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THE POSET OF ALL LOGICS I: INTERPRETATIONS
AND LATTICE STRUCTURE

R. JANSANA AND T. MORASCHINI

Abstract. A notion of interpretation between arbitrary logics is introduced, and the poset Log of all
logics ordered under interpretability is studied. It is shown that in Log infima of arbitrarily large sets exist,
but binary suprema in general do not. On the other hand, the existence of suprema of sets of equivalential
logics is established. The relations between Log and the lattice of interpretability types of varieties are
investigated.

§1. Introduction. Universal algebra [3, 7] and abstract algebraic logic [10, 15] are
two disciplines that study, respectively, general algebraic structures and propositional
logics. One of their main achievements is the development of two parallel
taxonomies, one of varieties (a.k.a. equational classes) of algebras, and the other
one of propositional logics.

More precisely, the Maltsev hierarchy of universal algebra is a classification of
varieties in terms of syntactic principles (called Maltsev conditions) intended to
describe the structure of the congruence lattices of algebras [25, 29, 41, 49, 50]. The
first, and perhaps most celebrated, example of a Maltsev condition is the requirement
that a variety K is congruence permutable, equivalent to the syntactic requirement
of the existence of a minority term for K [31], i.e., a ternary term ϕ(x, y, z) such that

K � ϕ(x, x, y) ≈ y ≈ ϕ(y, x, x).

Similarly, in abstract algebraic logic, the Leibniz hierarchy is a taxonomy of
propositional logics in terms of rule schemata (here called Leibniz conditions) whose
aim is to govern the interplay between lattices of deductive filters (a.k.a. theories)
of logics and lattices of congruences of algebras [4, 5, 10, 12, 36, 44]. One of the
most fundamental examples of a Leibniz condition is the requirement that a logic �
possesses a set �(x, y) of binary formulas satisfying the rules

∅� �(x, x) and x, �(x, y) � y,

which generalize the behavior of most implication connectives. Notably, this
requirement is equivalent to the property that the Leibniz operator of the logic
� is monotone [4].
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936 R. JANSANA AND T. MORASCHINI

From this point of view, it is natural to wonder whether the Maltsev and Leibniz
hierarchies are two faces of the same coin (see for instance [37, 45]). In the series of
papers constituted by the present one and [27, 28], we show that this is indeed
the case. More in detail, it turns out that the Maltsev hierarchy is a sort of
finitary companion of the Leibniz hierarchy of the two-deductive systems [6], i.e.,
substitution-invariant consequence relations between pairs of terms understood as
equations. One of the main obstacles to establish this result is that, while there exists
a precise definition of Maltsev condition, this is not the case for what concerns
Leibniz conditions (which until now were recognized solely on empirical grounds).

To clarify the notion of a Leibniz condition, we adopt an order-theoretic
perspective inspired by the theory of the Maltsev hierarchy, in which varieties are
ordered by means of the existence of interpretations between them [39, 47] (see also
[30]). A variety K is said to be interpretable [47] into another variety V, when V is
term-equivalent to some variety V∗ whose reducts (in a smaller signature) belong to
K. When this is true we writeK � V. For instance, the variety of distributive lattices is
interpretable into the one of Boolean algebras, while the variety of sets (lacking non-
trivial operations) is interpretable in any variety. It is clear that the interpretability
relation � is a preorder on the collection of all varieties. More interestingly, the
poset Var associated with � happens to be a lattice, sometimes called the lattice of
interpretability types of varieties [20, 39]. The study of the lattice Var allowed to
identify the classes of models of Maltsev conditions with the filters of Var that are
generated by finitely presentable varieties [2, 21, 39, 47].

As we mentioned, we will export this order-theoretic perspective to the realm of
propositional logics that, when ordered under a suitable notion of interpretability,
form the poset of all logics Log. Accordingly, the aim of this paper is to describe
the structure of the poset Log, which will be exploited to define and investigate
Leibniz conditions in general in [27, 28]. The main results of this paper can be
summarized as follows. First we establish that Log is a set-complete meet-semilattice
in which binary joins may fail to exist (Theorems 4.6 and 5.1). Then we show that the
proper submeet-semilattice Equiv of Log, whose elements are equivalential logics,
happens to have joins and to be a set-complete lattice (Theorem 6.5). We conclude
by investigating the bottom and the top parts of Log and by comparing the poset of
all logics Log with the lattice of interpretability types of varieties Var.

§2. Propositional logics. For general informations on abstract algebraic logic,
we refer the reader to [4, 5, 6, 10, 15, 16, 17, 26, 51]. We fix a proper class of
(propositional) variables {xα : α ∈ OR} indexed in a one-to-one way by the ordinals.
Given an algebraic language L (from now on, simply a language), and an infinite
cardinal κ, we denote by FmL(κ) the set of formulas of L with variables among
{xα : α < κ}, and by FmL(κ) the corresponding algebra. When the language L is
clear from the context, we simply write Fm(κ). For the sake of simplicity, we assume
that languages have no nullary operation.1 Note that the cardinality of FmL(κ) is
the maximum of κ and the cardinality of L.

1In the appendix we explain why this assumption is harmless, and how we can modify our approach
to cover logics in languages with constants as well. However, this comes at the cost of distinguishing
cases so frequently that the exposition would turn unnecessarily cumbersome.
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THE POSET OF ALL LOGICS I: INTERPRETATIONS AND LATTICE STRUCTURE 937

A logic � is then a consequence relation on the set FmL(κ), for some language
L and infinite cardinal κ, that is substitution invariant in the sense that for every
substitution � on FmL(κ) and � ∪ {ϕ} ⊆ FmL(κ),

if � � ϕ, then �[� ] � �(ϕ).

Given a logic �, we denote by L� (resp. κ�) the language (resp. the cardinality of the
set of variables) in which � is formulated. Moreover, we write Fm(�) as a shorthand
for FmL�(κ�). A theorem of � is a formula ϕ such that ∅ � ϕ.

Given an algebra A and a logic � in the same language, a set F ⊆ A is said to
be a deductive filter of � on A when for every � ∪ {ϕ} ⊆ Fm(�) such that � � ϕ
and every homomorphism h : Fm(�) → A, if h[� ] ⊆ F , then h(ϕ) ∈ F . The set of
deductive filters of � on A is a closure system, whose closure operator is denoted by
FgA�(·) : P(A) → P(A). Given X ∪ {a} ⊆ A, we write FgA�(X, a) as a shorthand for
FgA�(X ∪ {a}). Given an algebra B, we also write B ⊆ A when B is a subalgebra of
A, and B � A when B is isomorphic to a subalgebra of A.

Lemma 2.1. Let � be a logic formulated on Fm(κ) and A an algebra.

(i) If B ⊆ A and X ⊆ A, then FgB�(X ∩ B) ⊆ FgA�(X ).
(ii) Let � � |Fm(κ)| and X ∪ Z ∪ {a} ⊆ A be such that |Z| � �. If a ∈ FgA�(X ),

then there is an algebraB ⊆ A such that |B | � �,Z ⊆ B , and a ∈ FgB�(X ∩ B).

Proof. Condition (i) is straightforward. Hence we detail only the proof of (ii).
It is well-known that

FgA�(X ) =
⋃
α<�+

Vα,

where the various Vα are defined in the following way. First we set V0 := X , and at
limit ordinals we take unions. At successor ordinals we proceed as follows. If α < �,
then

Vα+1 := Vα ∪ {c ∈ C : c = f(ϕ) for some homomorphism f : Fm(κ) → A
and � ∪ {ϕ} ⊆ Fm(κ) such that � � ϕ and v[� ] ⊆ Vα}.

We claim that for every α < �+ and b ∈ Vα , there is an algebra B[b, α] � A such
that |B[b, α]| � �, Z ⊆ B[b, α], and b ∈ FgB[b,α]

� (X ∩ B[b, α]). To prove this, we
reason by induction on α � �+. In the case where α = 0 we take the subalgebra of
A generated by X ∪ Z. If α is a limit ordinal and b ∈ Vα , then b ∈ V	 for some
	 < α. Therefore, with an application of the inductive hypothesis, we are done.

Then we consider the case where α = 	 + 1. Since b ∈ V	+1, there are a
homomorphismf : Fm(κ) → A and� ∪ {ϕ} ⊆ Fm(κ) such that� � ϕ, b = f(ϕ),
and v[� ] ⊆ V	 . Now, for every 
 ∈ � , we consider the algebra B[f(
), 	] given by
the inductive hypothesis. Let B[b, α] be the subalgebra of A generated by

Z ∪ f[Fm(κ)] ∪
⋃

∈�
B[f(
), 	].

The fact that |Z| + |Fm(κ)| � �, and that |B[f(
), 	]| � � for every 
 ∈ � ensures
that |B[b, α]| � �.
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938 R. JANSANA AND T. MORASCHINI

It only remains to show that b ∈ FgB[b,α]
� (X ∩ B[b, α]). To this end, consider


 ∈ � . By the inductive hypothesis and condition (i) we obtain

f(
) ∈ FgB[f(
),	]
� (X ∩ B[f(
), 	]) ⊆ FgB[b,α]

� (X ∩ B[b, α]). (1)

Sincef[Fm(κ)] ⊆ B[b, α], the homomorphismf : Fm(κ) → B[b, α] is well defined.
Together with the fact that� � ϕ and thatf[� ] ⊆ FgB[b,α]

� (X ∩ B[b, α]) by (1), this
implies that b = f(ϕ) ∈ FgB[b,α]

� (X ∩ B[b, α]), as desired. This establishes the claim.
Together with the fact that FgA�(X ) =

⋃
α<�+ Vα , the claim concludes the

proof. 	

Given an algebra A, we denote by ConA its congruence lattice. Moreover, a
congruence � ∈ ConA is compatible with a set F ⊆ A when for every a, b ∈ A,

if 〈a, b〉 ∈ � and a ∈ F , then b ∈ F.

The Leibniz congruence �AF of F is the largest congruence on A compatible with
F. Similarly, given a logic � (in the same language as A), we set

∼
�A�F :=

⋂
{�AG : G is a deductive filter of � on A, and F ⊆ G}.

The relation
∼
�A�F is often called the Suszko congruence of F. The congruences�AF

and
∼
�A�F can de described as follows [15, Theorems 4.23 and 5.32]:

Proposition 2.2. Let � be a logic, A an algebra, F ⊆ A, and a, b ∈ A.

(i) 〈a, b〉 ∈ �AF ⇐⇒ (p(a) ∈ F if and only if p(b) ∈ F ), for every unary poly-
nomial function p of A.

(ii) 〈a, b〉 ∈ ∼
�A�F ⇐⇒ FgA�(F, p(a)) = FgA�(F, p(b)), for every unary polynomial

function p of A.

