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Abstract. The generation of large-scale zonal flows by small-scale electrostatic drift
waves in electron–positron–ion (EPI) plasma is considered. The generation mech-
anism is based on the parametric excitation of convective cells by finite amplitude
drift waves. To describe this process, the Hasegawa–Mima equation generalized
for the case of EPI plasma is used. Explicit expressions for the maximum growth
rate as well as for the optimal spatial dimensions of the zonal flows are obtained.
Dependence of the growth rate on the spectrum purity of the wave packet is also
investigated. The relevant instability conditions are determined.

1. Introduction

Because of the long lifetime of positrons, most astrophysical (Lee et al. 2005;
Zheleznyakov and Koryagin 2005) and laboratory plasmas (Greaves and Surko
1995; Helander and Ward 2003; Salamin et al. 2006) become an admixture of
electrons, positrons and ions. In order to grasp the basic physics of the three-
component electron–positron–ion (EPI) plasmas, several theoretical investigations
have been carried out (Popel et al. 1995; Jammalamadaka et al. 1996; Pokhotelov
et al. 2001; Mahmood and Saleem 2003; Saleem and Mahmood 2003; Saleem et al.
2003; Shukla et al. 2003a, b; Haque and Saleem 2004; Eliasson and Shukla 2005;
Hall and Shukla 2005; Haque et al. 2005; Esfandyari-Kalejahi et al. 2006; Kourakis
et al. 2007; Moslem et al. 2007; Masood 2008; Mushtaq 2008; Dubinov and Sazonkin
2009; Kaladze et al. 2009) within the framework of multifluid theory which is
applied to both astrophysical and laboratory plasmas.
Development of nonlinear theory of waves led to the appearance of new concepts –

solitary wave, solitary vortex, soliton, filament, convective cell, jet, double layers,
shocks and zonal flow, which are extensively discussed during the last few years
in EPI plasma. The study of such self-organized structural formations is of great
importance for understanding the macroscopic behavior of the laboratory and space
plasmas.
Most papers were devoted to the investigation of ion-acoustic solitons in EPI

plasma under different regimes (e.g. Dubinov and Sazonkin 2009 and references
therein). Kourakis et al. (2007) have shown that localized envelope solitons and
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holes occur in EPI plasma. Ion-acoustic drift solitons in EPI plasma were studied
by Mushtaq (2008). Solitons of the electrostatic acoustic-like lower hybrid mode
and Langmuir-like optic-type upper hybrid mode in EPI plasmas were found by
Esfandyar-Kalejahi et al. (2006). Soliton solutions and double layers on electro-
static electron-acoustic waves in EPI plasmas were obtained by Moslem et al.
(2007). The formation of light bullets and solitons was discussed by Shukla et al.
(2003b) for EPI plasma. Ion-acoustic shock waves in EPI plasma were considered
by Masood et al. (2008).
Nonlinear solitary structures of shear Alfvén waves in EPI plasma were studied

by Mahmood and Saleem (2003). Shear flow driven solitary vortex structures in an
inhomogeneous EPI plasma were studied by Haque et al. (2005). The electrostatic
and electromagnetic vortex structures of drift waves in an ideal EPI plasma have
been discussed by Saleem et al. (2003). Jammalamadaka et al. (1996) have revealed
the vortex formations for low-frequency electrostatic and electromagnetic disturb-
ances in EPI plasma. Haque and Saleem (2004) have shown that low-frequency
electromagnetic drift waves might form the dipolar vortices in EPI plasma. Eliasson
and Shukla (2005) have found the phase-space holes in a relativistically hot EPI
plasma. Vortex structures of the coupled electrostatic drift and ion-acoustic waves
in a strongly magnetized EPI plasma in the presence of sheared ion flow were found
by Shukla et al. (2003a). Large-scale vortex electrostatic drift structures in EPI
plasma were investigated by Kaladze et al. (2009). Pokhotelov et al. (2001) invest-
igated the nonlinear dynamics of drift Alfvén waves in an inhomogeneous electron–
positron plasma with a small admixture of heavy ions and two-dimensional dipolar
vortices.
However, another very important nonlinear process, viz. the formation of zonal

