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In this paper, we consider an elliptic operator obtained as the superposition of a
classical second-order differential operator and a nonlocal operator of fractional
type. Though the methods that we develop are quite general, for concreteness we
focus on the case in which the operator takes the form −Δ + (−Δ)s, with s ∈ (0, 1).
We focus here on symmetry properties of the solutions and we prove a radial
symmetry result, based on the moving plane method, and a one-dimensional
symmetry result, related to a classical conjecture by G.W. Gibbons.
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1. Introduction

In this article we discuss some symmetry properties for the solutions of semilinear
equations driven by a mixed operator. Specifically, we will consider operators that
combine local and nonlocal features. For the sake of concreteness, we focus on
operators of the form

L := −Δ + (−Δ)s (1.1)

where s ∈ (0, 1) and

(−Δ)su(x) := P.V.
∫

RN

u(x) − u(y)
|x− y|N+2s

dy.

The study of mixed operators has a consolidated interest in the recent litera-
ture, both in terms of theoretical studies and in view of real-world applications.
The development of the theory includes, among others, viscosity solutions meth-
ods (see [2–4,12,23,41,42]), parabolic equations (see [31]), Aubry-Mather theory
(see [25]), Cahn-Hilliard equations (see [19]), porous medium equations (see [26])
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phase transitions (see [17]), fractional damping effects (see [27]), Bernstein-type
regularity results (see [16]), existence/non-existence results (see [1,48]), regularity
theory (see [9,22]), estimates for the associated Green function (see [21]).

Concrete applications of mixed operators also arise naturally in plasma physics
(see [14]) and population dynamics (see [29]), and numerical methods have been
also developed to take into account the specifics of mixed operators (see [13]).

In this article, we provide two sets of symmetry results for solutions of semilinar
equations driven by mixed operators: the first type of results deals with the radial
symmetry of the solutions, and relies on the moving plane method; the second type
of results is inspired by a classical conjecture by G.W. Gibbons and establishes the
one-dimensional symmetry of the global solutions that attain uniformly their limit
values at infinity.

In this spirit, the first symmetry result that we present is as follows:

Theorem 1.1. Let f : R → R be a locally Lipschitz continuous function, and let
Ω ⊂ R

N be an open and bounded set with C1 boundary. We assume that Ω is
symmetric and convex with respect to the hyperplane {x1 = 0}.

If u ∈ C(RN ) is any non identically vanishing weak solution of⎧⎪⎨
⎪⎩
Lu = f(u) in Ω,
u ≡ 0 in R

N\Ω,
u � 0 in Ω,

(1.2)

then u is symmetric with respect to {x1 = 0} and strictly increasing in the
x1-direction in Ω ∩ {x1 < 0}.

Theorem 1.1 is a symmetry result in the spirit of Gidas, Ni, Nirenberg [40]. Since
this milestone result, the literature concerning symmetry/monotonicity results has
extensively grown, and it is beyond our scopes to give here an exhaustive list of
references; we limit ourselves to mention the series of papers [7,10,20,24,32,51],
where analogues of theorem 1.1 are obtained for elliptic systems and for elliptic
equations/systems in the presence of singularities. As usual, from theorem 1.1 one
deduces that if Ω is a ball, then the solutions of (1.2) are necessarily radial and
radially decreasing. We stress that in [9] we proved interior Hk estimates for the
operator L, and this seems to indicate that the addition of the local part −Δ to the
fractional one push towards a ‘local behaviour’ of L. To the contrary, in theorem 1.1
we are able to prove strict monotonicity for non-negative solutions, which is true
as well in the purely nonlocal case (see [43]), but fails to hold in the local case (see,
e.g., [47]).

The proof of theorem 1.1 that we present combines the integral formulation of
the moving plane method (see [46,49]) with suitable adaptations of some results
in [44], where the case of integral equations was taken into account by introducing
a new small-volume maximum principle and a strong maximum principle for anti-
symmetric supersolutions. See also [6,28,30,33,43,50] for related moving plane
methods in the nonlocal setting.

As we shall see in § 2, the assumption that Ω has C1 boundary allows us to
introduce a ‘good’ functional setting in which carrying out the integral formulation
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of the moving plane method. Furthermore, by using the results in [9], one can
prove that any weak solution u ∈ H1(RN ) of (1.2) (see definition 2.2) is actually
continuous on R

N , provided that f is sufficiently regular and Ω is strictly convex.
In terms of one-dimensional symmetry for global solutions under uniform limit

assumptions, we have the following result:

Theorem 1.2. Let f ∈ C1(R) be such that

sup
|r|�1

f ′(r) < 0. (1.3)

Let u ∈ C3(RN ) ∩W 4,∞(RN ) be a classical solution of the problem
{Lu = f(u) in R

N ,

lim
t→±∞u(y, t) = ±1 uniformly for y ∈ R

N−1.
(1.4)

Then, there exists u0 : R → R such that

u(y, t) = u0(t) for every x = (y, t) ∈ R
N . (1.5)

The result in theorem 1.2 is inspired by a classical conjecture by G.W. Gibbons,
formulated when L was the classical Laplace operator and motivated by the cosmo-
logical problem of detecting the shape of the interfaces which ‘separate’ the different
regions of the universe after the big bang (see [39]).

The classical Gibbons conjecture was established, independently and with
different methods, by [5,8,34]. See also [35–37] for related results.

The fractional version of Gibbons conjecture (i.e., the case in which the operator
in (1.4) is the fractional Laplacian) has been established in [18,38]. As a matter
of fact, the method developed in [38] is very general and comprises a number of
different operators in a unified way: for this, our proof of theorem 1.2 will rely on
the general structure provided in [38] by showing that the structural hypothesis
of [38] are fulfilled in the case that we consider here.

In the rest of the paper we provide the proof of theorem 1.1, which is contained
in § 2, and that of theorem 1.2, which is contained in § 3.

Though not explicitly used in this paper, we also remark that the methods devel-
oped here also lead to a Hopf-type result, that we state and prove in appendix A
for the sake of completeness.

2. Radial symmetry and proof of theorem 1.1

In this section, we prove theorem 1.1. To this end, without loss of generality, we
may assume that

inf
x∈Ω

x1 = −1. (2.1)

We will combine the integral version of the moving plane method (see [46])
with a suitable generalization of a strong maximum principle for antisymmetric
supersolutions (see [44]).
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Let us now introduce and fix some notation needed in what follows. We define
the bilinear form

B(u, v) :=
∫

RN

〈∇u,∇v〉dx+
∫∫

R2N

(u(x) − u(y))(v(x) − v(y))
|x− y|N+2s

dxdy, (2.2)

and the function space

D(Ω) :=
{
u ∈ H1(RN ) s.t. u ≡ 0 in R

N\Ω} . (2.3)

Remark 2.1. Since Ω has C1 boundary, any function u ∈ D(Ω) satisfies

u
∣∣
Ω
∈ H1

0 (Ω).

In this setting, we give the following definition of weak solution of (1.2):

Definition 2.2. We say that a function u : Ω → R is a weak solution of (1.2)
if u ∈ D(Ω) and it satisfies the following properties:

(i) u > 0 a.e. in Ω;

(ii) for any ϕ ∈ D(Ω) one has

B(u, ϕ) =
∫

RN

f(u(x))ϕ(x) dx. (2.4)

Also, given a set U ⊂ R
N , we let

ρ(v, U) :=
∫

U

|∇v|2 + [v]2Hs(U), (2.5)

where

[v]2Hs(U) :=
∫∫

U×U

|v(x) − v(y)|2
|x− y|N+2s

dxdy,

and

H(U) :=
{
v ∈ L2(RN ) s.t. v ∈ H1(U)

}
. (2.6)

As customary, for any v ∈ L2(RN ) we define the positive and negative parts of v
as follows

v+ := max{v, 0} and v− := max{−v, 0}.
As it is well known,

v(x) = v+(x) − v−(x), for a.e. x ∈ R
N (2.7)

and

v+(x)v−(x) = 0, for a.e. x ∈ R
N . (2.8)

It is useful to observe that the functional introduced in (2.5) is monotone with
respect to the operation of taking the positive and negative parts, as pointed out
in the following result:
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Lemma 2.3. Let U ⊂ R
N be an open set and let v ∈ H(U). Then v± ∈ H(U) and

ρ(v±, U) � ρ(v, U), (2.9)

with strict inequality if v changes sign.

