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JANTE’S LAW PROCESS
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Abstract

Consider the process which starts with N ≥ 3 distinct points on Rd , and fix a positive
integer K < N . Of the total N points keep those N − K which minimize the energy
amongst all the possible subsets of size N − K , and then replace the removed points
by K independent and identically distributed points sampled according to some fixed
distribution ζ . Repeat this process ad infinitum. We obtain various quite nonrestrictive
conditions under which the set of points converges to a certain limit. This is a
very substantial generalization of the ‘Keynesian beauty contest process’ introduced in
Grinfeld et al. (2015), where K = 1 and the distribution ζ was uniform on the unit cube.
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1. Introduction and auxiliary results

We study a generalization of the model presented in Grinfeld et al. [2]. Fix an integer N ≥ 3
and some d-dimensional random variable ζ . Now arbitrarily choose N distinct points on Rd ,
d ≥ 1. The process in [2], called the Keynesian beauty contest process, is a discrete-time
process with the following dynamics: given the configuration of N points we compute its
centre of mass μ and discard the point most distant from μ; if there is more than one, we
choose each one with equal probability. Then this point is replaced with a new point drawn
independently each time from the distribution of ζ . In [2] it was shown that when ζ has a
uniform distribution on a unit cube, then the configuration converges to some random point
on Rd , with the exception of the most distant point.

The aim of this paper is to remove the assumption on the uniformity of ζ and obtain some
general sufficient conditions under which a similar convergence takes place. Additionally, it
turns out that we can naturally generalize the process by removing not just one but K ≥ 2 points
at the same time, and then replacing them with K new independent and identically distributed
(i.i.d.) points sampled from ζ . We also give the process we introduce a different name which
we believe describes its essence much better. The ‘Law of Jante’ is the concept that describes
a pattern of group behaviour towards individuals within Scandinavian countries that criticises
individual success and achievement as unworthy and inappropriate, in other words, it is better
to be ‘like everyone else’. The concept was created by Sandemose [5], in which the author
identified the Law of Jante as ten rules. This has been a very popular concept in Nordic countries
since then.

We use mostly the same notation as in [2]. Namely, let Xn = (x1, x2, . . . , xn) denote
a vector of n points xi ∈ Rd , and let μn(Xn) = n−1 ∑n

i=1 xi be the barycentre of Xn.
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Jante’s law process 415

Denote by ord(Xn) = (x(1), x(2), . . . , x(n)) the barycentric order statistics of x1, . . . , xn, so
that

‖x(1) − μn(Xn)‖ ≤ ‖x(2) − μn(Xn)‖ ≤ · · · ≤ ‖x(n) − μn(Xn)‖.
Here and throughout, ‖x‖ denotes the Euclidean norm in Rd , x · y is a dot product of two
vectors x, y ∈ Rd , and Br(x) = {y ∈ Rd : ‖y − x‖ < r} is an open ball of radius r centred
at x. As in [2], we also define, for Xn = (x1, x2, . . . , xn) ∈ Rdn,

Gn(Xn) = Gn(x1, . . . , xn)

= 1

n

n∑
i=1

i−1∑
j=1

‖xi − xj‖2

=
n∑

i=1

‖xi − μn(Xn)‖2

= inf
y∈Rd

n∑
i=1

‖xi − y‖2.

We can think of Gn(Xn) as a measure of the ‘diversity’ among individuals with properties
x1, . . . , xn. In physics, Gn often corresponds to the moment of inertia; however, it can be
viewed as ‘the energy’ from the perspective of potential theory. For simplicity, we use this term
in the current paper.

In [2], where K = 1, the authors called x(n) the extreme point of Xn, that is, a point of
x1, . . . , xn farthest from the barycentre, and defined the core of Xn as X′

n = (x(1), . . . , x(n−1)),
the vector of x1, . . . , xn with (one of) the extreme point removed. They also defined Fn(Xn) =
Gn−1(X

′
n) and F(t) = FN(X(t)).