flows in EPI plasma, has not been reported so far.
In this paper, we will focus our attention on the generation of zonal flows by elec-

trostatic drift waves in EPI plasmas. Zonal flows are associated with azimuthally
symmetric band-like shear flows. They are common in planetary atmospheres and
laboratory plasmas. Recently, Fujisawa et al. (2004) have presented experimental
evidence of zonal flows in a toroidal plasma. Tokamak experiments relevant to zonal
flows are widely discussed by Diamond et al. (2005). Note that it is now generally
accepted that zonal flows are a key constituent in nearly all regimes of drift wave
turbulence so much that this classic problem is now frequently referred to as ‘drift
wave – zonal-flow turbulence’ (e.g. Diamond et al. 2005). That is why zonal flows
driven by drift-type turbulence have been intensively investigated theoretically in
recent years (e.g. Shukla and Stenflo 2002 and references therein).
In this paper, the problem of zonal-flow generation by electrostatic drift waves

in EPI plasma on the basis of parametric instability is investigated. The paper is
organized as follows. In Sec. 2, a brief description of the dynamics of electrostatic
waves in EPI plasma is presented. A set of coupled equations describing the nonlin-
ear interaction of drift waves and zonal flows is derived in Sec. 3. It is shown that this
system admits the excitation of zonal flows. We consider the zonal-flow instability
of a monochromatic wave packet in Sec. 4 and the effect of a spectrum broadening
of the wave packet in Sec. 5. Summary and conclusions are given in Sec. 6.

2. Hasegawa–Mima equation for drift waves

Let us consider the quasi-two-dimensional motion of a quasi-neutral EPI plasma.
We consider a local perturbation (with respect to the unperturbed plasma
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environment) of the plasma potential ϕ(t, x, y) and assume that plasma is uniform
along the z axis which is parallel to the external magnetic field B0 . The unperturbed
plasma densities of electrons ne0(x) and positrons np0(x), and corresponding tem-
peratures Te0 and Tp0 are inhomogeneous and assumed to decrease monotonously
along the x axis. The ions are considered to be cold and the quasi-neutrality
condition ne0(x) = Zni0(x) + np0(x) is satisfied, where Z is the charge number
of positive ions. Let us assume that in this system the plasma density perturbation
arises (corresponding to the perturbation of plasma potential ϕ), which generates
the drift wave. Assuming that the plasma motion in the (x, y) plane is sufficiently
slow, so that electrons and positrons (rapidly moving along the magnetic field)
follow the Boltzmann equilibrium. The drift wave regime in plasma takes place
when ω/ωci, where ω is the characteristic frequency of the perturbation and ωci =
ZeB0/M is the ion cyclotron frequency.
The generalized nonlinear Hasegawa–Mima (HM) equation for EPI plasma pos-

sessing both vector and scalar nonlinearities, which is valid for arbitrary sizes of
vortex structures, was previously obtained by Kaladze et al. (2009). In the case
of small-scale vortex structures a/rs � 1, where a is the perpendicular size of the
structure and rs = (Te/M)1/2/ωci is the ion-acoustic Larmor radius, respectively,
the classical HM equation (containing only vector nonlinearity) can be singled out
and takes the form

− Ze
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ne0
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∂∇2

⊥ϕ

∂t
+
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Te

(
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np0
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)
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p0

ne0

∂ϕ

∂y
,
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M 2ω2
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)
J(ϕ, ∇2

⊥ϕ) = 0. (2.1)

Here the prime denotes the spatial derivative, ∇2
⊥ = ∂2/∂x2 + ∂2/∂y2 and

the Jacobian J(a, b) = (∂a/∂x) (∂b/∂y) − (∂a/∂y) (∂b/∂x) represents the vector
nonlinearity. The last linear term that comes from the polarization drift (it is
of the order of ω/ωci) is retained in order to obtain the special structure of the
electrostatic drift waves. Indeed, if we introduce the inverse inhomogeneity length
L−1 = |n′

i0/ni0 | = |n′
e0 − n

′
p0 |/ (ne0 − np0) and seek for the propagating drift

plane waves of the form ϕ ∝ exp( ± x/2L) exp(−iωkt + ikxx + iky y), we obtain
the expression for the electrostatic drift frequency