Proof. Since v ∈ H(U) = L2(RN ) ∩H1(U), it is easy to see that v± ∈ H(U), in
light of (2.7) and (2.8). We then focus on the proof of (2.9).

For this, recalling (2.5) and using again (2.7) and (2.8), we get

ρ(v, U) =
∫

U

|∇v|2 +
∫∫

U×U

|v(x) − v(y)|2
|x− y|N+2s

dxdy

=
∫

U

|∇(v+ − v−)|2 +
∫∫

U×U

|(v+ − v−)(x) − (v+ − v−)(y)|2
|x− y|N+2s

dxdy

=
∫

U

|∇v+|2 +
∫

U

|∇v−|2

+
∫∫

U×U

|v+(x) − v+(y)|2
|x− y|N+2s

dx dy +
∫∫

U×U

|v−(x) − v−(y)|2
|x− y|N+2s

dxdy

− 2
∫∫

U×U

(
v+(x) − v+(y)

)(
v−(x) − v−(y)

)
|x− y|N+2s

dxdy

= ρ(v+, U) + ρ(v−, U) + 2
∫∫

U×U

v+(x)v−(y) + v+(y)v−(x)
|x− y|N+2s

dxdy

� ρ(v+, U) + ρ(v−, U),

which gives the desired result in (2.9). �

Inspired by [44], we now deal with a linear problem associated to the reflection
with respect to a given hyperplane. For this, with the notation in (2.2) and (2.3),
for every open and bounded set Ω ⊂ R

N , we define the first (variational) eigenvalue
of the operator L introduced in (1.1) as

Λ1(Ω) := inf
u∈D(Ω)

B(u, u)
‖u‖2

L2(Ω)

. (2.10)

On account of remark 2.1, we see that

Λ1(Ω) � Λ−Δ(Ω), (2.11)

where Λ−Δ(Ω) stands for the first eigenvalue of −Δ in Ω with homogeneous
Dirichlet boundary conditions. Recalling that

Λ−Δ(Ω) → +∞ as |Ω| → 0,

and setting

Λ1(r) := inf
{
Λ1(Ω) with Ω ⊂ R

n open with |Ω| = r
}
, r > 0,
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it follows from (2.11) that

Λ1(r) → +∞ as r → 0+. (2.12)

Furthermore, let H ⊂ R
N be an open and affine halfspace. We denote by

Q : R
N → R

N

the reflection with respect to ∂H. For convenience, we will sometimes denote with

x̄ := Q(x), (2.13)

for every x ∈ R
N . With this notation at hand, we say that a function v : R

N → R

is antisymmetric with respect to Q if

v(x̄) = −v(x), for every x ∈ R
N . (2.14)

Moreover, we give the following definition of antisymmetric supersolutions:

Definition 2.4. Let U ⊂ H be an open and bounded set. Let c ∈ L∞(U). We say
that a function v : R

N → R is an antisymmetric supersolution of{
Lv = cv in U,
v ≡ 0 in H\U, (2.15)

if it satisfies the following properties:

(i) v is antisymmetric,

(ii) v ∈ H(U ′) for some open set U ′ ⊂ R
N such that Q(U ′) = U ′ and U ⊂ U ′,

(iii) v � 0 in H\U and, for every ϕ ∈ D(U) with ϕ � 0, one has

B(v, ϕ) �
∫

U

c(x)v(x)ϕ(x) dx. (2.16)

The aim is now to provide a suitable maximum principle for antisymmetric
supersolutions, as given in definition 2.4.

We start with the following observation on the bilinear form introduced in (2.2):

Lemma 2.5. Let U ′ ⊂ R
N be an open set such that Q(U ′) = U ′. Let v ∈ H(U ′) be

an antisymmetric function such that

v � 0 in H\U, (2.17)

for a certain open and bounded set U ⊂ H with the property that

U ⊂ H ∩ U ′. (2.18)

Then, the function

w := χHv
− ∈ D(U) (2.19)

and it holds that

B(w,w) � −B(v, w). (2.20)
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Proof. We first prove (2.19). To this end we first observe that, since v ∈ L2(RN ),
one obviously has w ∈ L2(RN ). Also, recalling (2.6), we know that v ∈ H1(U ′), and
therefore it is easy to see that v− ∈ H1(U ′). In addition, in light of (2.17), we have
that v− ≡ 0 in H\U . As a consequence of these observations and of (2.18), we have
that there exists an open set W such that

U ⊂W ⊂W ⊂ U ′ ∩H and v− ∈ H1
0 (W ).

Therefore, if we identify w = χHv
− with the zero extension of v− outside of U , we

get that w ∈ H1(RN ). Moreover, we have that w ≡ 0 in R
N\U . These considerations

imply (2.19).
Now we focus on the proof of (2.20). Recalling (2.2), we observe that

B(w,w) +B(v, w)

=
∫

RN

|∇w|2 dx+
∫∫

R2N

(w(x) − w(y))2

|x− y|N+2s
dxdy

+
∫

RN

〈∇v,∇w〉dx+
∫∫

R2N

(v(x) − v(y))(w(x) − w(y))
|x− y|N+2s

dxdy. (2.21)

We notice that, thanks to (2.17),∫
RN

|∇w|2 dx+
∫

RN

〈∇v,∇w〉dx =
∫

U

|∇v−|2 dx+
∫

U

〈∇v,∇v−〉dx

=
∫

U

|∇v−|2 dx−
∫

U

〈∇v−,∇v−〉dx = 0. (2.22)

Furthermore, we remark that, for any x ∈ R
N ,

w(x)
(
w(x) + v(x)

)
= χH(x)v−(x)

(
χH(x)v−(x) + χH(x)v(x) + χRN\H(x)v(x)

)
= χH(x)v−(x)

(
χH(x)v+(x) + χRN\H(x)v(x)

)
= 0,

and therefore

(w(x) − w(y))2 + (v(x) − v(y))(w(x) − w(y))

= (w(x) − w(y))
(
(w(x) + v(x)) − (w(y) + v(y))

)
= −w(x)(w(y) + v(y)) − w(y)(w(x) + v(x)).

As a consequence, using (2.14) and the change of variable Y := ȳ (also recall the
notation in (2.13)), we obtain∫∫

R2N

(w(x) − w(y))2

|x− y|N+2s
dxdy +

∫∫
R2N

(v(x) − v(y))(w(x) − w(y))
|x− y|N+2s

dxdy

=
∫∫

R2N

w(x)(w(y) + v(y)) + w(y)(w(x) + v(x))
|x− y|N+2s

dxdy
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= −2
∫∫

R2N

w(x)(w(y) + v(y))
|x− y|N+2s

dxdy

= −2
∫∫

H×RN

v−(x)
(
χH(y)v−(y) + v(y)

)
|x− y|N+2s

dxdy

= −2
∫∫

H×RN

v−(x)
(
χH(y)v+(y) + χRN\H(y)v(y)

)
|x− y|N+2s

dxdy

= −2
∫∫

H×H

v−(x)v+(y)
|x− y|N+2s

dxdy − 2
∫∫

H×(RN\H)

v−(x)v(y)
|x− y|N+2s

dxdy

= −2
∫∫

H×H

v−(x)v+(y)
|x− y|N+2s

dxdy + 2
∫∫

H×(RN\H)

v−(x)v(ȳ)
|x− y|N+2s

dxdy

= −2
∫∫

H×H

v−(x)v+(y)
|x− y|N+2s

dxdy + 2
∫∫

H×H

v−(x)v(Y )
|x− Ȳ |N+2s

dxdY

= −2
∫∫

H×H

v−(x)v+(y)
(

1
|x− y|N+2s

− 1
|x− ȳ|N+2s

)
dxdy

− 2
∫∫

H×H

v−(x)v−(y)
|x− ȳ|N+2s

dxdy

� 0.