A matrix is a pair 〈A, F 〉 such that A is an algebra and F ⊆ A. A matrix 〈A, F 〉
is said to be reduced when �AF is the identity relation. Moreover, we set

〈A, F 〉∗ := 〈A/�AF, F/�AF 〉.

Similarly, given a class of matrices K, we set

R(K) := I{〈A, F 〉∗ : 〈A, F 〉 ∈ K},

where I is the class operator of closing under isomorphic copies. A matrix 〈A, F 〉 is
said to be trivial when A is the trivial algebra (which we denote by 1) and F = {1}.

The logic in κ variables induced by a class of similar matrices K is the consequence
relation � on Fm(κ) defined for every � ∪ {ϕ} ⊆ Fm(κ) as follows:

� � ϕ ⇐⇒ for every 〈A, F 〉 ∈ K and homomorphism h : Fm(κ) → A,
if h[� ] ⊆ F , then h(ϕ) ∈ F.

A matrix 〈A, F 〉 is said to be a model of a logic � (in the same language as A) when
F is a deductive filter of � on A. We set

Mod(�) := {〈A, F 〉 : 〈A, F 〉 is a model of �},
Mod≡(�) := {〈A, F 〉 ∈ Mod(�) :

∼
�A�F is the identity relation}.
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THE POSET OF ALL LOGICS I: INTERPRETATIONS AND LATTICE STRUCTURE 939

Observe that � is the logic induced both by Mod(�) and Mod≡(�) [15, Theorem
4.16].

We denote by S,P,PSD and PRκ+
the class operators for substructures, direct

products, subdirect products, and reduced products over κ-complete filters. We
assume that their application produces classes closed under isomorphic copies.
Moreover, we assume that the product-style operators, when applied to empty sets
of indexes, produce trivial matrices. We also consider the following class operator:
given a class of matrices K and an infinite cardinal κ, we define

Uκ(K) := {〈A, F 〉 : 〈B, F ∩ B〉 ∈ K for every κ-generated B � A}.
Lemma 2.3. If � is a logic, then Mod≡(�) = PSDR(Mod(�)).

Proof. See [11, Theorem 5.3]. 	
The first equality of the following result is taken from [14, 42], and generalizes a

previous result in [8].

Theorem 2.4. Let K be a class of matrices. If � is the logic induced by K on Fm(κ)
and |Fm(κ)| � κ, then R(Mod(�)) = RSPRκ+

(K) = RUκSP(K).

Proof. Under the assumption that the cardinality of the language of a class of
matrices K is � κ, the proof of the equality SPRκ+

(K) = UκSP(K) is routinary. 	

Corollary 2.5. Let K be a class of matrices. If � is the logic induced by K on
Fm(κ) and |Fm(κ)| � κ, then Mod≡(�) = PSDRSPRκ+

(K).

Proof. Immediate from Lemma 2.3 and Theorem 2.4. 	
Corollary 2.6. Let � be the logic induced by a class of matrices K on Fm(κ).

Then the algebraic reducts of the matrices in Mod≡(�) belong to the variety generated
by the algebraic reducts of the matrices in K.

A logic � is said to be equivalential [4, 9] if there is a non-empty2 set of formulas
�(x, y) such that for every 〈A, F 〉 ∈ Mod(�) and a, b ∈ A,

〈a, b〉 ∈ �AF ⇐⇒ �A(a, b) ⊆ F.
In this case we say that � is a set of congruence formulas for �. Examples of
equivalential logics comprise all the so-called algebraizable logics [5], as well as
a wide range of non-algebraizable ones such as the local consequence of the normal
modal system K [32]. For further information about equivalential logics, see [10, 15,
22–24].

Theorem 2.7. A logic � is equivalential if and only if there is a non-empty set of
formulas �(x, y) such that for every n-ary connective ∗,

∅ ��(x, x), x, �(x, y) � y,⋃
1�i�n

�(xi , yi) � �(∗(x1, ... , xn), ∗(y1, ... , yn)).

2In the literature the set � is not required to be non-empty. However, this restriction is almost
immaterial as, in a fixed language, there is a unique equivalential logic with an empty �, namely, the
pathological almost inconsistent logic [15, Proposition 6.11.5].
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In this case, � is a set of congruence formulas for � and Mod≡(�) = R(Mod(�)).

Proof. See [15, Theorems 6.17 and 6.60]. 	

For equivalential logics we have the following improvement of Corollary 2.5:

Lemma 2.8. Let � be the logic induced by a class of reduced matrices K on Fm(κ).
If � is equivalential, then Mod≡(�) = UκPSDS(K).

Proof. This result is essentially [46, Theorem 5.6]. 	

A tuple of elements of a set A is a finite sequence of elements of A.

Lemma 2.9. If � is a logic on Fm(κ) and � � |Fm(κ)|, then Mod≡(�) is closed
under U�.

Proof. Suppose, with a view to contradiction, that there is a matrix 〈A, F 〉 ∈
U�(Mod≡(�)) such that 〈A, F 〉 /∈ Mod≡(�). First observe that 〈A, F 〉 is a model of
�, since � � κ and � is defined on Fm(κ). Then the congruence

∼
�A�F is not the

identity relation. Together with Proposition 2.2(ii), this implies that there are two
different a, b ∈ A such that for every ϕ(x, �y) ∈ Fm(�), and every tuple �c ∈ A,

FgA�(F, ϕ(a, �c)) = Fg�(F, ϕA(b, �c)). (2)

We define a chain (under the subalgebra relation) 〈Bα : α < �〉 of subalgebras of
A as follows. First we let B0 be the subalgebra of A generated by {a, b}. At limit
ordinals we take unions. Now, suppose that Bα has already been defined and that
α < �. Consider a formulaϕ(x, �y) ∈ Fm(�) and a tuple �c ∈ Bα . By Lemma 2.1 and
(2) there is a subalgebra B[ϕ, �c, α] � A such that |B[ϕ, �c, α]| � �, a, b, �c ∈ B[ϕ, �c]
and

FgB[ϕ,�c,α]
� (F ∩ B[ϕ, �c, α], ϕ(a, �c)) = FgB[ϕ,�c,α]

� (F ∩ B[ϕ, �c, α], ϕ(b, �c)). (3)

Then we let B∗
α+1 be the subalgebra of A generated by the union of the various

B[ϕ, �c, α], and Bα the subalgebra of A generated by Bα ∪ B∗
α+1.

Now we set

〈B, G〉 := 〈
⋃
α<�

Bα, F ∩
⋃
α<�

Bα〉.

Bearing in mind that |B[ϕ, �c, α]| + |Fm(κ)| � �, an easy induction shows that
|Bα | � � for every α < �. As a consequence, we obtain that |B | � � and, therefore,
that B is �-generated. Together with 〈A, F 〉 ∈ U�(Mod≡(�)), this implies that
〈B, G〉 ∈ Mod≡(�).

Now, the fact that 〈B, G〉 ∈ Mod≡(�) implies that
∼
�B�G is the identity relation

and, therefore, that 〈a, b〉 /∈ ∼
�B�G . By Lemma 2.2(ii) we can assume without loss

of generality that there are a formula ϕ(x, �y) ∈ Fm(�) and a tuple �c ∈ B such that
ϕ(a, �c) /∈ FgB�(G,ϕ(b, �c)). Observe that there is α < � such that �c ∈ Bα . By (3) and
Lemma 2.1(i) we obtain that

ϕ(a, �c) ∈ FgB[ϕ,�c,α]
� (F ∩ B[ϕ, �c, α], ϕ(b, �c))

= FgB[ϕ,�c,α]
� (G ∩ B[ϕ, �c, α], ϕ(b, �c))

⊆ FgB�(G,ϕ(b, �c)).
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But this contradicts the fact that ϕ(a, �c) /∈ FgB�(G,ϕ(b, �c)). Hence we reached a
contradiction, as desired. 	

§3. Interpretations.

Definition 3.1. Let L and L′ be two languages. A translation � of L into L′ is a
map that associates an n-ary formula �(∗) of L′ in variables x1, ... , xn to every n-ary
function symbol ∗ of L.

Let � be a translation of L into L′. Given two infinite cardinals κ � � and a
formula ϕ ∈ FmL(κ), we define a formula �(ϕ) ∈ FmL′(�) by recursion as follows.
Ifϕ = xα for someα < κ, then �(ϕ) := xα . Moreover, ifϕ = ∗(1, ... , n) for some
n-ary function symbol ∗ of L, then �(ϕ) := �(∗)(�(1), ... , �(n)). We extend this
notation to sets of formulas � ⊆ FmL(κ), by setting �[� ] := {�(
) : 
 ∈ �}. Note
that the variables of �(ϕ) are among the variables in ϕ.

Moreover, given an L′-algebra A, we let A� be the L-algebra, whose universe is
A, and whose n-ary operations ∗ are interpreted as follows:

∗A� (a1, ... , an) := �(∗)A(a1, ... , an), for every a1, ... , an ∈ A.

By induction on the construction of the formulas we obtain that for every
ϕ(z1, ... , zn) ∈ FmL(κ) and every a1, ... , an ∈ A,

�(ϕ)A(a1, ... , an) = ϕA
�
(a1, ... , an).

Definition 3.2. Let � and �′ be two logics. An interpretation of � into �′ is a
translation � of L� into L�′ such that

if 〈A, F 〉 ∈ Mod≡(�′), then 〈A� , F 〉 ∈ Mod≡(�).

For instance, for every given logic the identity map is an interpretation of it into
any of its extensions.

Proposition 3.3. If � is an interpretation of � into �′, and 〈A, F 〉 ∈ Mod(�′), then
〈A� , F 〉 ∈ Mod(�). Moreover, if � � κ� � κ�′ , then for every � ∪ {ϕ} ⊆ FmL�(�),

if � � ϕ, then �[� ] �′ �(ϕ).

Proposition 3.4. Let � and �′ be two logics and � be a translation of L� into L�′ .
Then � is an interpretation of � into �′ if and only if 〈A� , F 〉 ∈ Mod≡(�) for every
〈A, F 〉 ∈ R(Mod(�′)).

Proof. The “only if” part is immediate. The “if” one is a consequence of
Lemma 2.3. 	

When there is an interpretation of � into �′ we write � � �′ and say that � is
interpretable into �′. Similarly, we say that � and �′ are equi-interpretable if � � �′

and �′ � �. Given a logic �, we denote by [[�]] the class of all logics which are
equi-interpretable with �. It is clear that the relation � is a preorder on the proper
class of all logics, and that it induces a partial order on the collection of all classes
of the form [[�]]. The latter poset constitutes the object of study of this work.
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942 R. JANSANA AND T. MORASCHINI

Definition 3.5. We denote by Log the poset of all logics, i.e., the poset whose
universe is {[[�]] : � is a logic} equipped with the partial order �, defined as follows:

[[�]] � [[�′]] ⇐⇒ � � �′.

