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The evolution of the potent second-mode instability in hypersonic boundary layers (HBLs)
is examined holistically, by tracking its linear and nonlinear evolution, followed by its role
in initiating transition and eventual breakdown of the HBL into a fully turbulent state.
Linear stability theory is utilized to first identify the features of the second-mode wave
after FS-synchronization. These are then employed in separate linearly and nonlinearly
forced two-dimensional (2-D) and three-dimensional (3-D) direct numerical simulations
(DNS). The nonlinear 2-D DNS shows saturation of the fundamental frequency, and the
resulting superharmonics induce tightly braided ‘rope-like’ patterns near the generalized
inflection point (GIP). The instability exhibits a second region of growth constituted by the
fundamental frequency downstream of the primary envelope, which is absent in the linear
scenario. Subsequent fully 3-D DNS identify this region as crucial in amplifying oblique
instabilities riding on the 2-D second-mode ‘rollers’. This results in lambda vortices below
the GIP, which are detached from the rollers in the inner boundary layer. Streamwise
vortex-stretching results in a localized peak in length scales inside the HBL, eventually
forming hairpin vortices. Spectral analyses track the transformation of harmonic peaks
into a turbulent spectrum. The appearance of oblique modes at the fundamental frequency
suggests that fundamental resonance is the most dominant mechanism of transition.
The bispectrum reveals coupled nonlinear interactions between the fundamental and
its superharmonics leading to spectral broadening, as well as traces of subharmonic
resonance. The global forms of the fundamental and subharmonic modes show that
the former disintegrate at the location of spanwise breakdown, beyond which the latter
amplify. Statistical analyses of the near-wall flow field indicate an increase in large-scale
‘splatting’ motions immediately following transition, resulting in extreme skin-friction
events, which equilibrate as turbulence sets in. Fundamental resonance results in complete
breakdown of streamwise streaks in the lower log-layer, ultimately resulting in a fully
turbulent HBL.

Key words: compressible boundary layers, transition to turbulence, nonlinear instability

1. Introduction

Transition to turbulence is a major challenge in the aerodynamic design of vehicles.
Some consequences include heating and enhanced momentum transfer in boundary layers,

† Email address for correspondence: usasidharannair@fsu.edu
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resulting in drag and surface heat-transfer penalties. High-speed boundary layers exhibit
several pathways to transition (e.g. see Morkovin 1969), depending on the disturbance
environment. Among these, the most explored are the linear mechanisms driven by the
instabilities of the base flow, which are thought to be relevant in low-disturbance flight
environments.

It is well known that the most rapidly growing instability in high-speed boundary
layers (typically above Mach 4) is the second-mode, or Mack-mode (Mack 1975, 1984).
At Mach numbers relevant to hypersonic flight vehicles, this inviscidly unstable mode
exhibits growth rates that can be up to approximately five times (Özgen & Kırcalı 2008)
those observed in the Tollmien–Schlichting (also referred to as the first-mode) instability.
Receptivity studies trace the origin of the second-mode in adiabatic hypersonic boundary
layers (HBLs) to a discrete stability mode, which is initiated in the slow acoustic spectrum
near the leading edge (Fedorov 2003, 2011), with a phase speed, (1 − 1/M∞). The linear
regime of this instability has also been examined in several early experimental (Wilkinson
1997; Schneider 2013) and computational (Pruett & Chang 1995; Ma & Zhong 2003)
studies.

Reliable prediction and mitigation of transition in HBLs also require detailed
understanding and characterization of nonlinear and secondary instability (Herbert
1988) growth in the second-mode. Although the most highly amplified waves of the
second-mode instability are two-dimensional (2-D), secondary instabilities that precede
turbulent breakdown itself are usually oblique. Under natural conditions, these oblique
modes generally gain prominence after the 2-D waves are nonlinearly saturated. Such
undulations of the second-mode could also be induced due to the presence of a first-mode
instability, as noted in the direct numerical simulations (DNS) of Khotyanovsky &
Kudryavtsev (2016). Exploration of this regime thus requires careful quantification of the
competing mechanisms involved.

Craig et al. (2019) explain the challenges associated with experimental quantification of
this nonlinear regime. The presence of superharmonics of the fundamental second-mode
exposes limitations in frequency responses of measurement systems. Other experimental
campaigns include the non-intrusive measurements by Casper, Beresh & Schneider (2014)
of the nonlinear evolution of the second-mode instability within wavepackets in a Mach
6 boundary layer, which eventually broke down into turbulent spots. High-speed schlieren
imaging has also enabled spectral, time-frequency and topology analyses on second-mode
disturbances at hypersonic speeds, as reported in Laurence, Wagner & Hannemann
(2016).

The relevant modal and non-modal interactions in this regime can be faithfully captured
by carefully performed high-resolution simulations. In particular, DNS anchored in
experiments and interpreted within the constructs of linear theory, can provide crucial
insights into the nonlinear and breakdown stages of the second-mode instability. For
example, Pruett & Chang (1995) studied the nonlinear stages of second-mode oblique
waves using DNS of HBLs over a Mach 8 cone. A major advantage of DNS is that
it provides a means to effectively isolate the initialization of specific candidate waves
and their effects on the routes to transition. Franko & Lele (2013) simulated transition
induced by second-mode instabilities through fundamental resonance and oblique mode
breakdown; the latter effected an overshoot in heat transfer rates. Controlled excitation
using wavepackets and harmonic waves by Sivasubramanian & Fasel (2014, 2015) have
quantified the relative dominance of fundamental (K-type) resonance mechanisms in
hypersonic cones over subharmonic (H-type) resonance. Topological changes associated
with enhanced compressibility of HBLs have also been identified as shown in Jocksch &
Kleiser (2008), where the near-wall region of nonlinear wavepackets contains spanwise
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coherent structures associated with second-mode instability, even in the late-transitional
stages.

In the current work, we perform a DNS-based study of the route to transition in a Mach
6 boundary layer by following the evolution of a second-mode instability wave. The goal
is to provide a comprehensive picture of the entire sequence of key developments during
transition to turbulence, including linear amplification, nonlinear saturation, secondary
instability growth and eventual breakdown into a fully turbulent state. Since many of
the fundamental features are obtained in a suitably configured flat-plate boundary layer,
this canonical base flow is chosen to facilitate the exposition of intricacies in the modal
dynamics of the second-mode pathway to transition.

High-resolution numerical schemes with minimal artificial dissipation greatly facilitate
the resolution of the broad spectrum of spatio-temporal scales as they evolve during the
different stages of transition (see e.g. Hader & Fasel 2019). The method employed in this
work is described in § 2. The controlled generation of second-mode instability waves is
described in § 3; briefly, wall blowing–suction is employed with parameters informed by
linear stability analysis. Using the concept of FS-synchronization (Ma & Zhong 2003;
Fedorov & Tumin 2011), the streamwise location where the phase speeds of the slow
and the fast discrete modes merge are identified. This ensures that the instability growth
downstream is induced by the linear instability of the second-mode constituted by the
slow discrete mode (mode S). Wang, Zhong & Ma (2011) identify the receptivity of HBLs
which causes actuators that are located upstream of the FS-synchronization location to
induce mode S amplification at downstream locations, consistent with linear stability
theory (LST) predictions.

The DNS can be utilized to effectively identify the multidimensional variations in
the nonlinearly saturated second-mode instability, along with the distortions induced in
the base flow. At nonlinear amplitudes, modifications of the ‘rope-shaped’ density-field
structures of the second-mode instability, consistent with experimental observations,
have been reported in Egorov, Fedorov & Soudakov (2006). Section 4 addresses this
regime using nonlinearly forced 2-D DNS, to highlight major deviations from the linear
response, which include a second region of amplification downstream of the zone of
linear instability. The effects of saturation are further quantified by decomposing the
nonlinear response into its orthogonal modes, representing the fundamental and its
superharmonics.

The numerical approach also allows for a seamless extension of the analysis to the late
transitional regime encompassing realistic breakdown scenarios. This requires judicious
choice of the three-dimensional (3-D) perturbations to initiate the breakdown. In this
context, computations of secondary instabilities in a Mach 4.5 boundary layer by Adams
& Kleiser (1996) identify subharmonic resonance as a viable route to transition, when
the 2-D mode is allowed to naturally distort in the presence of random noise. Franko &
Lele (2013) showed that imposing specific spanwise wavenumbers can realize controlled
transition routes of fundamental resonance and oblique breakdown. A simple random
forcing approach by Hader & Fasel (2018) to account for realistic wind tunnel effects,
resulted in transition over a flared cone, with spectral and heat-transfer characteristics
consistent with controlled second-mode fundamental resonance. In this study, we adopt an
approach that follows the technique of Adams & Kleiser (1996), where a 2-D second-mode
instability is excited in the HBL, in the presence of background random perturbations.
This narrows the transition route to that initiated by second-mode instability, but allows
the receptivity of the system to choose the preferred modes of secondary instabilities and
eventual breakdown. The 3-D simulation which captures the breakdown of the instability
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wave is presented in § 5, where the vortical structures are analysed to identify various
stages of nonlinear evolution and length scales present in the HBL.

