013) for similar profiles for the incompressible wake. The centreline peak
of the TKE profile during transition is the result of the induced cross-wake velocity
(caused by the coherent spanwise rollers), see the time evolution of 〈ρvv〉 in figure 9.
The large cross-wake-induced velocity leads to a strong urms component along the
centreplane and thus a TKE peak to shift from the outer edge of the wake to the
centreline. In order to understand the structural features of transition, we investigate
the location of the maximum density fluctuation, which can be considered to be an
approximate surrogate for the average cross-wake location of the spanwise rollers
during transition. Figure 11(b) shows a very distinct peak at t = 50 and 83 for
Ma = 0.8 and 2.0 respectively. These peaks correspond to the exact time of the
peak in 〈ρvv〉/〈ρ〉U2

0 , see figure 9. The larger the Mach number of the wake, the
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FIGURE 11. (Colour online) Evolution of the normalized cross-wake location of the
maximum turbulent kinetic energy (a). The horizontal lines correspond to the far-wake
locations of the maximum TKE for Ma = 0.8 and 2.0 which was interpolated from the
experimental data by Bonnet et al. (1991, figure 3). The evolution of the location of the
maximum density fluctuations (b).
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FIGURE 12. Profile of the normalized turbulent kinetic energy at three instances during
the early stages of transition for Ma= 0.8 (a) and 2.0 (b).

farther this peak is located from the centreplane (ypeak = 1.35 (Ma = 0.8) and 1.85
(Ma = 2.0)). The structural understanding of these statistical features will be more
thoroughly addressed in § 6.

5.4. Spectral distribution of TKE
The evolution of the spectral distribution of the TKE at the wake half-width is shown
in figure 13. The peaks are visible in all the velocity components to a varying degree.
The spectral peaks are found at κ = 1.46, 3.12 and 4.87 and 1.26, 2.26, 3.46 and
5.68, respectively for Ma = 0.8 and 2.0 (we recall that κ2 = α2 + β2). The primary
wavenumbers correspond acceptably well to the theoretical results obtained from
linear stability analysis (note that wavenumber of the linear stability results must
be multiplied by two given the different definition of the wake half-width) which
are κ = 1.50 (Ma= 0.8) and 1.30 (Ma= 2.0). Interestingly, the secondary peaks are
not exact integers of the primary modes suggesting that they may be the result of
secondary instability modes of the wake. Note that they do not correspond to the
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Peaks
(a) (b)

FIGURE 13. (Colour online) Spectral distribution of the turbulent kinetic energy at the
wake half-width. The spectra are offset by two decades between each line: (a) Ma= 0.8;
(b) Ma= 2.0.

most unstable sinuous perturbation, which has a lower wavenumber than the primary
anti-symmetric instability mode. The energetic modes diffuse and the wavelength
increases as the wake undergoes transition. For Ma = 0.8, the secondary peaks are
completely lost between t = 42 and 50. Between t = 50 and 62, only the primary
rollers can be identified in the spectrum and, once the wake transitions, the primary
peak is completely lost. At Ma= 2.0, the rollers are more resilient to the scrambling
of the turbulent fluctuations occurring during transition. A clear peak is observed until
approximately t = 115, which corresponds to a very late stage of transition, recall
figure 9. Although not presented, the spectral energy distribution in the spanwise
direction is void of any energetic peak during transition.

5.5. Evolution of Reynolds stress anisotropies
The explanation for reduced turbulence production in compressible flows has often
been tied to the reduction of the pressure–strain term which imposes a finite time scale
(related to the acoustic propagation speed in compressible flows) to the redistribution
of the TKE among the various turbulent components. As a result, the increased
compressibility leads to an increased anisotropy, which we investigate during the
transition of the wake. The Reynolds stress anisotropy tensor is defined as

bij =
Rij − 1

3 Rkkδij

Rkk
, (5.1)