Plugging this information and (2.22) into (2.21) we obtain (2.20), as desired. �

With the aid of lemma 2.5, we now prove the following maximum principle:

Proposition 2.6. Let U ⊂ R
N be an open and bounded set with U ⊂ H. Moreover,

let c ∈ L∞(U) be such that

‖c+‖L∞(U) < Λ1(U), (2.23)

where the notation in (2.10) has been used.
Then, every antisymmetric supersolution v of (2.15) in U is nonnegative on the

whole of H, that is, v(x) � 0 for a.e.x ∈ H.

Proof. We consider the function w introduced in (2.19) and we claim that

w ≡ 0. (2.24)

To prove it, we argue towards a contradiction, supposing that ‖w‖L2(U) �= 0. By
lemma 2.5, we know that w ∈ D(U), and hence it is an admissible test function
in (2.16). Accordingly,

B(v, w) �
∫

U

c(x)v(x)w(x) dx.
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From this, (2.10), (2.20) and (2.23), we conclude that

Λ1(U)‖w‖2
L2(U) � B(w,w) � −B(v, w) � −

∫
U

c(x)v(x)w(x) dx

=
∫

U

c(x)w2(x) dx � ‖c+‖L∞(U)‖w‖2
L2(U) < Λ1(U)‖w‖2

L2(U),

which is a contradiction. This proves (2.24), thus leading to the desired result. �

We are now in the position of establishing a strong maximum principle for
antisymmetric supersolutions which is the counterpart in the setting of mixed local–
nonlocal operators of [44, proposition 3.6] (a modification of these arguments will
lead to a Hopf-type result, as pointed out in appendix A):

Proposition 2.7. Let U ⊂ H be an open and bounded set. Let c ∈ L∞(U) and let
v be an antisymmetric supersolution of (2.15) in U . Assume that

v � 0 a.e. in H. (2.25)

Then, either v ≡ 0 in R
N or

ess infKv > 0, for every compact set K ⊂ U. (2.26)

Proof. If v ≡ 0 in R
N , there is nothing to prove, so we assume that

v �≡ 0 in R
N . (2.27)

In this case, it suffices to show that, for a fixed x0 ∈ U , one has

ess infBr(x0)v > 0, (2.28)

for some radius r > 0 small enough. We then prove (2.28).
First of all, in light of (2.25), (2.27) and the fact that v is antisymmetric, we can

find a bounded set M ⊂ H, with positive measure, which does not contain a small
neighbourhood of x0 and such that

δ := inf
M
v > 0. (2.29)

In addition, by (2.12), we find a radius

r ∈
(

0,
dist(x0; (RN\H) ∪M)

4

)
(2.30)

such that

Λ1(B2r(x0)) > ‖c‖L∞(U). (2.31)

We now pick a function g ∈ C2
0 (RN , [0, 1]) such that

g(x) :=

{
1, if x ∈ Br(x0),
0, if x ∈ R

N\B2r(x0).
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Moreover, for a given a > 0 to be chosen later, we define the function

h : R
N → R, h(x) := g(x) − g(x̄) + a (χM (x) − χM (x̄)) , (2.32)

where we are using the notation in (2.13). We also define the sets U0 := B2r(x0)
and U ′

0 := B3r(x0) ∪Q(B3r(x0)).
We observe that h is antisymmetric, and moreover

h ≡ 0 on H\(U0 ∪M) and h ≡ a on M, (2.33)

thanks to (2.30). From (2.30) we also deduce that

(M ∪Q(M)) ∩ U ′
0 = ∅. (2.34)

This and the fact that M is bounded give that h ∈ H(U ′
0). We now claim that there

exists a constant C1 > 0, depending on g, such that

B(g, ϕ) � C1

∫
U0

ϕ(x) dx, for every ϕ ∈ D(U0) with ϕ � 0. (2.35)

Indeed, for any ϕ ∈ D(U0) with ϕ � 0, by an integration by parts,

∫
RN

〈∇g,∇ϕ〉dx =
∫

U0

〈∇g,∇ϕ〉dx

= −
∫

U0

Δg ϕdx � ‖g‖C2(RN )

∫
U0

ϕ(x) dx.
(2.36)

Moreover, by proposition 2.3-(ii) in [44] (applied here with v := g and u := ϕ), we
have that

1
2

∫∫
R2N

(g(x) − g(y))(ϕ(x) − ϕ(y))
|x− y|N+2s

dxdy =
∫

RN

(−Δ)sg(x)ϕ(x) dx

=
∫

U0

(−Δ)sg(x)ϕ(x) dx � ‖(−Δ)sg‖L∞(U0)

∫
U0

ϕ(x) dx.

Recalling (2.2), this and (2.36) imply (2.35). Similarly, one has that

B(g ◦Q,ϕ) � C2

∫
U0

ϕ(x) dx, for every ϕ ∈ D(U0) with ϕ � 0, (2.37)

for some C2 > 0. In addition, we see that, for any ϕ ∈ D(U0) and any x ∈ R
N , from

(2.30) we infer that

(χM (x) − χM (x̄))ϕ(x) = 0;
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as a consequence,

1
2

∫∫
R2N

(
(χM (x) − χM (x̄)) − (χM (y) − χM (ȳ))

)
(ϕ(x) − ϕ(y))

|x− y|N+2s
dxdy

= −1
2

∫∫
R2N

(χM (x) − χM (x̄))ϕ(y) + (χM (y) − χM (ȳ))ϕ(x)
|x− y|N+2s

dxdy

= −
∫∫

U0×RN

(χM (y) − χM (ȳ))ϕ(x)
|x− y|N+2s

dxdy

= −
∫∫

U0×RN

(χM (y) − χM (ȳ))ϕ(x)
|x− y|N+2s

dxdy

= −
∫

U0

ϕ(x)

(∫
M

dy
|x− y|N+2s

−
∫

Q(M)

dy
|x− y|N+2s

)
dx

= −
∫

U0

ϕ(x)
(∫

M

dy

|x− y|N+2s
−
∫

M

dy

|x− ȳ|N+2s

)
dx

� −C0

∫
U0

ϕ(x) dx,

(2.38)

where

C0 := inf
x∈U0

(∫
M

dy
|x− y|N+2s

−
∫

M

dy
|x− ȳ|N+2s

)
.

We stress on the fact that the constant C0 is finite, thanks to (2.30).
Now, recalling (2.32), and using (2.35), (2.37) and (2.38), we conclude that, for

any ϕ ∈ D(U0), one has

B(h, ϕ) = B(g, ϕ) +B(g ◦Q,ϕ)

+ a

∫∫
R2N

(
(χM (x) − χM (x̄)) − (χM (y) − χM (ȳ))

)
(ϕ(x) − ϕ(y))

|x− y|N+2s
dxdy

� Ca

∫
U0

ϕ(x) dx, (2.39)

where

Ca := C1 + C2 − 2aC0.

Now we perform our choice of the parameter a: we choose a > 0 such that

Ca < −‖c‖L∞(U0).
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In particular, with this choice, (2.39) yields that

B(h, ϕ) � −‖c‖L∞(U0)

∫
U0

ϕ(x) dx � −‖c−‖L∞(U0)

∫
U0

ϕ(x) dx

� −
∫

U0

c−(x)ϕ(x) dx � −
∫

U0

c−(x)h(x)ϕ(x) dx

�
∫

U0

c+(x)h(x)ϕ(x) dx−
∫

U0

c−(x)h(x)ϕ(x) dx

=
∫

U0

c(x)h(x)ϕ(x) dx,

(2.40)

since h(x) = g(x) ∈ [0, 1] for every x ∈ U0. Now, we recall (2.29), we define the
function ṽ as

ṽ(x) := v(x) − δ

a
h(x), (2.41)

and we notice that ṽ ∈ H(U ′
0) and it is antisymmetric, since both v and h are so.

Furthermore, by (2.25), (2.29) and (2.33), we have that

ṽ � 0 on H\U0.

