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Abstract In this paper we analyse the structure of a finite group of minimal order among the finite
non-supersoluble groups possessing a triple factorization by supersoluble subgroups of pairwise relatively
prime indices. As an application we obtain some sufficient conditions for a triple factorized group by
supersoluble subgroups of pairwise relatively prime indices to be supersoluble. Many results appear as
consequences of our analysis.
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1. Introduction

All groups considered are finite.

A group G is said to be the product of its subgroups H and K, or G is factorized by
H and K, if G = HK. Factorizations are quite natural in group theory. For example, a
group is often expressible as a product of two non-conjugate maximal subgroups. In this
context, a natural line of investigation opens up when one asks how the structure of the
factors H and K affects the structure of G.

In the study of factorized groups the concept of the factorizer of a normal subgroup
is frequently useful. Let N be a normal subgroup of a factorized group G = HK. Then
the factorizer of IV is the subgroup HN N K N. It is rather easy to see that HN N KN =
(HNKN)N = (HNNK)N = (HNKN)(HN N K), that is, the factorizer of N is a
triply factorized group. The concept of triple factorization was introduced by Kegel in
1961. This is a factorization of a group G involving three subgroups H, K and L of the
type G=HK =HL=KL.

The evidence is that the existence of a triple factorization can have greater con-
sequences for the group structure than does a single factorization. For example, a
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non-nilpotent group can be factorized as a product of two nilpotent subgroups. How-
ever, we have the following theorem.

Theorem 1.1 (Kegel [8, Folgerung 2]). A group that has a triple factorization by
nilpotent subgroups is nilpotent.

Kegel’s result is definitely not true for supersoluble triple factorizations, that is, one can
find a non-supersoluble group that has a triple factorization by supersoluble subgroups,
even in the particular case when the subgroups have pairwise relatively prime indices in
the group.

In [9], Wang proves that for a group G whose order has at least three different prime
divisors, G is supersoluble if and only if there exist three maximal supersoluble subgroups
of G whose indices are three different primes. A recent paper of Flowers and Wakefield [5]
explores some other circumstances in which to derive the supersolubility of a group G
that is triply factorized by supersoluble subgroups that have pairwise relatively prime
indices in G.

In this paper we analyse the structure of a group G of minimal order among the
non-supersoluble groups that have a triple factorization by supersoluble subgroups of
pairwise relatively prime indices (see Theorem 2.3), and give a method to construct such
a minimal configuration (see Example 2.5). All classical results we know due to Doerk [3],
Friesen [6] and Wang [9] appear as direct consequences of our approach. Furthermore,
we will be able to weaken the sufficient conditions given in [5].

Our starting point is a classical result due to Wielandt.

Theorem 1.2 (Wielandt [4, Theorem 1.3.4]). If a group G possesses three soluble
subgroups H, K and L whose indices |G : H|, |G : K|, |G : L| are pairwise coprime, then
G is itself soluble.

2. The results

Our first result shows that if a group has a triple factorization by subgroups with a Sylow
tower of a fixed linear ordering of all primes, then the group has the same property.

Definition 2.1 (see [4, pp. 358 and 359]). Let < be an arbitrary linear ordering
on the set P of all primes. We say that a group G possesses a Sylow tower of type < if G
possesses a normal Hall m,-subgroup for each subset 7, = {¢: ¢ < p}.

Obviously, a group with a Sylow tower is soluble.
Consider the linear ordering < of the set P opposite to the natural ordering:

p<q <<= ©p=gq, pqel

It is well known that a supersoluble group possesses a Sylow tower of type < (see [7,
Satz VI.9.1(c)]). For this reason it is usually said that a group G possesses a Sylow
tower of supersoluble type if G possesses a normal Hall m,-subgroup for each subset
™ ={q: ¢ > p}.
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Theorem 2.2. Let < be an arbitrary linear ordering on the set P of all primes. Let G
be a group. Assume that H, K and L are subgroups of G whose indices in G are pairwise
relatively prime. If H, K and L have Sylow towers of type <, then G has a Sylow tower
of type <.