where Rij represents the ij component of the Favre-averaged Reynolds stress which
is integrated in the cross-wake direction. In the high-speed mixing layer, Pantano &
Sarkar (2002) showed a monotonic increase of the magnitude of the normal terms
with increasing convective Mach number, but only in the near field. A similar result
is observed for the transitional wake, see figure 14 and table 2. Unlike the mixing
layer, the wake undergoes a return to isotropy after transition. The anisotropy in the
far wake becomes negligible as the centreline defect, hence, the mean shear, tends
toward zero. In the transitional region, all the peak values of the normal terms show a
slight monotonic increase in magnitude with Ma, while b12 shows a clear decrease; a
similar trend is observed among the lower-Re simulations. The most significant effect
of compressibility is noted in the pre-transitional anisotropy where the difference
between b11 and b22 increases, rather significantly, with the Mach number of the flow.
As the pre-transitional flow is primarily two-dimensional R33 ≈ 0, it is expected that
b11 and b22 have a similar but opposite behaviour and that R11 is largest contributor
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FIGURE 14. (Colour online) Evolution of the integrated Favre-averaged anisotropy for
Mar = 0.8 (a) and 2.0 (b).

Present DNS Mixing layer
Ma 0.8 2.0 0.3 0.7 1.1

b11 0.320 0.328 0.26 0.29 0.36
b22 0.339 0.356 −0.16 −0.19 −0.22
b33 −0.284 −0.288 — — —
b12 −0.235 −0.211 0.19 0.19 0.19

TABLE 2. Peak values of the Favre-averaged Reynolds stress anisotropy for the near-wake
evolution. The mixing layer results are obtained from Pantano & Sarkar (2002).

to Rkk (since it is normal to the gradient of the mean flow). The cross-over between
b11 and b22 occurs as the spanwise coherent rollers emerge in the transitional wake
and contributes to important cross-wake mixing. These general results are very similar
to those in the high-speed mixing layer (Pantano & Sarkar 2002). The importance
of the anisotropy can be seen in the recent advances in turbulence modelling for
second-order closure. Recent three-equation turbulence models (Yoshizawa et al.
2012) have attempted to capture the Reynolds stress anisotropy through the formation
of a supersonic non-equilibrium parameters (which is a function of Mat), which in
turn results in a reduced spread rate in the high-speed mixing layer.

5.6. Transitional convection velocity
The velocity of convecting structures in free-shear flows plays a central role in
the entrainment of ambient fluid into the turbulent flow. In bluff-body wakes,
any modification to the convective velocity is therefore tied to the base pressure
(Kastengren, Dutton & Elliot 2007) and, consequently, the total drag of a body. The
effects of compressibility on the convection velocity of free-shear flows have been
subject to much debate, especially for the mixing layer. It has been suggested that
at high convective Mach numbers, the isentropic approximation does not capture the
velocity of convecting structures (Clemens & Mungal 1995): the convection velocity
is either higher or lower depending on the sub or supersonic nature of the co-flowing
streams. Other workers have suggested that the experimental difficulties of computing
this velocity may explain the non-isotropic convection velocity results (Thurow et al.
2008).
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FIGURE 15. (Colour online) Convection velocity at various temporal locations during
transition of the wake: (a) Mar= 0.8; (b) Mar= 2.0. A fourth-order polynomial is used to
interpolate all the discrete convective velocity profiles for clarity. The convection velocity
is based on the separation distance which maximizes the two-point correlation of density,
ρ, with τ = 4.

Any modification to the convection velocity caused by the compressibility effects in
the transitioning wake would greatly modify the dynamics of the flow and this issue
needs to be addressed for completeness. Different approaches to the computation of
the convective velocity have been proposed. To investigate Taylor’s hypothesis, del
Alamo & Jimenez (2009) computed the convective velocity in spectral space, Hussain
& Clark (1981) proposed a method based on the frequency–wavenumber spectrum
peak while Demetriades (1976) suggested a spatio-temporal correlation approach. In
the present work, the latter approach is used by finding the streamwise separation,
δx, which maximizes the peak cross-correlation coefficient for a given temporal
separation τ ; a similar approach was also used by Kim & Hussain (1993). Therefore,
the convection velocity of the structures is defined as