Remark 3.6. The reader may feel reassured by learning that, despite our reference
to classes and collections, the results of this work can be formulated entirely in
ZFC. This is because our statements can be phrased equivalently as speaking about
logics ordered under the preorder � by modifying the statements about posets to
statements about preorders in the natural way. It is therefore only for the sake of
simplicity that we found convenient to work with the poset Log whose elements are,
strictly speaking, proper classes.

The notion of interpretability can be broken into two halves as follows:

Definition 3.7. Let � and �′ be logics.

(i) � and �′ are term-equivalent if there are interpretations � of � into �′ and �
of �′ into � such that

〈A, F 〉 = 〈A�� , F 〉 and 〈B, G〉 = 〈B�� , G〉

for every 〈A, F 〉 ∈ Mod≡(�′) and 〈B, G〉 ∈ Mod≡(�).
(ii) �′ is a compatible expansion of � if L� ⊆ L�′ and the L�-reducts of the

structures in Mod≡(�′) belong to Mod≡(�).

Proposition 3.8. Let � and �′ be logics. Then � � �′ if and only if �′ is term-
equivalent to a compatible expansion of �.

Proof. The “if” part is immediate. To prove the “only if” part, suppose that
there is an interpretation � of � into �′. We can assume without loss of generality
that the sets of function symbols of � and �′ are disjoint. Then let L be the language
extending L�′ with the symbols of �. Given a matrix 〈A, F 〉 ∈ Mod≡(�′), we denote
by AL the L-algebra obtained by enriching A with the following interpretation of
the n-ary symbols ∗ of �: for every a1, ... , an ∈ A,

∗AL(a1, ... , an) := �(∗)A(a1, ... , an).

Then consider the class of matrices K := {〈AL, F 〉 : 〈A, F 〉 ∈ Mod≡(�′)}, and let
�′′ be the logic on FmL(κ�′) induced by K. It is not hard to see that Mod≡(�′′) = K.
Together with the fact that � is an interpretation of � into �′, this implies that �′′ is
a compatible expansion of �. As it is clear that �′ and �′′ are term-equivalent, we
are done. 	

The following is instrumental to construct concrete interpretations.

Proposition 3.9. Let K be a class of reduced matrices that induces an equivalential
logic �′. Moreover, let � be a logic such that κ�′ � |Fm(�)|. A translation � of L�
into L�′ is an interpretation of � into �′ if and only if 〈A� , F 〉 ∈ Mod≡(�) for every
〈A, F 〉 ∈ S(K).

Proof. The “if” part follows from the fact that S(K) ⊆ Mod≡(�′) by Lemma 2.8.
To prove the “only if” part, suppose that 〈A� , F 〉 ∈ Mod≡(�) for every 〈A, F 〉 ∈

S(K). By Lemmas 2.3 and 2.9 this yields that 〈A� , F 〉 ∈ Mod≡(�) for every
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〈A, F 〉 ∈ Uκ�′PSDS(K). With an application of Lemma 2.8, we conclude that
〈A� , F 〉 ∈ Mod≡(�) for every 〈A, F 〉 ∈ Mod≡(�′) and, therefore, that � is an
interpretation of � into �′. 	

§4. Existence of infima of sets. A basic question about the poset Log is whether
it is a lattice or not. It turns out that Log has infima of arbitrarily large sets,
but unfortunately may lack even finite suprema. In this section we describe a
construction that supplies an explicit description of infima.

Definition 4.1. Given a family {Li : i ∈ I } of languages, we denote by
⊗
i∈I Li

the language whose n-ary symbols ∗ are sequences of the form

∗ = 〈ϕi(x1, ... , xn) : i ∈ I 〉,

where ϕi(x1, ... , xn) ∈ FmLi (�) for every i ∈ I . Keeping this in mind, consider a
family J = {Ai : i ∈ I } in which Ai is an Li -algebra, for every i ∈ I . The non-
indexed product

⊗
i∈I Ai of J is the

⊗
i∈I Li -algebra defined as follows:

(i) the universe of
⊗
i∈I Ai is the Cartesian product

∏
i∈I Ai , and

(ii) the n-ary symbols ∗ = 〈ϕi(x1, ... , xn) : i ∈ I 〉 are interpreted as

∗
⊗
i∈I Ai (�a1, ... , �an) := 〈ϕAii (�a1(i), ... , �an(i)) : i ∈ I 〉,

for every �a1, ... , �an ∈ ∏
i∈I Ai .

Non-indexed products of algebras found various applications in universal algebra,
especially in the theory of Maltsev conditions [2, 20, 21, 39, 47]. We use the
terminology of these papers and extend it to families of matrices and logics.

Definition 4.2. The non-indexed product of a family {〈Ai , Fi〉 : i ∈ I } of matrices
is defined in a similar fashion, by setting⊗

i∈I
〈Ai , Fi〉 := 〈

⊗
i∈I
Ai ,

∏
i∈I
Fi〉.

Remark 4.3. If {�i : i ∈ I } is a family of logics, then the cardinal of
⊗
i∈I L�i is

lesser than or equal to
∏
i∈I |Fm(�i)|. Moreover, if κ �

∏
i∈I |Fm(�i)| and Fm(κ)

is the set of formulas of
⊗
i∈I L�i in κ variables, then |Fm(κ)| � κ.

Given a collection {Ki : i ∈ I } in which Ki is a class of Li -matrices and I is a set,
we define ⊗

i∈I
Ki := I{

⊗
i∈I

〈Ai , Fi〉 : 〈Ai , Fi〉 ∈ Ki}.

A submatrix 〈A, F 〉 ⊆
⊗
i∈I 〈Ai , Fi〉 is said to be a non-indexed subdirect product

of {〈Ai , Fi〉 : i ∈ I }, in symbols 〈A, F 〉 ⊆ sd
⊗
i∈I 〈Ai , Fi〉, if the projection maps

�i : A→ Ai are surjective. We write 〈A, F 〉 � sd
⊗
i∈I 〈Ai , Fi〉 to indicate that 〈A, F 〉

is isomorphic to a matrix 〈B, G〉 such that 〈B, G〉 ⊆ sd
⊗
i∈I 〈Ai , Fi〉.

Definition 4.4. Let {�i : i ∈ I } be a family of logics. The non-indexed product⊗
i∈I �i of {�i : i ∈ I } is the logic in the language

⊗
i∈I Li formulated in κ variables
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and induced by the class of matrices
⊗
i∈I Mod≡(�i), where

κ :=
∏
i∈I

|Fm(�i)|.

When I = ∅, we stipulate that
⊗
i∈I �i is the logic in the empty language

formulated in countably many variables and induced by the trivial matrix 〈1, {1}〉.

Our aim is to prove that [[
⊗
i∈I �i ]] is the infimum of {[[�i ]] : i ∈ I } in Log. To this

end, we rely on the following characterization of Mod≡(
⊗
i∈I �i), to be established

later on.

Proposition 4.5. If {�i : i ∈ I } is a family of logics, then

Mod≡(
⊗
i∈I

�i) = PSD(
⊗
i∈I

R(Mod(�i))) = PSD(
⊗
i∈I

Mod≡(�i)).

Moreover,

Mod≡(
⊗
i∈I

�i) = {〈A, F 〉 : 〈A, F 〉 �sd

⊗
i∈I

〈Ai , Fi〉 for some 〈Ai , Fi〉 ∈ Mod≡(�i)}.

As we promised, we obtain the following:

Theorem 4.6. The infimum of a set {[[�i ]] : i ∈ I } ⊆ Log is [[
⊗
i∈I �i ]]. Thus Log

is a set-complete meet-semilattice, i.e., infima of subsets of Log exist.

Proof. First we show that
⊗
i∈I �i � �j for every j ∈ I . To this end, consider

the map � that sends every n-ary basic operation of
⊗
i∈I �i to its j-th component

(which is an n-ary term of �j). Consider 〈A, F 〉 ∈ Mod≡(�j). It is clear that
〈A� , F 〉 ∼=

⊗
i∈I 〈Ai , Fi〉 where 〈Ai , Fi〉 is the trivial Li -matrix for every i ∈ I \ {j},

and 〈Aj , Fj〉 := 〈A, F 〉. By Proposition 4.5 we have

〈A� , F 〉 ∼=
⊗
i∈I

〈Ai , Fi〉 ∈
⊗
i∈I

Mod≡(�i) ⊆ Mod≡(
⊗
i∈I

�i).

In particular, this means that � is an interpretation of
⊗
i∈I �i into �j , thus⊗

i∈I �i � �j . As a consequence, [[
⊗
i∈I �i ]] is a lower bound of {[[�i ]] : i ∈ I }.

To prove that {[[�i ]] : i ∈ I } is the greatest lower bound of [[
⊗
i∈I �i ]], consider a

logic� such that� � �i for every i ∈ I . Then for each i ∈ I there is an interpretation
� i of � into �i . Let � be the map that associates with every basic n-ary symbol ∗ of
� the following n-ary term of

⊗
i∈I �i :

�(∗) := 〈� i(∗) : i ∈ I 〉.

Now, consider a matrix 〈A, F 〉 ∈ Mod≡(
⊗
i∈I �i). From Proposition 4.5 it follows

that 〈A, F 〉 �
∏
j∈J (

⊗
i∈I 〈A

j
i , F

j
i 〉) is a subdirect product for some 〈Aji , F

j
i 〉 ∈

Mod≡(�i). It is easy to see that

〈A� , F 〉 �
∏
j∈J

(∏
i∈I

〈(Aji )� i , F
j
i 〉

)
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is also a subdirect product. Since each � i is an interpretation of� into�i , we conclude
that

〈A� , F 〉 ∈ PSDP(Mod≡(�)) = PSD(Mod≡(�)).

Together with the fact that Mod≡(�) is closed under subdirect products by Lemma
2.3, this yields that 〈A� , F 〉 ∈ Mod≡(�). Hence we conclude that

⊗
i∈I �i � �. 	

The remaining part of this section is devoted to prove Proposition 4.5. The proof
proceeds through a series of technical observations.

