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SUMMARY
In this paper, we study the kinematic effects of number of legs in 6-DOF UPS parallel manipulators.
A group of 3-, 4-, and 6-legged mechanisms are evaluated in terms of the kinematic performance
indices, workspace, singular configurations, and forward kinematic solutions. Results show that the
optimum number of legs varies due to priorities in kinematic measures in different applications.
The non-symmetric Wide-Open mechanism enjoys the largest workspace, while the well-known
Gough–Stewart (3–3) platform retains the highest dexterity. Especially, the redundantly actuated
4-legged mechanism has several important advantages over its non-redundant counterparts and
different architectures of Gough–Stewart platform. It has dramatically less singular configurations, a
higher manipulability, and at the same time less sensitivity. It is also shown that the forward kinematic
problem has 40, 16, and 1 solution(s), respectively for the 6-, 3-, and the 4-legged mechanisms.
Superior capabilities of the 4-legged mechanism make it a perfect candidate to be used in more
challenging 6-DOF applications in assembly, manufacturing, biomedical, and space technologies.

KEYWORDS: Redundant mechanisms; Gaugh–Stewart platform; Screw theory; Kinematic indices;
Singularity analysis; Workspace.

1. Introduction
Mechanism design is one of the key issues in any robotic application.1 Parallel Mechanisms (PMs)
were first introduced by Gough and Whitehall2 with an application in tire-testing equipment, followed
by Stewart,3 who designed a PM to be used in a flight simulator. The well-known Gough–Stewart
platform is a 6-legged UPS PM with one linear actuator in each leg,4 where U, P, and S denote
universal, prismatic, and spherical joints, respectively. Although Gough–Stewart platform possesses
notable load carrying characteristics, however these properties deteriorate rapidly with rotation of the
moving platform. The very nature of the Gough–Stewart platform limits the orientational workspace
to relatively small rotations, suffering from parallel singularities.5, 6

With ever-increasing demand on the robot performance, redundant mechanisms, which are more
capable and stiffer than their non-redundant counterparts, have attracted more attention in recent years.
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Actuation redundancy eliminates singularity, enlarges the usable workspace, and greatly improves
dexterity and manipulability.7–12 Redundant actuation also increases the dynamical capability of a PM
by increasing the load-carrying capacity and acceleration of motion, optimizing the load distribution
among the actuators and reducing the energy consumption of the drivers.13–16

Using kinematic redundancy, several modifications of Gough-Stewart platform have been proposed
to enhance its workspace. Wang and Gosselin17 introduced a spatial 7-DOF kinematically redundant
PM, by adding one additional revolute joint to the Gough–Stewart platform, which can be rotated
around the vertical axis. Kotlarski et al.18 introduced a kinematically redundant PM by adding an
active prismatic joint to the Gough–Stewart platform. Gosselin and Schreiber6 included kinematically
redundant parallel legs in a Gough–Stewart platform, resulting in a 9-legged PM, to alleviate the
orientational limitations due to singularities. In the above mentioned mechanisms, the number of
legs and/or moving limbs, e.g. prismatic actuators, have been increased from that of the original
Gough–Stewart platform, leading to the inescapable handle of moving mass inertias, reducing the
dynamic performance due to lower achievable accelerations.

On the other hand, from the design point of view, by replacing the passive universal joints in the
Gough–Stewart platform with active joints, the number of legs could be reduced from 6 to 3 or 4.19, 20

This makes the mechanism lighter, since the rotary actuators are resting on the fixed platform, which
allows for higher accelerations to be achieved due to smaller inertial effects. The resultant 3-legged
and 4-legged 6-DOF UPS mechanisms have two active actuators, one rotary and one prismatic, in
each leg. It makes the 3-legged and 4-legged PMs to be non-redundant, and redundantly actuated
mechanisms, respectively.

The purpose of the present study is to analyze and compare a group of 3-, 4-, and 6-legged 6-DOF
UPS parallel manipulators, including the well-known architectures of the Gough–Stewart platform.
The rest of the paper is organized as follows. In Section 2, the six 6-DOF redundant or non-redundant
mechanisms which are to be compared are described. The inverse and forward kinematic analyses of
the mechanisms are performed in Sections 3 and 4, respectively. Jacobian analysis is then performed
in Section 5. In Section 6, the characteristics of the mechanisms are studied and compared in terms
of the performance indices, workspace, singularity, and forward kinematic solutions. Two potential
applications of the Wide-Open and 4-legged mechanisms (4L) are discussed in Section 7. Finally,
a conclusion on the advantages of each proposed mechanism and their potential applications are
provided in Section 8.

2. Mechanisms Description
The schematics of the 6-DOF non-redundant 3-legged and redundant 4L, as well as three architectures
of the Gough–Stewart platform, are shown in Fig. 1. By replacing the passive universal joints in the
Stewart mechanism with active joints, the number of legs could be reduced from 6 to 3 or 4. This
change makes the mechanism to be lighter, since the rotary actuators are resting on the fixed platform,
which causes higher accelerations to be available due to smaller inertial effects.