Uc = δx
τ
. (5.2)

As the δx is confined to a finite grid, we must judiciously choose a minimal temporal
separation, τ , which allows enough resolution to adequately determine the convection
velocity. If τ is too small, the convection velocity becomes limited by the spatial
resolution of the simulation. Alternatively, if τ is too large, the convection velocity
becomes an average value of little physical interest and the inherent parallel flow
assumption in this approach becomes questionable. For the current cases, τ = 4
was chosen as a baseline, it should be noted that the results remain unchanged
for τ = 8. The density is used to identify the maximal cross-correlation coefficient,
although other variables such as velocity, pressure and scalar field have also been
used employing the same procedure and yielded very similar results.

Figure 15 presents the difference between the local convection and mean velocity
normalized by the centreline defect. As the instantaneous convection velocity
represents an averaged value over a finite time window (τ = 4), the mean and
centreline velocities are computed over the same temporal span. The convection
velocity at the centreline differs drastically from the mean flow, the identified
structures convect at significantly faster speed than the mean centreline velocity.
This result should come as no surprise since any structure which drifts toward the
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FIGURE 16. (Colour online) Evolution of the magnitude of the maximum pressure and
density gradient (a) and the minimum and maximum pressure (b).

centreplane will naturally have a higher velocity. Similarly, the structures drifting
outside the wake have a lower velocity than the local mean flow. After transition,
the convection velocity outside the wake (≈y/b > 1.0) becomes equal to the mean.
Interestingly, the convection velocity is invariant to the Ma of the wake, a result which
comes as a surprise given the large centreplane discrepancy between the magnitude
of the transport term, recall figure 10.

5.7. Shocklet formation
Shocklets is the term used to describe a localized discontinuity caused by fluctuating
fields of turbulent eddies (Lee et al. 1991). They are known to occur in decaying
isotropic turbulence (Lee et al. 1991; Samtaney et al. 2001) and in mixing layers
(Sandham & Yee 1989; Papamoschou 1995; Vreman et al. 1996; Freund, Lele
& Moin 2000a,b). In the two-dimensional mixing layer simulations, the shocklets
appear at Mac = 0.7 (Sandham & Yee 1989); for three-dimensional simulations, a
higher convective Mach number is needed, approximately Mac = 1.2 (Vreman et al.
1996). In the case of the wake, Clemens & Smith (1998) observed eddy-induced
shocklets in the near-field wake (Mar > 0.9). These observations were primarily based
on the inspection of PLS images from a free-stream transitioning wake at Ma∞ = 3.
The presence of shocklets in the transitioning wake has the potential of greatly
modifying the dynamics of the flow, as shocks promote a rapid change from kinetic
to internal energy (i.e. dissipation) and also alters the eddies and turbulence via
vorticity–shocklet interactions. Given the low relative and turbulent Mach numbers
during the nonlinear stage of transition, it comes as no surprise that shocklets
are not observed in the present transitioning wakes. Nonetheless, the evolution of
the maximum local pressure, (∂p/∂xi · ∂p/∂xi)

1/2, and density, (∂ρ/∂xi · ∂ρ/∂xi)
1/2,

derivatives are shown in figure 16. Despite an important peak at t=100 (for Ma=2.0),
no clear evidence of a shocklet was observed in the instantaneous velocity field. The
turbulent Mach number peaks at 0.3, which is far below the minimum value for
shocklets to appear in decaying isotropic turbulence.

6. Numerical simulation: structural eduction
6.1. Formation and shape of rollers

Based on the flow visualization, Clemens & Mungal (1995) showed that the
compressibility effects modify the shape of the rollers in the mixing layer; as the
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0 10 20

X
30 40

FIGURE 17. Magnitude of the density gradient (at the middle of the spanwise
computational domain) for Mar = 0.8 at times (top to bottom) 41, 46, 51, 56, 62 and 76.