Spectral characterization of the unsteady flow field can help quantify crucial aspects
such as nonlinear saturation and breakdown. Laurence et al. (2016) utilizes time-resolved
and time-averaged frequency spectra to identify the presence of second-mode
wavepackets, as well as localized turbulent activity in HBLs. Section 6 details spectral
analyses, where the one-dimensional (1-D) energy spectra are utilized to compare the
DNS data with the turbulent spectrum. In addition, wavenumber–frequency analysis is
performed to study the effect of oblique modes on the second-mode instability (see e.g.
Novikov, Egorov & Fedorov 2016).

While first-order spectra identify the presence of specific frequencies/wavenumbers
in a signal, higher-order spectral analyses can yield insights into nonlinear coupled
interactions that result in new frequencies/wavenumbers. First- and higher-order spectra
(generalized as polyspectra) correspond to the Fourier transforms of the cumulants of
the signal (Mendel 1991). For example, power spectrum of a signal, φ(t), is obtained
as the Fourier transform of the second-order cumulant, C2(τ ) = E{φ(t)φ(t + τ)} (also
the auto-correlation function), whereas bispectrum is the Fourier transform of the
third-order cumulant, C3(τ1, τ2) = E{φ(t)φ(t + τ1)φ(t + τ2)}. E{.} is the expectation
operator. Kimmel & Kendall (1991) have utilized this second-order spectral representation
(bispectrum) to study nonlinear interactions within second-mode instabilities. We utilize
the bispectrum to identify coupled interactions in the saturated second-mode, which result
in harmonics, spectral broadening and mean flow distortions, that have been previously
reported in experimental studies. Following this, the global form of the fundamental and
subharmonic modes crucial to these interactions are extracted. The final section, § 7,
discusses the near-wall effects of transition, resulting in skin-friction variations in the
transitional HBL. Due to the prolonged transition zone of the second-mode instability
wave (Franko & Lele 2013), a complete breakdown to turbulence in HBLs resulting
from this transition route is relatively less explored. Hence, the near-wall analysis is
also extended to the fully turbulent regions of the HBL. Finally, correlation analyses and
probability distributions are utilized to extract the dominant length scales and qualitative
trends in high-velocity patches, which form localized regions of intense skin friction.

2. Numerics

The governing equations are the unsteady 3-D compressible Navier–Stokes equations,
formulated for generalized curvilinear coordinates in the strong-conservation form:

∂

∂τ

(
Q
J

)
= −

[(
∂Fi

∂ξ
+ ∂Gi

∂η
+ ∂Hi

∂ζ

)
+ 1

Re

(
∂Fv

∂ξ
+ ∂Gv

∂η
+ ∂Hv

∂ζ

)]
. (2.1)

The conserved variable vector is denoted by Q = [ρ, ρu, ρv, ρw, ρE]T, where ρ is the
density, (u, v, w) are the Cartesian components of velocity and E = T/(γ − 1)M∞2 +
(u2 + v2 + w2)/2, is total specific internal energy. Here, T is the temperature, M∞ is the
reference free stream Mach number and γ is the ratio of the specific heats. The ideal gas
law, p = ρT/γ M∞2, is assumed, where p is pressure. Also, J = ∂(ξ, η, ζ, τ )/∂(x, y, z, t)
is the Jacobian of the coordinate transformation. Inviscid fluxes along the coordinates,
(ξ, η, ζ ), are represented by (Fi, Gi, Hi). (Fv, Gv, Hv) are the corresponding viscous
fluxes. Further details on the formulation can be found in Vinokur (1974) and Anderson,
Tannehill & Pletcher (1984).
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FIGURE 1. Schematic showing the shock-capturing technique. Here, ‘S’ denotes the shock
location; ‘M’ indicates shock vicinity, where third-order reconstruction is used; and ‘W’ indicates
locations where seventh-order reconstruction is used.

Denoting dimensional numbers with (.)∗, the Reynolds number, Re, is defined as, Re =
ρ∗

∞U∗
∞L∗/μ∗

∞, where subscript ∞ denotes free stream conditions, U and μ are velocity
and dynamic viscosity, respectively and L∗ is a reference length scale. The pressure is
normalized as p = p∗/ρ∗

∞U∗
∞

2. The Prandtl number, Pr, is assumed to be 0.72 and γ =
1.4. Sutherland’s law is used to obtain temperature dependence of viscosity.

The discretized equations are solved in a finite difference framework using a high-order
approach to ensure sufficient resolution of the wide range of scales involved in the
transition phenomena of interest. The high edge-Mach-number gives rise to relatively
strong shocklets in the nonlinearly distorted and turbulent regions of the boundary layer;
this necessitates robust shock-capturing schemes. These requirements are balanced using
a shock detector routine (Bhagatwala & Lele 2009), which locally lowers the order
of reconstruction in the vicinity of discontinuities. A schematic representation of the
approach is provided in figure 1. The situation considers a shock, ‘S’, present at grid
point, i. Points from i − 5 to i + 5 (denoted ‘M’) represent the vicinity of the shock,
where primitive variables are reconstructed using a third-order modified upwind scheme
for conservation laws (MUSCL) based scheme, along with the application of the van
Leer harmonic limiter (van Leer 1979), to minimize grid-scale oscillations. At locations
away from the shock (denoted ‘W’), a seventh-order weighted essentially non-oscillatory
(WENO) reconstruction (Balsara & Shu 2000) is performed on the characteristic variables.
The inviscid fluxes are then computed using the Roe scheme (Roe 1981). Viscous fluxes are
discretized using the fourth-order central scheme. An implicit time-integration approach is
adopted using the second-order diagonalized (Pulliam & Chaussee 1981) Beam–Warming
approximate factorization (Beam & Warming 1978).

The flow field consists of a boundary layer, developing over an adiabatic flat plate with
a sharp leading edge. The free stream conditions correspond to those described in Egorov
et al. (2006), with Re = 2 × 106 and M∞ = 6. The computational domain and the laminar
flow field are presented in figure 2, for reference. (x, y, z) are the Cartesian coordinates,
corresponding to the streamwise, wall-normal and spanwise directions, respectively. For
clarity, every 20th node is displayed in the wall-normal and spanwise directions, and
every 40th node is displayed in the streamwise direction. The computational domain spans
0 ≤ x ≤ 4.2, 0 ≤ y ≤ 0.85 and −0.1 ≤ z ≤ 0.1, where, x = 0 coincides with the leading
edge of the plate. Laminar pressure contours are also shown on the midspan plane, and the
wall-normal extent ensures that the leading edge shock is captured within the domain. The
grid is clustered near the leading edge and the wall, and a uniform grid spacing is used in
the spanwise direction. A sponge zone is created through aggressive grid stretching beyond
x > 4 and y > 0.65, to minimize reflections from the boundaries. The computational
domain is resolved using 5, 531, 301 and 121 nodes in the streamwise, wall-normal and
spanwise directions, respectively. Based on fully turbulent boundary layer parameters at
the outflow, the grid resolution in wall units are as follows: Δx+ = 2.5, Δy+ = 0.3 and
Δz+ = 6.9. This grid resolution was deemed sufficient after comparisons with results
obtained on a relatively coarser grid. The appendix summarizes these comparative studies
in the transitional and turbulent regions of the HBL.
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FIGURE 2. Computational domain along with the boundaries, as indicated. The location of the
upstream actuator is also marked on the plate surface. A midspan plane is shown along with
pressure contours of the laminar flow.

The inflow plane is a supersonic inlet boundary, where free stream values are imposed
on all primitive variables. The zero-streamwise-gradient condition is applied on the
downstream outflow boundary. Similarly, the zero-wall-normal-gradient condition is
applied on the free stream boundary. The surface of the plate is a no-slip, adiabatic wall.
Periodic boundary conditions are used in the spanwise direction. The actuator used to
excite instabilities in the HBL is modelled as a blowing–suction slot, which introduces
harmonic perturbations in wall-normal momentum, qw = ρwvw. Following Egorov &
Novikov (2016), this is defined as

qw(x, z, t) = ρwvw = A sin
(

2π
x − x1

x2 − x1

)
sin(ωAt). (2.2)

The amplitude of the spanwise homogeneous wave, A, depends on whether the analysis is
linear or nonlinear, and is defined in the relevant sections below. The frequency of forcing,
ωA, and its upstream and downstream limits, x1 and x2, respectively, are obtained from
linear stability analysis, as described in the following section.