In addition, for any ϕ ∈ D(U0) with ϕ � 0,

B(ṽ, ϕ) = B(v, ϕ) − δ

a
B(h, ϕ)

�
∫

U0

c(x)v(x)ϕ(x) dx− δ

a

∫
U0

c(x)h(x)ϕ(x) dx

=
∫

U0

c(x)ṽ(x)ϕ(x) dx,

thanks to (2.16) and (2.40).
As a consequence, we have that ṽ is an antisymmetric supersolution of{

Lṽ = cṽ in U0,

ṽ ≡ 0 in H\U0.

Since ‖c‖L∞(U0) < Λ1(U0), thanks to (2.31), we are in the position to apply
proposition 2.6 to conclude that ṽ � 0 a.e. on U0. Recalling (2.41), this gives

v � δ

a
> 0 a.e. on Br(x0).

This establishes (2.28), and the proof of proposition 2.7 is thereby complete. �

With this preliminary work, we now prove theorem 1.1. For this, let u ∈ C(Ω) be
a weak solution of (1.2). We fix the usual notation needed to implement the moving
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plane method. For every λ ∈ (−1, 1) we define the following:

Σλ :=

{
{x ∈ R

N : x1 < λ}, if λ < 0
{x ∈ R

N : x1 > λ}, if λ � 0,

Ωλ := Ω ∩ Σλ,

Qλ(x) = xλ := (2λ− x1, x2, . . . , xN ),

and uλ(x) := u(xλ).

(2.42)

We also define the function

c(x) :=

⎧⎨
⎩
f(uλ(x)) − f(u(x)))

uλ(x) − u(x)
, if uλ(x) �= u(x),

0, if uλ(x) = u(x).
(2.43)

We observe that c ∈ L∞(Ωλ), thanks to the Lipschitz assumption on f .
Furthermore, setting

vλ := uλ − u, (2.44)

we point out the following simple yet important observations.

Lemma 2.8. Let u be a weak solution of (1.2) according to definition 2.2.
Then, the function vλ in (2.44) is an antisymmetric supersolution of (2.15) in

Ωλ, according to definition 2.4, with c as in (2.43).

Proof. We notice that vλ ∈ H1(RN ) ⊂ H(U ′), for every open set U ′ ⊂ R
N such

that Q(U ′) = U ′ and Ωλ ⊂ U ′. Moreover, since u � 0 in R
N and u ≡ 0 on Σλ\Ωλ,

we have that vλ � 0 on Σλ\Ωλ. In addition, for any ϕ ∈ D(Ωλ) and for any x ∈ R
N ,

we have

〈∇uλ(x),∇ϕ(x)〉 =
(− ∂1u, ∂2u, . . . , ∂Nu

)
(x̄) · (∂1ϕ, ∂2ϕ, . . . , ∂Nϕ

)
(x)

=
(
∂1u, ∂2u, . . . , ∂Nu

)
(X) · (− ∂1ϕ, ∂2ϕ, . . . , ∂Nϕ

)
(X̄)

= 〈∇u(X),∇ϕλ(X)〉,
(2.45)

where X := x̄. Similarly, setting also Y := ȳ,

(uλ(x) − uλ(y))(ϕ(x) − ϕ(y))
|x− y|N+2s

=
(u(x̄) − u(ȳ))(ϕ(x) − ϕ(y))

|x− y|N+2s

=
(u(X) − u(Y ))(ϕ(X̄) − ϕ(Ȳ ))

|X̄ − Ȳ |N+2s
=

(u(X) − u(Y ))(ϕ(X̄) − ϕ(Ȳ ))
|X − Y |N+2s

=
(u(X) − u(Y ))(ϕλ(X) − ϕλ(Y ))

|X − Y |N+2s
.
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From this and (2.45), we obtain that

B(uλ, ϕ)

=
∫

RN

〈∇uλ(x),∇ϕ(x)〉dx+
∫∫

R2N

(uλ(x) − uλ(y))(ϕ(x) − ϕ(y))
|x− y|N+2s

dxdy

=
∫

RN

〈∇u(X),∇ϕλ(X)〉dX +
∫∫

R2N

(u(X) − u(Y ))(ϕλ(X) − ϕλ(Y ))
|X − Y |N+2s

dX dY

= B(u, ϕλ).

As a consequence, since ϕλ ∈ D(Qλ(Ωλ)) ⊂ D(Ω), we can use definition 2.2 to find
that

B(uλ, ϕ) =
∫

RN

f(u(x))ϕλ(x) dx

=
∫

RN

f(u(X̄))ϕ(X) dX =
∫

RN

f(uλ(X))ϕ(X) dX.

Therefore,

B(vλ, ϕ) = B(uλ, ϕ) −B(u, ϕ)

=
∫

RN

f(uλ(x))ϕ(x) dx−
∫

RN

f(u(x))ϕ(x) dx

=
∫

RN

c(x)vλ(x)ϕ(x) dx,

which proves (2.16), and thereby completes the proof of lemma 2.8. �

Lemma 2.9. Let u be a weak solution of (1.2), and let vλ be as in (2.44). If there
exists some λ ∈ (−1, 0) such that vλ ≡ 0 in R

N , then

u ≡ 0 in Ω (hence, u ≡ 0 in R
N ). (2.46)

Proof. We proceed essentially as in [44]: to begin with, since λ ∈ (−1, 0), we
have � := 1 + λ ∈ (0, 1); hence, following the notation in (2.42), we consider the
set

Ω� = {x ∈ Ω : x1 > �}
and we notice that, by definition, one has Qλ(Ω�) ∩ Ω = ∅ (see also (2.1)). As a
consequence, since u ≡ 0 outside Ω and vλ = u− uλ = 0 in R

N , we get

u ≡ uλ ≡ 0 on Ω�. (2.47)

In particular, setting η := 1 + λ/2 and

Ωη = {x ∈ Ω : x1 > η},
from (2.47) we obtain (notice that Ωη ∪Qη(Ωη) ⊆ Ω�)

vη = u− uη = 0 on Ωη.
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Using once again proposition 2.7 (with the choice H := Ση, U := Ωη and v := vη),
we then deduce that

vη ≡ 0 on R
N .

Gathering together these facts, we conclude that u has two different parallel symme-
try hyperplanes, namely ∂Σλ = {x1 = λ} and ∂Ση = {x1 = η}. Using this last fact,
it is easy to derive the claim in (2.46). Indeed, since ∂Σλ is a symmetry hyperplane
for u, since u ≡ 0 out of Ω and since

Qλ

(
Ω\(Ωλ ∪Qλ(Ωλ)

)) ∩ Ω = ∅,

we derive that

u ≡ 0 on O := Ω\(Ωλ ∪Qλ(Ωλ)); (2.48)

on the other hand, since also ∂Ση is a symmetry hyperplane for u and since

Qη

(
Ωλ ∪Qλ(Ωλ)

) ⊆ O,
we infer that

u ≡ 0 on Ωλ ∪Qλ(Ωλ). (2.49)

By combining (2.48) and (2.49), we immediately obtain (2.46). �

With these considerations, we are now ready to prove theorem 1.1.

Proof of theorem 1.1. Let u ∈ C(RN ) be any non identically vanishing weak solu-
tion of (1.2). For every λ ∈ (−1, 0), we define the function

wλ : R
N → R, wλ(x) :=

{
(u− uλ)+(x) in Σλ,

(u− uλ)−(x) in R
N\Σλ,

(2.50)

where, differently from before, we have set

(u− uλ)− := min{u− uλ, 0},
which is nonpositive. We claim that

wλ ∈ H1(RN ). (2.51)

Indeed, we know that u ∈ H1(RN ) and thus u− uλ ∈ H1(RN ). Accordingly, we
have that (see e.g. the Chain Rule on page 296 of [45])

(u− uλ)+ ∈ H1(RN ). (2.52)

Moreover, u ∈ C(RN ), and consequently

(u− uλ)+ ∈ C(RN ). (2.53)

In addition, u = uλ along ∂Σλ. From this fact, (2.52) and (2.53), we obtain that

(u− uλ)+χΣλ
∈ H1

0 (Σλ) ⊂ H1(RN ), (2.54)
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see e.g. [15, theorem 9.17]. Similarly,

(u− uλ)−χRN\Σλ
∈ H1(RN ). (2.55)

We also observe that

wλ = (u− uλ)+χΣλ
+ (u− uλ)−χRN\Σλ

.