Ma increased, the rollers change from a circular to polygonal shape. Messersmith &
Dutton (1996) showed, using a more rigorous statistical approach, that the structures
become elongated and compressed with increasing compressibility. In the wake, the
experimental (Clemens & Smith 1998) and numerical (Chen et al. 1990; Watanabe
& Maekawa 2004) visualizations show initially circular rollers which deform and
tend toward an elliptical shape, although from the results, it is difficult to assess
if it is a transitional, a compressibility or purely shearing effect. To gain an overall
understanding of the transitional structures in the planar wake, a slice of the magnitude
of the density gradient, at various times, is shown in figures 17 and 18. These figures,
especially figure 18, highlight some of the limitations of temporal simulations. The
primary instability wavelength, as computed from the linear stability theory, dictates
the streamwise extent of the computational domain. As the flow evolves and the
principal wavelength becomes longer, the domain can no longer support an integer
number of structures and localized cross-wake pairing may arise (see figure 18 at
t= 93 and 109). These localized events should not limit the generality of our findings
but need to be considered in the analysis.

The two-dimensional slice provides a local and instantaneous representation of
the roller shape. Although the rollers are predominantly two-dimensional, there is a
non-negligible variation of the shape at different spanwise locations (this will become
obvious while discussing the three-dimensional structural visualizations in figures 25
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FIGURE 18. Magnitude of the density gradient (at the middle of the spanwise
computational domain) for Mar = 2.0 at times (top to bottom) 66, 78, 93, 109 and 122.

and 26). These spanwise variations are attributable to the internal core dynamic
instabilities of the rollers (Melander & Hussain 1994) and to local inhomogeneities
(Pradeep & Hussain 2001) in the spanwise direction. Therefore, we seek to generalize
the effect of compressibility on the evolution of a prototypical roller during transition.
To this effect, an eduction technique based on the λ2-criteria was developed (results
are very similar when using density or Q-criteria to identify the structures).

In the first step, we agnostically average the flow in the spanwise direction and
locate the mean vortex axis location by identifying the local peaks in the averaged
λ2. We visually confirm that these peaks correspond to the approximate axis of the
rollers. In the second step, the rollers are extracted in the spanwise direction using
a window of b/2 × b/2 (in the x–y plane) around each identified peak. Each roller
is remapped, using a second-order Lagrangian polynomial, onto a homogeneous grid
(in the x–y plane; z is already homogeneous) with a higher resolution (71× 71 for a
computational domain of b× b). The x–y slices at each z location are first correlated
to the spanwise-averaged slice. By offsetting the slice by up to 12 grid points in
each direction (which represents a maximal offset of approximately b/6 in x and
y-directions), we identify the offset which maximizes the autocorrelation coefficient.
The spanwise average, with the optimal offset, is computed with the slices which
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0 1

(a) (b) (c) (d) (e)

FIGURE 19. (Colour online) Evolution of the spanwise educed structure for Ma = 0.8
(at approximately x= 46) at times 46 (a), 48 (b), 52 (c), 54 (d) and 56 (e).

(a) (b) (c) (d) (e)

FIGURE 20. (Colour online) Formation of a roller from an instantaneous slice of the
spanwise vorticity for the low Mach number case (Ma = 0.8). Contour lines are ωz =
±0.25, 0.5, 0.75 and 1.0.

0 1

(a) (b) (c) (d) (e)

FIGURE 21. (Colour online) Evolution of the spanwise educed structure for Ma = 2.0
(at around x= 42) at times 76 (a), 84 (b), 88 (c), 90 (d) and 92 (e).

have an above average correlation coefficient. The remaining slices are discarded and
a bootstrapping technique is used. The new spanwise-averaged roller (with optimal
offset) is used to re-correlate all the slices, which are once more offset to maximize
the correlation; again, only the above average correlation coefficient slices are used for
the spanwise average. After 3 loops, we obtain a highly correlated coherent structure
(a similar approach has been proposed by Jeong et al. (1997)). The evolution of
the prototypical rollers during transition is unambiguously educed and presented in
figures 19 and 21. In order to confirm the validity of the educed features, figures 20
and 22 show the evolution of a typical roller from a single slice of spanwise vorticity.