The basic non-redundant 3-legged mechanism has a symmetric structure.19 The Wide-Open 3-
legged mechanism has a similar structure but the legs are configured non-symmetrically on semicircles
on the base and moving platforms. The redundant 4L, on the other hand, has a symmetric structure
but includes an additional leg in comparison with the 3-legged systems.

Each leg in these systems is composed of three joints; universal, prismatic, and spherical (Figs.
2 and 3). A rotary actuator and a linear actuator are used to actuate each leg. The rotary actuators,
whose shafts are attached to the lower parts of the linear actuators through the universal joints, are
placed on the corners of the fixed platform.20–22 The spherical joints connect the upper parts of the
linear actuators to the moving platform.

As shown in the Fig. 3, coordinate Ci(Ai ,xi ,yi ,zi) is assumed to be attached to the base platform
with its xi axis aligned with the rotary actuator in the xi direction, and its zi axis perpendicular to the
fixed platform. xi is rotated by γi from the X direction of fixed platform coordinate A(O, X, Y, Z). The
rotary actuators are located at the positions Ai (for i = 1, 2, 3, 4) of the base platform and each shaft
is connected to the lower part of the linear actuators through a universal joint (Fig. 1). The upper parts
of linear actuators are connected to the moving platform, Bi points, through spherical joints (Fig. 3).

Cartesian coordinates A(O, x, y, z) and B(P, u, v, w) represented by {A} and {B} are attached to
the base and moving platforms, respectively. In Fig. 3, si represents the unit vector along the axes of
ith rotary actuator and di is the vector along AiBi with the length of di . Assuming that each limb is

https://doi.org/10.1017/S0263574716000862 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574716000862


Effects of number of legs in 6-DOF parallel mechanisms 2259

Fig. 1. Schematics of the 3- or 4-legged non-redundant and redundant mechanisms and Gough–Stewart platforms.
Moving platform of all the mechanisms have six degrees of freedom. The mechanisms differ in the structure,
number, and attachment positions of their legs. The 3- and 4-legged mechanisms have two active joints in each
leg (one rotary and one linear), while the Gough–Stewart platforms have only a linear actuator in each leg.

connected to the fixed base by a universal joint, the orientation of ith limb with respect to the fixed base
can be described by two successive rotations, rotation θi around the axis si, followed by the rotation
ψi around ni, which is itself perpendicular to both di and si (Fig. 3). It is to be noted that θi and di are
active joints actuated by the rotary and linear actuators, respectively, while , ψi is an inactive joint.

3. Inverse Kinematic Analysis
Inverse kinematic analysis is a necessary step toward studying the parallel manipulators, which helps
determining their applicability and performance characteristics. In this section, a general formulation
for inverse kinematic analysis of all mechanisms under study is provided. The kinematic variables of
the mechanisms are shown in Figs. 2–4.

Referring to Fig. 4, ai and bi represent OAi and PBi , respectively. We can express bi in the
moving coordinate {B} as Bbi = PBi)B . ai and Bbi are constant vectors and are respectively equal
to ai = g[ cos γi sin γi 0 ]T and Bbi = h[ cos γi sin γi 0 ]T , where g is the radius of the fixed
platform, and h is that of the moving platform. The rotation matrix from {A} to {B}, A

BR = [
rij

]
, can

be expressed using Euler angles as

A
BR =

⎡
⎢⎣

cα2cα3 −cα2sα3 sα2

cα3sα2sα1 + sα3cα1 −sα3sα2sα1 + cα3cα1 −cα2sα1

−cα3sα2cα1 + sα3sα1 sα3sα2cα1 + cα3sα1 cα2cα1

⎤
⎥⎦ , (1)
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Fig. 2. Leg structure and attachment angles (γi’s) of the 3- and 4-legged mechanisms and Gough–Stewart
platforms. The leg attachment angles are the same for 4L, WO, and 3L mechanisms, but different for Gough–
Stewart platforms. The 4L mechanism is the only redundantly actuated manipulator.

where sα1 = sin α1, cα1 = cos α1, and so on. α1, α2, and α3 are three Euler angles defined according
to the x − y − z convention. Thus, the vector Bbi would be expressed in the fixed frame {A} as
bi = A

BRBbi.
Let p = [x y z ]T denote the position vector of the center of the moving platform. Vector di, which

represents AiBi , can be written as

di = p + bi − ai. (2)

Therefore, di can be expressed as

di =

⎡
⎢⎣

x − xi

y − yi

z − zi

⎤
⎥⎦ , (3)
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Fig. 3. Universal joint variables of ith leg are shown. θi is the active rotation around xi axis, followed by the
passive ψi rotation around ni axis.

Fig. 4. Kinematic variables and infinitesimal screws in each leg.

and its Euclidean norm di , which is |AiBi |, can be expressed as

di =
√

(x − xi)2 + (y − yi)2 + (z − zi)2, (4)

in which,

⎧⎪⎨
⎪⎩

xi = −h (cos γi r11 + sin γi r21) + g cos γi,

yi = −h (cos γi r12 + sin γi r22) + g sin γi,

zi = −h (cos γi r13 + sin γi r23) .