From this, (2.54) and (2.55), we obtain (2.51), as desired.
Furthermore, we claim that

wλ ≡ 0 in R
N\(Ωλ ∪Qλ(Ωλ)) ⊂ R

N\Ω. (2.56)

Indeed, if x ∈ Σλ\Ωλ, then wλ(x) = (0 − uλ(x))+ = 0. If instead x ∈ Qλ(Σλ\Ωλ),
then x̄ ∈ Σλ\Ωλ and accordingly

0 = wλ(x̄) = (u(x̄) − uλ(x̄))+ = (uλ(x) − u(x))+.

This gives that uλ(x) � u(x), and therefore wλ(x) = (u(x) − uλ(x))− = 0.
From these observations, we obtain (2.56). Then, (2.51) and (2.56) give that we

can take wλ as an admissibile test function in (2.4). In this way, we obtain

B(u,wλ) =
∫

RN

f(u(x))wλ(x) dx. (2.57)

Similarly,

B(uλ, wλ) =
∫

RN

f(uλ(x))wλ(x) dx. (2.58)

Subtracting (2.58) to (2.57), and recalling (2.2), we get

∫
RN

〈∇(u− uλ),∇wλ〉dx

+
∫∫

R2N

((u(x) − uλ(x)) − (u(y) − uλ(y)))(wλ(x) − wλ(y))
|x− y|N+2s

dxdy

=
∫

RN

(
f(u(x)) − f(uλ(x))

)
wλ(x) dx.

(2.59)

Now, we use formula (3.9) in [46], which gives that

∫∫
R2N

(
(u(x) − uλ(x)) − (u(y) − uλ(y))

)
(wλ(x) − wλ(y))

|x− y|N+2s
dxdy

�
∫∫

R2N

|wλ(x) − wλ(y)|2
|x− y|N+2s

dxdy � 0.
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Using this information into (2.59), and recalling (2.56), we obtain that

∫
RN

〈∇(u− uλ),∇wλ〉 dx �
∫

RN

(
f(u(x)) − f(uλ(x))

)
wλ(x) dx

=
∫

RN

f(u(x)) − f(uλ(x))
u(x) − uλ(x)

(
u(x) − uλ(x)

)
wλ(x) dx

=
∫

RN

f(u(x)) − f(uλ(x))
u(x) − uλ(x)

w2
λ(x) dx

=
∫

Ωλ∪Qλ(Ωλ)

f(u(x)) − f(uλ(x))
u(x) − uλ(x)

w2
λ(x) dx.

(2.60)

We also notice that, thanks to (2.56),

∫
RN

〈∇(u− uλ),∇wλ〉dx =
∫

RN

|∇wλ|2 dx =
∫

Ωλ∪Qλ(Ωλ)

|∇wλ|2 dx.

From this and (2.60), we deduce that

∫
Ωλ∪Qλ(Ωλ)

|∇wλ|2 dx �
∫

Ωλ∪Qλ(Ωλ)

f(u(x)) − f(uλ(x))
u(x) − uλ(x)

w2
λ(x) dx

� C

∫
Ωλ∪Qλ(Ωλ)

|wλ|2 dx,
(2.61)

for some constant C > 0, depending on f and ‖u‖L∞(Ω).
Now, using lemma 2.10 in [11], we obtain that

∫
Ωλ∪Qλ(Ωλ)

|∇wλ|2 dx � C|Ωλ ∪Qλ(Ωλ)|1/N

∫
Ωλ∪Qλ(Ωλ)

|∇wλ|2 dx, (2.62)

to renaming C, which possibly depends also on N . As a consequence, if λ is
sufficiently close to −1, we see that

C|Ωλ ∪Qλ(Ωλ)|1/N <
1
2
,

which, combined with (2.62), gives that

∫
Ωλ∪Qλ(Ωλ)

|∇wλ|2 dx = 0,

provided that λ is sufficiently close to −1. From this and the Poincaré inequal-
ity we get that wλ ≡ 0 in Ωλ ∪Qλ(Ωλ) if λ is sufficiently close to −1, which,
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recalling (2.50), implies that

u � uλ in Ωλ if λ is sufficiently close to −1. (2.63)

Now, we define the set

Λ0 :=
{
λ ∈ (−1, 0) : u � ut in Ωt for every t ∈ (−1, λ]

}
,

and we explicitly notice that, since 0 = u � uλ on Σλ\Ωλ, one also has

Λ0 =
{
λ ∈ (−1, 0) : u � ut in Σt for every t ∈ (−1, λ]

}
. (2.64)

In light of (2.63), the following quantity is well defined:

λ := sup Λ0. (2.65)

The goal is now to prove that

λ = 0. (2.66)

For this, we argue by contradiction and assume that

λ < 0.

We then recall the definition of vλ in (2.44) and we observe that, since u is
continuous in Ω, vλ � 0 in Ωλ. Actually, in view of (2.64) we have

vλ � 0, in Σλ.

Since, by assumption, u is not identically vanishing, from lemma 2.9 we derive that
vλ �≡ 0 in R

N as well; as a consequence, lemma 2.8 and proposition 2.7 (applied
here with the choice H := Σλ, U := Ωλ and v := vλ) ensure that

vλ > 0, in Ωλ. (2.67)

Let then K ⊆ Ωλ be a given compact set, to be chosen later on. Since the map
(λ, x) �→ vλ(x) is continuous, we can find a suitable τ = τ(K) > 0 such that

vλ+τ > 0 in K (for all τ ∈ (0, τ)). (2.68)

We then consider, for every fixed τ ∈ (0, τ), the function wλ+τ defined as in (2.50)
(with λ := λ+ τ). We notice that, thanks to (2.51) and (2.56), we can take wλ+τ

as an admissible test function in (2.4), obtaining that

B(u,wλ+τ ) =
∫

RN

f(u(x))wλ+τ (x) dx and

B(uλ+τ , wλ+τ ) =
∫

RN

f(uλ+τ (x))wλ+τ (x) dx.

From here, we repeat the same argument in (2.59)–(2.61) to find that∫
Ωλ+τ∪Q(Ωλ+τ )

|∇wλ+τ |2 dx � C

∫
Ωλ+τ∪Q(Ωλ+τ )

|wλ+τ |2 dx,

where Q = Qλ+τ and C > 0 is a constant depending on f and on ‖u‖L∞(Ω).
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From this, recalling (2.68), we obtain that∫
Ωλ+τ∪Q(Ωλ+τ )

|∇wλ+τ |2 dx � C

∫
(Ωλ+τ\K)∪Q(Ωλ+τ\K)

|wλ+τ |2 dx.

Hence, making again use of lemma 2.10 in [11], we get∫
Ωλ+τ∪Q(Ωλ+τ )

|∇wλ+τ |2 dx

� C |(Ωλ+τ\K) ∪Q(Ωλ+τ\K)|1/N

∫
(Ωλ+τ\K)∪Q(Ωλ+τ\K)

|∇vλ+τ |2 dx,
(2.69)

up to relabelling C > 0 (which may also depend on N). Now we choose the compact
K big enough and the number τ small enough such that

C |(Ωλ+τ\K) ∪Q(Ωλ+τ\K)|1/N < 1.

Using this information into (2.69), we conclude that∫
Ωλ+τ∪Q(Ωλ+τ )

|∇wλ+τ |2 dx = 0.

From this and the Poincaré inequality, we find that wλ+τ ≡ 0 in Ωλ+τ , hence

u � uλ+τ in Ωλ+τ ,

for every τ ∈ (0, τ), provided τ > 0 is small enough. This yields a contradiction
with (2.65), from which we conclude that (2.66) holds true, as desired.

With (2.66) at hand, we are in the position to complete the proof. Indeed, since
λ = 0, we see that, for all λ ∈ (−1, 0) and all x ∈ Ωλ, one has

u(x) � uλ(x) = u(2λ− x1, x2, . . . , xN ).

