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Abstract

Distributed information transfer is of paramount importance to the effectiveness of dynamic

collective behaviors, especially when a swarm is confronted with complex environmental

circumstances. Recently, the signaling network of interaction underlying such effective in-

formation transfers has been revealed in the particular case of bird flocks governed by a

topological interaction. Such biological systems are known to be evolutionary optimized,

but are also constrained by the very nature of the signaling mechanisms—owing to intrinsic

limitations in sensory modalities—enabling communication among individuals. Here, we

propose that artificial swarm design can be tackled from the angle of signaling network

design. To this aim, we use different network models to investigate the impact of some

network structural properties on the effectiveness of a specific emergent swarming behavior,

namely global consensus. Two new network models are introduced, which together with the

well-known Watts–Strogatz model form the basis for an analysis of the relationship between

clustering, shortest path and speed to consensus. A network-theoretic approach combined

with spectral graph theory tools are used to propose some signaling network design principles.

Eventually, one key design principle—a concomitant reduction in clustering and connecting

path—is successfully tested on simulations of swarms of self-propelled particles.

Keywords: interaction network, swarming systems, temporal networks

1 Introduction

The sight of large numbers of animals moving together in unison has been an

inexhaustible source of inspiration and inquiry for generations. In the last two

decades, a large body of research has focused on gaining insight into some of the key
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elements underlying collective animal motion: e.g. decision making, synchronization,

structures, and regulation (Sumpter, 2010). The connection with complex systems sci-

ence is now apparent and with that comes a better understanding of self-organizing

emergent behaviors such as birds flocking, fish schooling, locusts marching, amoebae

aggregating, and humans crowding (Camazine et al., 2001; Vicsek & Zafeiris, 2012;

Bouffanais & Yue, 2010; Moussäıd et al., 2011). Furthermore, some recent field and

laboratory experiments have provided scientists with large-scale and high-resolution

data sets (Ballerini et al., 2008; Katz et al., 2011; Butail & Paley, 2012). The

post-processing and analysis of these highly resolved kinematic samples allow for

a better understanding of the local interactions among individual agents within

bird flocks or fish schools—what Sumpter calls the behavioral algorithm (Sumpter,

2006). According to Sumpter, the key to understanding collective behaviors lies

in identifying this behavioral algorithm as well as how information flows between

swarming agents (Sumpter, 2006).

Very recently, a growing body of work turned to the study of this problem

of information transfer within a dynamic collective (Strandburg-Peshkin et al.,

2013; Sumpter et al., 2008; Lemasson et al., 2013; Couzin et al., 2005). From the

engineering standpoint, such effective information transfers highlight the existence

of an underlying communication channel that takes the form of an interaction or

signaling network (Komareji & Bouffanais, 2013b; Strandburg-Peshkin et al., 2013;

Young et al., 2013). Animal collectives use this signaling network to effectively

respond to changes in the surroundings: e.g. coordinated evasive maneuvers upon

detection of a predator or collision avoidance. Such a network-theoretic approach

has already been successfully considered to decipher some intricate social animal

behaviors (Croft et al., 2008). However, the structure and dynamics of those social

networks are vastly different from the structure and dynamics of signaling networks

underpinning swarming behaviors. Indeed, swarm signaling networks (SSNs) are

temporal and adaptive networks (Holme & Saramäki, 2012; Gross & Blasius, 2008)

with a dynamics deeply interwoven with the agents’ motion dynamics in the physical

space. For instance, in the particular case of bird flocks governed by a topological

interaction (Ballerini et al., 2008), the SSN has been found to be a small-world,

homogeneous clustered network whose connectedness is key to yielding resilient

swarming behaviors (Komareji & Bouffanais, 2013b). The knowledge of and access

to the structural properties of the SSN revealed the high dynamic controllability of

swarms (Komareji & Bouffanais, 2013b,a)—where few agents are capable of driving

the dynamics of the swarm as a whole—as well as very effective consensus reaching

processes (Shang & Bouffanais, 2014b).

Beyond the mechanistic and functional understanding of such evolutionary-

optimized collective behaviors, many research groups are now turning to the design

of artificial swarming systems (Hsieh et al., 2008; Naruse, 2013). The ultimate

goal when designing such systems is to mimic some fundamental principles of

collective animal behaviors with the objective to autonomously perform specific

tasks. Such artificial swarms readily offer tremendous opportunities since they are

freed from a large number of “constraints” inherent to biological systems: e.g. short-

range signaling mechanisms, obstructed line of sight (Shang & Bouffanais, 2014a). It

appears therefore that one of the keys to achieving successful artificial swarm designs

lies with an effective design of the SSN. However, in practice, this is easier said than
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done given the lack of sound design principles in the form of relationship between

parameters measuring the effectiveness of some specific swarming behaviors and

canonical structural properties of networks for the SSN: e.g. clustering coefficient

(CC), shortest connecting path (SP), degree distribution, centrality, connectedness,

algebraic connectivity, etc. (Barrat et al., 2008).

Here, we provide the framework for analyzing such design principles for one of the

most prevalent collective decision-making processes consisting in achieving global

consensus—consensus means the convergence to a common state asymptotically or in

a finite time among all group members through local interactions (Olfati-Saber et al.,

2007). To the best of our knowledge, no clear relationship between the structural

properties of the SSN and speed to consensus has ever been presented. Moreover,

in their review paper, Arenas et al. (2008) mentioned the significant discrepancies

in results for different network models when considering the related problem of

synchronization in complex networks. According to Arenas et al. (2008), these

discrepancies originate from studies where multiple non-independent parameters

characterizing the network were concomitantly changed. This stresses the difficulty

in carrying out thorough parametric studies on such networked systems. Indeed,

in general, all canonical structural properties of a network bear a certain level

of interdependence. For instance, Xu & Liu (2008) uncovered a clear relationship

between spread of information in social networks and the CC.