The initial simulations used to characterize the linear and nonlinear properties of the
second-mode instability are 2-D in nature, which solves the 2-D form of (2.1). The spatial
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Second-mode instability 905 A25-7

schemes, boundary conditions and the actuator model are identical to those described
above for the 3-D simulations. Time integration of the 2-D equations are performed using
the nonlinearly stable third-order Runge–Kutta scheme (Shu & Osher 1988).

In the following sections, we study the evolution of the second-mode instability through
the linear, nonlinear and transitional regimes. The first step is to initiate the correct
disturbances by identifying suitable wave parameters using linear analysis.

3. Linear analysis

The unstable frequencies and corresponding wavelengths are estimated with a temporal
framework because of its simplicity (Malik 1990). For this, the laminar basic state is
assumed to be 1-D, and the Navier–Stokes equations are linearized following Reynolds
decomposition. The perturbations are composed of waves defined by streamwise and
spanwise wavenumbers, α and β, respectively, with circular frequency, ω. The Reynolds
decomposition and the wave ansatz for any primitive variable, φ, can be represented as

φ = φ̄ + φ′, φ′ = φ̂( y) exp(i(αx + βz − ωt)), (3.1a,b)

where (.) and (.)′ are time-averaged and perturbation quantities, respectively. The resulting
eigenvalue problem is solved to obtain the complex eigenvalues, ω, for specified real
wavenumbers, α and β. Since second-mode instability is associated with 2-D waves which
exhibit the highest growth rates (Malik 1990; Yao et al. 2007), we use β = 0.

For adiabatic walls, the second-mode instability is associated with the so-called mode
S, which is a discrete eigenmode originating from the slow continuous acoustic spectrum
(see e.g. Fedorov 2003, 2011). With increasing downstream distance from the leading
edge, as the growth rate of this mode becomes positive (unstable), the phase speed of
mode S synchronizes with that of mode F, which is another discrete mode branching-off
from the fast continuous acoustic spectrum (Ma & Zhong 2003; Fedorov & Tumin
2011). This phenomenon helps identify the unstable second-mode instability, shown in
the eigenspectrum of the basic state at x = 1 (figure 3) for a perturbation wave with
a streamwise wavelength, λx = 2π/α = 0.03. The horizontal and vertical axes are the
real (circular frequency) and imaginary (growth rate) parts of the eigenvalue, ωr and
ωi, respectively. The left-hand, middle and right-hand vertical dash-dot lines correspond
to the slow-acoustic, vortical/entropic and fast-acoustic wave speeds, respectively. The
two circled eigenvalues represent mode S (unstable) and mode F (stable) that have
synchronized, as indicated by their abscissa.

The above mentioned FS-synchronization is evident in the phase-speed plots of mode
S and mode F, presented in figure 4. Figure 4(a) plots the loci of (real) phase speed,
cr = ωr/λx , as a function of streamwise distance from the leading edge. The phase speed
of mode S is found to be relatively invariant beyond x = 0.5, whereas that of mode F
gradually decreases from the fast acoustic limit, (1 + 1/M∞), to the slow acoustic limit,
(1 − 1/M∞), as was also reported by Ma & Zhong (2003). During this process, mode
F first intersects with the continuous vortical/entropy spectrum (Fedorov & Tumin 2003)
at cr = 1, and then, mode S. The loci of the imaginary parts of phase speeds are plotted
in figure 4(b). In the vicinity of FS-synchronization, the growth rate of mode S becomes
positive (ci > 0), and eventually reaches peak values around x ∼ 1.1. At the free stream
conditions considered, the unstable growth rates of mode S after FS synchronization can
display magnitudes five to ten times (see e.g. Özgen & Kırcalı 2008; Unnikrishnan &
Gaitonde 2019) larger than those prior to it. Mode F remains damped over this adiabatic
wall, since ci < 0.
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FIGURE 3. Eigenspectrum from linear stability analysis obtained at x = 1. The left-hand and
right-hand vertical lines correspond to the slow and the fast acoustic speed limits, respectively.
The unstable mode S and the stable mode F are marked with circles in the vicinity of their
phase-speed synchronization.
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FIGURE 4. (a) Variations in phase speed, cr, of mode F and mode S as a function of streamwise
distance from the leading edge. (b) Variations in growth rate, ci, of mode F and mode S
as a function of streamwise distance from the leading edge. (c) Linear response of DNS to
second-mode actuation shown using wall-pressure perturbation.
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Since the nonlinear evolution of second-mode will be examined through DNS, it is
essential to first quantify the linear response of DNS, and reconcile any differences from
LST. These may arise due to the temporal framework and 1-D assumption of mean
flow in the latter approach, or because the DNS basic state is slightly altered due to
viscous–inviscid interaction near the leading edge of the plate. To this end, a 2-D DNS
is performed to obtain a converged laminar flow (previously shown in figure 2). This flow
is then perturbed by small-amplitude wall-normal blowing–suction as defined by (2.2),
with A = 5 × 10−4. Similar amplitudes have been used by Egorov et al. (2006) to obtain
linear second-mode response in 2-D DNS. It is seen in figure 3 that, the circular frequency
of mode S is around ωr = 200 in the vicinity of FS synchronization. Hence, the actuator
frequency is also chosen as ωA = 200. The streamwise extent of the actuator slot is defined
as x1 = 0.035 and x2 = 0.064, which is approximately equal to the wavelength of the
instability wave identified in figure 3. As observed in Zhong (2001) and Wang & Zhong
(2009), when the actuator is placed upstream of the FS synchronization point, the unstable
mode S is naturally excited in the HBL.

The linear response of second-mode instability thus obtained from the DNS, shown
in figure 4(c), facilitates a direct comparison with corresponding LST results. The
wall-pressure perturbation, p′, is plotted versus streamwise distance, x , in the region of
FS synchronization. The most significant amplification in linear DNS coincides with
the unstable region of mode S, with peak amplitude observed at x ∼ 1.65. This is
also consistent with the streamwise location at which mode S amplification rate falls
below ci = 0, thus indicating the location at which the second-mode instability begins to
attenuate. The reasonable agreement between LST and linear DNS ensures that the wave
parameters chosen induce a second-mode instability in the numerical simulations within
the computational domain.

Some characteristic features of the second-mode instability are presented in figure 5.
The pressure perturbation contours in figure 5(a) shows that instability amplification
is restricted to within the boundary layer, primarily in the zone 1.2 < x < 2.2. The
signature of the actuator is also visible in the vicinity of the leading edge. The pressure
perturbation contours in the vicinity of peak amplification (marked by a rectangle
in figure 5a) are plotted in detail in figure 5(b). The classic two-lobed structure
of second-mode instability waves is evident with compact wall-normal support. The
density perturbations visualized in figure 5(c) exhibit ‘rope-shaped’ patterns, observed
commonly in experimental measurements (Stetson & Kimmel 1993; Laurence et al. 2016;
Kennedy et al. 2018). These peak levels of density perturbations align with the generalized
inflection point (GIP) in the mean profile, where the gradients are generally the highest,
and engender rapid perturbation growth. Here, GIP corresponds to the zero-crossing of the
function, (∂/∂y)((1/T̄)(∂ ū/∂y)). The locus of the GIP is also marked using a horizontal
dashed line. The outer lobes in pressure perturbations also occur at this wall-normal
location, as can be seen by comparing figures 5(b) and 5(c).

4. Nonlinear evolution of second-mode

Prior to analysing the breakdown scenario, it is illustrative to examine the saturated
second-mode to identify the effects of nonlinearity on the 2-D wave. For this, 2-D forced
DNS is performed with an actuator amplitude, A = 5 × 10−2. The resulting perturbation
field is shown in figure 6. The pressure perturbation contours in figure 6(a) indicate waves
accumulating behind the shock wave, as well as amplifying within the boundary layer.
Unlike the linear scenario, pressure perturbations here show occasional extensions into the
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FIGURE 5. (a) Pressure perturbation contours in the linear DNS. (b) Magnified view of pressure
perturbation contours in the region of second-mode amplification (marked in panel (a) with a
rectangle). (c) Corresponding contours of density perturbation field. The dashed line in panel (c)
represents the GIP.

free stream, as was also observed in the nonlinear behaviour of second-mode by Egorov
& Novikov (2016). The region marked by the rectangle (in figure 6a) is magnified in
figure 6(b) for a detailed representation of the pressure perturbation contours. The pressure
cells are distorted in an alternating pattern, with the corresponding waveform exhibiting
wider troughs and narrower steep peaks. The surface pressure is plotted in the inset of
figure 6(b) in the range, 1.65 ≤ x ≤ 1.75, for a qualitative representation of this distortion.
The horizontal dashed line is the zero mark. The density perturbation contours in this
region are presented in figure 6(c). While the general ‘rope-shaped’ patterns persist, there
are some variations from the linear structures observed in figure 5(c). For example, the
perturbations in the linear field are symmetric about the zero value, as indicated by the
identical shapes of the black and white zones. However, the nonlinear field is asymmetric,
with the negative deviations being spatially dominant. The interlacing is also pronounced
in the nonlinear response (Egorov & Novikov 2016), with the braided pattern becoming
more evident. This is seen, for instance, in the experiments of Laurence et al. (2016), where
the initial stages of second-mode wavepackets display symmetric fluctuations. The tightly
braided structures become evident upon tracking these wavepackets into the nonlinearly
saturated regime.