ωk =
∓ky v∗

β + r2
s (k2

⊥ + 1/4L2)
. (2.2)

Here v∗ is the drift velocity, β = ne0 (1 + np0Te/ne0Tp) /Z(ne0 − np0), k2
⊥ = k2

x +k2
y

and ∓ sign corresponds to positive and negative signs of n
′
i0/ni0 (the latter can

change the sign depending on the difference between ne0 and np0). Thus, the drift
wave potential in EPI plasma is either spatially increasing or decreasing in the
direction of the inhomogeneity. The drift wave structure given by (2.2) is similar to
acoustic-gravity waves propagating in an inhomogeneous atmosphere embedded in
gravitational field.
Let us rewrite (2.1) in the form relevant for investigation of zonal-flow generation.

We represent the perturbed potential as

ϕ(x, y, t) = ϕ̄(x, y, t)e∓ x
2 L . (2.3)
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Then from (2.1) we obtain the following form of the HM equation for EPI plasma

β
ωci
Te

∂ϕ

∂t
− 1

Mωci

∂

∂t

(
∇2

⊥ − 1
4L2

)
ϕ ∓ 1

ML

∂ϕ

∂y
− Ze

M 2ω2
ci

J(ϕ, ∇2
⊥ϕ) = 0. (2.4)

Here, in the nonlinear terms, the factor exp(∓x/2L), as well as the bar over ϕ,
has been omitted.

3. Nonlinear interaction of drift waves and zonal flows in EPI plasmas

We consider a standard three-wave coupling process in EPI plasma, where the coup-
ling between the pump drift waves and sideband modes drives the low-frequency
large-scale one-dimensional modes propagating along the xaxis, i.e. the zonal flows.
We decompose the perturbed electric potential into three parts:

ϕ = ϕ̃ + ϕ̂ + ϕ̄. (3.1)

Here ϕ̃, ϕ̂ and ϕ̄ correspond to the primary mode, the secondary small-scale mode
and the zonal flow, respectively. The function ϕ̄ is taken in the form:

ϕ̄ = ϕ̄0 exp (−iΩt + iqxx) + c.c, (3.2)

where Ω and qx are the frequency and the wave number of the zonal flow, respect-
ively, and c.c. is the complex conjugate. The amplitude of the zonal-flow mode is
assumed to be constant within the local approximation. The function ϕ̃ is

ϕ̃ =
∑
k

[ϕ̃+ (k) exp (ik · r− iωkt) + ϕ̃− (k) exp (−ik · r+ iωkt)] , (3.3)

where ωk and k are the frequencies and wave vectors of the primary modes. Sum-
mation is performed over the whole totality of the primary modes. Finally, the
function ϕ̂ is

ϕ̂ =
∑
k

[ϕ̂+ (k) exp (ik · r− iωkt) + ϕ̂− (k) exp (−ik · r+ iωkt)] , (3.4)

where ϕ̂± (k) is the sideband amplitude.
Note that energy and momentum conservation is imposed on sideband frequen-

cies ω± and wave vector k± by the condition that ω± = Ω ± ωk and k± = qxex ±
k. For the problem of zonal-flow generation, the following conditions |Ω/ωk| ∼
|qx/k⊥| � 1 are satisfied.
To obtain the equations describing the turbulence and amplitude evolution of

the zonal flow modes, we substitute (3.1)–(3.4) into (2.4). The averaging over the
fast small-scale fluctuations gives the equation for the zonal-flow evolution:

∂

∂t

[
β

ωci
Te

− 1
Mωci

(
∇2

⊥ − 1
4L2

)]
ϕ̄ =

Ze

M 2ω2
ci

〈
J(ϕ, ∇2

⊥ϕ
〉
. (3.5)