In this paper, we establish how a group of agents can perform more effective

emergent swarming behaviors through the specific design of the underlying SSN,

which embodies how information flows through a swarm. By studying the SSN and

its properties, the dynamics of a group of locally interacting agents can be analyzed

from a radically different viewpoint as compared to classical observations in the

physical space (Komareji & Bouffanais, 2013b; Vicsek & Zafeiris, 2012; Shang &

Bouffanais, 2014a,b). Given the wide range of structural properties characterizing

any network (CC, SP, degree distribution, directed/undirected character, etc.),

establishing some general design principles is tremendously challenging if not

unrealistic. However, when reducing the dimensionality of the design space to one

or two, some design principles can be established and used for the design of more

effective swarming rules. To this aim, three families of networks are considered in

our study, as they allow us to tune the CC and SP for both directed and undirected

networks having constraints similar as those encountered in real SSNs, in terms of

average degree. First, we introduce these three one-parameter families of networks

and study the influence of their respective control parameter on CC, SP, and the

degree distribution. As a second step, we investigate the impact of CC and SP on

the dynamics of the global consensus reaching process through a measure of the

speed to consensus. The insights gained from the previous analysis are used in the

final step to assess their effectiveness with simulations of swarms of self-propelled

particles subjected to different neighborhood interaction rules.

2 Models of signaling networks

The network paradigm is used to represent the complex set of interactions among

agents within a swarm. From a practical standpoint, the SSN is obtained through

a bottom-up assembly of local interagent edges dependent on the neighborhood of
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interaction rule imposed on these agents. There are two canonical interaction rules:

the first one based on a metric interaction distance and the other one based on a

topological interaction distance (see Appendix 4 and Vicsek & Zafeiris, 2012). The

metric neighborhood rule imposes that all agents within a certain fixed distance of

each other, are neighbors, whereas a topological neighborhood rule specifies the fixed

number of neighbors regardless of the distance separating them. For instance, the

k-nearest neighbor rule is a paradigmatic example of topological neighborhood rules.

Note that the metric neighborhood rule yields undirected SSNs, while SSNs designed

using a k-nearest neighborhood are directed (Komareji & Bouffanais, 2013b) owing

to the induced asymmetry in the relationship between agents—if agent j is in the

neighborhood of agent i, then i needs not be in the neighborhood of j. Further

details about the metric and topological interaction distances can be found in

Appendix 4.

In this section, we introduce three families of complex networks generated through

three distinct one-parameter algorithms for which we have an extensive indirect

control over the value of the CC and SP. The first two families yield complex

undirected networks while the third one is designed to generate complex directed

networks. The first model is the well-known Watts & Strogatz (WS) model where

it is possible to manipulate CC and SP by changing the control parameter p,

the probability of rewiring randomly each edge—making the network go from a

totally ordered network to a random one (Watts & Strogatz, 1998). The second

model is based on an algorithm introduced by Holmes & Kim (HK) to grow

a scale-free network with a tunable CC (Holme & Kim, 2002). The model is

modified to ensure that the ratio between the number of nodes and edges, i.e.

degree, remains constant on average, when networks with the same number of

nodes are generated. This modification of the original HK model is suggested by

the properties of the SSN based on a topological neighborhood of interactions,

as well as to avoid pitfalls described by Arenas et al. in their review paper

Arenas et al. (2008), in relation with parametric studies on complex networks.

It is worth adding that the WS model intrinsically has a constant agent (i.e.

vertex or node) to edge (i.e. link) ratio—in other words, it has a constant average

degree—just like our modified Holme & Kim (MHK) model. Hence, these two

undirected one-parameter models can be considered as rewiring algorithms of

an original model under constraint—this constraint being the constant average

degree. By construction, both the WS and MHK models produce undirected

networks similarly to metric-based SSNs. As already mentioned, using a topological

neighborhood of interaction rule such as the k-nearest neighbor rule, however, yields

directed networks. Thus, a third one-parameter model is introduced. Based upon the

topological neighborhood rule, this third model is designed to fix both the average

in-degree and the out-degree regardless of the value of the control parameter. Using

this so-called modified topological neighborhood of interaction (MTNI) model, it is

found possible to establish a reciprocal mapping between the out-CC and the control

parameter.

These three one-parameter models are described and analyzed in detail in

Appendix . They are then used to investigate how different network properties—

primarily CC and SP—affect the effectiveness of the consensus reaching process for

the swarm. As a first step, we thoroughly analyze the relationship between control
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parameter and CC, SP, as well as the degree distributions of all the SSNs generated

by the WS, MHK, and MTNI network models.

3 Results and Discussion

The speed of convergence to consensus is classically assessed by means of the

spectral properties of graph Laplacians. The second smallest eigenvalue of the graph

Laplacians λ2—a.k.a. algebraic connectivity—quantifies that speed of convergence

in the presence of a static network. This eigenvalue is greater than 0 if and only if

the network is connected. This is a corollary to the fact that the number of times

0 appears as an eigenvalue in the graph Laplacian is the number of connected

components in the network. Specifically, the magnitude of λ2 reflects how well

connected the overall network is, and has been used in analyzing the robustness

and synchronizability of networks (Arenas et al., 2008). Note that real SSNs are

not static networks but instead are temporal networks. Therefore, it implies that

the algebraic connectivity λ2 is time dependent; this generalization is presented and

discussed at great length in Shang & Bouffanais (2014b).

With the MHK, WS, and MTNI models introduced in Section 2 and detailed in

Appendix , we are now able to directly measure and quantify the speed to consensus

for families of SSNs corresponding to both undirected and directed information

exchanges with variable CC, SP, as well as other network properties. This analysis

of static networks is supplemented with numerical simulations of dynamic swarm

behaviors where the network is changed at each iteration step. The numerical

results obtained are ultimately compared with the spectral predictions based on the

algebraic connectivity.