Lemma 4.7. If 〈A, F 〉 ⊆sd
⊗
i∈I 〈Ai , Fi〉 and F �= ∅, then for every �a, �c ∈ A,

〈�a, �c〉 ∈ �AF ⇐⇒ for every i ∈ I, 〈�a(i), �c(i)〉 ∈ �Ai Fi .
Proof. The right-to-left direction is an easy exercise. To prove the left-to-right

direction, suppose that 〈�a, �c〉 ∈ �AF . By Lemma 2.2(i), given an arbitrary j ∈ I ,
we need to show that p(�a(j)) ∈ F iff p(�c(j)) ∈ F , for every unary polynomial
function p(x) of Aj . To this end, consider a formula ϕ(x, y1, ... , yn) of Aj and
elements e1, ... , en ∈ Aj such that

ϕAj (�a(j), e1, ... , en) ∈ Fj. (4)

Since �j : A→ Aj is surjective, there are �e1, ... , �en ∈ A whose j-th components are
respectively e1, ... , en. Moreover, as F �= ∅, we can choose an element �e ∈ F . Then
consider the basic operation

(x, y1, ... , yn, z) := 〈i(x, y1, ... , yn, z) : i ∈ I 〉
of A, where j = ϕ, and i = z for every i ∈ J \ {j}. We have that for every i ∈ I ,

(�a, �e1, ... , �en, �e)(i) =
{
ϕAj (�a(j), e1, ... , en) if i = j,
�e(i) otherwise.

Together with (4) and �e ∈ F , this implies that (�a, �e1, ... , �en, �e) ∈ F . Since 〈�a, �c〉 ∈
�AF , we obtain that (�c, �e1, ... , �en, �e) ∈ F as well. In particular, this means that

ϕAj (�c(j), e1, ... , en) = (�c, �e1, ... , �en, �e)(j) ∈ Fj.

Hence we conclude that 〈�a(j), �c(j)〉 ∈ �Aj Fj , as desired. 	
Corollary 4.8. If 〈A, F 〉 ⊆sd

⊗
i∈I 〈Ai , Fi〉 and F �= ∅, then

(i) if the matrices in {〈Ai , Fi〉 : i ∈ I } are reduced, then so is 〈A, F 〉 and
(ii) 〈A, F 〉∗ �sd

⊗
i∈I 〈Ai , Fi〉∗.

Proof. Condition (i) is an immediate consequence of Lemma 4.7. To prove
condition (ii), consider the map f : 〈A, F 〉∗ →

⊗
i∈I 〈Ai , Fi〉∗ defined as

f(a/�AF ) := 〈a(i)/�Ai Fi : i ∈ I 〉
for every a ∈ A. From Lemma 4.7 it follows that f is a well-defined embedding.
Together with the fact that 〈A, F 〉 ⊆sd

⊗
i∈I 〈Ai , Fi〉, this implies that 〈A, F 〉∗ �sd⊗

i∈I 〈Ai , Fi〉∗. 	
Proposition 4.9. Let {�i : i ∈ I } be a family of logics. The logic

⊗
i∈I �i has

theorems if and only if each �i has theorems.
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Proof. The “only if” part is immediate. To prove the “if” one, suppose that each
�i has a theorem ϕi . By substitution invariance, we can assume that ϕi = ϕi(x).
Then the formula ϕ(x) := 〈ϕi(x) : i ∈ I 〉 is a theorem of

⊗
i∈I �i . 	

Lemma 4.10. Let {�i : i ∈ I } be a family of logics, and 〈A, F 〉 a matrix such that
F �= ∅. The following conditions are equivalent:

(i) 〈A, F 〉 ∈ R(Mod(
⊗
i∈I �i)).

(ii) 〈A, F 〉 �sd
⊗
i∈I 〈Ai , Fi〉, for some 〈Ai , Fi〉 ∈ R(Mod(�i)).

Proof. (i)⇒(ii): Let κ :=
∏
i∈I |Fm(�i)| and Fm(κ) the set of formulas of⊗

i∈I �i in κ variables. We know that κ � |Fm(κ)|. Since
⊗
i∈I �i is the logic

on Fm(κ) induced by
⊗
i∈I Mod≡(�i), we can apply Theorem 2.4 yielding

〈A, F 〉 ∈ RSPRκ+
(
⊗
i∈I

Mod≡(�i)).

Then there are a matrix 〈B, G〉, a family of matrices {〈Bji , G
j
i 〉 : i ∈ I, j ∈ J}, and

a κ+-complete filter F on J such that 〈B, G〉∗ = 〈A, F 〉, 〈Bji , G
j
i 〉 ∈ Mod≡(�i), and

〈B, G〉 �
( ∏
j∈J

(
⊗
i∈I

〈Bji , G
j
i 〉)

)
/F. (5)

It is easy to see that the map

f :
∏
j∈J

(
⊗
i∈I

〈Bji , G
j
i 〉) →

⊗
i∈I

(
∏
j∈J

〈Bji , G
j
i 〉),

defined by the rule

f(�a)(i)(j) := �a(j)(i), for every i ∈ I, j ∈ J,
is an isomorphism. We shall see that also the map

g :
∏
j∈J

(
⊗
i∈I

〈Bji , G
j
i 〉)/F →

⊗
i∈I

(
∏
j∈J

〈Bji , G
j
i 〉/F ),

defined by the rule

g(�a/F )(i) := f(�a)(i)/F , for every i ∈ I,
is an isomorphism. The proof that g is a well-defined surjective homomorphism
is routinary. To prove that g is also injective, consider �a, �c ∈ ∏

j∈J (
⊗
i∈I 〈B

j
i , G

j
i 〉)

such that g(�a/F ) = g(�c/F ), i.e., that f(�a)(i)/F = f(�c)/F for every i ∈ I . Since
κ � |I | and F is κ+-complete, we have

{j ∈ J : �a(j) = �c(j)} =
⋂
i∈I

{j ∈ J : �a(j)(i) = �c(j)(i)}

=
⋂
i∈I

{j ∈ J : f(�a)(i)(j) = f(�c)(i)(j)}

∈ F.
Hence �a/F = �c/F and, therefore, g is injective. This establishes that g is an
isomorphism.
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Together with (5), this yields that 〈B, G〉 �
⊗
i∈I (

∏
j∈J 〈B

j
i , G

j
i 〉/F ). As a conse-

quence, there are 〈Ai , Fi〉 ∈ SPRκ+
(Mod≡(�i)) such that 〈B, G〉 �sd

⊗
i∈I 〈Ai , Fi〉.

Together with Corollary 4.8, this implies that

〈A, F 〉 � sd

⊗
i∈I

〈Ai , Fi〉∗,

where 〈Ai , Fi〉∗ ∈ RSPRκ+
(Mod≡(�i)). As κ � |Fm(�i)|, it is not hard to see that

PRκ+
(Mod≡(�i)) ⊆ Mod(�i). In particular, this implies that SPRκ+

(Mod≡(�i)) ⊆
Mod(�i) and, therefore, that 〈Ai , Fi〉∗ ∈ R(Mod(�i)).

(ii)⇒(i): From the definition of
⊗
i∈I �i it follows that

⊗
i∈I 〈Ai , Fi〉 is a model

of
⊗
i∈I �i . As submatrices of models are still models, this implies that 〈A, F 〉 ∈

Mod(
⊗
i∈I �i). Finally, the matrix 〈A, F 〉 is reduced by Corollary 4.8. 	

The following observation is well-known [15, p. 205].

Lemma 4.11. Let � be a logic, and A an algebra.

(i) If 〈A, ∅〉 ∈ R(Mod(�)), then A is the trivial algebra 1.
(ii) A logic � has theorems if and only if 〈1, ∅〉 /∈ Mod≡(�) or, equivalently, if

〈1, ∅〉 /∈ R(Mod(�)).

As a consequence we obtain a transparent description of R(Mod(
⊗
i∈I �i)):

Proposition 4.12. Let {�i : i ∈ I }be a family of logics. The classR(Mod(
⊗
i∈I �i))

consists of the matrices satisfying condition (ii) of Lemma 4.10, plus 〈1, ∅〉 in case
some �i has no theorems.

Proof. This is an easy consequence of Proposition 4.9, and of Lemmas 4.10 and
4.11 	

Let {Li : i ∈ I } be a family of languages and 〈A, F 〉 be a Lj-matrix for some
j ∈ I . We denote by 〈A, F 〉� the

⊗
i∈I Li -matrix

⊗
i∈I 〈A

–
i , F

–
i 〉, where

〈A–
i , F

–
i 〉 :=

{
〈A, F 〉 if i = j
〈1, {1}〉 otherwise.

Note that if 〈A, F 〉 is reduced, then 〈A, F 〉� is reduced as well.

Lemma 4.13. If {�i : i ∈ I } is a family of logics,

R(Mod(
⊗
i∈I

�i)) ⊆ PSD(
⊗
i∈I

R(Mod(�i))) ⊆ PSDR(Mod(
⊗
i∈I

�i)).

Proof. We detail only the proof of the first inclusion, since the proof of the second
one exploits similar ideas. Consider a matrix 〈A, F 〉 ∈ R(Mod(

⊗
i∈I �i)). First we

consider the case where F = ∅. As the matrix 〈A, F 〉 is reduced, we know that A is
trivial by Lemma 4.11(i). Now, the fact that F is empty implies that

⊗
i∈I �i has no

theorems. From Proposition 4.9 it follows that there is j ∈ I such that �j has no
theorems. Therefore by Lemma 4.11(ii) the Lj-matrix 〈1, ∅〉 belongs toR(Mod(�j)).
As a consequence we obtain that

〈A, F 〉 = 〈1, ∅〉� ∈
⊗
i∈I

(R(Mod(�i)).
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Then we consider the case where F �= ∅. From Lemma 4.10 we know that
〈A, F 〉 �sd

⊗
i∈I 〈Ai , Fi〉 for some 〈Ai , Fi〉 ∈ R(Mod(�i)). Moreover, it is easy to

see that the map

f :
∏
i∈I

〈Ai , Fi〉� →
⊗
i∈I

〈Ai , Fi〉

defined by the rule

f(�a)(i) := �a(i)(i), for every i ∈ I

is an isomorphism. Together with the fact that 〈A, F 〉 �sd
⊗
i∈I 〈Ai , Fi〉, this implies

that

〈A, F 〉 �
∏
i∈I

〈Ai , Fi〉�

is a subdirect product. Hence we conclude that 〈A, F 〉 ∈ PSD(
⊗
i∈I R(Mod(�i))). 	

Proof of Proposition 4.5. We begin by proving the first part. From Lemmas 2.3
and 4.13 it follows that

Mod≡(
⊗
i∈I

�i) = PSDR(Mod(
⊗
i∈I

�i)) ⊆ PSDPSD(
⊗
i∈I

R(Mod(�i)))

= PSD(
⊗
i∈I

R(Mod(�i))).