(5)

Coordinates Ci(Ai, xi, yi, zi) are attached to the base platform with their xi axes aligned with the
rotary actuators in the si directions, with their zi axes perpendicular to the fixed platform (Fig. 3).
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Thus, one can express vector di in {Ci} as

Ci di = di

⎡
⎢⎣

sin ψi

− sin θi cos ψi

cos θi cos ψi

⎤
⎥⎦ . (6)

From the geometry, it is clear that

di = A
Ci

RCi di, (7)

where A
Ci

R is the rotation matrix from {Ci} to {A},

A
Ci

R =

⎡
⎢⎣

cos γi − sin γi 0

sin γi cos γi 0

0 0 1

⎤
⎥⎦ . (8)

By replacing Eqs. (6) and (8) into Eq. (7), and using Eq. (3), ψi and θi can be calculated as follows:

ψi = sin−1

(
cos γi(x − xi) + sin γi(y − yi)

di

)
, (9)

and

θi = sin−1

(
sin γi(x − xi) − cos γi(y − yi)

di cos ψi

)
. (10)

Finally, the active joint variables for the 4L, WO, and 3L mechanisms are di and θi which are
shown in Eqs. (4) and (10), respectively. Active joints in Gough–Stewart platform are only di’s,
Eq. (4).

4. Forward Kinematic Analysis
The forward kinematic problem of Gough–Stewart platform has been shown to have a large number of
40 solutions.23–25 In this section, we derive the equations which solve the forward kinematic problem
of the proposed 3-legged, Wide-Open, and 4-legged parallel manipulators. The forward displacement
analysis consists of finding all the reachable poses of the moving platform as observed from the base
for a given set of active joints θi and di . This problem is approached here by considering the fact that
the pose of any rigid body can be specified by the coordinates of any three points attached to it. Thus,
the pose of the moving platform with respect to the fixed platform can be fully determined using
the coordinates of points Bi (for i = 1, 2, 3) with respect to the fixed reference frame {A}, which is
denoted as ri, where

ri = ai + A
Ci

RCi di. (11)

By replacing ai, A
Ci

R, and Ci di from Section 3 into Eq. (11), ri is obtained as

ri = di

⎡
⎢⎣

cos γi sin ψi + sin γi sin θi cos ψi

sin γi sin ψi − cos γi sin θi cos ψi

cos θi cos ψi

⎤
⎥⎦ + g

⎡
⎢⎣

cos γi

sin γi

0

⎤
⎥⎦ . (12)
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Using the geometry of the moving platform and the distance between points Bi , the following
equations are readily obtained:

(r1 − r2)T · (r1 − r2) = |B1B2|2,
(r1 − r3)T · (r1 − r3) = |B1B3|2,
(r2 − r3)T · (r2 − r3) = |B2B3|2,

(13)

where |B1B2|, |B1B3|, and |B2B3| are respectively
√

2h, 2h, and
√

2h for Wide-Open mechanism,
while they are all equal to

√
3h for the 3-legged one.

After replacing ri’s in Eq. (13) with those in Eq. (11), the only unknown variables would be the
inactive ψi joints. Therefore, one can solve a set of three equations (13) with three unknowns ψi’s.
Using the tangent half-angle formula, sin ψi and cos ψi can be respectively replaced by 2ti/(1 + t2

i )
and (1 − t2

i )/(1 + t2
i ), where ti = tan (ψi/2). Using the Bezout’s theorem,26 it can be shown that Eqs.

(13) have 16 solutions, at most.27 It is incredibly less than the 40 solutions of forward kinematics in
Gough–Stewart platform.23–25

For the redundant 4L, auxiliary equations can be used as

(ri − r4)T · (ri − r4) = |BiB4|2, (14)

in which i = 1, 2, 3. It is to be noted that |B1B4|, |B2B4|, and |B3B4| are respectively
√

2h, 2h, and√
2h. In Section 6.4, the forward kinematic solutions of the proposed mechanisms are evaluated and

compared through a numerical example.

5. Jacobian Analysis Using Screw Theory
Jacobian matrix is a common asset for analyzing the singularity in a mechanism.5 In this section,
the jacobian analysis of the proposed PMs are approached by using the theory of screws (see
ref. [21,28–30]). Zhao et al.31 have proposed an intuitive geometrical approach to obtain the reciprocal
screws in PM. In what follows, we have used their approach in conducting the reciprocal screws in
the mechanisms.

The joint velocity vector of the redundant 4L mechanism, q̇4L, is an 8 × 1 vector:

q̇4L = [ θ̇1 θ̇2 θ̇3 θ̇4 ḋ1 ḋ2 ḋ3 ḋ4 ]T , (15)

in which θ̇i and ḋi are the angular and linear velocities of the rotary and linear actuators, respectively.
However, joint velocity vector in the non-redundant WO and 3L mechanisms, q̇WO and q̇3L, are 6 × 1
vectors:

q̇WO = q̇3L = [ θ̇1 θ̇2 θ̇3 ḋ1 ḋ2 ḋ3 ]T . (16)

Finally, joint velocity vector of the Gough–Stewart platforms are

q̇St. = [ ḋ1 ḋ2 ḋ3 ḋ4 ḋ5 ḋ6 ]T . (17)