The effects of compressibility on the roller formation of the planar wakes is
illustrated in figure 23. The increased ellipticity is a consequence of the combined
effects of an increased wavelength and a reduced growth rate with increasing
Mach number. Given an infinitesimal sinusoidal perturbation within a shear layer,
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(a) (b) (c) (d) (e)

FIGURE 22. (Colour online) Formation of a roller from an instantaneous slice of the
spanwise vorticity for the higher Mach number case (Ma= 2.0). Contour lines are ωz =
±0.05, 0.15, 0.3, 0.45 0.6 and 0.75. The approximate rotation angle of the principal axis
of the elliptical rollers is shown: (a) 35◦; (b) 50◦; (c) 95◦; (d) 120◦; (e) 145◦.

Tim
e

Time

(a) (b)

FIGURE 23. (Colour online) Conceptual sketch of the growth of a sinusoidal perturbation
in a shear layer. The wavelength, λ, increases and the growth Im(ω) decreases with Ma.
In a shear flow, the perturbations in a low-speed wake (denoted ls, (a)) will have a more
circular while the high-speed wake (denoted hs, (b)) will be more elliptical. The lines
correspond to the temporal evolution of a sinusoidal perturbation.

shown in figure 23, Im(ω) defines the linear grow of a perturbation in time. As
the perturbation grows, the shear pushes the vorticity toward the centrepoint of the
sinusoidal perturbation, hence forming the rollers. Naturally, the larger the growth
rate, the faster the roll-up process. In transitional wakes, the growth rate of the most
unstable mode is proportional to the conjugate diameter of the resulting elliptical
structure, while the transverse diameter is characterized by the wavelength of the
instability. Since the growth rate and wavelength are negatively coupled with varying
Mach number (recall the linear stability theory and figure 1), it comes as no surprise
that the higher Mach number (hence lower growth and longer wavelength of the most
unstable mode) leads to an increased ellipticity of the transitional structures.

The increasing ellipticity with Mach number is evidenced by the educed rollers in
figures 19 and 21 as well as by the two-dimensional slices of vorticity in figures 20
and 22. The present findings are in agreement with Messersmith & Dutton (1996)
who suggested that compressibility elongates the coherent structures in the mixing
layer. In contrast to our conceptual understanding of the roll up, the rollers show a
clear asymmetry with vorticity initially congregating towards the outer-wake side of
the rollers, see figures 20 and 22. As the roll-up process evolves, the point of the
largest vorticity rotates at the outer radius of the roller. Interestingly, the rotation of
the maximum vorticity mirrors the local peak in the location of the maximum density
fluctuations (at times t= 50 and 83 for Ma= 0.8 and 2.0, respectively) in figure 11.
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FIGURE 24. (Colour online) Evolution of the size of the spanwise rollers during transition.
The separation length of the first positive peak in the two-point correlation of the cross-
wake velocity was used to estimate the size of the rollers (a). Evolution of the ratio of
the cross-wake to streamwise separation of rollers with comparative line of the neutrally
stable configuration (b).

This result entails that the evolution of the roll-up process can be inferred from the
average statistics in the wake.