This equation can be rewritten for the appropriate Fourier components as

iΩ
[
β

ωci
Te

+
1

Mωci

(
q2
x +

1
4L2

)]
ϕ̄0 = − Zeq2

x

M 2ω2
ci

∑
k

ky [2kx (ϕ̃+ ϕ̂− + ϕ̃−ϕ̂+)

+ qx (ϕ̃−ϕ̂+ − ϕ̃+ ϕ̂−)]. (3.6)
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The right-hand side of (3.6) corresponds to the driving force of the zonal flow which
is known as Reynolds stresses.
In order to calculate the Reynolds stresses, we should find the sideband amp-

litudes ϕ̂±. From (2.4), we obtain for the turbulent part contributions the following
equation:

∂
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[
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ωci
Te

− 1
Mωci

(
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)]
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ML
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M 2ω2
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]
. (3.7)

Using the expansion over small parameters Ω and qx the solution of this equation
can be represented as

ϕ̂± ≈ i
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⊥
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ci

(
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velocity of the pump wave and its derivative are defined as
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x
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(3.9)
Now we can substitute (3.8) into (3.6) to obtain the zonal-flow dispersion equation

1 −
∑
k

F (k)
[Ω − qxVg (k)]

2 = 0, (3.10)

with

F (k) =
Z2e2q4

xk2
y k2

⊥V
′
g (k)

M 3ω3
ciωA

|ϕ̃+ |2 and A = β
ωci
Te

+
1

Mωci

(
q2
x +

1
4L2

)
. (3.11)

4. Zonal-flow instabilities in case of monochromatic wave packet

In the case of the monochromatic wave packet, one has F (k) ∼ δ(k−k0) and (3.10)
reduces to a hydrodynamic-type coherent instability (Ω − qxVg )

2 = F (k0) = −Γ2 ,
where Γ2 denotes the squared zonal-flow growth rate given by

Γ2 = −
Z2e2q4

xk2
y0k

2
⊥0V

′
g (k0)

2M 3ω3
ciAωk0

Ik0, (4.1)

and Ik0 = 2ϕ̃+ ϕ̃− = 2 |ϕ̃+ |2 .
The necessary condition for instability is V

′
g /ωk < 0. This condition is similar to

the Lighthill criterion for modulation instability in nonlinear optics. Taking into
account (3.9), the instability condition becomes

β
Mω2

ci

Te
+ k2

y − 3k2
x > 0. (4.2)

The most simple case corresponds to the short wavelength limit, when k⊥rs � 1.
In this approximation, the instability condition reduces to

V
′
g

ωk0

= − 2
k4

⊥

(
k2

y − 3k2
x

)
> 0. (4.3)
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Thus, the instability condition applies to drift waves with the wave vectors in the
cone −ky/

√
3 < ky/

√
3. The maximum growth rate is obtained at the axis of the

cone when kx = 0. In this case, the mode is purely growing with the growth rate

Γ =
q2
xωci |ky0 | r3

s

[β + rs (q2
x + 1/4L2)]1/2 I

1/2
k0

. (4.4)

Here in the expression for Ik0 , the electrostatic potential ϕ̃+ of the pump wave is
normalized to the value Te/Ze. This equation describes the initial (linear) stage of
zonal-flow growth due to the parametric instability of small-scale drift waves. For
qxrs ∼ 1, we can estimate the growth rate as

Γ ≈ ωci |ky0 | rsI
1/2
k0

. (4.5)

This is the maximum growth rate. **This estimation shows that Γ increases
as k in the short wavelength limit (k⊥rs � 1). Physically, this instability is the
manifestation of an inverse cascade.