Nonlinearity can alter the growth-envelope features of second-mode instabilities from
those predicted by LST. To quantify this, we plot the surface pressure perturbations from
the linear and nonlinear DNS in figure 6(d). These pressure plots are normalized by their
respective peak absolute values to obtain p′

n , to facilitate a straightforward comparison.
Due to the high growth rate of the second-mode instability in the linear regime, the
primary zone of amplification between 1.2 < x < 2.2 essentially masks the pressure trace
elsewhere over the wall. In contrast, nonlinear saturation limits peak amplification to
approximately three to five times of that observed at upstream locations. In the nonlinear
case, the second-mode achieves peak amplitudes at an upstream location, compared with
the linear case. One possible underlying cause is the energization of superharmonics,
with smaller wavelengths, that can be harboured in the thinner boundary layer upstream.
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FIGURE 6. (a) Pressure perturbation contours in the nonlinear DNS. (b) Magnified view of
pressure perturbation contours in the region of second-mode amplification (marked in panel
(a) with a rectangle). Inset in panel (b) plots surface pressure perturbations with respect to the
zero mark (dashed horizontal line). (c) Corresponding contours of density perturbation field.
(d) Normalized surface pressure perturbations in the linear and nonlinear DNS.

The envelope of the nonlinear wave is also asymmetric and modulated as evident in the
range, 1.5 ≤ x ≤ 2. Such modulations are characteristic of nonlinear saturation (Hader &
Fasel 2020) and will be further examined below in the spectral domain. Beyond x = 2 the
linear response decays monotonically, whereas the nonlinear response exhibits a second
region of amplification between 2 ≤ x ≤ 2.5. These regions become relevant in the 3-D
simulation discussed in the next section, by influencing oblique mode instabilities and
facilitating the breakdown of the HBL.

The differences between the linear and nonlinear perturbation fields are manifested as
superharmonics of the primary (forcing) frequency. These differences can be highlighted
by splitting the pressure and density perturbations fields into orthogonal modes using
proper orthogonal decomposition (POD). Since the nonlinear field is assuredly composed
of the forcing frequency and its integer superharmonics alone, the POD modes
naturally coincide with these harmonics. This was verified post facto by extracting
the frequency spectra of the monochromatic POD modes. Due to the harmonic nature
of the perturbations, the POD modes appear in pairs, the first three of which are
presented in figure 7, for pressure (p-POD1, p-POD2 and p-POD3) and density (ρ-POD1,
ρ-POD2 and ρ-POD3). They correspond to modes at frequencies, ωA, 2ωA and 3ωA, in
the respective primitive variables. The streamwise extent, 1.8 ≤ x ≤ 2.2, is chosen to
highlight the deviation from the linear response. The dual-lobed pressure contours and
the ‘rope-shaped’ density patterns in the leading modes of the nonlinear field recover
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FIGURE 7. (a) First, (b) second and (c) third orthogonal modes in pressure perturbations.
(d) First, (e) second and ( f ) third orthogonal modes in density perturbations.

the corresponding linear response observed earlier in figure 5. In addition, the primary
mode in pressure most clearly accounts for the second region of amplification observed in
the nonlinear response between 2 ≤ x ≤ 2.5. The higher modes of pressure also exhibit
a dual-lobed structure in the region of peak amplitudes of the primary mode, and are
increasingly restricted to within the boundary layer. The first and second superharmonics
in density perturbations are also confined to the vicinity of the GIP, and exhibit a higher
degree of interlacing, resulting in the braided features in the overall nonlinear response
(figure 6c). In all the primitive variables examined, the wavelengths of higher modes
decrease by the same factor at which the frequencies increase in the superharmonics, thus
imparting similar phase speeds to all the modes.

Following the analysis of linear and nonlinear behaviour of the 2-D second-mode
instability, we now perform the complete 3-D DNS to identify mechanisms leading to
its breakdown and eventual transition of the HBL.

5. Breakdown and transition

For simulating transition, the amplitude of the spanwise homogeneous wave in the
3-D DNS is maintained the same (A = 5 × 10−2) as in the nonlinear 2-D DNS analysed
above. To capture the receptivity of the nonlinearly distorted HBL to oblique instabilities,
a background random perturbation field is also imposed on the actuator. This also
enhances the stochastic nature of post-breakdown unsteadiness in the HBL (Sayadi,
Hamman & Moin 2013). The random perturbation field is obtained using a pseudorandom
number generator to generate real values, rn , uniformly distributed between −1 ≤ rn < 1.
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For the grid resolution and domain size adopted, Nyquist limit results in the excitation of
a finite range of spanwise wavenumbers approximately bounded by, 31 ≤ β ≤ 1870. The
corresponding streamwise wavenumber range is around 210 ≤ α ≤ 16 000. The time step
size utilized for the simulation limits the highest frequency resolved to ω ∼ 6 × 104. The
scaling of the random field is varied across three orders of magnitude to ensure that the
breakdown characteristics are not sensitive to its amplitude. In the reported results, the
root mean square value of random perturbations are O(1 × 10−4).

The overall features of the destabilized HBL are presented first, in figure 8, using
an iso-level of Q-criterion, coloured by u. Each frame represents equal streamwise
segments of the plate defined as, 0 ≤ x ≤ 1, 1 ≤ x ≤ 2, 2 ≤ x ≤ 3 and 3 ≤ x ≤ 4,
for figures 8(a), 8(b), 8(c) and 8(d), respectively. The key features evident from the
vortical structures highlighted through the Q-criterion are now listed; further supporting
quantitative evidence where appropriate is provided in subsequent sections.

(i) In the range, 0 ≤ x ≤ 1, the behaviour of the second-mode instability in the 3-D
simulation is essentially same as that observed in the 2-D nonlinear simulation
discussed above. Specifically, the HBL is dominated by spanwise homogeneous
‘rollers’ which distort the laminar basic state on which the secondary instabilities
evolve. The similarity of the 2-D nonlinear and 3-D results is also highlighted in
figure 9. The wall-pressure distributions for x ≤ 1 are plotted as obtained from the
2-D simulation, and three spanwise locations (as indicated) in the3-D simulation.
We observe minimal spanwise variations in this region.

(ii) Although the rollers remain the dominant coherent feature in 1 ≤ x ≤ 2, traces
of spanwise variations begin to appear near the GIP. This is evident by x ∼ 1.5,
prominently on the free stream side of the rollers relative to the near-wall region. By
x ∼ 2, the top portion of the rollers is sufficiently modulated by the most receptive
oblique waves, effectively detaching from the 2-D waves in the inner boundary layer
and evolving into lambda vortices. In the near-wall region, the rollers are eventually
distorted (to a lesser extent) and initiate spanwise breakdown.

(iii) In 2 ≤ x ≤ 3, the spanwise breakdown rapidly destabilizes the HBL, forming
hairpin vortices characteristic of initial stages of turbulence in boundary layers
(Schlatter & Örlü 2010). Detailed analysis of the coherent structures in 2 ≤ x ≤ 2.5
indicates that the ‘legs’ of lambda vortices, consisting of streamwise vortex tubes,
stretch in the streamwise direction. This is accompanied by the ‘inclination’ (Jeong
et al. 1997) of these vortices such that the ‘head’ region moves away from the
wall. Densely arranged hairpin vortices appear in the boundary layer towards x ∼ 3,
together with a rapid broadening of spanwise length scales in the flow. Wall-shear
measurements indicate that the average skin friction increases by a factor of around
four within the range, 2.5 ≤ x ≤ 3. Due to the random nature of the spanwise
inhomogenity seeded with the actuator, complete breakdown of the boundary layer
occurs at slightly different streamwise locations across the span in an instantaneous
sense.