Proof. Since H, K and L are soluble, the group G is soluble by Theorem 1.2. More-
over, by [4, Lemma A.1.6 (b)], G=HK = HL = KL.

We prove the theorem by induction on the order of G. Let p be the least prime dividing
the order of G in the linear ordering <. Then p divides at most one of the indices {|G :
H|,|G : K|, |G : L|} or, equivalently, at least two of the subgroups { H, K, L} contain some
Sylow p-subgroup of G. Assume that K contains a Sylow p-subgroup Py of G. Since K
has a Sylow tower of type < and p is the least prime dividing the order of G in the ordering
=<, Pk is normal in K. Similarly, we can assume that there exists a Sylow p-subgroup
of G, Pr, say, such that L < Ng(Pr). Note that |G : Ng(Pk)| divides |G : K| and
|G : Ng(Ppr)| divides |G : L|, and so |G : Ng(Pg)| and |G : Ng(Pr)| are relatively prime.
Since Ng(Pg) and Ng(Pr) are conjugate in G, we have that Ng(Pr) = Ng(Pk) = G.
Since G = K L, we have that P = P, = Pk is a normal Sylow p-subgroup of G. Consider
the quotient group G = G/P. Then H = HP/P, K = K/P and L = L/P are subgroups
of G with a Sylow tower of type <. If H is a proper subgroup of G, then H, K, L are
subgroups of pairwise relatively prime indices in G. By induction, the group G'//P has a
Sylow tower of type <. If H = G, then G = HP and then G/P = H/(H N P) is a group
with Sylow tower of type <. Thus, in any case, the group G possesses a Sylow tower of
type < and so does G. O

Theorem 2.3. Let {1 be the class of all supersoluble groups. Let %) and ¥ be two
classes of groups that are closed under taking epimorphic images and subgroups and
such that T C 4. Let n be an integer n > 3 and let X(2)) be the class composed of all
groups X € %) with n supersoluble proper subgroups Y;, ¢ =1,2,...,n, such thatY; € ¥
and ged(|X : Y|, |X :Y;|) =1 whenever i # j.

Suppose that X () \ 4 is non-empty. Then n = 3 and if G is a group of minimal order
in X() \ Y, then G is a soluble group with the following properties.

(1) Every proper epimorphic image of G is a supersoluble group. If p is the greatest
prime dividing the order of G and P is a Sylow p-subgroup of G, then P = Soc(G) =
F(G) is a self-centralizing minimal normal subgroup of G that is complemented in
G by a core-free maximal subgroup of G. Write |P| = p™. Then, m > 1.

Let M denote a core-free maximal subgroup M of G that complements P in G.
(2) Every proper subgroup of G is a supersoluble group.
(3) M is a non-nilpotent group and every proper subgroup of M is cyclic.

(4) |M| = qr*, where q and r are primes such that r divides ¢—1 and qr* divides p— 1.
Moreover, if Q is a Sylow gq-subgroup of M, then @ is normal in M.

(5) G' = QP. In particular, G’ is non-nilpotent.
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Proof. Since the class ) is fixed and well understood, we write in the proof simply
X instead of X(9)).

Suppose that Hi,..., H, are supersoluble subgroups of G such that H; € ¥ and
ged(|G : H;|, |G : Hj|) =1 whenever ¢ # j. By [4, Lemma A.1.6 (b)], we have G = H;H,
if i # j. Since n > 3, by Theorem 2.2, G is soluble group that possesses a Sylow tower of
supersoluble type. The order of G is divided by at least three different primes and if p is
the greatest prime dividing the order of GG, then G has a normal Sylow p-subgroup P.

Step 1. Let N be a minimal normal subgroup of G. If one of the subgroups H;
supplements N, then G/N is supersoluble. Otherwise, the quotient group G/N belongs
to the class X' and, by minimality of G, we have that G/N is supersoluble. This implies
that G is a soluble primitive group (see [4, Corollary IV.2.13 and Theorem II1.2.7]).
Hence, P = Soc(G@) = F(G) is a minimal normal subgroup of G. Moreover, Cg(P) = P
and there exists a core-free maximal subgroup of G, M, say, that complements P in G
and M is supersoluble. Write |P| = p™. Then m > 1, since G is a non-supersoluble
group.