3.1 Spectral analysis of the SSNs

For the spectral analysis of undirected networks the normalized graph Lapla-

cian (Chung, 1996), defined as

L̃ = D− 1
2 (D − A)D− 1

2 , (1)

is used, with A and D being the adjacency matrix and the degree matrix, respectively.

Using L̃ has the advantage of being similar to using the time-dependent graph

Laplacian matrix describing a swarm whose agents have metric local interactions.

This is aligned with the goal of the current paper, i.e. finding ways to improve the

speed of reaching consensus by manipulating classical SSNs.

In Appendix , we have shown how the WS and MHK models allow us to generate

networks with varying CC and SP through the tuning of control parameters. The

procedure is here applied again but now to obtain the second smallest eigenvalue λ2

of L̃ . By doing so, we are able to plot the variations of λ2 as a function of CC and

SP. Note that for all three models, the CC is bounded within the intervals found

earlier. The variations of λ2 in terms of CC and SP are obviously represented by

a line of points corresponding to given values of the control parameters p and P .

These variations are shown in Figure 1 for both undirected models.

First, we note that when varying the control parameters, the changes in CC and

SP are quite different for the WS and MHK models. Very little variation of the
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Fig. 1. Speed of reaching consensus measured using the most significant pole (λ2). Each data

point represents a network designed either using the WS model (red) or the MHK model

(blue). All networks considered possess N = 1, 000 nodes and an average degree of 4 (resp.

3.992) for the WS (resp. MHK) model. (Color online)

SP is observed with the MHK model for CC varying between 0 and approximately

0.7. As is well-known, the WS model yields significant variations of the SP with

the CC (Watts & Strogatz, 1998). Furthermore, it is observed in Figure 1 that λ2

tends towards the same value for networks designed with the two different models

when the respective CC and SP converge towards the same values, even though

we have found the degree distributions to be quite different for both the WS and

MHK models. This result is noteworthy as it seems to contradict the frequently

encountered statement that the degree distribution is key to many global outcomes

of dynamic networked systems. However, it is difficult to conclude that for sure as

the range of values for k is rather small in all SSNs owing to the small size of the

network and the limited number of interagent connections. It is worth recalling here

that the values found for λ2 depend on the number of agents, i.e. the number of

nodes N of the SSNs. All calculations were performed with N = 1, 000 agents in

order to minimize the number of parameters in our study.

Using the WS model, it can be shown that λ2 does not necessarily increase when

the SP is decreased as can be seen in Figure 2. However, there seems to be a clear

relationship between the SP and λ2 when CC is kept constant. That observation

suggests that λ2 can be predicted if CC, SP, and number of agents are known.

Reducing CC while keeping SP constant or non-increasing is thus found to increase

the speed to consensus.
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Fig. 2. Variations of the algebraic connectivity with the shortest connecting path for different

values of the clustering coefficient for small-world networks generated from the WS model.

Each data point represents a network consisting of N = 1, 000 nodes. The average degree

varies between 4 and 36 leading to a non-constant average degree. Left: log-log scale. Right:

linear scale with the colored lines being exponential fits corresponding to a specific CC with

an error margin of ±2%. (Color online)

Before testing if a similar relationship with directed networks exists, we need to

define the concept of Laplacian matrix for directed networks. The Laplacian matrix

has to be redefined because the in- and out-degree of a node need not be the same

in the case of a directed network, thus preventing us from using the previously

introduced normalized Laplacian graph. Thus, we use the following definition for

the Laplacian matrix:

L = D−1
out(Dout − Aout), (2)

where Aout and Dout are the out-adjacency matrix and the out-degree matrix,

respectively. This is indeed an appropriate choice as neighbors are pointed at with

outward edges in the directed SSN. Note that in the particular case of SSNs, we

assume the networks to be strongly connected otherwise, we would have to deal

with several swarms instead of just one. Consequently, the graph Laplacian defined

by Equation (2) will lead to consensus since the union of the dynamically evolving

SSNs have a spanning tree frequently enough.

Following the method used for undirected networks, a plot of the variations of the

real part of λ2, SP and CCout is shown in Figure 3. An out-degree of 10 is chosen so

that the generated networks are strongly connected with N = 1, 000 nodes (Komareji

& Bouffanais, 2013b). We recover a trend similar to the one observed previously

with undirected networks; namely the speed to consensus as measured by Re(λ2)

monotonously increases with a decreasing CCout for non-increasing SP. This trend

emphasizes the following very important design principle that it is not only important

to reduce the SP of a network—as is done in many studies such as Olfati-Saber

(2005) for instance—but the CC also needs to be reduced, in order to speed up

the global consensus reaching process, while accounting for the drastic constraints

imposed by the interaction rule to the degree distribution. Note that this statement is

consistent with the result by Xu & Liu (2008) showing a clear relationship between

spread of information in social networks and the CC.
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Fig. 3. Speed of reaching consensus measured using Re(λ2). Each data point represents a

network designed using the MTNI model, with P varying between 0 and 1. All networks

considered possess N = 1, 000 nodes and a fixed out-degree of 10. The case P = 0, associated

with the pure TNI model corresponds to the rightmost point with the highest clustering

coefficient. (Color online)

3.2 Simulations of artificial swarming behaviors

The insights gained in Section 3.1 enable us to turn to actual simulations of swarm

dynamics with specifically designed signaling networks. As previously discussed,

depending on the neighborhood interaction rule, these SSNs can either be directed

or undirected. For the two canonical neighborhood schemes, namely the metric and

topological neighborhood of interaction, it was found numerically that the CC is

approximately 0.6 with 2D swarming models (Komareji & Bouffanais, 2013b), and

also analytically in the metric interaction case (Dall & Christensen, 2002). Hence,

speeding up the consensus reaching process could be achieved by modifying the

topological structure of the SSN following the design principle devised in Section 3.1.