The linear and angular velocities of the moving platform are defined to be v and ω, respectively.
Thus, ẋ can be written as a 6 × 1 velocity vector:

ẋ = [vT ωT ]. (18)

Jacobian matrices relate q̇ and ẋ as follows:

Jx ẋ = Jq q̇, (19)
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where Jx and Jq are forward and inverse jacobian matrices, respectively. By defining J = J−1
q Jx , we

rewrite Eq. (19) as

q̇ = Jẋ. (20)

The concept of reciprocal screws is applied to derive Jx and Jq .32, 33 The reference frame of the
screws is point P of the moving platform. Figure 4 shows the kinematic chain of each leg, where

universal joints are replaced by intersection of two unit screws, $̂1 and $̂2. $̂1 = [
s1,i

(bi − di ) × s1,i
] and

$̂2 = [
s2,i

(bi − di ) × s2,i
], where s1,i and s2,i are unit vectors. Spherical joints in each leg are replaced by

intersection of three unit screws, $̂4, $̂5, and $̂6. $̂4 = [
s4,i

bi × s4,i
], $̂5 = [

s5,i

bi × s5,i
], and $̂6 = [

s6,i

bi × s6,i
],

where s4,i = s1,i . s6,i is the unit vector along the linear actuator, and s5,i = s6,i × s4,i . $̂3 = [
0

s3,i
]

explains the prismatic joint. It is to be noted that s3,i = s6,i . Each leg can be assumed as an open-loop
chain to express the instant twist of the moving platform by means of the joint screws:

$̂P = ψ̇i $̂1,i + θ̇i $̂2,i + ḋi $̂3,i + φ̇1,i $̂4,i + φ̇2,i $̂5,i + φ̇3,i $̂6,i . (21)

By taking the orthogonal product of both sides of Eq. (21) with reciprocal screw $̂r1,i = [
s3,i

bi × s3,i
],

one can eliminate the inactive joints and rotary actuator which yields Eq. (22):

[
di

T

di

(bi × di)
T

di

]
ẋ = ḋi . (22)

Similarly, if one takes the orthogonal product of both sides of Eq. (21) with reciprocal screw

$̂r6,i =

⎡
⎢⎣

si × di

di cos ψi

bi × si × di

di cos ψi

⎤
⎥⎦ the resultant is as follows:

[
(

si × di

di cos ψi

)
T

(bi × si × di

di cos ψi

)
T

]
ẋ = di cos ψiθ̇i . (23)

Note that in Eq. (23), |si × di | = di cos ψi .
Finally, using Eqs. (22) and (23), jacobian matrices J 4L

x and J 4L
q are expressed as

J 4L
x =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(s1 × d1)T (b1 × (s1 × d1))T

(s2 × d2)T (b2 × (s2 × d2))T

(s3 × d3)T (b3 × (s3 × d3))T

(s4 × d4)T (b4 × (s4 × d4))T

d1
T (b1 × d1)T

d2
T (b2 × d2)T

d3
T (b3 × d3)T

d4
T (b4 × d4)T

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (24)

and

J 4L
q = diag(d2

1 cos2ψ1, d
2
2 cos2ψ2, d

2
3 cos2ψ3, d

2
4 cos2ψ4, d1, d2, d3, d4). (25)
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Similarly, forward and inverse jacobian matrices for non-redundant mechanisms can be expressed
as

JWO
x = J 3L

x =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(s1 × d1)T (b1 × (s1 × d1))T

(s2 × d2)T (b2 × (s2 × d2))T

(s3 × d3)T (b3 × (s3 × d3))T

d1
T (b1 × d1)T

d2
T (b2 × d2)T

d3
T (b3 × d3)T

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (26)

and

JWO
q = J 3L

q = diag(d2
1 cos2ψ1, d

2
2 cos2ψ2, d

2
3 cos2ψ3, d1, d2, d3). (27)

Also for the Stewart platforms we will have

J St.
x =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d1
T (b1 × d1)T

d2
T (b2 × d2)T

d3
T (b3 × d3)T

d4
T (b4 × d4)T

d5
T (b5 × d5)T

d6
T (b6 × d6)T

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (28)

and

J St.
q = diag(d1, d2, d3, d4, d5, d6). (29)

Based on the existence of the two jacobian matrices above, the mechanism is at a singular
configuration when the determinant of either Jx or Jq is either zero or infinity.19, 21 We will analyze
the derived jacobian matrices in Section 6.

6. Results and Discussion
In order to investigate the performance of the mechanisms under study, the responses of the
mechanisms are analyzed and compared in several different aspects, including the kinematic indices,
workspace, and singularity analysis.

6.1. Kinematic indices
Several indices have been proposed to evaluate the performance of a manipulator. The performance
indices are usually based on the determinant, norms, singular values, and eigenvalues of the jacobian
matrix. These indices have physical interpretations, they give us more insight into the mechanisms
performance in various aspects, and they are also useful for control and optimization purposes.