Step 2. Let U be a maximal subgroup of G. Then, either G =UP or |G :U| =qis a
prime such that p # ¢. If G = UP, then U = G/P and then U is supersoluble. Assume
that |G : U] is a prime ¢ and that p # ¢. Then ¢ divides at most one of the indices
{IG: H;|:i=1,2,...,n}. If ¢ divides none of the indices {|G : H;|: i =1,2,...,n}, then
UNH;,i=1,2,...,n, are proper supersoluble subgroups of U such that U N H; € ¥ and
ged(|U : UNH,|,|U : UN Hj|) =1 whenever i # j. Then U € X. By minimality of G, U
is supersoluble. So, assume that ¢ divides one (and only one) of the indices {|G : H;|: i =
1,2,...,n}. Assume that ¢ divides |G : H;|. Note that for any ¢ € {1,2,...,n}\ {j}, we
have that U N H; is a supersoluble proper subgroup of U and |U : U N H;| = |G : Hy.
Let Uy denote a Hall ¢’-subgroup of G contained in U. If (H})y is a Hall ¢’-subgroup of
Hj, then there exists a conjugate (H;);, of (H;)y contained in Uy . Note that

G UIU = (Hj)g| = qlU = (H;)y|

|G (Hy)g | = o ,
|G : Hj||H; : (Hj)g| =|G : Hj|¢* for some integer o > 0.

Therefore, {(H;);,,U N H;:i € {1,2,...,n} \ {j}} are supersoluble proper subgroups
of pairwise coprime indices in U. Moreover, if j # 1, then U N H; € ¥, and if j = 1,
then (Hi); € T. Thus, in any case, U € X. By minimality of G, we have that U is
supersoluble.

Thus, any maximal subgroup of G is supersoluble.

Step 3. By [3, Satz 2(b)], M is not abelian and every proper subgroup of M is
abelian. Moreover, |M| is divided by at least two different primes. Let U be a proper
subgroup of M. Then P, regarded as a module for U, is completely reducible by [4,
Theorem A.11.5]. Since Cy(P) = 1, P possesses a faithful and irreducible component.
Since U is abelian, we apply [4, Theorem B.9.8] to conclude that U is cyclic. If M
were nilpotent, then M would be cyclic. This is not possible. Thus, M is not nilpotent.
By [3, Satz 2 (c)], |M| is divided by exactly two different primes. Hence, |G| has exactly
three prime divisors and, in particular, n = 3.
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Write |M| = ¢%r* with g, 7 primes such that ¢ > r, a, k > 1. If Q is a Sylow g-subgroup
of M, then @ is a cyclic normal subgroup of M since M has a Sylow tower of supersoluble
type. If (Q) # 1, then #(Q)R is abelian since #(Q)R is a proper subgroup of M. Hence,
&(Q) < Z(M). On the other hand, note that M’ < Q. If M’ < &(Q) < &(M), then
M /®(M) would be abelian. This would imply the nilpotence of M, a contradiction that
shows that M’ = Q. Then, #(Q) < M' N Z(M). Since all Sylow subgroups of M are
abelian, we can apply [7, Satz VI.14.3] to conclude that M’'NZ(M) = 1. Thus, &(Q) = 1.
Therefore, @ is a cyclic group of order ¢g. In other words, a = 1.

Finally, note that Cp/(Q) = QP(R). Then M/Cy(Q) = R/P(R) is a cyclic group of
order r. Since M/Cjp(Q) is isomorphic to a subgroup of Aut(Q) that is a cyclic group
of order ¢ — 1, we conclude that r | ¢ — 1.