Consequently,

u(x) � u(−x1, x2, . . . , xN ), (2.70)

for all x ∈ Ω ∩ {x1 < 0}. In the same way, sliding the moving plane from right to
left, one sees that, for all x ∈ Ω ∩ {x1 > 0}, one has

u(x) � u(−x1, x2, . . . , xN ).

This implies that

u(−x1, x2, . . . , xN ) � u(x),

for all x ∈ Ω ∩ {x1 < 0}. From this and (2.70), we conclude that

u(x) = u(−x1, x2, . . . , xN ),

for all x ∈ Ω, which says that u is symmetric with respect to {x1 = 0}.
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Furthermore, since u �≡ 0 in R
N , it follows from lemma 2.9 that vλ �≡ 0 for every

λ ∈ (−1, 0); hence, (2.66) and proposition 2.7 give

u(x) < uλ(x) = u(2λ− x1, x2, . . . , xN ) (for all x ∈ Ωλ). (2.71)

From (2.71) it plainly follows that u is strictly increasing in the x1-direction in Ω ∩
{x1 < 0}, and the proof of theorem 1.1 is thereby complete. �

3. One-dimensional symmetry and proof of theorem 1.2

In this section we provide the proof of theorem 1.2. For this, we indicate the points
x ∈ R

N by

(y, t), with y ∈ R
N−1 and t ∈ R.

Moreover, since we are interested in classical solutions to (1.4), we define

X := C3(RN ) ∩W 4,∞(RN ). (3.1)

Remark 3.1. We notice that, if u ∈ X, it is possible to compute Lu in the classical
sense, i.e., Lu(x) is well-defined for all x ∈ R

N . As a matter of fact, to give a
pointwise meaning to Lu it suffices to have u ∈ C2(RN ) ∩ L∞(RN ).

We shall derive theorem 1.2 from the abstract approach developed in [38]. To this
end, we check that the assumptions introduced in [38] are satisfied in our setting.
We list these assumptions here for the convenience of the reader:

(H1) if ϕ ∈ X satisfies Lϕ = f(ϕ) in R
N , then there exists an operator L̃, acting

on a suitable space of functions X̃ ⊆ C(RN ) which is translation-invariant1,
such that ∂νϕ ∈ X̃ for any unit vector ν ∈ R

N and

L̃(∂νϕ) = f ′(ϕ) ∂νϕ on R
N ;

(H2) if ϕ ∈ X is a solution of (1.4), if {zk}∞k=1 is an arbitrary sequence of points in
R

N (possibly unbounded) and if

ϕk := ϕ(· + zk) for any k ∈ N,

then there exists a function ϕ0 ∈ X such that, up to a sub-sequence,

lim
k→∞

ϕk(x) = ϕ0(x),

lim
k→∞

∇ϕk(x) = ∇ϕ0(x)

and lim
k→∞

Lϕk(x) = ϕ0(x),

for all x ∈ R
N ;

1A (non-void) set V ⊆ C(RN ) is translation-invariant if, for every function ϕ ∈ V and every
point y ∈ R

N , the ‘translated’ function x �→ ϕ(x + y) belongs to V .

https://doi.org/10.1017/prm.2020.75 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2020.75


Mixed local and nonlocal operators 1631

(H3) if w ∈ X̃ satisfies L̃w + c(x)w = 0 in R
N , with

w(y, t) � 0 if |t| � M and c(y, t) � κ if |t| � M

for some constants M, κ > 0, then

w(x) � 0 for all x ∈ R
N ;

(H4) if ϕ ∈ X and if w ∈ X̃ satisfies L̃w = f ′(ϕ)w in R
N , then{

w � 0 in R
N ,

w(0) = 0,
=⇒ w ≡ 0 on R

N ;

(H5) given μ− < μ+ ∈ R, if U ⊆ R
N is an open set contained in

S := {x = (y, t) ∈ R
N : t � μ− or t � μ+}

and if v ∈ X satisfies Lv + c(x)v = 0 in R
N , with

v(x) � 0 in R
N\U and c(x) � κ on U

for some constant κ > 0, then

v(x) � 0 for all x ∈ R
N ;

(H6) if ϕ ∈ X and if v ∈ X satisfies Lv = f(v + ϕ) − f(v) in R
N , then{

v � 0 in R
N ,

v(0) = 0,
=⇒ v ≡ 0 on R

N .

The next lemmata establish the validity of (H1)–(H6) in our setting.

Lemma 3.2 Validity of (H1). For every ϕ ∈ X and every unit vector ν ∈ R
N , one

has

L(∂νϕ) = ∂ν

(Lϕ). (3.2)

In particular, assumption (H1) is fulfilled with the choices

L̃ := L (3.3)

and

X̃ := C2(RN ) ∩W 3,∞(RN ). (3.4)

Proof. First of all, if X is as in (3.1) and X̃ is as in (3.4), we obviously have that,
for every ϕ ∈ X and every unit vector ν ∈ R

N ,

∂νϕ ∈ X̃ and − Δ(∂νϕ) = ∂ν(−Δϕ).

Moreover, since X ⊆W 3,∞(RN ), we can use formula (4.1) in [38], obtaining that

(−Δ)s(∂νϕ) = ∂ν

(
(−Δ)sϕ).

Gathering together these facts, we obtain (3.2), as desired. As a result, with the
choices in (3.3) and (3.4), assumption (H1) is obviously satisfied. �
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Remark 3.3. On account of remark 3.1, if u ∈ X̃ it is possible to compute Lu
pointwise in R

N . As a consequence, since in this section we shall always deal with
functions belonging to X̃ (or to X ⊂ X̃), the solvability of any equation involving L
is always meant in the pointwise sense.

Lemma 3.4 Validity of (H2). Let X be as in (3.1). Let ϕ ∈ X and {zk}∞k=1 be a
sequence of points in R

N (possibly unbounded). Let also

ϕk := ϕ(· + zk) for any k ∈ N. (3.5)

Then, there exists a function ϕ0 ∈ X such that, up to a sub-sequence,

lim
k→∞

ϕk(x) = ϕ0(x), (3.6)

lim
k→∞

∇ϕk(x) = ∇ϕ0(x) (3.7)

and lim
k→∞

Lϕk(x) = Lϕ0(x), (3.8)

for all x ∈ R
N . In particular, assumption (H2) is fulfilled.

A less regular version of lemma 3.4 will be given in remark 3.5.

Proof of lemma 3.4. We observe that, since ϕ ∈ X̃, the sequences

{Dαϕk}∞k=1

are equi-continuous and equi-bounded on R
N , for every multi-index α ∈ N

N satis-
fying 0 � |α| � 3. As a consequence, Arzelà–Ascoli’s Theorem ensures the existence
of some function ϕ0 ∈ X such that (up to a sub-sequence)

lim
k→∞

Dαϕk = Dαϕ0 locally uniformly in R
N , (3.9)

for every α ∈ N
N with |α| � 3. Hence, (3.6) and (3.7) plainly follows from (3.9).

We also deduce from (3.9) that

lim
k→∞

Δϕk(x) = Δϕ0(x) locally uniformly in R
N . (3.10)

We now claim that

lim
k→∞

(−Δ)sϕk(x) = (−Δ)sϕ0(x) for every x ∈ R
N . (3.11)

To prove it, for any x ∈ R
N and for any k ∈ N, we set

Ik(z) :=
ϕk(x+ z) − ϕk(x− z) − 2ϕk(x)

|z|N+2s
for any z �= 0.

On account of (3.9), we have that

lim
k→∞

Ik(z) =
ϕ0(x+ z) − ϕ0(x− z) − 2ϕ0(x)

|z|N+2s
for all z �= 0. (3.12)
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Moreover, recalling the definition of ϕk in (3.5), we see that, for every z �= 0,

|Ik(z)| =

∣∣ϕk(x+ z) + ϕk(x− z)| − 2ϕk(x)
∣∣

|z|N+2s

� max
|α|=2

‖Dαϕk‖L∞(RN )
1

|z|N+2s−2
χ{0<|z|�1}

+ 4‖ϕk‖L∞(RN )
1

|z|N+2s
χ{|z|>1}

= max
|α|=2

‖Dαϕ‖L∞(RN )
1

|z|N+2s−2
χ{0<|z|�1}

+ 4‖ϕ‖L∞(RN )
1

|z|N+2s
χ{|z|>1}.