To compare the kinematic performance of the six mechanisms, we consider a number
of different performance indices, namely Manipulability Index,34, 35 Dexterity Index,36 and
Translational/Rotational Sensitivity Index.37 Consider the mechanisms with g = 0.156 (m) and
h = 0.102 (m), where g and h are the radii of the fixed and moving platforms, respectively. Figure 5
shows the selected plane z = 0.3 (m), in which the indices measurements have been taken place at
the center of moving platform, P . The results illustrated in Fig. 6 show how performance indices
vary on the plane z = 0.3 (m) within the [−0.4, 0.4] × [−0.4, 0.4] (m2) area.

Figure 6 indicates that the 4L has the highest manipulability index compared to the other
mechanisms. It means that adding one leg to the symmetric or Wide-Open 3-legged mechanism
can significantly improve the manipulability of the mechanism. Figure 6 also shows that compared to
the other mechanisms under study, Stewart (3–3) and then the 4L have the highest dexterity indices.
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Table I. Comparison of the global performance indices of the six mechanisms under study in the entire
workspace.

The higher, the better The lower, the better

Mechanism Manipulability35 Dexterity36 Trans. sens.37 Rot. sens.37

4L 0.027 0.095 0.510 8.424
WO 0.015 0.059 0.602 10.629
3L 0.024 0.078 0.584 9.152

Stewart (3–3) 0.024 0.113 2.854 20.249
Stewart (3–6) 0.014 0.073 4.614 35.032
Stewart (6–6) 0.003 0.018 6.005 62.557

X

Y

Z

O

P

z=0.3 (m)

0.22 (m
)<

d <
0.4 (m

)
i

0.156 (m)

0.102 (m)

Fig. 5. Mechanical constraints of the legs, dimensions of the mechanisms, and illustration of the constant z
plane in the numerical solutions.

In the next step of performance comparison of manipulators, translational and rotational
sensitivities of the mechanisms of interest are compared. As it is shown in the figure, the 4L has less
translational sensitivity index by far. Moreover, it is clear that similar to the displacement sensitivity,
the rotational sensitivity of the 4L is less than the other mechanisms.

To compare the kinematic performance of manipulators over the entire workspace, the Global
Performance Index (GPI) can be evaluated as38

GPI =
∫
W

PI dW∫
W

dW
, (30)

which is the average value of the local Performance index (PI) over the Workspace (W). The values
of GPI for Manipulability, Dexterity, Displacement Sensitivity, and Rotation Sensitivity indices are
calculated and the results are listed in Table I.

Table I shows that the 4L has a better global manipulability within the selected workspace,
which explicitly indicates a better ability for transmitting a certain velocity to its end-effector.
As it is seen from Table I, the Stewart (3–3) platform has the highest global dexterity compared
to other mechanisms with the 4L being at the second position. This reveals that the Stewart
(3–3) platform and the 4L have a better kinematic accuracy. Also, by comparing the values of
translational and rotational sensitivities, it is obvious the 4L is an appropriate candidate for industrial
applications due to its lower sensitivity. In general, based on the results shown in Table I, the 4L
is found to have a better kinematic performance in comparison with the other mechanism under
study.

6.2. Workspace
The workspaces of the mechanisms under study within a cubic space were determined in terms
of their reachable points. The minimum and maximum lengths of the legs are set to be 0.22
(m) and 0.4 (m), respectively (see Fig. 5). The other physical constraint is the rotation limit of
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Fig. 6. Kinematic performance indices, namely Manipulability Index,34, 35 Dexterity Index,36 and
Translational/Rotational Sensitivity Index,37 of the six mechanisms under study at z = 0.3 (m).

spherical joints which is considered to be ±50◦. By assuming a cubic with 0.6 (m) length, 0.6
(m) width, and 0.18 (m) height located 0.31 (m) above the base platform, we are interested in
determining the space volume where each mechanism can successfully reach the locations within this
cube.

The results, illustrated in Fig. 7, indicate that the 3-legged and 4L have much larger workspaces
in comparison with the (3–6) and (3–3) Stewart Platforms. This is due to the fact that in the 6-legged
Stewart-like UPS mechanisms, the workspace is constructed by intersection of six spheres. However,
in the 3- and 4-legged UPS mechanism, the workspace is constructed by intersection of only three or
four spheres. Assuming similar dimensions for the two mechanisms, a larger workspace would not
be unexpected for the 3- and 4-legged mechanisms.
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Fig. 7. Workspaces of the mechanisms under study.

On the other hand, as can be seen in the figure, adding one leg to the basic 3-legged mechanism
reduces the workspace by about 5%. However, the quality of the workspaces is not the same. Although
the redundant mechanism has a relatively smaller workspace, it has much less singular configurations
within this space in comparison with the non-redundant mechanism, as well as lower actuator forces
and torques.

6.3. Singularity
Singularity of parallel manipulators implies significantly more complicated problems compared
to serial mechanisms. Several types of workspace can be considered to determine the singular
configurations within. For example, the 3D constant orientation workspace, which describes all
possible locations of an arbitrary point P in the moving system with a constant orientation of the
moving platform, the reachable workspace (all locations that can be reached by P ), the orientation
workspace (all possible orientations of the end-effector around P for a given position), or the inclusive
orientation workspace (all locations that can be reached by the origin of the end-effector with every
orientation in a given set).20

Here, we used the inclusive orientation workspace, where for every position in a fixed surface, the
moving platform is rotated in every possible orientation, to determine if a configuration is singular or
not. After trials and errors, it is found that for a better determination of the singular configurations,
the roll-pitch-yaw rotation about the global coordinate provides the most critical set of rotations
compared to the other alternatives such as the reduced Euler rotations.
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Fig. 8. The results of the singularity analysis in Z plane for the mechanisms under study.