In our paper, when K ≥ 1, we redefine the core as the subset of x1, . . . , xN containing N−K

elements which minimizes the diversity of the remaining individuals, that is, the subset which
minimizes

min{y1,...,yN−K }⊂{x1,...,xN } GN−K(y1, . . . , yN−K).

We will show below that, in fact, when K = 1 both definitions coincide.
The process runs as follows. Let X(t) = {X1(t), . . . , XN(t)} be distinct points in Rd .

Given X(t), let X′(t) be the core of X(t) and replace X(t) \ X′(t) by K i.i.d. ζ -distributed
random variables so that

X(t + 1) = X′(t) ∪ {ζt+1;1, . . . , ζt+1;K},
where ζt;j , t = 1, 2, . . . , j = 1, 2, . . . , K , are i.i.d. random variables with a common
distribution ζ . In the case where there is more than one element in the core, that is, a few
configurations which minimize diversity, we chose any element with equal probability, precisely
as in [2]. Now let F(t) = Gn−K(X′(t)).

Finally, to complete the specification of the process, we allow the initial configuration X(0)

to be arbitrary or random, with the only requirement that all the points of X(0) must lie in the
support of ζ .

The following statement links the K = 1 case with the general K ≥ 1.

Lemma 1. If K = 1 then the only point not in the core is the one which is furthermost from
the centre of mass of X.
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Proof. Let X = (x1, . . . , xN). Without loss of generality (w.l.o.g.) assume that
∑N

i=1 xi =
0 ∈ Rd and, thus, the centre of mass of X is located at 0. Here, L consists of all subsets
of {1, . . . , N} containing just one element. If we discard the lth point, denoted by μl =
1/(N − 1)

∑
i 
=l xi = −xl/(N − 1), we obtain

G(l, X) =
N∑

i=1

‖xi − μl‖2 − ‖xl − μl‖2

=
N∑

i=1

‖xi‖2 + N‖μl‖2 − 2μl ·
N∑

i=1

xi − ‖xl − μl‖2

=
N∑

i=1

‖xi‖2 + N
‖xl‖2

(N − 1)2 − ‖xlN‖2

(N − 1)2

= −‖xl‖2 N

(N − 1)2 +
N∑

i=1

‖xi‖2.

Therefore, the minimum of G(l, X) is achieved by choosing an xl with the largest ‖xl‖, that
is, the furthermost from the centre of mass. �
Corollary 1. If K = 1, Jante’s law process coincides with the process studied in [2].

The following statement is a trivial consequence of the definition of F .

Lemma 2. For any 1 ≤ K ≤ N − 2 and any distribution of ζ , we have F(t + 1) ≤ F(t).

In the K = 1 case, the above statement coincides with Corollary 2.1 of [2].

Remark 1. It is worth noting that discarding X∗, in general, does not mean necessarily
discarding the K furthest points from the centre of mass of X, unlike in the K = 1 case.
For example, let d = 1, N = 5, K = 3, and set X = (−24, −19, −14, 28, 29). Then the
centre of mass is at μ = 0 and, thus, points 28 and 29 have the largest and the second largest
distance from μ, while it is clear that the energy is minimized by keeping exactly these two
points in the core and discarding the rest.

Finally, define the range of the configuration: for n ≥ 2 and x1, . . . , xn ∈ Rd , write

Dn(x1, . . . , xn) = max
1≤i,j≤n

‖xi − xj‖.
The following statement is taken from [2, Lemma 2.2].

Lemma 3. Let n ≥ 2 and x1, . . . , xn ∈ Rd . Then

1
2Dn(x1, . . . , xn)

2 ≤ Gn(x1, . . . , xn) ≤ 1
2 (n − 1)Dn(x1, . . . , xn)

2.

Let D(t) = DN−K(X′(t)). From Lemma 3, we have√
2

N − K − 1
F(t) ≤ D(t) ≤ √

2F(t). (1)

From Lemmas 2 and 3, it also follows immediately that

D(t + 1) ≤ √
2F(t) ≤ D(t)

√
N − K − 1. (2)

In addition, let μ′(t) = μN−K(X′(t)) be the centre of mass of the core.
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Assumption 1. We assume that 2K < N .