Specifically, a reduction in the CC without any increase in the SP was found to

yield a significantly higher real part of λ2. Of course, such a strategy can only be

applied to artificial swarms where the neighborhood interaction rule can be designed

and imposed unlike natural systems. Therefore, this effort could potentially lead to

tremendous operational improvements in the functioning of robotic swarms as well

as mobile sensory networks.

Before focusing on simulations of swarms, it is worth noting an important

difference between swarms of inanimate agents and swarms of living units. This

difference resides in the ability of the latter to collectively process and respond to

information in the form of signals and stimuli. There is no doubt that it contributes
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to the greater complexity and variety of collective behaviors observed in the natural

world—i.e. for swarms of living organisms—as compared to those encountered in the

physical world—i.e. for swarms of inanimate agents. The term “swarm intelligence”

is colloquially used to refer to such emergent and adaptive collective responses of

groups of simple agents. The past two decades have experienced substantial work

aimed at mimicking specific collective behaviors, where each individual agent follows

a very simple set of local rules, without having access to any knowledge about the

overall swarm and pattern in motion. These collective behaviors are quite resilient

and show a great level of adaptivity. Robustness and flexibility are very appealing

features for an engineering system.

Following the work by Komareji & Bouffanais (2013b), we consider a collective

of N identical interacting agents moving at the same speed denoted as v0 (Vicsek

& Zafeiris, 2012). Each individual agent i, at any given instant t, is assumed to

be fully characterized by a given state variable ψi(t). Such a generic state variable

may represent widely different characteristics depending on the nature of the group

considered: e.g. kinematic variables for fish in a school, birds in a flock or robots

in an artificial swarm, space available for a pedestrian on a congested sidewalk, etc.

Here, the state variable simply reduces to the direction of travel and the achievement

of swarm consensus therefore yields an alignment of all the agents, in other words a

polarized swarm. Hence, from a formal standpoint, by reaching a consensus, we mean

asymptotically converging to a one-dimensional agreement in space characterized

by ψ1 = ψ2 = · · · = ψN (Olfati-Saber et al., 2007).

In the dynamical model considered, the adaptive and interacting swarming agents

are modeled as self-propelled particles for which the biological details of the internal

origin of an agent’s thrust is considered to be irrelevant. Such SPP-based models are

a good representation of collective animal behaviors (Vicsek & Zafeiris, 2012). Here,

these SPPs are moving about a two-dimensional plane with constant speed v0 and

subject to a mix of a local interactions and random ones. As mentioned previously,

each agent i is fully characterized by its direction of travel—in other words, here

ψi(t) = θi(t)—related to the agent’s velocity through vi = v0 cos θix̂ + v0 sin θiŷ. The

local synchronization protocol, based on relative states, is strictly equivalent to a

local linear alignment rule which mathematically can be stated as

θi(t+ Δt) = θi(t) +
Δt

ki

ki∑
j=1

(θj(t) − θi(t)), (3)

where ki is the out-degree of node i. For all simulations, the following values were

taken: v0 = 0.03 and Δt = 1 (Vicsek et al., 1995; Komareji & Bouffanais, 2013b).

The agents were able to move in a square domain of dimension � = 10 having

periodic boundaries. As is well-known with such standard SPP models, the values

of v0 and Δt have practically no effect on the swarm dynamics, while the swarm

density ρ = N/�2 has to be kept sufficiently high so as to maintain a global ordering

of the swarm (Vicsek & Zafeiris, 2012).

As stressed in Shang & Bouffanais (2014b), the dynamics of this directed SSN

is intricately connected to the dynamics of the agents since they are embedded in

the physical space. Signaling network structure/topology and information transfer

dynamics change on the same time scale and are strongly interwoven. Throughout
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the complete dynamical process, the signaling network maintains a constant number

of nodes and some edges are broken while new ones are being created following

the interaction rule. The rate at which network edges are changing is governed

by the pace of the physical dynamics of the swarm. Hence, we consider here the

general case of switching networks of interaction. Such switching events intrinsically

occur at non-uniform time intervals. As detailed in Shang & Bouffanais (2014b),

one can assume without loss of generality that those switching events are evenly

distributed in time with the time interval between switching events corresponding

to the decorrelation time scale τ of the matrix of correlations Cij = 〈si · sj〉 for

the normalized velocity si = vi/v0. As all agents move at constant speed v0, the

decorrelation time scale is therefore strictly equivalent to the spatial decorrelation

time scale, which given our hybrid interaction rule is directly related to the value

of k.

The consensus level within the swarm is measured by the following order

parameter:

ϕ =
1

N

N∑
j=1

vj(t)

v0
=

1

N

N∑
j=1

exp
(
iθj(t)

)
, (4)

with vj the velocity of agent j in complex notation. In the particular case of

self-propelled particles, the order parameter ϕ represents the alignment of the

collective. The simulations were carried out with N = 1, 000 agents, for five different

values of the number, r, of randomly rewired SSN edges. The consensus within

the swarm in the physical space is measured by means of the order parameter ϕ

and simultaneously, we keep track of the variations of CC, SP, and the algebraic

connectivity. It is important keeping in mind that the SSN has a dynamics that is

evolving hand in hand with the dynamics of the mobile agents in the physical space.

In other words, signaling network structure and information dynamics change on

the same time scale and are strongly interwoven. In practice, the average values

of ϕ, CC (CCout in the directed cases), SP, and λ2 (Re(λ2) in the directed cases)

were considered using a statistically ample enough sampling of 50 distinct swarm

dynamics all initiated with agents randomly distributed in space and also having

random velocity directions.