To illustrate the positive effects of redundancy on eliminating the singular configurations, a
Jacobian analysis was performed in planes with different orientations in the workspace. Figure 8
illustrates the results obtained for the mechanisms under study at the plane z = 0.3 (m). The moving
platforms were rotated simultaneously in three different directions according to the roll-pitch-yaw
Euler angles discussed above. For each position, if the mechanism did not encounter any singular
configuration after 45◦ rotation, it was represented by light gray. If there was any singular configuration
after 30◦ rotation but not after 15◦ rotation, it was shown with dark gray. Finally, if the singular
configuration occurred in the first 15◦ rotation, it was represented by black.

As seen from Fig. 8, for the 3-legged mechanisms, there are singular configurations in most of the
regions (dark gray and gray regions). However, for the redundant 4L, there is no singular points in
the z plane. These results approve the great effect of a simple redundancy; namely, the addition of a
leg to the 3-legged mechanism in removing lots of singular configurations.
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Table II. Forward kinematic solution of the 4-
legged mechanism. The data correspond to the
position of the center of the moving platform.

Solution x (m) y (m) z (m)

1 0.1000 0.2000 0.3000

Fig. 9. Schematics of the forward kinematic solution of the 4-legged mechanism. Both isometric and top views
of the mechanism are illustrated. Four legs connect the moving platform to the fixed one.

6.4. Forward kinematic solutions
In this section, we evaluate and compare the solutions of the forward kinematic problem of the
proposed mechanisms through a numerical example. Consider the center of the moving platform is
located at [0.1, 0.2, 0.3] (m), and the orientation of the moving platform is defined by three successive
Euler angles of π/6, π/6, and π/6 in x − y − z convention. Using the inverse kinematic equations,
i.e. Eqs. (4) and (10), the values for active joints di’s and θi’s are readily computed using the position
and orientation of the moving platform. It is to be noted that the only active joints in Gough–Stewart
platforms are di’s. After deriving the values of the active joints for all the proposed mechanisms, we
attempt regenerating the location of the moving platform using the forward kinematic formulations
presented in Section 4. For brevity, only the results of the 4-legged, 3-legged, and Stewart-6–6
mechanisms are presented and discussed.

6.4.1. The 4-legged mechanism. The solution of the forward kinematic problem for the 4L is presented
in Table II. The data in the table correspond to the position of the center of the moving platform.
Thanks to the redundancy, there is only one solution for the forward kinematic problem which matches
the desired position of the moving platform. It means the redundancy has reduced the 16 potential
number of solutions to only one. Schematic representation of the solution is shown in Fig. 9 with four
links connecting the moving platform to the fixed one. Isometric and top views of the mechanism are
shown in the figure.

6.4.2. The 3-legged mechanism. The solutions of the forward kinematic problem for the 3-legged
mechanism are presented in Table III. The data in the table correspond to the position of the center of
the moving platform. As seen in the table, the forward kinematic problem has 16 solutions. The first
four solutions are real, and the rest are complex. Therefore, beside the desired first solution, there are
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Table III. Forward kinematic solutions of the 3-legged mechanism. The data correspond to the position of the
center of the moving platform.

Solution x (m) y (m) z (m)

1 0.1000 0.2000 0.3000
2 0.0350 0.2060 0.2853
3 −0.0883 −0.2094 −0.2953
4 −0.1353 −0.1553 −0.2783
5 −0.1018 + 0.0737 i −0.0276 − 0.1200 i −0.3230 − 0.0399 i

6 −0.1018 − 0.0737 i −0.0276 + 0.1200 i −0.3230 + 0.0399 i

7 0.1658 + 0.0051 i 0.1665 − 0.0702 i 0.2902 − 0.0039 i

8 0.1658 − 0.0051 i 0.1665 + 0.0702 i 0.2902 + 0.0039 i

9 −0.1423 + 0.0374 i −0.1713 − 0.0044 i −0.2568 + 0.0073 i

10 −0.1423 − 0.0374 i −0.1713 + 0.0044 i −0.2568 − 0.0073 i

11 0.0560 + 0.0225 i 0.2162 − 0.0409 i 0.2563 − 0.0003 i

12 0.0560 − 0.0225 i 0.2162 + 0.0409 i 0.2563 + 0.0003 i

13 −0.0458 + 0.0477 i −0.2357 + 0.0213 i −0.2820 + 0.0078 i

14 −0.0458 − 0.0477 i −0.2357 − 0.0213 i −0.2820 − 0.0078 i

15 −0.0515 + 0.1311 i 0.1074 + 0.0022 i 0.3178 + 0.0402 i

16 −0.0515 − 0.1311 i 0.1074 − 0.0022 i 0.3178 − 0.0402 i

Fig. 10. Schematics of the real solutions of the forward kinematic problem of the 3-legged mechanism. Both
isometric and top views of the solutions are illustrated. Three legs connect the moving platform to the fixed one.

three more possible poses for the moving platform which satisfy the forward kinematic equations.
Schematic representations of the four real solutions are shown in Fig. 10 with three legs connecting
the moving platform to the fixed one. Isometric and top views of the mechanism are shown in the
figure.