5. Zonal-flow instabilities in case of non-monochromatic wave packet

Now we consider the effects of non-monochromaticity of the wave packets on the
generation of zonal flows. Let us take the function Ik in the Gaussian form

Ik=
1

π1/2 |Δkx | exp

(
− (kx − kx0)

2

(Δkx)2

)
Ik0. (5.1)

Here kx0 is the centered wave vector of the wave packet and Δkx > 0 is the
characteristic width of the wave packet. The component of the wave vector ky is
assumed to be the same for all modes of the wave packet, ky = ky0 . The summation
over k in (3.10) is now understood as the integral over kx . Then, we allow for the
primary mode frequency ω = ωk and the group velocity Vg to be functions of kx ,
ω = ω(kx) and Vg = Vg (kx).
Let us consider the case when the broadening of the wave packet is relatively

small, i.e. Δkx/kx0 � 1. Then we expand Vg in a series in the vicinity of kx0 ,
obtaining Vg = Vg0 + V

′
g0(kx − kx0). Then instead of (4.1), we have

Ω̂2 = (Ω − qxVg0)
2 = −Γ2

(
1 +

3
2

(qxV
′
g0)

2

Ω̂2
(Δkx)2

)
. (5.2)

Considering the second term in the parentheses of (5.2) as a small correction,
one can see that weak spectrum broadening leads to decrease of the growth rate of
hydrodynamic instability. It follows from (5.2) that the spectrum broadening can
be neglected only if |Δkx/kx0 | < |Γ/qxVg0 |.
Let us now consider the case when the broadening of the wave packet is arbitrary.

In this case, the zonal-flow instability has a resonant character and we get the
following zonal-flow dispersion relation (cf. Kaladze et al. 2007):

Ω̂ = i

∣∣qxV
′
g0Δkx

∣∣
√

π

(
1 −

(qxV
′
g0Δkx)2

2Γ2

)
. (5.3)
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Then we can find the instability condition Γ2 > (qxV
′
g0Δkx)2/2. The growth rate

obtained from (5.3) attains the maximum when

|Δkx | =
(

2
3

) 1
2

∣∣∣∣∣ Γ
qxV

′
g0

∣∣∣∣∣ . (5.4)

By the order of magnitude, this kinetic growth rate is equal to the hydrodynamic
one, i.e. γ ≈ Γ.

6. Summary

In this paper, the generation of the zonal flow by small-scale electrostatic drift
waves in EPI plasma is investigated. The generation mechanism is based on the
parametric excitation of convective cells by finite amplitude drift waves and the
spectrum of primary modes assumed to be arbitrary. Our investigation provides an
important nonlinear mechanism for the transfer of spectral energy from small-scale
drift waves to the large-scale enhanced zonal flows in EPI plasmas. To describe this
process extended for EPI plasma, HM equation is used. A set of coupled equations
describing the nonlinear interaction of drift waves and zonal flows is deduced. The
driving force (Reynolds stresses) in the equation governing the evolution of zonal
flows (see (3.6)) is represented as a summation over the spectrum of the primary
modes. We have made such a generalization and thereby obtain the zonal-flow
dispersion relation given by (3.10) for an arbitrary spectrum of drift pump waves.
Explicit expressions for the maximum growth rate as well as for the optimal spatial
dimensions of the zonal flows are obtained. It is shown that in contrast to usual
electron–ion plasma, the existence of positrons in the plasma causes modification
of both, the zonal-flow growth rate and instability conditions (see (3.10)–(4.2)).
In addition, the temperature non-homogeneity of electrons and positrons in the
case of small-scale drift waves has no influence on the generation of zonal flows in
EPI plasmas. The dependence of the growth rate on the spectrum purity of the
wave packet is also investigated (see (5.2)–(5.4)). It is shown that the sufficient
broadening of the wave packet gives resonant-type instability with the growth rate
of the same as for hydrodynamic instability. The relevant instability conditions
are found. The unstable branch obtained in this paper has the zonal-flow growth
rate proportional to the small value of q2

x . If we choose for the typical tokamak-
type devices ϕ̃+ ∼ 10−2 , k⊥rs ∼ 10 and ωci ∼ 108 s−1 , we obtain the value of the
maximum growth rate Γ ∼ 107 s−1 . It is found that the wave vector of the fastest
growing mode is perpendicular to that of the pump drift wave.
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