Moreover, since R(Mod(�i)) ⊆ Mod≡(�i) for every i ∈ I , we have

PSD(
⊗
i∈I

R(Mod(�i))) ⊆ PSD(
⊗
i∈I

Mod≡(�i)).

It only remains to prove that PSD(
⊗
i∈I Mod≡(�i)) ⊆ Mod≡(

⊗
i∈I �i). Since the

class Mod≡(
⊗
i∈I �i) is closed under subdirect products by Lemma 2.3, it suffices

to show that
⊗
i∈I Mod≡(�i) ⊆ Mod≡(

⊗
i∈I �i). To this end, consider a matrix

〈Ai , Fi〉 ∈ Mod≡(�i) for each i ∈ I . By Lemma 2.3, for every i ∈ I there is a
family {〈Aji , F

j
i 〉 : j ∈ Ji} ⊆ R(Mod(�i)) such that 〈Ai , Fi〉 �

∏
j∈Ji 〈A

j
i , F

j
i 〉 is a

subdirect product. We can assume without loss of generality that Ji = Jj for every
i, j ∈ I (for instance, by adding trivial matrices to the factors of products when
necessary). Accordingly, we drop the index i in each Ji , and write simply J. Under
this convention, it is easy to see that⊗

i∈I
〈Ai , Fi〉 �

∏
j∈J

(
⊗
i∈I

〈Aji , F
j
i 〉)

is a subdirect product. Together with Lemmas 4.13 and 2.3, this yields⊗
i∈I

〈Ai , Fi〉 ∈ PSD(
⊗
i∈I

R(Mod(�i))) ⊆ PSDR(Mod(
⊗
i∈I

�i)) = Mod≡(
⊗
i∈I

�i).

Hence we conclude that
⊗
i∈I Mod≡(�i) ⊆ Mod≡(

⊗
i∈I �i), as desired.

To prove the second part, we rely on the first one. Consider a matrix 〈A, F 〉 ∈
Mod≡(

⊗
i∈I �i) = PSD(

⊗
i∈I Mod≡(�i)). We can assume without loss of generality
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that

〈A, F 〉 ⊆
∏
j∈J

⊗
i∈I

〈Bji , G
j
i 〉

is a subdirect product for some families {〈Bji , G
j
i 〉 : j ∈ J} ⊆ Mod≡(�i), one for

each i ∈ I . Then for every i ∈ I , let

f :
∏
j∈J

(
⊗
i∈I

〈Bji , G
j
i 〉) →

⊗
i∈I

(
∏
j∈J

〈Bji , G
j
i 〉),

�i :
∏
i∈I

∏
j∈J
Bji →

∏
j∈J
Bji

be, respectively, the isomorphism defined in the proof of Lemma 4.10, and the natural
projection on the i-th component. Bearing this in mind, for every i ∈ I let 〈C i , Hi〉
be the matrix where C i is the subalgebra �i [f[A]] ⊆

∏
j∈J B

j
i and Hi = �i [f[F ]].

The restriction f�A : 〈A, F 〉 →
⊗
i∈I 〈C i , Hi〉 is a well-defined matrix embedding

such that �i [f�A[A]] = Ci for every i ∈ I . Hence, we conclude that

〈A, F 〉 �sd

⊗
i∈I

〈C i , Hi〉.

Now, it is not hard to see that 〈C i , Hi〉 is a subdirect product of
∏
j∈J 〈B

j
i , G

j
i 〉, for

every i ∈ I . Since each Mod≡(�i) is closed under subdirect products, this implies
that 〈C i , Hi〉 ∈ Mod≡(�i) for every i ∈ I . This proves the inclusion from left to
right.

To prove the other inclusion, let 〈A, F 〉 �sd
⊗
i∈I 〈Ai , Fi〉 where 〈Ai , Fi〉 ∈ Mod≡

(�i) for every i ∈ I . Then, as in the proof of Lemma 4.13, we have that 〈A, F 〉 is a
subdirect product of

∏
i∈I 〈Ai , Fi〉�. From the fact that 〈Ai , Fi〉� ∈

⊗
i∈I Mod≡(�i)

for every i ∈ I , we obtain that 〈A, F 〉 ∈ PSD(
⊗
i∈I Mod≡(�i)).

The characterization ofMod≡(
⊗
i∈I �i) given in Proposition 4.5 has a particularly

appealing simplification in the case where the index set I is finite.

Corollary 4.14. If � and �′ are logics, then

Mod≡(�
⊗

�′) = Mod≡(�)
⊗

Mod≡(�′).

Proof. As shown essentially in [47, Lemma 1.9 and 1.10], if K1 and K2 are classes
of matrices (resp. algebras) closed under subdirect products, then so is K1

⊗
K2.

Together with Lemma 2.3, this implies that the classMod≡(�)
⊗

Mod≡(�′) is closed
under subdirect products. By Proposition 4.5 we conclude that Mod≡(�

⊗
�′) =

Mod≡(�)
⊗

Mod≡(�′). 	

§5. Finite suprema need not exist. It is well known that if A is a poset whose
universe is a set and in which infima of sets exist, then A is a complete lattice.
Unfortunately, the proof of this fact relies on the assumption that the universe of
A is a set and, therefore, cannot be applied to the poset Log (which is known to
have infima of sets by Theorem 4.6). The situation is entirely different for Log. This
section is devoted to prove the following:

Theorem 5.1. Finite suprema need not exist in Log.
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The proof of this theorem builds on a counterexample. Let A = 〈A;∨, a, b, 0〉 be
the join-semilattice, expanded with constants,3 depicted below:

• 1

��
��

��
�

��
��
��
�

c •
��

��
��

�

��
��
��
� • b

��
��
��
�

a •
��

��
��

� e • • d

��
��
��
�

0 •
Then let �∨ be the logic in countably many variables induced by the set of matrices

{〈A, {1}〉, 〈A, {1, c}〉}.
Fact 1. We have that 〈A, {1}〉 ∈ Mod≡(�∨).

Proof. It is clear that 〈A, {1}〉 is a model of �∨. Hence it will be enough to prove
that

∼
�A�∨{1} is the identity relation on A. From the definition of �∨ it follows that

{c, 1} is a deductive filter of �∨ on A. Now, an easy computation shows that:

(i) The blocks of �A{1} are {a, e, c}, {0, d}, {b}, {1}.
(ii) The blocks of �A{c, 1} are {0}, {a}, {e}, {b, d}, {c, 1}.

Together with the fact
∼
�A�∨{1} ⊆ �A{1} ∩�A{c, 1},

this implies that
∼
�A�∨{1} is the identity relation on A. 	

Fact 2. The algebraic reducts of the matrices in Mod≡(�∨) are either trivial or
have at least four elements.

Proof. In this proof we assume that semilattices are equipped with the join-order.
Consider a matrix 〈B, F 〉 ∈ Mod≡(�∨) such that B is non-trivial. By Corollary 2.6
we know that B is a semilattice with constants a, b, 0 such that

0 � a and 0 � b. (6)

Now, since B is non-trivial, we know that F �= B . Together with the fact that

a �∨ x b �∨ x 0 �∨ x

this implies that a, b, 0 /∈ F . Observe that a ∨ b ∈ F , since ∅ �∨ a ∨ b. Hence, to
conclude that B has at least four elements, it will be enough to check that a, b, 0 are
different one from the other. From the fact that a, b /∈ F and a ∨ b ∈ F , it follows
that a and b are incomparable in the order of B. Together with (6), this implies that
0 is different from a and b. 	

We say that a negation algebra is an algebra B = 〈B ;¬〉 where ¬ is a unary
operation with at most one fix point, and such that ¬¬a = a for all a ∈ B . We
denote by NA the class of negation algebras, and by �¬ be the negation fragment of
classical propositional logic (formulated in countably many variables). The relation
between �¬ and NA is captured by the following result:

3We use in this section “constant(s)” as an abbreviation for “constant unary operation(s).”
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Fact 3. Mod≡(�¬) is the class of matrices 〈B, F 〉 such that either B is trivial or
B is a negation algebra and in this case either F = ∅ or F = {a} for some a ∈ B
that is not a fixed point of ¬.

Proof. The interested reader may consult the Appendix for the details. 	

Now, given a cardinal κ > 0 and α < κ, we let Aα,κ be the expansion of A with a
constant for every element of A, a unary operation ¬ defined as

¬0 = d, ¬d = 0, ¬a = c, ¬c = a, ¬1 = b, ¬b = 1, ¬e = e,

and with a set of binary operations {�	 : 	 < κ} defined for every 	 < κ and
p, q ∈ A as follows:

p�	 q :=
{

1 if p = q or 	 �= α,
0 if p �= q and 	 = α.

Then let �κ be the logic formulated in countably many variables induced by the class
of matrices {〈Aα,κ, {1}〉 : α < κ}.

Fact 4. For every κ > 0, the logic �κ is equivalential.

Proof. Consider the set

�(x, y) := {x �α y : α < κ}.

It is easy to see that � witnesses the validity of the rules in Theorem 2.7. Hence we
conclude that �κ is equivalential. 	

Fact 5. For every κ > 0, [[�κ]] is an upper bound of [[�∨]] and [[�¬]] in Log.

Proof. Consider the class of matrices K := {〈Aα,κ, {1}〉 : α < κ}. It is clear that
�κ is the logic induced by K and that S(K) = K. Then let � be the identity translation
of L�∨ into L�κ . By Fact 1 we have

〈B� , F 〉 = 〈A, {1}〉 ∈ Mod≡(�∨)

for every 〈B, F 〉 ∈ K. Together with Fact 4 and Proposition 3.9, this implies that �
is an interpretation of �∨ into �κ.

A similar argument (requiring Fact 3) shows that �∨ is also interpretable in �κ.	

Suppose, with a view to contradiction, that there exists the supremum of [[�∨]]
and [[�¬]] in Log, i.e., that there exists a logic � such that

[[�]] = [[�∨]] ∨ [[�¬]]. (7)

From now on, our aim is to obtain a contradiction.

Fact 6. For every κ > 0, we have [[�]] � [[�κ]].

Proof. This is a direct consequence of Fact 5. 	

Now, since � is a logic, its language is a set, say of cardinality κ. We can assume
without loss of generality that κ is infinite (if it is not, then we can add to it infinitely
many unary operations whose interpretation in Mod≡(�) would be the identity
map). By Fact 6 there is an interpretation � of � into �κ+.
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Fact 7. There is α < κ+ such that the symbol �α does not appear in the terms
{�(ϕ) : ϕ ∈ L�}.

Proof. Straightforward. 	
From now on we will work with the special α < κ+ provided by Fact 7. Let Âα,κ+

be the {�α}-free reduct of Aα,κ+.