(iv) The final section, 3 ≤ x ≤ 4, displays a turbulent boundary layer, composed
of broadband content in the frequency and waveumber domains. The ‘forest
of hairpins’ (Wu & Moin 2009) in early turbulence (x ∼ 3) indicates that the
boundary layer has attained statistical invariance in the spanwise direction. Further
downstream, consistent with the observations in incompressible scenarios, the
boundary layer thickens and ‘arch-like’ structures appear in the outer layer
(Eitel-Amor et al. 2015) , which are detached from the streamwise vortices observed
closer to the wall (Jeong et al. 1997). In addition, beneath the streamwise vortices,
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FIGURE 8. The DNS results of transition visualized using Q-criterion, coloured with u. Each
frame represents equal streamwise segments, as follows: (a) 0 ≤ x ≤ 1; (b) 1 ≤ x ≤ 2; (c) 2 ≤
x ≤ 3; and (d) 3 ≤ x ≤ 4.

near-wall spanwise-oriented structures also appear, which have been previously
observed in transitional regions (Jocksch & Kleiser 2008) above M∞ = 5, and are
found here to persist into the fully developed turbulent region of the HBL.

Since initiation of breakdown from the 2-D wave is of direct interest to this study, further
details of spanwise inhomogeneity in the rollers are presented in figure 10. The upstream
region of figure 8(c), 2 ≤ x ≤ 2.5, is highlighted through the iso-level of Q-criterion,
coloured by u. Three locations are chosen, in the vicinity of x ∼ 2, x ∼ 2.25 and x ∼ 2.5,
to characterize the early spanwise variations in the second-mode. The formation of lambda
vortices near the GIP is evident in figure 10(a), with the rollers beneath it. The streamwise
vortex filaments undergo stretching in the downstream direction, and are inclined to the
wall, as can be observed by comparing figures 10(a) and 10(b). Further downstream, the
lambda vortices develop into hairpin vortices, with the ‘head’ region in the outer boundary
layer (figure 10c).

The inclination and stretching of vortices can be verified and quantified from the trends
in the streamwise length scales present across the height of the boundary layer. This is
demonstrated in figure 10(d) using the streamwise integral length scale, Lcx = ∫ ∞

0 ccu dχ .
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FIGURE 9. Comparison of wall-pressure distribution in the 2-D nonlinear simulation with
corresponding results from the 3-D simulation, at indicated spanwise locations.
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FIGURE 10. The Q-criterion coloured by u, isolating the behaviour of oblique instabilities in
the region of transition: (a) x ∼ 2; (b) x ∼ 2.25; (c) x ∼ 2.5. (d) Variation of streamwise length
scales inside the boundary layer at the indicated locations.
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The autocorrelation coefficient of streamwise velocity, ccu, is calculated as

ccu(x, y, z, χ) = u′(x, y, z, t)u′(x + χ, y, z, t)(
u′2(x, y, z, t)

)0.5 (
u′2(x + χ, y, z, t)

)0.5 , (5.1)

and is first obtained on the midspan plane at various wall-normal locations within the
boundary layer at x = 2, 2.25 and x = 2.5, from which the integral length scales at each
streamwise location are calculated. The locus of GIP in 2 ≤ x ≤ 2.5 (marked as yGIP) can
be approximated by the dashed horizontal line. At x = 2, the near-wall region is dominated
by fundamental and superharmonics in the 2-D instability, and thus has a relatively smaller
length scale. Below the GIP, the lambda vortices result in a local maxima in Lcx , at
y ∼ 0.012. Here, the lambda vortices are detached from the rollers on the wall, and the
‘legs’ are inclined with respect to the GIP. Near the GIP and above it, Lcx diminishes
because of the absence of any significant streamwise oriented structures. This trend is
further enhanced at x = 2.25 due to the stretching of the lambda vortices, which increases
the local maxima in Lcx . As the lambda vortices penetrate the boundary layer, Lcx exhibits
a smoother profile as seen at x = 2.5.

6. Spectral-domain analysis of transition

The frequency spectra of wall-pressure fluctuations provide a quantitative representation
of the transitional characteristics and development of nonlinearities in the HBL. An
illustrative manifestation is evident on the midspan: figure 11(a) plots the logarithm of
power spectral density (PSD) of wall pressure fluctuations. The horizontal axis is x and
the vertical axis represents circular frequency, ω. The two vertical dotted lines mark the
locations x = 1.5 and x = 4, for reference. The spectrum near the leading edge shows
the imprint of the actuator, primarily at ω = 200, from which multiple superharmonics
develop due to nonlinear effects. As the HBL grows, these superharmonics dampen, as
seen in 0.5 ≤ x ≤ 1. Once the linear instability region of the fundamental wave begins at
x ∼ 1 (figure 4c), the superharmonics also amplify (1 ≤ x ≤ 2). At x ∼ 1.5, most of the
superharmonics exhibit peak amplitudes. The streamwise velocity spectrum, Euu(ω), at
this location is plotted in figure 11(b). The fundamental frequency (ωA), and the first (2ωA)
and second (3ωA) superharmonics are also marked for reference. Nonlinear saturation
limits the linear amplification of the fundamental frequency, and peak energy is actually
observed in the first superharmonic, ω = 400. Although the spectrum is narrow banded
at higher frequencies (integer multiples of the fundamental), the lower range shows a
broadband nature, indicating percolation of frequencies to either side of the fundamental.
This will be further examined below in the context of nonlinear coupling of frequencies.

For x > 2, the superharmonics above ω = 400 attenuate rapidly outside the region of
linear instability. A qualitative shift in boundary layer character is evident, however, in the
region 2 ≤ x ≤ 3, where the harmonic narrow-band spectrum gives way to a broadband
spectrum. As seen in the iso-level plots (figure 8), this region is characterized by oblique
waves that distort the 2-D rollers, and result in an early signature of turbulence in the
form of hairpin structures. Since ω = 200 remains the dominant frequency in 2 ≤ x ≤ 2.5,
this indicates that fundamental resonance (Sivasubramanian & Fasel 2015) is the most
probable cause of transition in this scenario. There are also traces of peaks at ω ∼ 150 near
the wall and ω ∼ 100 (near the GIP, not evident in this plot). The latter will be revisited in
the following discussion through bicoherence, although the relatively lower energy content
at the half-frequency of the fundamental significantly limits the effects of subharmonic
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FIGURE 11. (a) Wall-pressure frequency-content variation in terms of power spectral density
obtained at various streamwise locations at the midspan. Streamwise velocity spectra at (b) x =
1.5 and (c) x = 4. Dashed arrows in panel (b) mark the fundamental frequency and its first
two superharmonics. Dashed line in panel (c) represents the slope, ω−5/3. Dashed-dotted line in
panel (c) represents the slope, ω−7.

resonance (Sivasubramanian & Fasel 2014). This observation indicates that in the presence
of unbiased spanwise variations upstream, fundamental resonance is the preferable mode
of breakdown for a given 2-D second-mode wave. Fundamental resonance has also been
observed to arise naturally in HBLs over flared cones by Hader & Fasel (2019, 2020).

At further downstream locations, x > 3, the frequency spectrum is broadband, with
no trace of dominance of the forcing harmonic, or its multiples. The spectral content is
evaluated at x = 4, at a wall-normal location, y+ ∼ 41, using Euu(ω), and is reported
in figure 11(c). The dotted and dashed-dotted lines mark the slopes, ω−5/3 and ω−7,
respectively (Mayer, Von Terzi & Fasel 2011), demarcating the inertial subrange and the
dissipation scales. The spectrum shows that the HBL reaches a fully turbulent state towards
the outflow boundary, with an inertial subrange extending over a decade of frequencies.

The sensitivity of the HBL to a narrow band of wavenumbers in the nonlinearly distorted
upstream region, x ≤ 1.5, is examined by plotting wavenumber spectra in figure 12(a).
The horizontal axis is x and the vertical axis represents spanwise wavenumber, β. These
oblique modes ride on the rollers and modulate them in the spanwise direction as the
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2-D wave amplifies. An interesting feature here is the region of peak amplification of the
oblique mode, 1.8 ≤ x ≤ 2.5, marked by two vertical arrows on the horizontal axis. The
most amplified oblique mode has a spanwise wavenumber of β ∼ 150, corresponding to
a wavelength of λz ∼ 0.04, which is 20 % of the span of the domain. For reference, the
vortical structures in the HBL within this streamwise extent are also shown in an inset,
using Q-criterion coloured with u. This region of intense amplification of the oblique
modes is crucial to the final breakdown of the boundary layer through the formation of
initial hairpin vortices. The significance of this streamwise region is limited in the linear
framework, since the 2-D wave monotonically attenuates beyond x ∼ 1.7 (figure 6d).
However, the nonlinear response of the 2-D wave indicates that a second region of
amplification is present (figure 6d), which is also evident in the fundamental 2-D mode
extracted through POD (figure 7a). This region exhibits strong non-parallel, localized
amplification of the fundamental frequency, which clearly harbours the oblique modes
and makes the ‘rollers’ susceptible to spanwise breakdown. There is a qualitative shift in
the HBL in the vicinity of x ∼ 2.5, as it remains no longer narrow-banded in wavenumber
space. The wavenumber spectrum is rapidly populated near the lower end, as the HBL
becomes turbulent towards the outflow.