6.2. Evolution of roller configuration during transition
The effects of compressibility on the structural configuration of the rollers is
investigated. The evolution of the streamwise separation of the rollers, λ, is presented
in figure 24(a). It is defined as the first positive peak of the two-point correlation
with streamwise separation of the cross-wake velocity (λ is also invariant to the
use of other velocity or thermodynamic components for the correlation) at the wake
half-width. In order to unambiguously identify the first positive peak, the minimal
correlation coefficient was set to −0.15 for the first negative peak and 0.1 for the
first positive peak. For that reason, the values for t > 76 (Ma = 0.8) and t > 98
(Ma= 2.0) are not presented as the peaks in the streamwise correlation are too weak.
As expected from the linear stability theory, the increasing Mach number results in a
longer streamwise separation of the rollers. The plateau of λ during linear stage and
the roller formation stage, conforms surprisingly well with the calculated wavelength
of the primary instability mode from § 3.2 (recall that the wake half-width of the
linear stability calculations is twice that of the DNS): λlinear = 4.18 compared with
λDNS= 4.12 for Ma= 0.8. For the higher Mach number case, the difference is slightly
greater (λlinear=4.83 compared with λDNS=5.24). It should be noted that the monoton-
ically increasing wavelength with Ma is also observed for the lower-Re despite the
constant computational domain size. The pairing of rollers can be seen in the increase
of the streamwise separation in Ma= 0.8. As pairing does not occur simultaneously
for all rollers, there is an incremental roller separation from t > 60 (Ma = 0.8).
Interestingly, there is no noticeable increase in the length scale for Ma = 2.0 (and,
thus, no pairing): a result corroborated by the spectral analysis in figure 13.

The evolution of the wake half-width, b, is also shown in figure 24(a). The initial
linear stage of the wake evolution is characterized by low spread rates (up to t= 40
for Ma = 0.8 and t = 65 for Ma = 2.0). At the start of the nonlinear stage, a
very rapid lateral spreading occurs during which the rollers form and rotate; recall
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(a) (b) (c) (e) ( f )(d) (g) (h) (i)

FIGURE 25. (Colour online) Top view of the transition of Ma= 0.8 during transition at
t = 50 (a), 54 (b), 56 (c), 58 (d), 60 (e), 62 ( f ), 64 (g), 66 (h) and 68 (i). Isosurfaces
of λ2 coloured by the streamwise velocity. Each panel corresponds to 3/16 of the total
streamwise domain (Lx ≈ 12.7).

(a) (b) (c) (e) ( f )(d) (g)

FIGURE 26. (Colour online) Top view of the transition of Ma=2.0 during transition at t=
90 (a), 94 (b), 96 (c), 98 (d), 100 (e), 104 ( f ) and 108 (g). Isosurfaces of λ2 coloured by
the streamwise velocity. Each panel corresponds to ≈3/18 of the total streamwise domain
(Lx≈ 13.1).

figures 19 and 21. The spread rate during the roller formation stage decreases, albeit
very slightly, with Mach number (db/dt = 0.1155 and 0.1058; for Ma = 0.8 and
2.0, respectively). It should be noted that the lower-Re cases did not reveal a clear
monotonic trend with Mach number. After the rollers form and rotate 180◦ (see
figure 22 for the roller rotation), the lateral spreading levels off. For Ma= 2.0, there
is even a slight, temporary decrease in the lateral length scale of the wake caused by
the rotation of the elliptical rollers. As the transverse axis of the roller is oriented in
the cross-wake direction (90◦ rotation), the wake half-width is maximized; as 180◦
rotation is completed and the transverse axis becomes parallel to the streamwise
direction, the wake half-width is reduced, albeit temporarily.

The ratio of the cross-wake to streamwise roller separation, h/λ, (discussed in § 4)
is shown in figure 24(b). For the cross-wake separation, we use the location of the
maximum density fluctuations (figure 11) as a proxy. As expected, the ratio of h/λ
decreases with increasing Mach number during the roller formation stage. As the
rollers rotate, the peak density fluctuations gets pushed to the outer edge of the wake,
resulting in an increasing ratio of h/λ.

6.3. Visualization of the rollers and ribs
The top-view visualization of the rollers, in figures 25 and 26, offers a different
perspective to understand the effects of compressibility on the vortex array
configuration. The cumulative effects of the increased streamwise roller separation
(§ 3 and previous subsection) and an inhibited streamwise communication between
rollers on the same row (§ 4) drastically modifies the interaction between the rollers.
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(a) (b)

h

FIGURE 27. (Colour online) Illustrative effects of compressibility on the domain of
influence of the rollers. In typical low-speed wakes (ls), communication occurs primarily
between neighbouring vortices along the same row (a). In higher-speed wakes (hs), the
domain of influence is predominantly in the cross-wake direction (b).