6.4.3. The Stewart-6–6 mechanism. The solutions of the forward kinematic problem for the Stewart-
6–6 mechanism is presented in Table IV. The data in the table correspond to the position of the
moving platform. As seen in the table, the forward kinematic problem has 40 solutions. The first
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Table IV. Forward kinematic solutions of the Stewart-6–6 mechanism. The data correspond to the position of
the center of the moving platform.

Solution x (m) y (m) z (m)

1 0.1000 0.2000 0.3000
2 0.1000 0.2000 −0.3000
3 0.1337 −0.0021 0.3377
4 0.1337 −0.0021 −0.3377
5 0.0765 0.1351 0.2808
6 0.0765 0.1351 −0.2808
7 −0.0134 0.2633 0.2749
8 −0.0134 0.2633 −0.2749
9 −0.4346 1.3760 1.4281 i

10 −0.4346 1.3760 − 1.4281 i

11 0.3110 −0.6004 − 0.6116 i

12 0.3110 −0.6004 + 0.6116 i

13 0.1423 0.9488 0.9157 i

14 0.1423 0.9488 − 0.9157 i

15 0.0867 −0.4781 0.1427 i

16 0.0867 −0.4781 − 0.1427 i

17 0.4101 − 0.2049 i 0.0163 + 0.0672 i 0.3308 + 0.3088 i

18 0.4101 + 0.2049 i 0.0163 − 0.0672 i 0.3308 − 0.3088 i

19 0.4101 − 0.2049 i 0.0163 + 0.0672 i −0.3308 − 0.3088 i

20 0.4101 + 0.2049 i 0.0163 − 0.0672 i −0.3308 + 0.3088 i

21 −0.0971 − 0.2393 i −0.0019 + 0.1213 i −0.4002 − 0.0093 i

22 −0.0971 + 0.2393 i −0.0019 − 0.1213 i −0.4002 + 0.0093 i

23 −0.0971 − 0.2393 i −0.0019 + 0.1213 i 0.4002 + 0.0093 i

24 −0.0971 + 0.2393 i −0.0019 − 0.1213 i 0.4002 − 0.0093 i

25 −0.0785 − 0.2322 i 0.3855 + 0.0607 i 0.3187 − 0.0809 i

26 −0.0785 + 0.2322 i 0.3855 − 0.0607 i 0.3187 + 0.0809 i

27 −0.0785 − 0.2322 i 0.3855 + 0.0607 i −0.3187 + 0.0809 i

28 −0.0785+ 0.2322 i 0.3855 − 0.0607 i −0.3187 − 0.0809 i

29 −0.1325 − 0.2100 i −0.0569 + 0.0075 i −0.3678 − 0.0215 i

30 −0.1325 + 0.2100 i −0.0569 − 0.0075 i −0.3678 + 0.0215 i

31 −0.1325 − 0.2100 i −0.0569 + 0.0075 i 0.3678 + 0.0215 i

32 −0.1325 + 0.2100 i −0.0569 − 0.0075 i 0.3678 − 0.0215 i

33 0.0418 − 0.2394 i 0.1506 − 0.0756 i 0.4735 + 0.0661 i

34 0.0418 + 0.2394 i 0.1506 + 0.0756 i 0.4735 − 0.0661 i

35 0.0418 − 0.2394 i 0.1506 − 0.0756 i −0.4735 − 0.0661 i

36 0.0418 + 0.2394 i 0.1506 + 0.0756 i −0.4735 + 0.0661 i

37 −0.1657 + 0.0092 i 0.1121 + 0.1519 i −0.3349 + 0.0910 i

38 −0.1657 − 0.0092 i 0.1121 − 0.1519 i −0.3349 − 0.0910 i

39 −0.1657 − 0.0092 i 0.1121 − 0.1519 i 0.3349 + 0.0910 i

40 −0.1657 + 0.0092 i 0.1121 + 0.1519 i 0.3349 − 0.0910 i

eight solutions are real, and the rest are complex. Therefore, beside the desired first solution, there are
seven more possible poses for the moving platform which satisfy the forward kinematic equations.
Schematic representations of the eight real solutions are shown in Fig. 11 with six legs connecting
the moving platform to the fixed one. Isometric and top views of the mechanism are shown in the
figure.

7. Applications of the Proposed Parallel Robots
With their 6-DOF moving platforms, these parallel robots are capable of moving in any direction
or orientation within the space. They are ideal for various applications in aeronautics, automative
industry, astronomy, machining, industrial testing, positioning, microscopy, semiconductor handling,
biotechnology, and medical applications. In this section, two potential applications of the Wide-Open
and 4-legged robots are briefly discussed.
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Fig. 11. Schematics of the real solutions of the forward kinematic problem of the Stewart-6–6 mechanism. Both
isometric and top views of the solutions are illustrated. Six legs connect the moving platform to the fixed one.