Step 4. Let C be a non-trivial proper subgroup of M. Then C is a cyclic p’-group.
Therefore, P, regarded as a module for C, is completely reducible by [4, Theorem A.11.5].
Since C'P is supersoluble, every irreducible C-submodule of P is one dimensional. More-
over, P = [P,C] x Cp(C) by [4, Theorem A.12.15]. If [P,C] =1, then C < Cg(P) = P
and then C' = 1, contrary to our supposition. Hence, [P,C] # 1. This means that P
contains an irreducible and faithful C-submodule. Then |C| divides p — 1 by [4, Theo-
rem B.9.8]. In particular, ¢ | p— 1 and 7% | p — 1.

Step 5. We have that QP is a normal subgroup of G and G/QP = R. Hence, G' < QP.
Since P < G’ and G/P = M is non-abelian, we conclude that G’ = QP. Since P is self-
centralizing in G, we have that G’ is non-nilpotent.

This completes the proof of the theorem. O

Remark 2.4. Note that if G is a group of minimal order in X (9)) \ {4 such that H;,
1 = 1,2,3, are supersoluble subgroups of G whose indices in G are pairwise relatively
prime, then |G| = p™qr¥, where p, q, r are primes such that p > ¢ > 7, k > 1 and m > 1.
Moreover, 7 divides ¢ — 1 and ¢r* divides p — 1

Note also that necessarily each of the three indices {|G : H;|,i = 1,2,3} is a power of
a different prime. We can assume (with the notation of Theorem 2.3) the following.

o |G : Hq| = p®. Then necessarily |G : H1| = |P| = p™ and H; is a core-free maximal
subgroup of G.

e |G : Hy| = q. Then Hy = PRY for some g € G.

e |G : H3| =r7. Then L = PQRy for some Ry < R such that |G : Hs| =77 = |R:
Ry|. Moreover, L is normal in G, since G’ = QP.

We finish this section with a general construction of a non-supersoluble group G with
three supersoluble subgroups H;, ¢ = 1,2, 3, such that ged(|G : H;|, |G : Hj|) = 1if i # j.

Example 2.5. Let p, g, r be three primes, p > ¢ > r, and let k be an integer such
that k > 1, such that r divides ¢ — 1 and gr* divides p — 1. (An example of such numbers
arep=13,¢=3,r=2and k=2.)

If R is a cyclic group of order 7*, then there exists an irreducible R-module, Q, say,
over the field GF(q) such that Cr(Q) = @(R) (by [4, Theorem B.10.3]) and, since r
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divides ¢ — 1, then dimgp() Q = 1 (by [4, Theorem B.9.8]). The semi-direct product
H; = [Q]R is a non-nilpotent supersoluble group of order ¢r* such that the subgroup
F(Hy) = Cq,(Q) = @ x ®(R) is isomorphic to a cyclic group of order ¢r*~!. Now,
there exists a faithful and irreducible H;-module P over the field GF(p), again by [4,
Theorem B.10.3]. If dimgp(p) P = 1, then H; would be isomorphic to a cyclic group
of order dividing p — 1, by [4, Theorem A.21.1]. Therefore, dimgp) P = m > 1 and
then the semidirect product G' = [P]H; is a non-supersoluble group of order p™gr* with
m > 1.

Consider the subgroups H; = QR, Hy = PR and H; = P Cpg, (Q). Note that |G :
Hs|=|R:P(R)|=r,|G: Hz| =|Q| =qand |G : Hi| =|P| =p™, and so Hy, Hy and
H3 have pairwise coprime indices in G. We know that H; is supersoluble. To see that
Hj is supersoluble we write C' = Cp, (Q) and write Po to denote the GF(p)-vector space
P regarded as a C-module. By [4, Theorem A.11.5], Pc is completely reducible. Since
C is a cyclic group of order ¢r¥=1 and ¢r*~! divides p — 1, every irreducible submodule
of Pe is one dimensional by [4, Theorem B.9.8]. This means that Hj is supersoluble. By
analogous reasoning, since r* divides p — 1, the subgroup Hy = PR is also supersoluble.

3. Corollaries

Theorem 2.3 and Example 2.5 show that the supersolubility of a group with three super-
soluble subgroups whose indices are pairwise relatively prime cannot be deduced unless
some new condition is imposed.