FIGURE 28. (Colour online) Organization of the rib vortices (isosurface of Q= 0.5) with
respect to the spanwise rollers at Ma= 2.0 at t= 92. The rollers are identified by a two-
dimensional contour plot of the λ2-criteria.

As the compressibility effects become more important, there is an increasing
cross-wake and reduced streamwise interaction, see illustration 27, which eventually
impedes the pairing of rollers, as the roller pairing implies a mutual induction between
neighbouring coherent structures. This inhibited pairing is observed in figure 26 and
in the corresponding statistics of the streamwise separation figure 24(a). Presumably,
in the fully turbulent region, pairing or amalgamation of turbulent rollers occurs but,
unlike the Ma= 0.8 case in figure 25, it is not a transitional feature.

The increased cross-wake communication, longer roll-up time and the inhibited
structural pairing in the high-speed wake promotes the formation of well-organized
rib structures which connect rollers on the opposite side of the centreplane.
Figure 28 shows the organization of the rib structures with respect to the primarily
two-dimensional rollers in the case of Ma = 2.0. The rib-structures are highly
organized and survive throughout transition: a clear contrast to the incompressible and
low-speed wakes. The very-well-organized rib structures are a striking feature of the
experimental work by Clemens & Smith (1998), shown in figure 29. The increased
stability of the high-speed rollers results in the transition of the secondary rib
structures before the principal rollers become fully turbulent. Signs of rib breakdown
events can be inferred from experimental visualizations by Clemens & Smith (1998)
and from the numerical work by Watanabe & Maekawa (2004). The breakdown of the
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(b)(a) (c)

FIGURE 29. Experimental roller visualization for a planar wake at Ma= 3.0 (reproduced
with permission from Clemens & Smith 1998).

rib structures of the high-speed planar wake was recently reported in a complementary
study by Hickey & Wu (2015).

7. Discussion and conclusions
Many previous investigations have downplayed the importance of the compressibility

effects in high-speed wake flows. It is true, at least qualitatively, that the increasing
Ma does little to modify the general features of transition (e.g. two-dimensionality
of primary instability modes, rib-structure formation), especially in comparison with
the drastic changes observed in the transitioning high-speed mixing layer. In the
present work, we highlight the insidious effects of compressibility on the emerging
structures, along with the concomitant changes to the statistics during the transition
of plane wakes. The structural modification is caused by two important features:
(i) modification of the time and length scales imposed by the most unstable linear
mode (recall figure 1), and (ii) alteration of the communication paths between
neighbouring coherent structures (recall figure 4). These features modify the emerging
rollers, their staggered spatial arrangement and their ability to merge during transition
(recall figures 17 and 18). The effects of the structural changes on the transitional
turbulence statistics are explored in the present work.

The cause of the structural differences in the emerging transitional rollers stems
from a reduced exponential growth rate and an increased wavelength of the primary
instability mode with increasing Mar. The most unstable spectral mode imposes a time
and a length scale to the laminar base wake flow. Two direct consequences of the
increased wavelength are: an increased streamwise separation between adjacent rollers;
and an obviously increased circulation of the individual rollers. Based on a geometric
interpretation of the characteristic lines in the wake, we show that with an increasing
Ma, communication between neighbouring rollers is reduced along the same row but
enhanced in cross-wake direction.