First, we consider the case for which a directed flow of information governs the

swarm dynamics. Specifically, all swarming agents interact with exactly k = 10

other agents, i.e. the out-degree of the associated SSN is uniformly 10. Out of the

k = 10 influencing neighbors, a certain number r of them are taken at random,

while the t = k − r others are chosen following the t-nearest neighbor rule in the

topological sense (see Appendix 4). By varying r between 0—purely topological—

and k—purely random, one is able to generate different SSNs leading to different

swarming behaviors. Practically, this is equivalent to the MTNI model introduced

previously. The results are shown in Figure 4 for five values of r with both global

random rewiring—creating a new edge with any agent within the swarm picked at

random (solid lines)—and local random rewiring—creating a new edge with any

agent picked at random within a disk of radius 2 (dashed lines). Note that the

speed to consensus measured directly by means of the variations of ϕ with time in

the physical space, for different values of r, are in total agreement with the SSN

network-theoretic measure of speed through Re(λ2), and that for both the global
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Fig. 4. Dynamics of a swarm comprising N = 1, 000 agents moving about a square domain

of dimension �, corresponding to an agent density ρ = N/�2 = 10. Each individual interacts

with k = τ+ r = 10 other swarming agents according to the update rule (3): τ agents being

nearest neighbors and r are chosen at random. At each iteration step, the alignment of the

swarm in the physical space is measured through the order parameter ϕ, and the SSN is

formally constructed thus enabling the computation of CCout, SP and Re(λ2). The values for

Re(λ2) are normalized using the maximum values obtained in the case r = 10, independently

for the global and local random rewiring. Each color represents a specific number r of SSN

edges randomly wired for each agent. The solid lines correspond to the case of a global

random rewiring; that is a new edge is randomly created with an agent anywhere within the

swarm, irrespective of the distance separating them. The dashed lines correspond to the case

of a local random rewiring; that is a new edge is randomly created with an agent located

within a disk of radius 2. (Color online)

and local random rewiring. It is worth noticing that except for the order parameter

ϕ, all other quantities are practically constant on average as the swarm evolves

towards consensus, and that for all values of r considered. As is well known, adding

random links—that is increasing r—does speed up the consensus reaching process.

This fact can obviously be understood from the SP standpoint. The random rewiring

of edges drastically reduces the SP, thereby shortening the information travel path,

hence improving the information reaching process globally. Nonetheless, one should

not lose track of the important fact that in this particular case, the reduction in

SP is simultaneously accompanied by a reduction of the CC. These last points are

in complete agreement with the SSN design principle devised in Section 3.1, and

further highlight the importance of tracking the interdependence of several network

properties, such as CC and SP in the present case. Finally, and as expected, the

global random rewiring of the SSN is more effective than the local one. Indeed, the

global random rewiring scheme yields a higher reduction in both CC and SP as

compared to its local counterpart. This provides further evidence in support of our

SSN design principle.
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Fig. 5. Dynamics of a swarm comprising N = 1, 000 agents moving about a square domain of

dimension �, corresponding to an agent density of ρ = N/�2 = 10. Each individual interacts

with all neighbors located in a disk of radius R0 = 1/π (metric interaction rule) to impose

an average degree of 10, except for r edges randomly rewired with agents chosen anywhere

within the swarm (global random rewiring). The update rule (3) is used with ki − r neighbors

in the disk of radius R0 = 1/π and r other neighbors chosen at random irrespective of the

distance separating them. At each iteration step, the alignment of the swarm in the physical

space is measured through the order parameter ϕ, and the SSN is formally constructed thus

enabling the computation of CC, SP, and λ2. The values for λ2 are normalized using the

maximum values obtained in the case r = 10. Each color represents a specific number r of

SSN edges randomly wired for each agent. (Color online)

As a last step, we envisage swarm dynamics governed by an undirected flow of

information. Such a dynamics is achieved when the underlying SSN is an undirected

network. To that aim, we consider an undirected global random rewiring of SSNs

based on a metric interaction distance. Specifically, a swarm of N = 1, 000 agents

interacting with all agents located in a disk of radius R0 = 1/π is simulated. The

value of R0 is chosen such that the resulting average degree 〈k〉 is very close to

10—fixed value of the out-degree used in the previous directed case. Swarming

agents having more than r other agents in their metric neighborhood are subjected

to a global random rewiring of r edges of their SSN, operated in a similar fashion

to the directed case. The results for this metric-based swarm dynamics in both the

physical space (ϕ) and network space (CC, SP, and λ2) are presented in Figure 5.

Interestingly, the conclusions gathered in the directed case still apply in the present

undirected case. The only notable difference pertains to the effects of the number

r of edges rewired at random. Indeed, a much larger number of edges need to be

rewired to achieve significant improvements in terms of dynamics of the alignment,

i.e. to accelerate the increase in swarm alignment ϕ. This observation in the physical
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space is corroborated by the fact that in the metric case, the increase in r leads to

very minimal decrease in CC. This point highlights one more time the importance

of reducing the CC to gain a significant speed up in the polarization of the swarm.

Furthermore, it is very interesting to note that the sharp drop in SP with even just

one edge randomly rewired fails to yield significant increase in speed to consensus.

This last point suggests that a reduction in CC is more beneficial than a reduction

in SP for the speeding up of self-organizing emergent behaviors.

It is worth noticing that λ2, SP, and CC for the undirected case, or CCout for the

directed case are constant over time. Such behavior is not surprising, since there is

almost no transient dynamics in the self-organization of the SSNs. The topology and

properties of the SSNs are instantly imposed by the particular interaction distance

in the physical space (Dall & Christensen, 2002; Komareji & Bouffanais, 2013b).

4 Conclusions

Social transmission of information is critical to the effectiveness of emergent

swarming behaviors. With the signaling network of interaction accessible, the

effectiveness of swarm dynamics can directly be apprehended and improved from

the angle of signaling network design.