For instance, in [3] Doerk assumes that the group G has four supersoluble subgroups
whose indices are pairwise relatively prime. His result is a consequence of Theorem 2.3.

Corollary 3.1 (Doerk [3, Satz 4]). If a group G has four supersoluble subgroups
whose indices are pairwise relatively prime, then G is supersoluble.

Next we analyse the conditions given in [5]. Our next result improves Theorem 1.2
of [5] and it is also a consequence of Theorem 2.3.

Corollary 3.2. Let G be a group and, fori = 1,2, 3, let H; be supersoluble subgroups
of G such that ged(|G : H;|,|G : Hj|) =1 ifi # j. Let p;, i = 1,2,3, be three different
primes such that, for each i, the prime p; divides |G : H;|. Assume that p; > ps > ps.

If either paps does not divide py — 1 or p3 does not divide ps — 1, then GG is supersoluble.

Corollary 3.3 (Flowers and Wakefield [5, Theorem 1.2]). Let G be a group and
let H, K and L be supersoluble subgroups of G with pairwise relatively prime indices in
G. Suppose that p is the greatest prime dividing the order of G, H is a Hall p’-subgroup
of G, q is the greatest prime dividing the order of H, and q does not divide p — 1. Then
G is supersoluble.

In [5, Theorem 1.1], the authors assume that the derived subgroup is nilpotent. We
see that this result is a consequence of Theorem 2.3 if we take in this theorem the class
) = NMA composed of all groups with nilpotent derived subgroup.
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Corollary 3.4 (Flowers and Wakefield [5, Theorem 1.1]). Let G be a group and
let H, K and L be supersoluble subgroups of G with pairwise relatively prime indices in
G. Suppose that G’ is nilpotent. Then G is supersoluble.

The fact that the three subgroups Hi, Ho and Hj of the minimal counterexample of
Theorem 2.3 are non-nilpotent motivates the next corollary. Imposing the nilpotence of
one of the subgroups, i.e. taking ¥ = N, the class of all nilpotent groups, in Theorem 2.3,
we have the following corollary.

Corollary 3.5. Let G be a group, let H and K be supersoluble subgroups of G, and
let L be a nilpotent subgroup of G. Suppose that the indices {|G : H|,|G : K|,|G : L|}
are pairwise relatively prime. Then G is supersoluble.

We bring the paper to a close with three results whose proofs cannot be deduced
directly as corollaries of Theorem 2.3, although some of the above arguments and corol-
laries contribute to give short proofs of them. Two of them are known. The third is
new.

If G is a supersoluble group whose order has at least three different prime divisors, then
there exist three maximal supersoluble subgroups of G whose indices are three different
primes. The converse is a result of Wang.

Theorem 3.6 (Wang [9]). A group G is a supersoluble group whose order has at
least three different prime divisors if and only if there exist three maximal supersoluble
subgroups of G whose indices are three different primes.

Proof. Only the sufficiency of the condition is in doubt. Let G be a non-supersoluble
group with three maximal supersoluble subgroups H;, ¢ = 1,2, 3, whose indices are three
different primes, and assume that G has minimal order with such conditions. Obviously,
the order of G has at least three different prime divisors and Theorem 2.2 and Step 1
of Theorem 2.3 apply. If p is the greatest prime dividing the order of G, then G has a
core-free maximal subgroup of G, M, say, such that |G : M| = p™, where m > 1, and
no maximal subgroup of G has index p in G. Hence, ged(|G : H;|,|G : M|) = 1 for any
1 =1,2,3. This contradicts Corollary 3.1. The proof of the theorem is now complete. [J

Next we deal with the most classical result on this subject. It is due to Friesen.

Lemma 3.7. Let G be a group. Assume that H, K and L are supersoluble subgroups
of G such that the indices {|G : H|,|G : K|,|G : L|} are pairwise relatively prime. If K
and L are normal in GG, then G is supersoluble.