Fact 8. The algebra Âα,κ+ is term-equivalent to

〈A;∨Aα,κ+ ,¬Aα,κ+ , a, b, 0, e〉.

Proof. Using negation, it is easy to see that all constants from Âα,κ+ are definable

in the displayed algebra. Moreover, if 	 �= α, then �Aα,κ+

	 is a constant map. This

shows that all term-functions of Âα,κ+ are also term-functions of the algebra in the
display. The converse is obvious. 	

In what follows we will work under the identification of Âα,κ+ with the algebra
displayed in Fact 8.

Fact 9. If 
(x) is a formula of Âα,κ+ such that 〈A; 
 Âα,κ+ 〉 is a negation algebra,
then 
 can be obtained as a composition of ∨ and ¬.

Proof. Assume that 〈A; 
 Âα,κ+ 〉 is a negation algebra. Suppose, with a view to
contradiction, that either 0 or a or b occur in 
. It is not hard to see that this implies

that e /∈ 
 Âα,κ+ [A]. However, since 〈A; 
 Âα,κ+ 〉 is a negation algebra, we know that

e = 
 Âα,κ+ 
 Âα,κ+ (e) ∈ 
 Âα,κ+ [A],

which is false. Hence we conclude that 0, a, and b do not occur in 
.
It only remains to prove that e does not occur in 
. Suppose the contrary, with a

view to contradiction. An easy induction on the construction of formulas shows that
if ϕ(x) is a formula of Âα,κ+ in which 0, a, and b do not occur and in which e occurs,

then ϕÂα,κ+ (0) ∈ {e, a, c}. As 0, a, and b do not occur in the composition 
(
(x)),

this means that 
 Âα,κ+ 
 Âα,κ+ (0) �= 0. But this contradicts the fact that 〈A; 
 Âα,κ+ 〉 is
a negation algebra, as desired. 	

Fact 10. The blocks of �A
�
α,κ+{1} are {0, d}, {a, c, e}, {b}, {1}.

Proof. By Fact 7 we know that the term-functions of A�α,κ+ are also term-

functions of Âα,κ+. In particular, this means that ConÂα,κ+ ⊆ ConA�α,κ+.
Consider the equivalence relation � on A determined by the partition in the

statement. Using for instance Fact 8, it is easy to see that � is a congruence of Âα,κ+.
Then � is also a congruence of A�α,κ+. As � is compatible with {1}, this implies that

� ⊆ �A
�
α,κ+{1}.

As a consequence, we obtain that A/�A
�
α,κ+{1} is a set of at most four elements.

Moreover, since�A
�
α,κ+{1} is compatible with {1}, we know that 〈0, 1〉 /∈ �A

�
α,κ+{1}.

Therefore we have

2 � |A/�A
�
α,κ+{1}| � 4. (8)
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Now, it is easy to see that 〈Aα,κ+ , {1}〉 ∈ R(Mod≡(�κ+ )). Since � is an interpretation
of � into �κ+, this implies that 〈A�α,κ+ , {1}〉 ∈ Mod(�) and, therefore, that
〈A�α,κ+ , {1}〉∗ ∈ Mod≡(�). Together with Fact 2 and �∨ � �, this implies that either

the matrix 〈A�α,κ+ , {1}〉∗ is trivial, or the congruence �A
�
α,κ+{1} has at least four

blocks. By (8) we conclude that �A
�
α,κ+{1} has exactly four blocks. Together with

the fact that � ⊆ �A
�
α,κ+{1}, this implies that � = �A

�
α,κ+{1}. 	

We are now ready to produce the desired contradiction. To this end, recall that
there is an interpretation � of �¬ into �. Since 〈Aα,κ+ , {1}〉 ∈ Mod≡(�κ+ ), we can
apply Fact 3 obtaining that 〈A; ��(¬)Aα,κ+ 〉 is a negation algebra. By Fact 7 we
know that the function ��(¬)Aα,κ+ : A→ A is a term-function of Âα,κ+. Hence we
can apply Fact 9 obtaining that ��(¬)Aα,κ+ can be produced as a composition of the
functions

¬Aα,κ+ : A→ A and ∨Aα,κ+ : A× A→ A.

This yields that

��(¬)Aα,κ+ (0) ∈ {0, d} and ��(¬)Aα,κ+ (e) = e. (9)

From the fact that 〈Aα,κ+ , {1}〉 ∈ Mod≡(�κ+) it follows that 〈A�α,κ+ , {1}〉 ∈
Mod(�). In particular, this implies that

〈A�α,κ+/�, {1}/�〉 ∈ Mod≡(�),

where � := �A
�
α,κ+{1}. Together with Fact 3, this yields that 〈A/�; ��(¬)Aα,κ+/�〉

is a negation algebra. However, by Fact 10 and (9) this negation algebra has two
distinct fixed points for negation (namely 0/� and e/�), which is impossible. Hence
we reached a contradiction, establishing Theorem 5.1.

§6. The lattice of equivalential logics. Even if suprema need not exist in Log
there is an important subsemilattice of Log where suprema exist, i.e., the lattice of
equivalential logics.

Proposition 6.1.

(i) Let � and �′ be logics. If � is equivalential and � � �′, then �′ is also
equivalential.

(ii) If {�i : i ∈ I } is a family of equivalential logics, then
⊗
i∈I �i is equivalential.

Proof. (i): Let �(x, y) be the set of formulas witnessing the fact that � is
equivalential, as in Theorem 2.7. Moreover, let � be an interpretation of � into
�′. We consider the set�(x, y) := �[�] of formulas of L�′ . In order to establish that
�′ is equivalential, it will be enough to show that � and �′ satisfy the conditions in
Theorem 2.7.

From Proposition 3.3 it follows that ∅ �′ �(x, x) and x,�(x, y) �′ y. It only
remains to prove that for every n-ary connective ∗ of �′,⋃

1�i�n
�(xi , yi) �′ �(∗(x1, ... , xn), ∗(y1, ... , yn)). (10)

https://doi.org/10.1017/jsl.2021.48 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2021.48


954 R. JANSANA AND T. MORASCHINI

To this end, consider an n-ary connective ∗ of �′, a matrix 〈A, F 〉 ∈ Mod≡(�′), and
tuples �a, �c ∈ An such that ⋃

1�i�n
�A(ai , ci) ⊆ F.

Since � = �[�], we have ⋃
1�i�n

�A
�
(ai , ci) ⊆ F.

As � is a set of congruence formulas for �, and 〈A� , F 〉 ∈ Mod≡(�) = R(Mod(�)),
the above display implies that �a = �c. As a consequence, we obtain that ∗A(�a) =
∗A(�c). Since ∅ �′ �(x, x) and 〈A, F 〉 ∈ Mod(�′), this yields

�A(∗(�a), ∗(�c)) = �A(∗(�a), ∗(�a)) ⊆ F.

Hence we conclude that (10) holds.
(ii): Given i ∈ I , let �i(x, y) be a set of congruence formulas for �i . Observe

that the Cartesian product
∏
i∈I �i can be viewed as a set �(x, y) of formulas of⊗

i∈I �i . Since the various �i satisfy the rules in Theorem 2.7, and
⊗
i∈I �i is the

logic induced by
⊗
i∈I Mod≡(�i), it is easy to see that the set � satisfies the rules in

Theorem 2.7 as well. As a consequence, we conclude that
⊗
i∈I �i is an equivalential

logic. 	

The above result motivates the following definition:

Definition 6.2. Let Equiv be the subposet of Log that contains the classes [[�]]
such that � is an equivalential logic.

From Proposition 6.1 it follows that Equiv is a set-complete filter of Log, i.e., an
upset that is closed under infima of sets. Moreover, we shall prove that in Equiv
suprema of sets exist.

Definition 6.3. Given a family {Li : i ∈ I } of languages, we let
⊕
i∈I Li be

the language consisting of the disjoint union of the various Li . Moreover, given
a family {�i : i ∈ I } of equivalential logics, we let

⊕
i∈I �i be the logic in the

language
⊕
i∈I Li formulated in �i∈I κ�i variables and induced by the following

class of
⊕
i∈I L�i -matrices:

{〈A, F 〉 : the L�i -reduct of 〈A, F 〉 belongs to R(Mod(�i)) for all i ∈ I }. (11)

We will show that [[
⊕
i∈I �i ]] is the supremum of {[[�i ]] : i ∈ I } both in Log and

Equiv.

Lemma 6.4. Let {�i : i ∈ I } be a family of equivalential logics.

(i) If � is a set of congruence formulas for �i , then so it is for
⊕
i∈I �i .

(ii) The logic
⊕
i∈I �i is equivalential.

(iii) Mod≡(
⊕
i∈I �i) is the class of matrices in (11).

(iv) [[
⊕
i∈I �i ]] is the supremum of {[[�i ]] : i ∈ I } both in Equiv and in Log.

Proof. (i): Observe that the L�i -reducts of the matrices in (11) are reduced.
Together with the fact that� is a set of congruence formulas for�i , this easily implies
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that � satisfies the conditions of Theorem 2.7 for
⊕
i∈I �i . As a consequence, we

conclude that � is a set of congruence formulas for
⊕
i∈I �i .

(ii): Immediate from (i). (iii): Let M be the class of matrices in (11). It
is easy to see that the matrices in M are reduced and, therefore, that M ⊆
Mod≡(

⊕
i∈I �i). To prove the other inclusion, consider 〈A, F 〉 ∈ Mod≡(

⊕
i∈I �i).

As
⊕
i∈I �i is equivalential by (ii), we can apply Theorem 2.7 obtaining that

〈A, F 〉 ∈ R(Mod(
⊕
i∈I �i)). It will be enough to show that (for every i ∈ I ) the

L�i -reduct 〈A–, F 〉 of 〈A, F 〉 is a reduced model of �i . The fact that 〈A–, F 〉 is a
model of �i is clear. To prove that it is reduced, let � be a set of congruence formulas
of �i . By (i) we know that � is also a set of congruence formulas for

⊕
i∈I �i .

Together with the fact that 〈A, F 〉 is a reduced model of
⊕
i∈I �i , this implies that

for every a, b ∈ A,

a = b ⇐⇒ �A(a, b) ⊆ F ⇐⇒ �A–
(a, b) ⊆ F.

Since 〈A–, F 〉 is a model of �i , this implies that the matrix 〈A–, F 〉 is reduced.
(iv): By (i) we know that [[

⊕
i∈I �i ]] belongs to Equiv. Hence it will be enough

to show that it is the supremum of {[[�i ]] : i ∈ I } in Log. Recall from Theorem
2.7 that Mod≡(�i) = R(Mod(�i)) for all i ∈ I . Together with (iii), this implies that
�j �

⊕
i∈I �i for all j ∈ I .