In this paper, we report a first attempt in designing signaling network for artificial

swarms with the aim of bettering the emergence of order through one specific

example: the acceleration of the consensus reaching process. We believe that the

approach undertaken in our study is general enough to be extended to other possible

scenarios and other types of self-organizing behaviors. To the best of our knowledge,

no general design principles for signaling networks are available. On the contrary,

design principles for networks tend to be lacking in view of some contradicting

conclusions reported in the literature (Arenas et al., 2008). Here, the thorough study

of three distinct network models—two undirected (WS and MHK) and one directed

(MTNI)—allowed us to establish clear relationships between CC, SP, and speed to

consensus. All three network models use a unique control parameter—different for

each model—enabling us to investigate a large interval of values for the CC and SP.

These models highlighted the known interdependency between CC and SP, but here

in a particular framework, since SSNs are intrinsically constrained to have a fixed

average degree.

It is important to study both directed and undirected networks because depending

on the swarm design and the choice of neighborhood of interaction, the transmission

of behavioral information may either be unidirectional or bidirectional. As was

discussed, a metric interaction distance leads to bidirectional information exchanges

associated with an undirected network. On the contrary, a topological interaction

in the physical space yields unidirectional transmission of information represented

with a directed network. With these three network families at hand, we were able

to perform a parametric spectral graph analysis in both the directed and undirected

cases, leading to a quantitative metrics of the speed to consensus. We established

the variations of the algebraic connectivity (or its real part in the directed case) with

both CC and SP, with different degree distributions but at fixed average degree. This

analysis led to the establishment of the following design principle for both directed

and undirected SSNs: it is not only important to reduce the SP—as is classically
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recommended in many studies—but the CC also needs to be reduced—action which

is often overlooked. This design principle, and in particular the part pertaining to

the CC, is consistent with some studies dealing with social networks—networks that

are structurally and temporally quite different from SSNs—e.g. relation between

social information transmission and CC in social networks (Xu & Liu, 2008).

As a final step, the established design principle was implemented and tested in

simulations of swarm dynamics of autonomous interacting self-propelled agents.

Specific agent interaction rules were devised to produce SSNs with the desired

properties in terms of SP, but more importantly in terms of CC. The interaction

rules were tinkered with by performing a certain number of random rewiring of

topological and metric interagent interaction sets at the global swarm level. That is,

short-distance interactions usually confined at the neighborhood level were randomly

replaced by possibly long-distance interactions across the entire swarm. A more local

random rewiring was further tested in the directed topological case. with that, both

directed and undirected SSN designs were tested. For all simulated cases, a reduction

in CC along with a decrease in the SP led to an acceleration of the convergence

of the swarm to global consensus. Such results provide further confirmation of the

validity of our design principle for SSN and also suggest the lack of relevance of

the degree distribution in the SSN design process. Finally, in the particular case of

a metric interaction distance, the global random rewiring yields a drastic reduction

in SP but with a very limited decrease in CC. In the physical space, the polarization

of the swarm is not accelerated as much as in the topological case. This final

observation suggests that a reduction in CC is more advantageous than a reduction

in SP for the speeding up of self-organizing emergent behaviors.
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Vicsek, T., Czirók, A., Ben-Jacob, E., Cohen, I., & Shochet, O. (1995). Novel type of phase-

transition in a system of self-driven particles. Physical Review Letters, 75, 1226–1229.

Vicsek, T., & Zafeiris, A. (2012). Collective motion. Physics Reports, 517, 71–140.

Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of “small-world” networks. Nature,

393, 440–442.

Xu, W., & Liu, Z. (2008). How community structure influences epidemic spread in social

networks. Physica A, 387, 623–630.

Young, G. F., Scardovi, L., Cavagna, A., Giardina, I., & Leonard, N. E. (2013). Starling flock

networks manage uncertainty in consensus at low cost. PLoS Computational Biology, 9(1),

e1002894.

Appendix A: Interaction distances in swarming systems

The basic mechanistic functioning of collective motion is well understood as being

the result of multiple uncoordinated local interactions between individuals. The

central importance of these local interactions have led scientists to experiment with

various local interaction rules, often with the aim to reproduce fine details of some

specific swarming behaviors. Two broad classes of interaction rules can be discerned,

each based on the definition of a specific interaction distance. The first group based

on a metric distance, was the first considered and has attracted a tremendous

amount of attention (see Bouffanais 2015 and references therein). In this metric

interaction distance framework, each swarming agent exchanges information with

all other agents located at a fixed and given distance—assumed to be the same

for all (Hemelrijk & Hildenbrandt, 2012). The metric distance was only recently

challenged following the analysis of empirical data for the dynamics of flocks of

starlings (Ballerini et al., 2008) as well as results from the dynamics of human

crowds (Ginelli & Chaté, 2010; Moussäıd et al., 2011). By reconstructing the three-

dimensional positions of individual birds in airborne flocks of a few thousand

members, Ballerini et al. showed that the interaction does not depend on the metric

distance, as most current models and theories assume, but rather on the topological

distance. They discovered that each bird interacts on average with a fixed number

of neighbors (six to seven), rather than with all neighbors within a fixed metric

distance.

Essentially, both distances are associated with distinct physiological (resp. tech-

nological) limitations of living (resp. artificial) agents. Specifically, the metric neigh-

borhood of interaction finds its origin in the limited sensory range of individuals.