Due to the illustrative nature of these spectra in describing the breakdown process,
a further analysis of the wavenumber–frequency (β − ω) domain is performed in the
1.8 ≤ x ≤ 2.5 region. Six equally spaced streamwise locations are chosen as shown
in figure 12(b–g). The logarithm of PSD is plotted to identify the spatio-temporal
characteristics of the instabilities. To highlight the dynamics in the oblique modes, the
spanwise homogeneous component is removed prior to performing the transformation
from the spatio-temporal plane. At x = 1.8, the spectrum remains narrow banded in the
frequency domain, with only the fundamental and its superharmonic being prominent.
At both these frequencies, the spatial scales are localized at β ∼ 150. Progressing
downstream, the superharmonic weakens, and the oblique mode at the fundamental
frequency gains prominence by x = 1.94 and x = 2.17. This is another indication that the
transition is dominated by the fundamental breakdown mechanism. In the latter half of the
domain chosen for this aspect of the analysis, 1.8 ≤ x ≤ 2.5 (figure 12e–g), the spectrum
rapidly broadens in both wavenumber and frequency. Energy eventually percolates to
lower wavenumbers and frequencies due to the development of spanwise coherence in
the near-wall structures and the initiation of quasi-streamwise vortices.

The above spectral analyses provide quantitative insights into the frequencies and
wavenumbers present in the HBL. The genesis of these frequencies may be further clarified
by identifying those waves that are nonlinearly coupled, and the extent of their coupling
(which results in spectral broadening). An effective technique is to use higher-order
spectral quantities, such as the bispectrum, B(ω1, ω2). For a signal, φ(t), this is defined
as

B(ω1, ω2) = lim
T→∞

1
T

E[Φ(ω1)Φ(ω2)Φ
c(ω1 + ω2)], (6.1)

where T is the temporal duration of the signal, φ(t), Φ(ω) is Fourier transform of φ(t) and
the superscript, (.)c, represents the conjugate transpose.

The bispectrum of pressure signals in the vicinity of the GIP facilitates tracking of
the nonlinear coupling that leads to the generation of new frequencies in the nonlinearly
saturated and transitional regimes of the HBL. The bispectrum also incorporates
information on the absolute scales of energy in the fluctuations. Thus, it quantifies
the nonlinear generation of fluctuating energy at new frequencies, in relation to the
fundamental wave. Figure 13(a) plots the density-gradient magnitude to visualize the
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FIGURE 12. (a) Spanwise wavenumber spectra obtained from wall-pressure perturbations.
Vertical arrows mark 1.8 ≤ x ≤ 2.5. Inset shows Q-criterion coloured with u in 1.8 ≤ x ≤ 2.5.
(b–g) Wavenumber–frequency spectra at indicated locations.

braided ‘rope-like’ structures near the GIP, and the eventual downstream breakdown
region. The solid circles mark four locations where the time traces of pressure are acquired
to calculate the bispectrum. The state of the HBL in the vicinity of these locations are
also magnified in four insets, for reference. The braids are not evident at x ∼ 1 since the
nonlinearities are relatively weaker here. As the superharmonics amplify, the interlacing
is more prominent at x ∼ 1.5 and x ∼ 2.2, consistent with the 2-D nonlinear DNS. At
x ∼ 2.6, the GIP is no longer compact, and indicates nonlinear breakdown.

The bispectrum at x ∼ 1 is presented in figure 13(b). The axes represent circular
frequency, and the inclined dashed line marks the 45◦ angle, bisecting this quadrant.
Significant bicoherence at (ω1, ω2) in this plane suggests quadratic phase coupling among
waves with frequencies, ω1, ω2 and ω3 = ω1 + ω2. When combined with additional
contextual data from the Fourier spectrum, the bispectrum yields information about
the specific (sum or difference) interaction among these three frequencies (Bountin,
Shiplyuk & Maslov 2008). Due to the symmetry of the bispectrum, it is sufficient
to examine only one half of the quadrant. The most prominent nonlinear interaction
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FIGURE 13. (a) Density-gradient magnitude contours, marked with the locations, x ∼ 1, x ∼
1.5, x ∼ 2.2 and x ∼ 2.6. The vicinity of these locations are magnified in the four insets.
(b–f ) The bispectrum evaluated at the above locations. The dotted inclined lines bisect the first
quadrant. The dash-dot line in the inset of panel (d) represents ω1 + ω2 = ωA.

at this location occurs at the fundamental frequency (ω1 = ω2 = 200), to produce its
superharmonic (ω3 = 400). The fundamental also interacts with the superharmonics thus
produced, e.g. (ω1 = 200, ω2 = 400) and (ω1 = 200, ω2 = 600), resulting in the banded
spectrum discussed earlier in figure 11(a). Similar nonlinear interactions of second-mode
have been reported in bispectrum analysis of experimental data in HBLs by Kimmel &
Kendall (1991) and Chokani (1999), which resulted in a nonlinear regime dominated by
fundamental resonance, which is also the case here.

The bispectrum at x ∼ 1.5 (figure 13c) is not as compact as at the previous location.
Nonlinear coupling at higher superharmonics are no longer significant here, with the
coupling mainly limited to self-interaction of the fundamental, as well as between the
frequency pair, (ω1 = 200, ω2 = 400). An interesting feature is the spectral support in
the vicinity of the self-interaction, marked by a dashed circle in the inset in figure 13(c).
These mostly correspond to interactions of the type, (ω1 = 200 + Δ,ω2 = 200 − Δ),
resulting in the superharmonic, ω3 = 400, where Δ is a small deviation from the harmonic.
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A similar observation has been reported in the nonlinear regime of the second-mode
instability over a flared cone in the experiments of Craig et al. (2019). Along the 45o

line, the interactions favour (ω1 = 200 + Δ,ω2 = 200 + Δ), resulting in ω3 = 400 + 2Δ,
representing the ‘broadband self-interaction’ (Craig et al. 2019) of the second-mode
instability that results in spectral broadening. By this streamwise location we also notice
the interaction of the fundamental with the neighbourhood of the zero frequency. This is
interpreted as the nonlinear interaction leading to energy transfer from the mean flow into
the fundamental frequency. Craik (1971) indicates that this results in strong amplification
of the oblique wave, thus inducing spanwise periodicity. In figure 12(a), we indeed observe
that the nonlinearly saturated second-mode increasingly becomes selective to oblique
mode instabilities in this streamwise region, converging onto λz ∼ 0.04 as the dominant
wavelength prior to breakdown. There is also a possibility that this interaction induces
gradual modulation in the second-mode envelope as discussed in Craig et al. (2019).

Another interesting quadratic coupling is evident in the signal at x ∼ 2.2 (figure 13d).
A continuous range of frequencies is involved in this interaction, as defined by the
linear equation, ω1 + ω2 = ωA, with ωA being the actuator frequency as defined earlier.
This line segment is marked in the magnified image (inset in figure 13d). The highest
degree of coupling is observed between the frequencies, (ω1 = 90, ω2 = 110), which are
close to the subharmonic of the fundamental frequency. Experimental measurements
(Bountin et al. 2008) over cones have reported such a continuous linear range of
interaction and the small offset of peak interaction region (from the subharmonic). The
coupling of the second-mode fundamental with its first subharmonic is essential for the
subharmonic-resonance route to transition (see e.g. Shiplyuk et al. 2003). Thus although
fundamental resonance is observed to be the primary mechanism of transition through
spectral analysis, the quadratic phase coupling identifies the presence of subharmonic
resonance as well, in the later nonlinear stages. This is possible because, unbiased
forcing of spanwise variations in the 2-D second-mode provides necessary scales for both
routes. The interaction of the fundamental with the subharmonic, (ω1 = 200, ω2 = 100) to
generate ω3 = 300 is evident in the x − ω plot (figure 11a) as a weak spectral peak in the
streamwise extent, 2 ≤ x ≤ 2.4. Following the initiation of the interaction ω1 + ω2 = ωA,
the bispectrum is quickly populated towards the lower frequencies, as seen at x ∼ 2.6
(figure 13e). By this location the Fourier spectrum also attains a broad peak at frequencies
below the fundamental, and the boundary layer is in the later stages of transition. Here,
cubic and higher-order interactions could become relevant among the wide range of
frequencies present.