Observe that if Assumption 1 is not fulfilled then all the points of the core can migrate
large distances and that F = 0 does not necessarily imply that the configuration stops moving.
For example, one can take N = 4, K = 2, and ζ ∼ Bernoulli(p) to see that the core jumps
from 0 to 1 and back infinitely often almost surely (a.s.).

In the other case, the new core must contain at least one point of the old core, and in the
following lemma we show that if newly sampled points are far from the core, they immediately
get rejected.

Lemma 4. Under Assumption 1, if all the distances between K newly sampled points and the
points of the core are more than C = D

√
N − K − 1, then X′(t + 1) = X′(t).

Proof. Since N − 2K ≥ 1, the new core X′(t + 1) must contain at least one point of the
old core X′(t). By (2), D(t + 1) ≤ D(t)

√
N − K − 1 and, therefore, if one of the new points

is in the new core, it should be no further than D(t)
√

N − K − 1 from one of the points of the
old core. �

Finally, we use the following notation. For any two sets A, B ⊂ Rd , let

dist(A, B) = inf
x∈A, y∈B

‖x − y‖.

We write X′(t) → ∞ if min{‖x‖, x ∈ X′(t)} = dist(X′(t), 0) → ∞, otherwise we write
X′(t) 
→ ∞. Observe that the ‘convergence to infinity’ is equivalent to the Kuratowski conver-
gence (or convergence in Fell topology) to the empty set. We will also write X′(t) → φ ∈ Rd

if all the elements of the set of X′(t) converge to φ as t → ∞.
The rest of the paper is organized as follows. First, in Section 2, we show that a.s. F(t) → 0

or X′(t) goes to ∞ (Theorem 1). Next, in Section 3, we show that under some conditions either
all elements of X′(t) converge to a point, or X′(t) → ∞ (Theorem 2). In Section 4 we deal
with the case d = 1 and K = 1, where we obtain, in particular, that X′(t) converges a.s. to a
finite point for many distributions, as well as strengthen Theorem 2 (see Theorems 3 and 4).

2. Shrinking

Let ζ be any random variable on Rd . As usual, define the support of this random variable as

supp ζ = {A ∈ Rd : P(ζ ∈ A) > 0} = {x ∈ Rd : for all ε > 0, P (ζ ∈ Bε(x)) > 0};
see, for example, [4]. It turns out that the following statement, which is probably known, is
true.

Proposition 1. It holds that supp ζ is bounded if and only if there exists some functionf : R+ →
R+ such that, for any x ∈ supp ζ ,

P(ζ ∈ Bδ(x)) ≥ f (δ) for all δ > 0.

Proof. Suppose that such a function exists, but the support of ζ is not bounded. Fix any
� > 0. Then there must exist a infinite sequence of points {xn}∞n=1 ⊆ supp ζ , such that
‖xi − xj‖ > 2�, whenever i 
= j . Since the sets {B�(xn)} are disjoint, this would imply that

P(ζ ∈ Rd) ≥ P

( ∞⋃
n=1

{ζ ∈ B�(xn)}
)

≥
∞∑

n=1

f (�) = ∞,

which is impossible.
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Conversely, assume that supp ζ is bounded. For all δ > 0, define

f (δ) = inf
x∈supp ζ

P(‖ζ − x‖ ≤ δ).

We will show that f (δ) > 0. Indeed, if not, there exists a sequence {xn} such that P(‖ζ −xn‖ ≤
δ) → 0 as n → ∞. Since the support of ζ is compact, {xn} must have a convergent subsequence;
w.l.o.g. we can assume that it is {xn} itself and, thus, there is an x such that xn → x, and there
exists N such that ‖xn − x‖ < δ/2 for all n ≥ N . On the other hand, for these n,

P

(
‖ζ − x‖ ≤ δ

2

)
≤ P(‖ζ − xn‖ ≤ δ)

by the triangle inequality. Since the right-hand side converges to 0, this implies P(‖ζ − x‖ ≤
δ/2) = 0 so x 
∈ supp ζ , which contradicts the fact that x = limn→∞ xn ∈ supp ζ by the
definition of the support. �

Theorem 1. Given any distribution ζ on Rd , for any N ≥ 3 and 1 ≤ K ≤ N − 2, we have

P({F(t) → 0} ∪ {X′(t) → ∞}) = 1.