Proof. Let G be a minimal counterexample to the lemma. As in the above theorem,
the order of G has at least three different prime divisors and Theorem 2.2 and Step 1 of
Theorem 2.3 apply. We use the notation of Theorem 2.3. Let U be a maximal subgroup
of G. Then |G : U| = q for some prime g # p. Moreover, U N K and U N L are normal in
Uand |U:UNK]|iseither |G : K|or |U : K|, and |U : UNL| is either |G : L| or |U : L|.
As in Step 2, we have that U satisfies the hypothesis of the lemma. The minimal choice
of G implies that U is supersoluble. Hence, every maximal subgroup of G is supersoluble
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and Steps 2-5 of Theorem 2.3 apply as well. Consequently, the structure of G coincides
with the one described in Theorem 2.3. In this case exactly one of the subgroups H, K,
L is normal in G. This contradiction proves the lemma. ([l

Theorem 3.8 (Friesen [6]). If G is a group with A and B normal supersoluble
subgroups of G with relatively prime indices in G, then G is supersoluble.

Proof. Note that G = AB and then G/(A N B) is a supersoluble group. Hence, we
can assume that AN B # 1.

Let N be a minimal normal subgroup of G. Applying the arguments of Step 1 of
Theorem 2.3, we can prove that every proper epimorphic image of G is supersoluble. So,
we can assume that G has a unique minimal normal subgroup N in G and N < AN B.
Moreover, there exists a core-free maximal subgroup M of G such that G = MN. If p
is the greatest prime dividing the order of G, then at least one of the subgroups A or B
contains a Sylow p-subgroup P of G. Suppose that P < A. Since A is supersoluble, P is
normal in A. Hence, P is normal in G and then N = P. Hence, ged(|G : M|, |G : A|) =
ged(|G : M|, |G : B|) = 1. The group G has three supersoluble subgroups M, A and B
whose indices {|G : M|, |G : A|,|G : B|} are pairwise relatively prime and A and B are
normal in G. Then G is supersoluble by the previous lemma. (I

We say that two subgroups H and K of a group G are mutually permutable if H
permutes with every subgroup of K and K permutes with every subgroup of H. Mutually
permutable products have been extensively investigated and there are many interesting
results available. The reader is referred to [2] for a complete account of this theory.

Asaad and Shaalan proved in [1] that if G = HK is a mutually permutable product
of two supersoluble subgroups H and K, then G is supersoluble provided that G’ is
nilpotent. This is true also for any number of factors (see [2, Theorem 5.2.21]). Our result
affirms that if G has three supersoluble subgroups H;, ¢ = 1,2, 3, with pairwise relatively
prime indices in G and one of them, Hy, say, forms mutually permutable products with
H, and Hj, then G is supersoluble.

Theorem 3.9. Let G be a group with three supersoluble subgroups H;, i = 1,2, 3, with
pairwise relatively prime indices in G. Assume that Hy and H; are mutually permutable
subgroups for every j # 1. Then G is supersoluble.

Proof. Let G be a minimal counterexample to the theorem. Let N be a minimal
normal subgroup of G. If G = H;N for some i = 1,2,3, then G/N is supersoluble.
Assume that H;N/N, i = 1,2,3, are proper supersoluble subgroups of G/N. By [2,
Lemma 4.1.10], HN/N and H;N/N are mutually permutable supersoluble subgroups
of G/N for any j # 1. Then G/N is supersoluble by minimality of G. Thus, as in Step 1
of Theorem 2.3, we can assume that there exists only one minimal normal subgroup N.
By [2, Corollary 4.5.9], we have that N < Hy N Hs and N < Hy N Hz. Moreover, there
exists a core-free maximal subgroup M of G such that G = M N. If p is the greatest prime
dividing the order of GG, then at least two of the subgroups H;, i = 1, 2, 3, contain a Sylow
p-subgroup P of G. Note that if P < H; for some ¢, then P is normal in H;. Hence, P is
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normal in G and then P = N. Therefore, ged(|G : H;|,p) = ged(|G : H;|,|G : M|) =1
for all + = 1,2,3. By Corollary 3.1, the group G is supersoluble. But this contradicts
our choice of G. Hence, the minimal counterexample does not exist and the theorem

holds.
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