7.1. The pole climbing robot
Pole climbing robots have many construction, service, and inspection applications in 3D tubular
structures. The Wide-Open robot enjoys a frontally open structure, where it can easily embrace
tubular structures. This notable advantage, makes it a perfect fit for pole climbing applications. The
6-DOF Wide-Open pole climber robot can travel along 3D tubular structures with bends, branches,
and step changes in cross section. Figure 12 illustrates the application of the Wide-Open mechanism
as a pole climber, where two grippers are provided for each platform.

The robot is able to do service works like welding operations, pipe testing in petrochemical plants,
pipe/pole cleaning, light bulb changing, and cleaning in highways, etc.39–43 It is also able to perform
manipulation, repair, and maintenance tasks after reaching the target point on the structure. It can
be used for construction and tall building maintenance, agricultural harvesting, highways and bridge
maintenance, and shipyard production facilities.44–48 There are also applications in industrial and
hazardous environments, inspection of vertical and inclined pipes in nuclear power plants, wiring on
high voltage power transmission towers, and inspection of high chimneys.46

7.2. Robotic assisted brain surgery
While all surgical procedures carry some risk, brain surgery carries extra risk because all the tissue of
the organ is very delicate and of importance, making it an ideal candidate for robotic interventions.
Using robotics for brain surgery provides the surgeon with many advantages. The most important
advantages pertaining to neurosurgery are the ability to perform surgery on a smaller scale, increased
accuracy and precision, access to small corridors, and the possibility of telesurgery.49–51 The scale of
neurosurgical procedures in the future is going to be so small that neurosurgeons will not be able to
deliver them without the assistance of robots.52

Figure 13 illustrates the application of the redundantly actuated 4-legged robot in brain surgery,
where high accuracy and large rotational workspace is needed. The redundantly actuated robot
has dramatically much larger singularity-free workspace compared to its non-redundant 6-legged
counterpart. The guide on the moving platform is able to precisely manipulate tools such as a probe,
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Fig. 12. Illustration of the Wide-Open robot in a pole-climbing application. The robot is frontally open where it
can easily embrace tubular objects. It can travel along tubular structures with bends, branches, and step changes
in cross section. It is also able to perform manipulation, repair, and maintenance tasks after reaching the target
point on the structure.

Fig. 13. Illustration of the redundantly actuated 4-legged robot with endoscope used for brain surgery. The
robot is capable of delivering the ultra-precision resolution of sub-micron. The redundantly actuated robot has
dramatically much larger singularity-free workspace compared to its non-redundant 6-legged counterpart.

endoscope, or retractor in six degrees of freedom. It can be used for instrument positioning and
micropositioning, trajectory planning and precise needle insertion, motion and force scaling, and soft
tissue cutting and destructing.
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Table V. Black square (�) indicates the best mechanism in term of different kinematic measures;
manipulability, dexterity, sensitivity, reachable points, singularity, and forward kinematics.

Mechanism red./Non-red. Legs Manip. Dext. Sens. Reach. Sing. Fwd. Kin.

4L Red. 4 � � � �
WO Non-red. 3 �
3L Non-red. 3

Stewart (3–3) Non-red. 6 �
Stewart (3–6) Non-red. 6
Stewart (6–6) Non-red. 6

Table VI. Comparison of non-redundant mechanisms only. Black square (�) indicates the best mechanism
in term of different kinematic measures; manipulability, dexterity, sensitivity, reachable points, singularity,

and forward kinematics.

Mechanism red./Non-red. Legs Manip. Dext. Sens. Reach. Sing. Fwd. Kin.

WO Non-red. 3 � �
3L Non-red. 3 � � �
Stewart (3–3) Non-red. 6 � � �
Stewart (3–6) Non-red. 6
Stewart (6–6) Non-red. 6

8. Conclusion
A group of 6-DOF UPS PMs were analyzed to study the effects of number of legs in their kinematic
performance. From the design point of view, by replacing the passive universal joints in the Gough–
Stewart platform with active joints, the number of legs could be reduced from 6 to 3 or 4. This
makes the mechanism to be lighter, since the rotary actuators are resting on the fixed platform,
which allows for higher accelerations to be achieved due to smaller inertial effects. The results
indicate that the workspace of the PMs with reduced number of legs is much larger than that of
the 6-legged Gough–Stewart platform. The performance comparisons are listed in Table V. Table V
suggests that the redundancy in the 4L improves its capabilities to avoid kinematic singularities, to
achieve higher manipulability, as well as lower sensitivity. Such advantages, in accompany with a
high rigidity and a low inertia, make the 6-DOF 4-legged PM ideal for more challenging industrial
applications in assembly, manufacturing, biomedical, and space technologies. In fact, it is suitable
for a wide range of applications in flight simulators, surgical robots, rehabilitation systems, high
precision positioning devices, motion generators, ultra-fast pick and place robots, entertainment
systems, multi-axis machine tools, micro manipulators, and haptic instruments. Between the non-
redundant mechanisms, right selection of number of legs depends on the priorities in kinematic
measures in different applications, as seen in Table VI.
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