In particular, if ζ has compact support then F(t) → 0 a.s.

Note that F(t) → 0 is equivalent to D(t) → 0.

Proof of Theorem 1. We first make use of the following lemma.

Lemma 5. Suppose we are given a bounded set S ∈ Rd such that P(ζ ∈ S) > 0 and N − K

points x1, . . . , xN−K in (supp ζ ) ∩ S satisfying F({x1, . . . , xN−K}) > ε1. Let ε2 = ε1/2(N −
K)2. Then there exists a positive constant σ , depending only on ε1, S, K , and N , such that

P(F ({ζ1, . . . , ζK, x1, . . . , xN−K}′
) < F({x1, . . . , xN−K}) − ε2) ≥ σ.

Proof. We start with the K = 1 case. Denote

D = max
1≤i, j≤N−K

‖xi − xj‖ and S∗ = {x : dist(x, S) < D
√

N − K − 1},

then the set S∗ is a compact set such that {ζ, x1, . . . , xN−1}′ ∈ S∗ regardless of where the point
ζ is sampled, using Lemma 4. Since S∗ is compact, it follows from Proposition 1 applied
to ζ · 1{ζ∈S} that there is an f : R+ → R+ such that, for any x ∈ supp ζ ∩ S∗, we have
P(ζ ∈ Bδ(x)) ≥ f (δ). Assume that the core centre of mass is μ′ = 0, and that (w.l.o.g.)
‖x1‖ ≥ ‖xl‖ for all 1 ≤ l ≤ N − 1. Let μ′ = (y + x2 + · · · + xN−1)/(N − 1) and consider
the function

h(y) =
N−1∑
i=2

‖xi − μ′‖2 + ‖y − μ′‖2,

continuous in y. Pick a point xj from {x2, . . . , xN−1} such that ‖x1 − xj‖ ≥ D/2, otherwise
‖xi − xj‖ ≤ ‖x1 − xj‖ + ‖x1 − xi‖ < D for all indices i, j contradicting the definition of D.
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Consider the configuration {xj , x2, . . . , xN−1}, where we have removed the point x1 and
replaced it with xj . This configuration has centre of mass μ′ = (x2+· · ·+xN−1+xj )/(N−1) =
(xj − x1)/(N − 1). The Lyapunov function evaluated for this configuration is precisely h(xj ).
Denote Fold = F({x1, . . . , xN−1}). Then

h(xj ) =
N−1∑
i=2

‖xi − μ′‖2 + ‖xj − μ′‖2

=
N−1∑
i=1

‖xi − μ′‖2 + ‖xj − μ′‖2 − ‖x1 − μ′‖2

=
N−1∑
i=1

(‖xi‖2 + ‖μ′‖2 − 2xiμ
′) + ‖xj‖2 + ‖μ′‖2 − 2xj · μ′ − ‖x1‖2 − ‖μ′‖2

+ 2x1μ
′

=
N−1∑
i=1

‖xi‖2 + (N − 1)‖μ′‖2 + ‖xj‖2 − ‖x1‖2 − 2(xj − x1) ·
(

xj − x1

N − 1

)

≤ Fold + ‖xj − x1‖2

N − 1
− 2

‖xj − x1‖2

N − 1

≤ Fold − D2

4(N − 1)

≤
(

1 − 1

2(N − 1)2

)
Fold,

where the last inequality follows from (1). Hence, for some δ > 0, if ‖y − xj‖ ≤ δ then
h(y) < (1 − 1/4(N − 1)2)Fold. So if ζ is sampled in Bδ(xj ) then we have a substantial
decrease and this is with probability bounded below by f (δ), the result is thus proved for the
K = 1 case with σ = f (δ).