Indeed, a fish in a school can only interact with other fish it can perceive either

through vision or lateral line sensing (Coombs & Montgomery, 1999; Bouffanais

et al., 2011). On the other hand, the topological neighborhood of interaction stems
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from the limited information-processing capabilities of individuals. All living or

artificial agents possess limited cognitive and information-processing capabilities

enabling them to socially interact with a fixed number of other agents. However, in

real-life situations and depending on their positions within the swarm, individuals

may found themselves limited either by their sensory apparatuses or by their internal

information-processing system. Also, with a topological neighborhood, one has to

be watchful for the possibility of the topological distance becoming too large so that

the interaction or information exchange could not take place. In practice, that can

potentially happen with very low density swarms or when some individual agents

become widely separated from the swarm. The rule of k-nearest neighbors epitomizes

the topological paradigm.

Finally, it is worth adding that a purely metric or purely topological distance is

unable to account for this inhomogeneity in limiting factors within the group. This

has led some researchers to propose a hybrid interaction distance that integrates

both limitations in terms of sensory range as well as information processing (Shang

& Bouffanais, 2014a).

Appendix B: Details about models of signaling networks

B.1 Undirected networks

To analyze the impact of the CC on speed to consensus for undirected networks,

the MHK model is introduced and compared with the WS model. Both models

provide a tunable CC by controlling one single parameter at constant average

degree. Interestingly, both MHK and WS models yield different degree distributions

thereby allowing us to further assess the influence of the degree distributions on the

consensus reaching process. The MHK model is inspired by an algorithm proposed

by Holme & Kim (2002) devised to design scale-free networks with a tunable CC.

It can readily be described by the following simple steps:

1. Create four nodes;

2. Add edges so that each node is connected to exactly two other nodes;

3. Randomly link one of the existing nodes to a newly added one;

4. Given a probability P either: (i) add an edge between the new node and

another node in the network that increases the number of triangles (in the CC

sense), or (ii) add an edge that does not increase the number of triangles;

5. Repeat from step 3 until the desired number of nodes N is attained.

A graphical representation of the above successive steps is shown in Figure B1.

The one-to-one relationships between the control parameters—P for the MHK

model and p for the WS model—and CC or SP are shown in Figure B2. Interestingly,

for the MHK model, the variations of the CC are found to be practically linear

with P , while the SP increases extremely moderately in comparison with the same

results for the WS model. Specifically, for each value of the probability P , the

average CC and SP and the associated standard deviations are calculated using a

statistically ample enough sample of 50 networks generated from the MHK model

with N = 1, 000 nodes and E = 3, 992 edges. The constant average degree is thus

equal to the fixed degree 〈k〉. By construction, an increase in the value of the
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Fig. B1. Illustration of the successive steps in the MHK model. A black node represents an

unchanged node at any given step, the green node is the newly added node at step 3. At step

1, four nodes are created. At step 2, the nodes are linked together so all nodes have exactly

two neighbors. At step 3, the green node is added and attached at random to one of the four

black nodes in the existing network. At step 4a, an edge is added between a blue node and

the green one to increase the overall clustering coefficient, while at step 4b, an edge is added

between an orange node and the green one thus decreasing the clustering coefficient. Step N

shows how the network might look like after a couple of iterations with a new green node

that has to be attached either to increase or decrease the clustering coefficient. (Color online)

probability P leads to an increase in the CC. The results for the WS model are

identical to those originally reported by Watts & Strogatz, with here N = 1, 000 and

an average degree 〈k〉 = 4.

Using the MHK model provides us with a very good testbed to analyze network

properties since it is possible to keep the number of agents and number of edges

constant while changing other properties of the network—e.g. CC, SP, degree

distribution, etc. The CC can be readily and continuously tuned within the interval

[0, 0.7], simply by varying the parameter P in the unit interval. The networks have

an average degree 〈k〉 tending towards 4 as the number of nodes N increases. Indeed,

the average degree of a network grown using the MHK model reads

〈k〉 =
8 + 4(N − 4)

N
. (B 1)

It is therefore impossible to control the variations of the average degree as can be

done using the WS model. In the particular case whereby the number of swarming

agents is N = 1, 000, the average degree is 〈k〉 = 3.992. To allow for a quantitative

comparison of the MHK and WS models, all networks generated using the WS

model have therefore been chosen to have an average degree of 4. As can be seen

in Figure B3, the MHK model is able to produce networks with fat-tailed-like

degree distributions distinct from the homogeneous distribution prototypical of the

WS model, while having almost the same average degree. However, it is important

highlighting here that the range of values for k is fairly limited (max(k) ∼ 20) owing

to the relatively small size of the swarm (and consequently of the SSN) and to the
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Fig. B2. Left: Clustering coefficient, CC, and Right: Shortest connecting path, SP, for 10

values of the probability P (resp. p) in the unit interval; P (resp. p) being the control

parameter of the MHK (resp. WS) model. Top row: for the MHK model, each data point

is obtained by averaging over a statistically ample enough sample comprising 50 networks,

each having N = 1, 000 nodes and E = 3, 992 edges. The error bars represent the standard

deviations to the average values. Bottom row: for the WS model, each data point is obtained

by averaging over 50 networks, each having N = 1, 000 nodes and an average degree 〈k〉 = 4.

(Color online)

limited number of connections—i.e. small average degree—that can be established

between interacting agents. Note that this small range of values for k combined

with the observed distributions in Figure B3 guarantee a fairly small variance of the

degree about its average value.

It is often argued that the degree distribution is key to many global outcomes,

such as stability (Olfati-Saber et al., 2007), consensus reaching (Chung, 1996), and

controllability (Liu et al., 2011, 2012; Komareji & Bouffanais, 2013a,b). There is

no doubt that the significant difference in degree distribution of the MHK and

WS models highlights a fundamental difference in the underlying structure of the

respective networks.