Since the fundamental and its subharmonic are found to be relevant in the transitional
region, we extract their global forms in figure 14. The corresponding spanwise
wavenumber spectra are provided in figure 15. The 3-D structures of the pure-frequency
modes are extracted using the dynamic mode decomposition, (known as DMD) (Schmid
2010), which also approximates the Koopman modes of the nonlinear operator (Rowley
et al. 2009). Thus, although this flow field is nonlinearly saturated, these modes represent
the relevant eigenfunctions of the infinite-dimensional linear operator that approximates
the nonlinear evolution of the flow. The iso-levels of the fundamental frequency in u′ are
shown in figure 14(a). Its spanwise wavenumber spectrum (with the β = 0 component
removed) obtained near the wall is provided in figure 15(a). The axial extent, 1.8 ≤
x ≤ 2.5, is similar to that discussed in the context of figure 12. The upstream 2-D
wave gradually develops oblique waves and disintegrates in the spanwise direction. The
spatial support of the fundamental mode attenuates significantly beyond x ∼ 2.15. The
spanwise wavenumber has a narrow spectral range and corresponds to its peak value
observed earlier in figure 12(a). This confirms that λz ∼ 0.04 is the dominant instability
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FIGURE 14. Iso-levels of u′ used to represent the (a) fundamental and (b) subharmonic modes
in the transitional region.

of the second-mode rollers at the fundamental frequency. The subharmonic mode and
its spanwise spectrum are evident in figures 14(b) and 15(b), respectively. Although the
spectral contours in figure 11(a) do not highlight this mode due to its relatively lower
energy content, the modal analysis efficiently educes its spatial support. This mode
becomes significant beyond x > 2.15, consistent with the quadratic interaction detected
in figure 13(d). This instability begins at a spanwise wavenumber identical to that in the
fundamental, but quickly populates the spanwise spectrum towards the breakdown region.
In the following section we study the post-breakdown regime to explore the effects on the
wall.

7. Turbulent HBL and near-wall effects

The impact of the state of the HBL on the wall is readily identifiable through the
skin-friction coefficient, cf , defined as

cf = 2
Re

μ
∂u
∂y

∣∣∣∣
y=0

. (7.1)

The time-averaged skin-friction coefficient, c̄f , is plotted in figure 16(a), for the 2-D
laminar, 2-D nonlinear and 3-D nonlinear simulations, as indicated. For the 3-D case, the
cf value is also averaged across the span. The laminar value of c̄f decreases monotonically
in the downstream direction, following the initial peak associated with the leading edge
viscous–inviscid interaction. The c̄f obtained for the nonlinearly saturated 2-D DNS is very
similar to that of the laminar case, except for a localized hump in 1 ≤ x ≤ 2 corresponding
to the peak amplitude of the saturated second-mode waves. Such a peak in skin friction
was also observed by Franko & Lele (2013) in the region of second-mode saturation. The
3-D DNS closely follows the trend in the 2-D nonlinear DNS until this hump relaxes to
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FIGURE 15. Spanwise wavenumber spectrum of the (a) fundamental and (b) subharmonic
modes in the transitional region.

the laminar value. Beyond this point, the skin friction rises rapidly due to the spanwise
breakdown of the boundary layer, ultimately leading to transition. The location of the
local minimum in c̄f is obtained at x ∼ 2.24 (marked with a dashed arrow), and can be
considered (Kimmel 1993) as an indicator of the beginning of transition. This location
also matches the streamwise station beyond which the spanwise spectra switch over from
a narrowband form (peak energy near β ∼ 150 or λz ∼ 0.04) to one where a wide range
of low wavenumbers are energized (discussed previously in figure 12a). By the end of the
domain, x = 4, the cf value is ∼ 0.001, which is consistent with the turbulent skin-friction
value reported in Egorov & Novikov (2016) for identical free stream conditions (marked
with a solid circle). The wall-normal profile of streamwise velocity in terms of wall
units (y+) and friction velocity (u+) at this location are provided in figure 16(b). The
van Driest transformation is applied to obtain u+

VD, which encompasses the enhanced
effects of compressible fluctuations at this edge Mach number (van Driest 1956; Schetz
& Bowersox 2011). The dashed curve is a linear relation expected in the viscous sublayer,
which extends until around y+ ∼ 10, consistent with prior calculations (Franko & Lele
2013; Sivasubramanian & Fasel 2015). The viscous sublayer is followed by the buffer
layer, beyond which a logarithmic variation is observed in the velocity profile. This profile
is compared with a reference log-law formula (Roy & Blottner 2006), which indicates the
existence of a turbulent boundary layer. The velocity defect law constitutes the deviation
from the log-law in the outer region.

In cases where the second-mode fundamental resonance dominates, the transition
location is relatively prolonged (Koevary et al. 2010; Khotyanovsky & Kudryavtsev 2016);
this has been associated with the weaker streamwise streaks generated (Franko & Lele
2013). These streaks are visible primarily in the region 2 ≤ x ≤ 3 in figure 16(c), which
plots the instantaneous streamwise velocity contours at y ∼ 8 × 10−3. This wall-normal
location corresponds to y+ ∼ 30 (lower end of the log-layer), based on the boundary layer
properties at the exit of the domain (x = 4). The transition location, x = 2.24, is also
marked with a dashed vertical line. Consistent with the results in Franko & Lele (2013),
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FIGURE 16. (a) Time-averaged skin-friction coefficient for various cases as indicated.
(b) Wall-normal velocity profile at x = 4, in terms of wall units and friction velocity. (c) Contours
of u on a wall-parallel plane at y ∼ 8 × 10−3.

the streamwise streaks are generated following the saturation of the fundamental
second-mode, and eventually develop undulations (observed within 2.5 ≤ x ≤ 3), before
disintegrating in the turbulent region downstream. Although the fully turbulent region
resulting from second-mode fundamental resonance was not addressed in the above
reference, detailed analysis of the transitional regime indicated that no peak existed in
the skin-friction plot. Figure 16(c) also shows that the instantaneous undulations in the
streaks originate at slightly different locations along the span of the plate. This could
explain why the skin-friction overshoot was not observed in the time- and span-averaged
cf , plotted in figure 16(a). A previous study (Unnikrishnan & Gaitonde 2019) of this HBL
where transition was induced through forcing by a monochromatic first-mode oblique
wave, clearly identified a skin-friction overshoot in the transitional regime.

Near-wall features in the boundary layer provide significant insights into the drag
penalty on the surface. Here, we study the influence of the transitioned HBL on the wall,
as it evolves into a fully turbulent state in the region 3 ≤ x ≤ 4. The streamwise velocity
distribution near the wall is a relevant quantity to identify the skin-friction characteristics,
and are presented in figure 17(a). The instantaneous contours indicate the presence of
several near-wall patches of high values of u, which qualitatively indicate regions of
high skin friction, since u is a surrogate for cf in this spanwise homogeneous flow. To relate
these regions to shear events, the corresponding instantaneous cf contours are plotted in
figure 17(b). The contour level chosen here is cf = 0.001 which is approximately the value
of the mean skin-friction eventually attained in the turbulent region, as seen in figure 16(a).
The large-scale patterns in near-wall velocity contours have corresponding signatures in
the above-average skin-friction regions, consistent with the observations of Pan & Kwon
(2018), where regions of extreme skin friction were characterized by large-scale structures.
Their conditional analysis identified ‘finger-shaped’ large-scale structures in negative
wall-normal velocity perturbations directly above these high-shear regions, which signify
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FIGURE 17. (a) Instantaneous contours of u near the wall. (b) Corresponding signature of cf ,
plotted using the contour representing its mean value in the turbulent region. Spatio-temporal
correlations in cf obtained at (c) x = 3.1 and (d) x = 3.9.

‘splatting’ events (Agostini, Leschziner & Gaitonde 2016), constituting strong movements
of outer-layer high-momentum fluid towards the wall.

The post-transitional characteristics of the HBL are expected to evolve until fully
turbulent conditions are achieved. The evolution of skin-friction patterns in this region
are further quantified using spatio-temporal correlations, ccsf , defined as

ccsf (x, y, z,Δx,Δt) = cf (x, y, z, t)cf (x + Δx, y, z, t + Δt)(
c2

f (x, y, z, t)
)0.5 (

c2
f (x + Δx, y, z, t + Δt)

)0.5 . (7.2)

Figures 17(c) and 17(d) display spanwise-averaged results at x = 3.1 and x = 3.9, which
highlight key changes in skin-friction patterns that transpire in this streamwise domain.
The primary observation is that the width of the spatio-temporal correlation contours
decreases as the HBL becomes turbulent, approximately 10 % between the two locations
examined. This indicates a reduction in the length of the high-velocity patches near the
surface. No significant changes are observed in the convection velocity of these patches as
suggested by the similar slopes of the correlation contours at these two locations.
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FIGURE 18. (a) Spanwise integral length scale in cf plotted versus x . (b) The p.d.f. of cf at
indicated locations. (c) Corresponding c.p.d.f.s, as indicated. (d) Probability of occurrence of
shear events above the threshold value (as indicated) plotted with x .