The general case can be reduced to the K = 1 case as follows. Set N ′ = N − K + 1
and replace all N by N ′ in the arguments above. The decrease of F in this case will be at
least ε2(N

′). Indeed, since, if at least one particle falls in the ball {y : ‖y − xj‖ ≤ δ}, we could
choose the sub-configuration, where exactly one point falls in this ball while x1 is removed,
and since we are taking the minimum over all available configurations, the decrease has to be
greater than or equal to for this specific choice. �

Assume that P(X′(t) → ∞) < 1, otherwise Theorem 1 follows immediately. Recall that
Br(0) is a ball of radius r centred at the origin and note that

{X′(t) 
→ ∞} =
∞⋃

r=1

{X′(t) ∈ Br(0) i.o.} =
∞⋃

r=1

Gr, (3)

where

Gr =
⋂
k≥0

{τk,r < ∞}, τk,r = inf{t : t > τk−1,r , X
′(t) ∈ Br(0)}, k = 1, 2, . . . ,

with the convention that τ0,r = 0, inf ∅ = +∞, and that if τk,r = +∞ then τk′,r = +∞ for
all k′ ≥ k. We use the abbreviation ‘i.o.’ for infinitely often.
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By the monotonicity of F , we have F(t) ↓ F∞ ≥ 0. We show that, in fact,

P({X′(t) 
→ ∞} ∩ {F∞ > 0}) = 0, (4)

which is equivalent to the statement of the theorem.
Let n0 be some integer larger than 4(N−K)2, this quantity being related to ε2 from Lemma 5.

Since

{F∞ > 0} =
∞⋃

n=n0

{
F∞ >

1

n

}
=

∞⋃
n=n0

∞⋃
m=0

{F∞ ∈ In,m},

where In,m = [1/n+M/n2, 1/n+(m+1)/n2) are disjoint sets for each fixed n. Consequently,
taking into account (3), to establish (4) it suffices to show that, for each fixed n, m, and r ,

P(Gr ∩ {F∞ ∈ In,m}) = 0.

Let Ak = {F(τk,r + 1) ∈ In,m} ∩ {τk,r < ∞}. Then, obviously,

Gr ∩ {F∞ ∈ In,m} ⊂
⋃
k0≥0

⋂
k≥k0

Ak. (5)

We will now show that, for all k0, P(
⋂

k≥k0
Ak) = 0, which will imply that the probability of

the right-hand side and, hence, that of the left-hand side of (5) is 0. Indeed, for any positive
integer L,

P

(⋂
k≥k0

Ak

)
≤ P

(k0+L⋂
k=k0

Ak

)
= P(Ak0)

t0+L∏
k=k0+1

P

(
Ak

∣∣∣∣ k−1⋂
s=k0

As

)
.

We now proceed to calculate the conditional probabilities, P(Ak | ⋂k−1
s=k0

As). Setting ε1 =
1/n, letting S be the ball of radius

√
2(1/n + (m + 1)/n2)(1 + √

N − K − 1) centred at 0 in
Lemma 5, and using the bound (1), we obtain

ε2 = ε1

4(N − K)2 = 1

4n(N − K)2 >
1

n2

and, thus, with probability at least σ , given by Lemma 5, F will exit In,m, that is,

P(F (τk,r + 1) ∈ In,m | F(τk0,r + 1), F (τk0+1,r + 1), . . . , F (τk−1,r + 1) ∈ In,m, τk,k < ∞)

≤ 1 − σ,

since ζτk,r+1;j are all independent from Fτk,r
for 1 ≤ j ≤ K .

From this we can conclude that P(Ak | ⋂k−1
s=k0

As) ≤ 1 − σ yielding P(
⋂

k≥k0
Ak) ≤

(1 − σ)L for all L ≥ 1. Letting L → ∞, we see that P(
⋂

k≥k0
Ak) = 0 which, in turn,

proves (4). �

Corollary 2. Suppose that Assumption 1 holds, d = 1, and ζ has a support which is nowhere
dense. Then

P({X′(t) → φ for some φ} ∪ {X′(t) → ∞}) = 1.
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Proof. Assume that X′(t) 
→ ∞ occurs and for a < b define