B.2 Directed networks

The flow of information has been shown to be directed in many kinds of natural

and artificial multi-agent networked systems: bird flocks, fish schools, and wireless

sensory networks to name a few (Olfati-Saber, 2006). It is therefore essential to

extend our investigation to cases involving directed networks. Before going any

further with our analysis of directed SSNs, it is worth stressing some known and yet
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Fig. B3. Left: degree distribution, D(k), for the WS model for five different values of the order

parameter p. Right: degree distribution, D(k), for the MHK model for five different values

of the control parameter P . Both degree distributions are obtained from networks having

a total of N = 1, 000 nodes and an average degree 〈k〉 = 4 (resp. 〈k〉 = 3.992) for the WS

(resp. MHK) model and through an averaging over 100 samples for each value of p (resp.

P ). (Color online)

important differences between directed and undirected networks. When considering

undirected networks, the CC is defined using triangles made of undirected edges in

the network (Barrat et al., 2008). However, in the case of directed networks, four

distinct types of CCs can be considered depending on how triangles are formed

out of directed edges (Fagiolo, 2007). Following the definitions and terminology of

Fagiolo (2007), we consider the following definition of the CC out at node i:

CCout,i =
(A2AT )ii

dout,i(dout,i − 1)
, (B 2)

where A is the adjacency matrix and Dout = diag(dout,i) is the outdegree matrix. The

overall (network-wide) CC out is then obtained by averaging over the nodes:

CCout =
1

N

N∑
i=1

CCout,i. (B 3)

We use this definition throughout this paper as neighbors of each node in our directed

networks are pointed at with outward edges, thus being compatible with what has

already been applied in Olfati-Saber et al. (2007) and Komareji & Bouffanais

(2013b). Moreover, the degree of a node also needs to be specified in a different

way—for undirected networks the in- and out-degree are identical which is generally

not the case with directed networks. Here, it is only the in-degree distribution that

is examined since the out-degree is constant and equal for all nodes given that our

model is based on the k-nearest neighbor rule to represent the topological distance.

With these differences in mind, we propose a MTNI model that is based on a

directed signaling network. Similarly, to the case based on undirected networks in

the framework of the MHK and WS models, we aim at investigating the influence

of some adequately controlled network properties on swarm dynamics in terms of

consensus reaching.

The MTNI model is a one-parameter stochastic model devised to allow for the

tuning of the CC (out) by changing the probability P of choosing a neighbor at

random versus a nearest neighbor in the topological sense. Specifically, at the core,
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Fig. B4. Left: Out clustering coefficient, CCout, and Right: Shortest connecting path, SP, for

10 evenly distributed values of the probability P in the unit interval; P being the control

parameter of the MTNI model. Each data point is obtained by averaging over a statistically

ample enough sample comprising 50 networks, each having N = 1, 000 nodes and k = 10

neighbors, i.e. a fixed out-degree of 10. (Color online)

the MTNI model is based on the topological neighborhood distance observed in

flocks of starlings (Ballerini et al., 2008). The MTNI model can be split up into two

parts, the TNI model and a random rewiring. The model works by first randomly

distributing the nodes on a 2D plane. Each node is then given a fixed number k

of neighbors to point at, where each neighbor with probability 1 − P are picked

from the set of k-nearest neighbors based on the smallest Euclidean separation

distance. In the extreme case where P is 0, the model generates k-nearest neighbor

networks Komareji & Bouffanais (2013b). Conversely, when P = 1, the SSN is a

pure random directed regular network with a fixed out-degree k.

Interestingly, a one-to-one relationship between the CC and the control parameter

P is also uncovered for the MTNI model, similarly to what was previously obtained

with the WS and MHK models. The SP decreases monotonously with P with

extremely variations above P = 0.2. This can easily be seen in Figure B4. This first

result is of importance as it proves that we have full control over the CC through the

tuning of P. However, the upper limit on CCout is approximately 0.6 and corresponds

to P = 0, i.e. for the pure TNI model. This result is in total agreement with those

reported in Komareji & Bouffanais (2013b). The MTNI model therefore has the

advantage of producing networks where the agents have a constant out-degree and

constant average in-degree, while CCout can continuously be changed within the

interval [0, 0.6]. The impossibility to generate CCout beyond the upper limit of 0.6

did not prove to be an issue in our study since networks possessing high CCs tend

to be quite ineffective at global consensus reaching. On the contrary, small values of

CCout are sought when the emphasis is put on the effectiveness of achieving global

consensus.

After this study of CCout, we now turn to the in-degree distributions associated

with the MTNI model with varying control parameter P. The case P = 1 is

straightforward as it is a purely random network, we expect a normal degree

distribution centered about the average degree, which is equal to the constant out-

degree. At the other end of the unit interval, the case P = 0 corresponds to the pure

TNI model, which was shown to lead to a Poissonian-like distribution (Komareji
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Fig. B5. In-degree distributions, Din(k) for directed networks generated with the MTNI model

with the out-degree set to k = 10. Six values of the control parameter P, evenly distributed

within the unit interval, were considered. All six in-degree distributions are associated with

networks having N = 1, 000 nodes. (Color online)

& Bouffanais, 2013b). In the present case, we consider the particular case k = 10

and with such a relatively large out-degree, the Poissonian-like distribution reduces

to an almost Gaussian one. Four other values of P have been considered and the

associated in-degree distributions are shown in Figure B5. One observes that with the

out-degree k = 10, the MTNI model produces networks with practically Gaussian

distribution for all values of the control parameter P.

Appendix C: List of abbreviations and acronyms

Symbol/Acronym Definition

SSN Swarm signaling network

SPP Self-propelled particles

CC Clustering coefficient

SP Shortest connecting path

WS Watts & Strogatz model

MHK Modified Holme & Kim model

MTNI Modified topological neighborhood of interaction

λ2 Algebraic connectivity

N Number of network nodes

E Number of network edges

〈k〉 Average degree

D(k) Degree distribution

ϕ Order parameter of the swarm

� Dimension of the square domain

ρ = N/�2 Swarm density
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