Now, consider a logic � such that �i � � for every i ∈ I . Then for every i ∈ I ,
there is an interpretation � i of �i into �. Observe that all these � i can be joined
together into a translation � of

⊕
i∈I Li into L�. We will show that � is also an

interpretation of
⊕
i∈I �i into �. To this end, consider a matrix 〈A, F 〉 ∈ Mod≡(�).

We know that 〈A� i , F 〉 ∈ Mod≡(�i) = R(Mod(�i)) for every i ∈ I . This implies
that the matrix 〈A� , F 〉 belongs to the class in (11). By (iii) we conclude that
〈A, F 〉 ∈ Mod≡(

⊕
i∈I �i). 	

As a consequence, we obtain the following:

Theorem 6.5. Equiv is a set-complete lattice, i.e., infima and suprema of subsets of
Equiv exist. Moreover, these infima and suprema coincide with those of Log.

Proof. From Proposition 6.1(ii) and Lemma 6.4(iv). 	

Problem 1. Do suprema of protoalgebraic logics [15] exist as well?

An adaptation of an argument given in [20, p. 34] shows that the lattice Equiv is
not modular. However, to our knowledge, the following problem remains open:

Problem 2. Do Equiv and Var satisfy any non-trivial lattice equation?

§7. The top and the bottom. In this section we will describe the top and the
bottom parts of Log. To this end, recall that a logic � is inconsistent if � � ϕ for
every � ∪ {ϕ} ⊆ Fm(�). Similarly, � is said to be almost inconsistent if it lacks
theorems and � � ϕ for every � ∪ {ϕ} ⊆ Fm(�) such that � �= ∅. The following
result is part of the folklore.

Lemma 7.1. A logic � is inconsistent (resp. almost inconsistent) if and only if
Mod≡(�) is the class of isomorphic copies of 〈1, {1}〉 (resp. of 〈1, {1}〉 and 〈1, ∅〉).
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The lemma easily implies that any two inconsistent (resp. almost inconsistent)
logics are equi-interpretable (since any translation between their languages is
necessarily an interpretation).

Corollary 7.2. The class of all inconsistent (resp. almost inconsistent) logics is a
member of Log.

In the light of the above corollary, the main results of this section can be
summarized as follows:

Theorem 7.3. The poset Log lacks a minimum. Moreover, its maximum is the class
of all inconsistent logics, and its unique coatom is the class K of all almost inconsistent
logics. In particular, a logic � lacks theorems if and only if [[�]] � K.

Proof. We first prove that Log has no minimum. Suppose, with a view to
contradiction, that Log has a minimum [[�]]. Then let κ := |Fm(�)| and consider
the language L that consists in k+ binary connectives {�α : α < κ+}. For every
α < κ+, let Aα be the L-algebra with universe {1, 0, a} and operations defined for
every p, q ∈ A and 	 < κ+ as follows:

p�	 q :=
{

1 if p = q or 	 �= α,
0 if p �= q and 	 = α.

Let also �κ+ be the logic (formulated in a countable set of variables) induced by the
class of reduced matrices

M := {〈Aα, {1, a}〉 : α < κ+}.

Clearly, M ⊆ Mod≡(�κ+).
Since � is the minimum of Log, there is an interpretation � of � into �κ+. On

cardinality grounds, there is α < κ+ such that the symbol �α does not occur in the
formulas {�(ϕ) : ϕ ∈ L}. In particular, this implies that the matrix 〈A�α, {1, a}〉 is
not reduced.

On the other hand, we know that
∼
�
A�α
� {1, a} is the identity relation, since � is

an interpretation of � into �κ+ and 〈Aα, {1, a}〉 ∈ Mod≡(�κ+). Now, since Aα =
{1, 0, a}, the only deductive filter of � on A�α extending properly {1, a} is forcefully
{1, 0, a}. Hence we obtain that

∼
�
A�α
� {1, a} = �A

�
α{1, a} ∩�A

�
α{1, 0, a} = �A

�
α{1, a} ∩ A2

α = �A
�
α{1, a}.

But this implies that �A
�
α{1, a} is the identity relation, which is false.

Now, from Lemma 7.1 it follows easily that the class of inconsistent (resp. almost
inconsistent) logics is the maximum (resp. a coatom) of Log. Hence, in order to
establish the second part of the theorem it only remains to show that the class K of
all almost inconsistent logics is the unique coatom of Log, and that a logic � lacks
theorems if and only if [[�]] � K.

By Lemmas 4.11(ii) and 7.1 a logic� lacks theorems if and only if [[�]] � K. Hence
it only remains to show that K is the unique coatom of Log. Suppose, with a view to
contradiction, that there is a coatom [[�]] inLog such that� is not almost inconsistent.
Since [[�]] is neither the maximum of nor comparable with K, we know that � is
not inconsistent and that it has theorems. Then there is a matrix 〈A, F 〉 ∈ Mod≡(�)
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such that F ∈ P(A) \ {∅, A}. In particular, this implies that |A| � 2. Now, consider
the matrix

〈B, G〉 := 〈A, F 〉|A| ∈ P(Mod≡(�)) ⊆ Mod≡(�)

and observe that |B | > |A| by Cantor’s Theorem.
Let B+ be the expansion of B with all finitary operations on B, and consider the

logic �+ formulated in |Fm(�)| variables induced by the matrix 〈B+, G〉.
Bering in mind that all finitary operations on B are term-function of B+, it is not

hard to see that the matrix 〈B+, G〉 is reduced and that the logic �+ is equivalential
(see [34, Lemma 3.2] if necessary). Moreover, we have that S(B+) = {B+}. Together
with Proposition 3.9, this implies that the identity map is a translation of � into �+.
Since � is a coatom of Log, this implies that either �+ is inconsistent or it is equi-
interpretable with �. As G �= B and 〈B+, G〉 is a model of �+, we know that �+ is
not inconsistent, whence �+ � �.

Together with the fact that 〈A, F 〉 ∈ Mod≡(�), this implies that Mod≡(�+)
contains a matrix of size |A|. However, from Lemma 2.8 it follows that every non-
trivial member of Mod≡(�+) has cardinality � |B |. Together with the fact that
|A| < |B |, this implies that A is trivial, which is false. 	

Remark 7.4. The proof above of the first part of Theorem 7.3 suggests that the
lack of a minimum in Log can be amended if we impose restrictions on the cardinality
of the languages in which logics are formulated.4 To be more precise, we will show
that the following poset has a minimum for every infinite cardinal κ:

Logκ := {[[�]] : |L�| � κ} ⊆ Log.

To this end, recall that the basic logic �V of a variety V [18, 19] is the logic in the
language of V (formulated in a countable set of variables) induced by the following
class of matrices

{〈A, F 〉 : A ∈ V and F ⊆ A}.
Given an infinite cardinal κ, we consider the language Lκ comprising κ different
n-ary symbols for every n ∈ �. Then let Vκ be the variety of all Lκ-algebras. Clearly
[[�Vκ ]] ∈ Logκ. More interestingly, we shall prove that [[�Vκ ]] is indeed the minimum
of Logκ.

Consider a logic � such that |L�| � κ. We can assume without loss of generality
that the language of � is of size κ. Then there is a surjective translation � : Lκ → L�.
We will show that � is an interpretation of �Vκ into �. To this end, consider 〈A, F 〉 ∈
R(Mod(�)). Since � is surjective, the algebras A and A� are term-equivalent. In
particular, this implies that the matrix 〈A� , F 〉 is reduced. Together with the fact
thatA� ∈ Vκ, this implies that 〈A� , F 〉 ∈ Mod≡(�Vκ ). Hence, with an application of
Proposition 3.4, we conclude that � is an interpretation.

As a consequence of the remark we have:

4The reader may have noticed that also the proof that finite suprema need not exist in Log relies on
the fact that the cardinality of languages in which logics are formulated is unbounded. However, in that
case, it is not clear to the authors that imposing cardinality restriction on the size of the languages would
be sufficient to recover the existence of suprema in Log.
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Corollary 7.5. The upset of Log generated by the set {[[�Vκ ]] : κ is an infinite
cardinal} is Log.

§8. Relations with the lattice of varieties. For κ ∈ �, a k-deductive system � [6] is
a consequence relation over FmL(κ)k (for some language L and infinite cardinal κ)
that, moreover, is substitution invariant in the sense that for every substitution �,

if � � 〈ϕ1, ... , ϕk〉, then {〈�(
1), ... , �(
k)〉 : 〈
1, ... , 
k〉 ∈ �} � 〈�(ϕ1), ... , �(ϕk)〉

for every � ∪ {〈ϕ1, ... , ϕk〉} ⊆ FmL(κ)k .

Example 8.1. Observe that one-deductive systems coincide with logics. More-
over, every variety K can be associated with a 2-deductive system �K formulated
over Fm(�)2 as follows. For every � ∪ 〈ϕ,〉 ⊆ Fm(�)2 we set

� �K 〈ϕ,〉 ⇐⇒ for every A ∈ K and homomorphism f : Fm(�) → A
if f(ε) = f(�) for all 〈ε, �〉 ∈ � , then f(ϕ) = f().

The relation �K is presented as a notational variant of the standard equational
consequence relative to K (formulated in countably many variables).

The theory of k-deductive systems is a smooth generalization of that of logics (for
the details, see for instance [6, 43]). In particular, every k-deductive system � can be
associated with a class Mod≡(�) of models of the form 〈A, F 〉 whereA is an algebra
and F ⊆ Ak . Bearing this in mind, we say that an interpretation of a k-deductive
system � into another k-deductive system �′ is a translation � of the language of �
into that of �′ such that 〈A� , F 〉 ∈ Mod≡(�), for every 〈A, F 〉 ∈ Mod(�′). We denote
by Syst(k) the poset of classes [[�]] of equi-interpretable k-deductive systems, under
interpretability. Let alsoEquiv(k) be the subposet of Syst(k) that contains the classes
[[�]] such that� is an equivalential k-deductive system. A straightforward adaptation
of the proof of Theorem 6.5 shows that Equiv(k) is a set-complete lattice.

Recall from §1 that a variety K is interpretable [47] into another variety V, when V
is term-equivalent to some variety V∗ whose reducts (in a smaller signature) belong
to K, in which case we write K � V. When K � V and V � K we say that K and V
are equi-interpretable. The class of all varieties equi-interpretable with K is denoted
by [[K]] and is called the interpretability type of K. Moreover, we denote by Var
the lattice of interpretability types of varieties ordered by the relation � defined as
follows: [[K]] � [[V]] if and only if K � V. The next result draws a relation between
Syst(2), and the lattice Var of interpretability types of varieties.