The spanwise extent of the localized regions of high skin friction also varies with
streamwise distance, as indicated by the integral length scale, Lcz, in figure 18(a), plotted as
a function of streamwise distance. Here, Lcz is obtained by integrating the autocorrelation
function of cf . A decrease in spanwise width of around 14% is observed in the range 3 ≤
x ≤ 3.6, beyond which fluctuations induce only minor variations. The high skin-friction
patches initially display spanwise extents that thus closely follow the secondary instability
of the roller structures, which were disintegrated following the amplification of oblique
waves with λz ∼ 0.04.

The occurrence of shear events can also be quantified using their probability distribution
function (p.d.f.) at various streamwise locations. Spanwise averaged p.d.f.s are provided
in figure 18(b), at the indicated locations. Immediately following transition, cf exhibits
a relatively broader distribution, at x = 3.1, with a positive skewness (mean ∼ 0.001,
mode ∼ 0.0008). As turbulence sets in, the cf distribution becomes narrower, with the
p.d.f.s at x = 3.5 and x = 3.9 exhibiting more frequent occurrences of skin-friction
patches around the mean value of cF ∼ 0.001. Since the positive tail in the streamwise
velocity and cf distribution is indicative of large-scale sweeping motions (Agostini et al.
2016), the cumulative p.d.f.s (c.p.d.f.s) is a suitable measure to quantify the occurrence
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of such events in the post-transition region. The c.p.d.f.s of cf at these three locations
(figure 18c) indicate that developing turbulence in the boundary layer results in a reduction
of events with low skin-friction impact, in 0 ≤ cf ≤ 0.001. These plots also confirm that
the distribution characteristics of wall loading have converged to an equilibrium state in
the latter half of the domain, 3 ≤ x ≤ 4. The quantity, 1-c.p.d.f., at a chosen value of cf ,
shows the fractional occurrence of events above that threshold. Figure 18(d) plots this
function with x for two values of cf , one near the mean and the other twice that value.
The plot for cf = 0.001 indicates that large-scale near-wall sweeping motions increase
following transition, and eventually equilibrate. The occurrence of extreme skin-friction
events categorized as above cf = 0.002 exhibit relatively lesser variations, but nevertheless
settle to around 10 % by the end of the domain. This is consistent with the classification
of large-scale events by Agostini & Leschziner (2014), where a 10 % threshold was chosen
for this segregation.

8. Summary

The entire process of linear and nonlinear development of a second-mode instability
followed by its role in transition and eventual generation of a turbulent HBL is examined
with 3-D DNS. An LST approach is employed to correctly inform the second-mode
initiation process. In the linear growth region, ‘rope-shaped’ structures, similar to prior
experimental observations, arise in the density-perturbation field near the GIP of the
base flow. When the forcing is increased to induce nonlinear effects, the second-mode
envelope becomes asymmetrically modulated. The generation of superharmonics and
base-flow distortion results in wider crests and narrower peaks in pressure perturbations.
The density-perturbation field now exhibits tightly braided structures, closely resembling
schlieren visualizations of the late-stage evolution of second-mode wavepackets. The
saturated field is delineated into orthogonal modes, which identify a second region of
fundamental frequency growth outside the linear envelope. The integer superharmonics
thus extracted, exhibit a proportional decrease in wavelengths, and maintain similar phase
speeds as the fundamental mode.

The 3-D breakdown process is realized by forcing the 2-D second-mode in the presence
of weak random perturbations, which allow the receptivity of the nonlinearly distorted
base flow to guide the breakdown process. The domain chosen is long enough to obtain a
well-developed inertial subrange in the streamwise-velocity spectrum of the fully turbulent
boundary layer. The initial growth of 2-D ‘roller’ structures is followed by the onset of a
secondary instability that results in selective amplification of a narrow band of spanwise
wavenumbers. This yields lambda vortices below the GIP and spanwise disintegration of
the rollers. Streamwise vortex-stretching in the lambda vortices generates hairpin vortices,
inclined to the GIP locus, to manifest a localized peak (below the GIP) in streamwise
length scales within the transitional HBL.

A detailed frequency-based analysis facilitates a clearer description of the breakdown
process mechanisms. Although the region of linear growth is characterized by localized
generation of several superharmonics, these attenuate downstream. Rather, in the
post spanwise-breakdown region, subharmonic and lower frequencies are excited, and
a broadband nature is observed. The spanwise wavenumber spectrum identifies the
sensitivity of the nonlinearly saturated HBL to oblique waves with wavelengths around
20 % of the spanwise extent of the domain. The peak energy in this wave is attained
in the second region of amplification of the fundamental frequency identified in the
2-D nonlinear simulation, and results in spanwise breakdown, quickly populating the
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wavenumber spectrum. The presence of fundamental resonance is confirmed through the
observation of these oblique waves, which occur at the fundamental frequency.

Analysis of the pressure signal near the GIP through the bispectrum measure yields key
insights into the quadratic coupling present in the nonlinear flow field; the simulations
augment the understanding of this phenomenon, which is also observed in experimental
data. The fundamental mode progressively interacts with itself and the superharmonics
thus generated, resulting in a multiharmonic spectrum prior to transition. This is followed
by broadband ‘self-interaction’ at frequencies in the vicinity of the fundamental. The
experimentally observed interactions among a continuous range frequencies defined by a
linear equation are also detected further downstream, where the subharmonic resonance is
also observed. Modal analysis yields the global form of the fundamental and subharmonic
components – the former constitute the most dominant feature until spanwise breakdown
is initiated. The subharmonic displays minimal presence prior to this event, but emerges
as the dominant component immediately downstream.

The connection between the skin-friction coefficient and near-wall dynamics of the
post-transition region is also illustrative. Here, cf reaches the expected turbulent value
for this free stream condition towards the end of the domain, where a turbulent u-velocity
profile is observed. Regions of intense skin-friction levels correspond to the large-scale
‘splatting’ motions entraining high-momentum fluid towards the wall. The spanwise
and streamwise extents of these regions decrease following transition, until turbulence
establishes in the boundary layer. Thus fundamental resonance is found to result in a fully
turbulent HBL downstream.
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Appendix. Grid resolution studies

To ensure that the insights obtained from the 3-D DNS are not significantly dependent
on the choice of grid, we summarize comparisons between two grids in figure 19. The
fine grid (GF) is the relatively finer grid, which was used to obtain the results described in
the above sections. The coarse grid (GC) is 20 % coarser in the wall-normal and spanwise
directions, relative to GF. The streamwise resolution is comparable between the two grids.
The streamwise development of frequency spectra is compared in figures 19(a) and 19(c)
from the two grids. Both grids display very similar evolution of superharmonics prior to
transition. The location at which harmonic spectra attain a broadband character is also
consistent between the two grids. Similar results are also obtained in the wavenumber
spectra in figures 19(b) and 19(d), for GC and GF, respectively. Irrespective of the spanwise
resolution of the grids, β ∼ 150 remains the most amplified oblique wave within the
streamwise region, 1.8 ≤ x ≤ 2.5. The GC also captures the continuous range of quadratic
interaction at x ∼ 2.2, as shown in figure 19(e), consistent with the results for GF (see
figure 13d). Thus, key characteristics of transition are consistently reproduced on both
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FIGURE 19. (a) Wall-pressure frequency spectra at various streamwise locations at the midspan
for the GC. (b) Spanwise wavenumber spectra obtained from wall-pressure perturbations for the
GC. (c) Wall-pressure frequency spectra at various streamwise locations at the midspan for the
GF. (d) Spanwise wavenumber spectra obtained from wall-pressure perturbations for the GF.
(e) The bispectrum evaluated from pressure perturbations at x ∼ 2.2, on GC. ( f ) Comparison of
streamwise velocity spectra obtained on GF and GC, at the indicated location.

the grids. Finally, we compare the quantitative nature of turbulence obtained in GC and
GF using the streamwise velocity spectra in figure 19( f ). The comparison is reported near
the outlet of the domain, at x ∼ 4, and y ∼ 0.005, corresponding to y+ ∼ 21. A reasonable
match is obtained between the two grids, with GC displaying slightly more attenuation at
higher frequencies, as expected.
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