(3.13)

Now, since ϕ ∈ X, we have that

g(z) := max
|α|=2

‖Dαϕ‖L∞(RN )
1

|z|N+2s−2
χ{0<|z|�1}

+ 4‖ϕ‖L∞(RN )
1

|z|N+2s
χ{|z|>1} ∈ L1(RN ).

From this, (3.12) and (3.13) we deduce that we can apply the Dominated
Convergence Theorem to conclude that, for any x ∈ R

N ,

lim
k→∞

∫
RN

ϕk(x+ z) − ϕk(x− z) − 2ϕk(x)
|z|N+2s

dz

=
∫

RN

ϕ0(x+ z) − ϕ0(x− z) − 2ϕ0(x)
|z|N+2s

dz.

This proves (3.11). From (3.10) and (3.11), recalling (1.1), we obtain (3.8). �

Remark 3.5. By taking a closer inspection to the proof of lemma 3.4, one can easily
recognize that the following result holds: if ϕ ∈ X̃ and if {zk}k∈N ⊆ R

N , there exists
a function ϕ0 ∈ X̃ such that, up to a sub-sequence,

lim
k→∞

ϕk(x) = ϕ0(x), lim
k→∞

∇ϕk(x) = ∇ϕ0(x)

and lim
k→∞

Lϕk(x) = Lϕ0(x),

for every x ∈ R
N , where ϕk := ϕ(· + zk).
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Lemma 3.6 Validity of (H3) and (H5). Let X̃ be the space defined in (3.4). Moreover,
let c : R

N → R be any function and let w ∈ X̃ satisfy

Lw + c(x)w = 0 in R
N . (3.14)

We assume that

w(x) � 0 in R
N\U and c(x) � κ on U (3.15)

for some open set U ⊆ R
N and some constant κ > 0. Then

w(x) � 0 for all x ∈ R
N . (3.16)

In particular, assumptions (H3) and (H5) are fulfilled with the choice in (3.3).

Proof. Arguing by contradiction, we suppose that m := infRN w < 0, and we choose
a sequence of points {zk}∞k=1 in R

N satisfying

lim
k→∞

w(zk) = m. (3.17)

Since m < 0, it is not restrictive to assume that

w(zk) � m

2
< 0 for all k ∈ N. (3.18)

As a consequence, also in light of (3.15), for every k ∈ N we have

zk ∈ U and c(zk) � κ > 0. (3.19)

Now, thanks to (3.14), from (3.18) and (3.19) we deduce that

Lw(zk) = −c(zk)w(zk) � −mκ

2
> 0, for all k ∈ N.

In particular, setting wk := w(· + zk), we obtain

Lwk(0) � −mκ

2
> 0, for all k ∈ N. (3.20)

On the other hand, since w ∈ X̃, from remark 3.5 we infer the existence of some
function w0 ∈ X̃ such that (up to a sub-sequence)

lim
k→∞

wk(x) = w0(x) and lim
k→∞

Lwk(x) = Lw0(x), (3.21)

for every fixed x ∈ R
N . By taking the limit as k → ∞ in (3.20), we then get

Lw0(0) � −mκ

2
> 0. (3.22)

Now, we observe that, on account of (3.17) and (3.21), one has

w0(0) = lim
k→∞

wk(0) = lim
k→∞

w(zk) = m = inf
RN

w � w(x+ zk) = wk(x),
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for every x ∈ R
N and every k ∈ N. As a consequence,

w0(0) � w0(x) for every x ∈ R
N ,

and thus x = 0 is a minimum point for w0 in R
N . In particular,

Δw0(0) � 0 and − (−Δ)sw0(0) = P.V.
∫

RN

w0(x) − w0(0)
|x|N+2s

dx � 0.

Therefore, recalling (1.1), this implies that Lw0(0) � 0, which is in contradiction
with (3.22). This completes the proof of (3.16).

We point out that, with the choice in (3.3), from the first part of lemma 3.6 we
obtain the validity of assumption (H3). Indeed, for this, it is enough to apply the
first part of lemma 3.6 with

U :=
{
x = (y, t) ∈ R

N s.t. |t| � M
}
,

for some M > 0. Furthermore, from the first part of lemma 3.6 we also obtain the
validity of assumption (H5), by simply observing that X ⊂ X̃. �

Lemma 3.7 Validity of (H4) and (H6). Let X̃ be as in (3.4). Let c : R
N × R → R

be any function satisfying

c(x, 0) = 0 for every x ∈ R
N . (3.23)

Let w ∈ X̃ satisfy

Lw + c(x,w) = 0 in R
N . (3.24)

Then {
w � 0 in R

N ,

w(0) = 0,
=⇒ w ≡ 0 on R

N . (3.25)

In particular, assumptions (H4) and (H6) are fulfilled with the choices in (3.3)
and (3.4).

Proof. We observe that, thanks to the assumptions in (3.25), x = 0 is a minimum
point for w in R

N . As a consequence, we have that

Δw(0) � 0 and − (−Δ)sw(0) = P.V.
∫

RN

w(x)
|x|N+2s

dx � 0. (3.26)

On the other hand, by (3.23) and (3.24), and recalling also that w(0) = 0, we get

0 = c(0, 0) = c(0, w(0)) = −Lw(0) = Δw(0) − (−Δ)sw(0) � −(−Δ)sw(0).

Gathering together this and (3.26), we conclude that

0 = −(−Δ)sw(0) = P.V.
∫

RN

w(x)
|x|N+2s

dx.

Since w � 0 in R
N , we deduce that w ≡ 0 on the whole of R

N , which completes the
proof of the claim in (3.25).
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Now, we check the validity of assumption (H4). For this, recalling (3.3) and (3.4),
we take ϕ ∈ X and we define

c(x,w) := −f ′(ϕ(x))w.

We observe that c satisfies (3.23). Hence, we can apply the first part of lemma 3.7
to obtain that (H4) is satisfied. Finally, in order to show the validity of assump-
tion (H6), given ϕ ∈ X, we define

c(x,w) := f(ϕ(x) + w) − f(ϕ(x)).

This function satisfies (3.23). As a consequence of this and of the inclusion X ⊆ X̃,
we deduce (H6) from the first part of lemma 3.7. �

Thanks to these statements, we can now prove theorem 1.2:

Proof of theorem 1.2. On account of lemmata 3.2, 3.4, 3.6 and 3.7, we know that
the assumptions in (H1)–(H6) are fulfilled in the setting of theorem 1.2. Moreover,
since u ∈ X, we have that

‖u‖C1,β(RN ) is finite for all β ∈ (0, 1).

From these considerations and (1.3), we have that the assumptions of theorem 1.1
in [38] are satisfied. Hence, from theorem 1.1 in [38] we have that there exists some
function u0 : R → R such that (1.5) holds true. �

Appendix A. Hopf-type Lemma

We provide here a variation of proposition 2.7 leading to a linear growth from the
boundary for antisymmetric solutions which can be seen as a Hopf Lemma in this
setting.

Lemma A.1. Let x0 ∈ H and d > dist(x0, ∂H). Let p0 be the projection of x0

onto ∂H. Let v be nonnegative in H and suppose that v is an antisymmetric
supersolution v of Lv = 0 in Bd(x0) ∩H.

Then, either v ≡ 0 or

lim inf
ε↘0

v(p0 + εν) − v(p0)
ε

> 0,

where ν := (x0 − p0)/|x0 − p0|.
Proof. Up to a rigid motion, we suppose that H = (0,+∞) × R

N−1 and x0 =
(t0, 0, . . . , 0) with t0 > 0. In this way, we have that p0 is the origin, ν = (1, 0, . . . , 0)
and

t0 = dist(x0, ∂H) < d.