Proposition 8.2. The map given by the rule [[K]] �−→ [[�K]] is a lattice-embedding
of Var into into Equiv(2).

Proof sketch. It is well known that if K is a variety, then �K is an algebraizable
[5] (and, therefore, equivalential) 2-deductive system such that

Mod≡(�K) = {〈A, {〈a, a〉 : a ∈ A}〉 : A ∈ K}.

As a consequence, a variety K is interpretable into another variety V if and only if
�K is interpretable into �V. Hence, the map in the statement is an order-embedding.
The fact that it is a lattice homomorphism follows from the description of infima and
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suprema in Var [20, 39], and from a straightforward adaptation of the description of
infima and suprema of equivalential logics given here to the case of two-deductive
systems. 	

The above result gives a logical explanation of some known facts about Var. For
instance, the fact that Var is a lattice (as opposed to a poset only) can be viewed as
a consequence of the fact that equivalential two-deductive systems form a lattice.
Similarly, the fact that Var has no coatoms [20, Chapter 2] follows from a variant of
Theorem 7.3, and the observation that every two-deductive system of the form �K

has at least one theorem, namely 〈x, x〉.
We conclude this section by showing that there is a meet-homomorphism from

Var to Log (Theorem 8.4). To this end, given a language L we denote by Tm(L) the
set of all its m-ary terms in the variables x1, ... , xm. Then, for every L-algebra A and
n > 0, the n-th matrix power of A is the algebra

A[n] := 〈An; {mt : t ∈ Tkn(A)n for some positive k ∈ �}〉,

where for each t = 〈t1, ... , tn〉 ∈ Tkn(A)n, we define mt : (An)k → An as follows: if
aj = 〈aj1, ... , ajn〉 ∈ An for j = 1, ... , k, then

mt(a1, ... , ak) = 〈tAi (a11, ... , a1n, ... , ak1, ... , akn) : 1 � i � n〉.
For 0 < n ∈ �, the n-th matrix power of a class K of similar algebras is the class

K[n] := I{A[n] : A ∈ K}. Applications of the matrix power construction range from
the algebraic study of category equivalences and adjunctions [13, 33, 35] to the study
of clones [40], Maltsev conditions [48, 20], and finite algebras [25].

Given a variety K, we denote by �2
K the logic formulated in countably many

variables induced by the class of matrices

I{〈A[2], {〈a, a〉 : a ∈ A}〉 : A ∈ K}. (12)

We rely on the following observation [38, Theorem 8]:

Theorem 8.3. If K is variety, then Mod≡(�2
K) is the class in (12).

As a consequence we obtain the desired result (cf. [20, Proposition 7]):

Theorem 8.4. The map defined by the rule [[K]] �−→ [[�[2]
K ]] is a meet-

homomorphism from Var into Log.

Proof. We claim that if K and V are varieties such that K � V, then �[2]
K � �[2]

V .
To prove this, let � be an interpretation of K into V. It is not hard to see that
the map �∗, defined by the rule 〈t1, t2〉 �−→ 〈�(t1), �(t2)〉, is an interpretation of
K[2] into V[2]. We will show that �∗ is also an interpretation of �[2]

K into �[2]
V . To

this end, consider 〈A, F 〉 ∈ Mod≡(�[2]
V ). By Theorem 8.3 there is B ∈ V[2] such that

〈A, F 〉 ∼= 〈B, {〈b, b〉 : b ∈ B}〉. As �∗ is an interpretation of K[2] into V[2], this yields
B�

∗
∈ K[2]. Hence, by Theorem 8.3 we obtain

〈A, F 〉 ∈ I(〈B�
∗
, {〈b, b〉 : b ∈ B}〉) ⊆ Mod≡(�[2]

K ).

We conclude that �∗ is an interpretation of �[2]
K into �[2]

V , establishing the claim.
Let � : Var → Log be the map in the statement. From the claim it follows that

� is well-defined. Then we turn to prove that it is a meet-homomorphism. To this
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end, given two varieties K and V, we set K
⊗

V := I{A
⊗
B : A ∈ K and B ∈ V}.

It is easy to see that K
⊗

V is a variety. Moreover, recall that [[K
⊗

V]] is the meet
of [[K]] and [[V]] in Var, and that (K

⊗
V)[2] is term-equivalent to K[2] ⊗V[2] (see

for instance [20]). Together with Corollary 4.14 and Theorem 8.3, this implies that
�[2]
K

⊗
V

is term-equivalent to �[2]
K

⊗
�[2]
V as well. Hence we have that

�([[K]]) ∧ �([[V]]) = [[�[2]
K ]] ∧ [[�[2]

V ]] = [[�[2]
K

⊗
�[2]
V ]] = [[�[2]

K
⊗

V
]]

= �([[K
⊗

V]]) = �([[K]] ∧ [[V]]).

This shows that � is a meet-homomorphism, as desired. 	

Appendix A. Recall that �¬ is the negation fragment of classical propositional
logic. The following result is part of the folklore:

Proposition 8.5. The logic �¬ is axiomatized by the following rules:

x,¬x � y, x � ¬¬x, ¬¬x � x.

Theorem 8.6. Mod≡(�¬) is the class of matrices 〈A, F 〉 such that eitherA is trivial
or (A ∈ NA and either F = ∅ or F = {a} for some a ∈ A that is not a fixed point of
¬).

Proof. We begin by proving the inclusion from left to right. To this end, observe
that �¬ is determined the the matrix 〈2, {1}〉 where 2 is the negation reduct of the
two-element Boolean algebra with universe {0, 1}. Then consider a matrix 〈A, F 〉 ∈
Mod≡(�¬) such that A is non-trivial. First we show that A ∈ NA. The fact that
2 � x ≈ ¬¬x, together with Corollary 2.5, implies that A � x ≈ ¬¬x.

It only remains to prove thatAhas at most one fixed point of¬. Suppose thata, b ∈
A are fixed points of ¬. We prove that FgA�¬(F, p(a)) = FgA�¬(F, p(b)) for every
unary polynomial function p of A. This implies that 〈a, b〉 ∈ ∼

�A�¬F by Proposition
2.2(ii) and, since 〈A, F 〉 ∈ Mod≡(�¬), we that a = b. Let p be a unary polynomial
function of A. Because of the poor language of A, every polynomial function q(x)
of A has the form

q(x) = ¬ ...¬︸ ︷︷ ︸
n-times

x or q(x) = ¬ ...¬︸ ︷︷ ︸
n-times

c

for some n ∈ � and c ∈ A. If p is of the first shape, then since a, b are fixed points of
¬, it easily follows that p(a) = a and p(b) = b; then using the rule x,¬x � y, which
holds in the logic, it follows that b ∈ FgA�¬(F, a) and a ∈ FgA�¬(F, b) and, therefore,
FgA�¬(F, p(a)) = FgA�¬(F, p(b)). If p is of the second shape, then there is nothing to
prove. Hence we conclude that A is a negation algebra.

Now, recall that �¬ is determined by a matrix 〈2, {1}〉, whose set of designated
elements is a singleton. By a minor variant of [1, Theorem 8], this implies that
Mod≡(�¬) is a class of matrices 〈A, F 〉 such that F is either empty or a singleton.
Then consider a matrix 〈A, F 〉 ∈ Mod≡(�¬) such that A is non-trivial. We know
that A is a negation algebra and that F is either empty or a singleton. Suppose, with
a view to contradiction, that F = {a} for a fixed point a of ¬. Since x,¬x �¬ y, this
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implies that F = A and, therefore, that A is trivial which is false. This establishes
the inclusion from left to right.

To prove the reverse inclusion, consider a matrix 〈A, F 〉 satisfying the conditions
in the statement. If A = 1, then either F = ∅ or F = {1}. In both cases, 〈A, F 〉 ∈
Mod≡(�¬), since �¬ has no theorems. Then we suppose that A is non-trivial, in
which case A ∈ NA and either F = ∅ or F = {a} for some a ∈ A that is not a fixed
point of ¬. Together with Proposition 8.5, this implies that 〈A, F 〉 ∈ Mod(�¬).

It only remains to prove that
∼
�A�¬F is the identity relation. To prove this, consider

two different elements b, c ∈ A. First we consider the case where F = ∅. Since A is
a negation algebra, it has at most one fixed point of ¬. Thus we can assume without
loss of generality that b is not a fixed point of ¬. Together with Proposition 8.5, this
implies that 〈A, {b}〉 ∈ Mod(�¬). Moreover, clearly we have that F = ∅ ⊆ {b} and
〈b, c〉 /∈ �A{b} ⊆ ∼

�A�¬∅ =
∼
�A�¬F .

Then we consider the case in which F = {a} for some a ∈ A that is not a fixed
point of ¬. Since A has at most one fixed point of ¬, A � x ≈ ¬¬x, and b �= c one
of the following conditions holds:

(i) Either (b �= ¬b and b �= ¬a) or (c �= ¬c and c �= ¬a).
(ii) Either (b = ¬b and c = ¬a) or (c = ¬c and b = ¬a).

If condition (i) holds, we can assume without loss of generality that b �= ¬b and
b �= ¬a. If c = a, then 〈b, c〉 /∈ �A{a} ⊆ ∼

�A�¬{a} =
∼
�A�¬F . Then consider the

case where c �= a. By Proposition 8.5 we know that {a, b} is a deductive filter of
�¬. Hence we have that 〈b, c〉 /∈ �A{a, b} ⊆ ∼

�A�¬{a} =
∼
�A�¬F . Then suppose that

the condition (ii) holds. We can assume without loss of generality that b = ¬b and
c = ¬a. In this case we have that ¬b /∈ {a} and ¬c ∈ {a} which, by Proposition
2.2(ii), implies that 〈b, c〉 /∈ ∼

�A�¬F .
This concludes the proof that

∼
�A�¬F is the identity relation. 	

B. We close the paper with an observation on languages with constant symbols.
If a logic � has constants in its language, then we can obtain a new language by
keeping all the connectives of L� and replacing each constant c by a unary operation
∗c . Then we can transform every algebra A for the language L� into an algebra Aco

for the new language, where ∗Acoc is the unary constant map to cA. The logic �co in
the new language induced by the class of matrices

{〈Aco, F 〉 : 〈A, F 〉 ∈ Mod(�)}
is the incarnation of the logic � in our setting of logics with languages without
constants.

Note that if the language of � has no constant symbols, then � = �co. It is
therefore natural to say of any two logics � and �′, possibly with constants, that
� is interpretable into �′ if �co is interpretable into �′co in the sense of Definition
3.2. Alternatively, and with similar ideas to the ones used in the paper, the reader
can easily figure out how to modify our notion of a concrete interpretation to
accommodate interpretations between languages possibly with constants.
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