Direct numerical simulations support our claims inferred from theoretical
considerations. Our work sheds light on the increasing ellipticity of the transitional
structures in the high-speed free-shear flows. The ellipticity is a result of length
and time scales imposed by the linear stability characteristics. As the exponential
growth rate is reduced (slower roll up and reduced minor axis of the ellipse) and
the wavelength increased (stretched major axis of the ellipse), the resulting structures
become increasingly elliptical. The eduction technique clearly shows the rotation of
the elliptical rollers during transition. As the highly elliptical rollers complete a 180◦
rotation and the transverse axis is parallel to the streamwise direction (see figure 18
at time t = 93) the wake spreading is temporally hindered as the contribution of the
rollers to the mean velocity is located closer to the centreplane. For the Ma= 2.0 case,
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there is even a temporary decrease of the wake half-width. The increased ellipticity
of the rotating rollers acts to push the structures further away from the centreplane.
It can be inferred that the structures, located farther from the centreplane, impart a
memory to the wake which results in the outward drift of the maximum TKE location
with increasing Mach number experimentally observed by Bonnet et al. (1991) and
Gatski & Bonnet (2009). A far-wake compressible planar wake simulation would be
necessary to unequivocally confirm this hypothesis.

The simulation results also revealed that the increased streamwise separation and
inhibited streamwise communication eventually limit the roller pairing: an important
feature of low-speed wake transition. The lack of pairing is clearly highlighted by
our structural visualization between the Ma = 0.8 (figure 25) and 2.0 (figure 26)
cases. Interestingly, the lack of roller pairing means that there is an increased
two-dimensionality during transition with increasing Ma, a result which is also
evident in the experimental visualizations of bluff-body wakes (see Nakagawa &
Dahm (2006), figures 2 and 3). The three-dimensional varicose mode (for Ma> 1.2),
found in the linear stability analysis, plays a negligible role in the wake transition.
This is an expected result, since the growth rate of the primary, sinuous mode is
approximately three times larger at all investigated Mach numbers. The reduced
growth of the primary instability mode combined with the increased stability of the
roller arrays (due to the lack of structural pairing) with increasing compressibility
mean that the connecting ribs have a drastically longer life time and develop intricate
structures which are very stable and well defined.

A closer look at the transitional statistics reveals that shocklets do not play a
significant role in the transition of planar wake up to an initial relative Mach number
of Ma= 2.0. Furthermore, the anisotropy of the Reynolds stress tensor is increased by
the compressibility effects through an impeded pressure redistribution term, although
the greatest variability is observed in the linear regime of the wake. As the wake
transitions, there is a return to isotropy which is invariant to the initial level of
compressibility in the wake. Finally, the convection velocity is independent of the
initial Mach number during the entire transitional wake evolution.

The present work contributes to a better understanding of high-speed wake
transition. Some questions raised will require further studies. Some of the unresolved
are: (i) effect of ellipticity on the induced flow; (ii) stability of compressible staggered
vortex array; and (iii) characterization of the maximal Mach number for roller pairing.
Studies of these questions will contribute to a more comprehensive understanding of
wake transition mechanisms and potentially open new paths for the control of these
high-speed free-shear flows.
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Appendix
Care was taken to resolve all scales of turbulence during transition. Figure 30(a)

shows the evolution of the minimal ratio of the Kolmogorov length scale to the grid
spacing during the entire simulation. For all simulations, the coarsest resolution is
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FIGURE 30. (Colour online) Evolution of the minimal ratio of η/1x during transition (a);
simulations at Re= 1500 (dashed lines) and Re= 3000 (full lines). Grid convergence test
based on the evolution of the peak turbulent kinetic energy for the wake at Ma= 2.0 (b)
and the streamwise dissipation (c) using three different grid densities: 77, 413 and 619
million nodes.

only slightly below unity; therefore we can confidently state that all the scales of
turbulence are adequately resolved by our simulations. A grid convergence study
was done by comparing the evolution of the maximal turbulent kinetic energy and
the streamwise dissipation for three different grid resolutions (all other parameters
remained unchanged, see table 1): 77 × 106 (1/2 grid in each direction), 413 × 106

(1/
√

2 grid in each direction) and 619 × 106. The grid convergence is shown in
figure 30(b,c); other statistical parameters such as integrated production show a
similarly good agreement (less than 1.6 % of the peak production value). Needless to
say that the agreement of the mean profiles are nearly perfectly captured among the
different grid resolutions.
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