We suppose that v �≡ 0 (otherwise we are done) and we exploit proposition 2.7 to
deduce that

δ := ess infBd(p1)v > 0, (A.1)

where p1 := p0 + 8dν = (8d, 0, . . . , 0).
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We let ρ ∈ (0, ((d− t0)/4N)) and consider an even function ψ ∈ C∞
0 ((−ρ, ρ))

with ψ = 1 in (−ρ/2, ρ/2). Using the notation x = (x1, . . . , xN ), we set

g(x) = x1 ψ(x1) . . . ψ(xN ).

We remark that g ∈ C∞
0 ((−ρ, ρ)N ) and, in particular,

‖Lg‖L∞(RN ) � C̄,

for some C̄ ∈ (0,+∞). Furthermore, since ψ is even, we see that g is antisymmetric.
Now, for every x ∈ R

N , we define

w(x) := v(x) − δ

a

(
g(x) + a

(
χBd(p1)(x) − χBd(p1)(x̄)

))
,

where a > 0 is a constant to be conveniently chosen in what follows. We remark
that w is antisymmetric. We claim that

(−ρ, ρ)N ⊆ Bd(x0). (A.2)

Indeed, if ζ = (ζ1, . . . , ζN ) ∈ (−ρ, ρ)N we have that

|ζ − x0| = |ζ − (t0, 0, . . . , 0)| � |ζ1 − t0| + |ζ2| + · · · + |ζN |

� t0 +Nρ < t0 +
d− t0

4
= d− 3(d− t0)

4
< d,

thus proving (A.2)
Accordingly, if x ∈ H\Bd(x0), then x lies outside (−ρ, ρ)N , due to (A.2),

whence g(x) = 0. This says that if x ∈ H\Bd(x0), then

w(x) = v(x) − δ
(
χBd(p1)(x) − χBd(p1)(x̄)

)
= v(x) − δχBd(p1)(x) � 0, (A.3)

thanks to (A.1).
Furthermore, if ϕ ∈ D(Bd(x0)),

(χBd(p1)(x) − χBd(p1)(x̄))ϕ(x) = (χBd(p1)(x) − χBd(p1)(x̄))ϕ(x)χBd(x0)(x) = 0

for every x ∈ R
N and, as a consequence,

1

2

∫∫
R2N

(
(χBd(p1)(x) − χBd(p1)(x̄)) − (χBd(p1)(y) − χBd(p1)(ȳ))

)
(ϕ(x) − ϕ(y))

|x − y|N+2s
dx dy

= −1

2

∫∫
R2N

(χBd(p1)(x) − χBd(p1)(x̄))ϕ(y) + (χBd(p1)(y) − χBd(p1)(ȳ))ϕ(x)

|x − y|N+2s
dx dy
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= −
∫∫

R2N

(χBd(p1)(y) − χBd(p1)(ȳ))ϕ(x)

|x − y|N+2s
dx dy

= −
∫∫

Bd(x0)×RN

(χBd(p1)(y) − χBd(p1)(ȳ))ϕ(x)

|x − y|N+2s
dx dy

= −
∫∫

Bd(x0)×RN

χBd(p1)(y)ϕ(x)

|x − y|N+2s
dx dy +

∫∫
Bd(x0)×RN

χBd(p1)(ȳ)ϕ(x)

|x − y|N+2s
dx dy

= −
∫∫

Bd(x0)×RN

χBd(p1)(y)ϕ(x)

|x − y|N+2s
dx dy +

∫∫
Bd(x0)×RN

χBd(p1)(y)ϕ(x)

|x − ȳ|N+2s
dx dy

� −C0

∫
Bd(x0)

ϕ(x) dx,

where

C0 := inf
x∈Bd(x0)

(∫
Bd(p1)

dy
|x− y|N+2s

−
∫

Bd(p1)

dy
|x− ȳ|N+2s

)
∈ (0,+∞).

As a result, in U := Bd(x0) ∩H, we have that

Lw = Lv − δ

a

(
Lg + aL(χBd(p1)(x) − χBd(p1)(x̄)

))
� 0 − δ

a

(
C̄ − aC0

)
� 0,

as long as a � C̄/C0. This and (A.3) entail that w is an antisymmetric supersolution
of Lw = 0 in U and therefore, by proposition 2.7 (used here with c := 0), we deduce
that w � 0. In particular, if x ∈ Bd(x0) ∩H,

0 � w(x) = v(x) − δ

a
g(x),

thus, we conclude that

lim inf
ε↘0

v(p0 + εν)
ε

� δ

a
lim inf

ε↘0

g(p0 + εν)
ε

=
δ

a
lim inf

ε↘0

g(ε, 0, . . . , 0)
ε

=
δ

a
lim inf

ε↘0

εψ(ε)
ε

=
δ

a
,

which yields the desired result. �

It would be interesting to obtain lemma A.1 with d = dist(x0, ∂H). When s ∈
(0, 1

2 ) this can be achieved by following the proof of lemma A.1 and replacing
the function g used there with the solution of Lg0 = 1 in Bd(x0) and g0 = 0 out-
side Bd(x0), and then considering g as the antisymmetric extension of g0 outside H
(in this setting, the Lipschitz growth of g0 that follows from the results in [21]
suffices for having a bounded Lg and the desired linear growth from the boundary
of H).
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22 Z.-Q. Chen, P. Kim, R. Panki and Z. Vondraček. Boundary Harnack principle for Δ + Δα/2.
Trans. Amer. Math. Soc. 364 (2012), 4169–4205.

23 A. Ciomaga. On the strong maximum principle for second-order nonlinear parabolic integro-
differential equations. Adv. Differ. Equ. 17 (2012), 635–671.

24 F. Colasuonno and E. Vecchi. Symmetry and rigidity in the hinged composite plate problem.
J. Differential Equations 266 (2019), 4901–4924.

25 R. de la Llave and E. Valdinoci. A generalization of Aubry-Mather theory to partial dif-
ferential equations and pseudo-differential equations. Ann. Inst. H. Poincaré Anal. Non
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Δu + f(u) = 0 avec des fonctions f éventuellement discontinues. C. R. Acad. Sci. Paris
Sér. I Math. 330 (2000), 973–978.

36 A. Farina. Monotonicity and one-dimensional symmetry for the solutions of Δu + f(u) = 0
in R

N with possibly discontinuous nonlinearity. Adv. Math. Sci. Appl. 11 (2001), 811–834.

37 A. Farina and E. Valdinoci. 1D symmetry for solutions of semilinear and quasilinear elliptic
equations. Trans. Amer. Math. Soc. 363 (2011), 579–609.

38 A. Farina and E. Valdinoci. Rigidity results for elliptic PDEs with uniform limits an abstract
framework with applications. Indiana Univ. Math. J. 60 (2011), 121–141.

39 G. W. Gibbons and P. K. Townsend. Bogomol’nyi equation for intersecting domain walls.
Phys. Rev. Lett. 83 (1999), 1727–1730.

40 B. Gidas, B. W. M. Ni and L. Nirenberg. Symmetry and related properties via the maximum
principle. Commun. Math. Phys. 68 (1979), 209–243.

41 E. R. Jakobsen and K. H. Karlsen. Continuous dependence estimates for viscosity solutions
of integro-PDEs. J. Differ. Equ. 212 (2005), 278–318.

42 E. R. Jakobsen and K. H. Karlsen. A ‘maximum principle for semicontinuous functions’
applicable to integro-partial differential equations. NoDEA Nonlinear Differ. Equ. Appl.
13 (2006), 137–165.

https://doi.org/10.1017/prm.2020.75 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2020.75


Mixed local and nonlocal operators 1641

43 S. Jarohs and T. Weth. Asymptotic symmetry for a class of nonlinear fractional reaction-
diffusion equations. Discrete Contin. Dyn. Syst. 34 (2014), 2581–2615.

44 S. Jarohs and T. Weth. Symmetry via antisymmetric maximum principles in nonlocal
problems of variable order. Ann. Mat. Pura Appl. 195 (2016), 273–291.

45 G. Leoni. A first course in Sobolev spaces. Graduate studies in mathematics, 105.
(Providence, RI: American Mathematical Society, 2009), xvi+607.

46 L. Montoro, F. Punzo and B. Sciunzi. Qualitative properties of singular solutions to nonlocal
problems. Ann. Mat. Pura Appl. 197 (2018), 941–964.
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