Ea,b =
{

lim inf
t→∞ x(k)(t) < a

}
∩
{

lim sup
t→∞

x(k)(t) > b
}
,

where k ∈ {1, 2, . . . , N − K} and x(k) is the kth point of the core. By Theorem 1, F(t) → 0,
implying, in turn, that D(t) → 0 and, hence, by Lemma 4,

dist(X′(t), X′(t + 1)) = max
1≤i, j≤N−K

|x(i)(t) − x(j)(t + 1)| → 0 as t → ∞. (6)

Since supp ζ is nowhere dense, there exist x ∈ (a, b) and ε > 0 such that (x − ε, x + ε) ⊆
(supp ζ )c. However,

Ea,b ⊆ dist(X′(t), X′(t + 1)) > 2ε i.o.},
implying, from (6), that P(Ea,b) = 0. Since this holds for all a and b, X′(t) must converge.
This completes the proof. �

3. Convergence of the core

Definition 1. A subset A ⊆ supp ζ is regular with parameters δA ∈ (0, 1), σA > 0, and
rA > 0 if

P(ζ ∈ BrδA
(x) | ζ ∈ Br(x)) ≥ σA for any x ∈ A, r ≤ rA. (7)

Assumption 2. For any x ∈ supp ζ , there exists some γ = γ (x) such that the set Bγ (x) ∩
(supp ζ ) is regular.

Remark 2. We can iterate (7) in order to establish

P(ζ ∈ Brδk
A
(x) | ζ ∈ Br(x)) ≥ σk

A, k ≥ 2.

Hence, it is not difficult to check that if Definition 1 holds for some δA ∈ (0, 1) it holds for all
δ ∈ (0, 1), albeit possibly with a smaller σA.

Lemma 6. Under Assumption 2, for any compact subset A ⊂ supp ζ and δ ∈ (0, 1), there
exist rA and σA such that A is regular with parameters δ, σA, and rA.

Proof. The union
⋃

x∈A Bγ (x)(x) is an open covering of A, where Bγx (x) is the regular ball
centred in x using Assumption 2. Since A is compact, it follows that there is a finite subcover
of A. In other words, there exist sequences

{xk}Mk=1 ⊆ A,

{σk}Mk=1

{rk}Mk=1
{δk}Mk=1

{γk}Mk=1

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

⊆ R+

such that A ⊆ ⋃M
k=1 Bγk

(xk), and P(ζ ∈ Brδk
(x) | ζ ∈ Br(x)) ≥ σk for x ∈ Bγk

(xk) and
r ≤ rk . Now let σ ′ = min1≤k≤M σk , δ′ = max1≤k≤M δk , and r ′ = min1≤k≤M rk . It follows
that, for any x ∈ A,

P(ζ ∈ Brδ′(x) | ζ ∈ Br(x)) ≥ σ ′,
when r ≤ r ′. We conclude by noting that, by Remark 2, there exists σA such that, for each
x ∈ A,

P(ζ ∈ Brδ(x) | ζ ∈ Br(x)) ≥ σA. �
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Figure 1: The shell G.

Theorem 2. Under Assumptions 1 and 2,

P({X′(t) → φ for some φ ∈ Rd} ∪ {X′(t) → ∞}) = 1.

Proof. First, P({there exists limt μ′(t)}�{X′(t) → φ for some φ}) = 0, since, if μ′(t)
converges, then X′(t) 
→ ∞, which implies D(t) → 0 by Theorem 1, yielding convergence
of the core to the same point.

From elementary calculus, it follows that if neither the centre of mass converges to a
finite point nor the configurations goes to ∞, then there must exist two arbitrarily small
nonoverlapping balls (w.l.o.g. centred at rational points) which are visited by μ′ i.o., that is,

{
lim

t
μ′(t) does not exist

}
∩ {X′(t) 
→ ∞} =

∞⋃
n=1

⋃
q1,q2∈Qd , ‖q1−q2‖≥6/n

Eq1,q2,n, (8)

where
Eq1,q2,n = {μ′(t) ∈ B2/n(q1) i.o.} ∩ {μ′(t) ∈ B2/n(q2) i.o.}.

To show (8), note that {limt μ′(t) does not exist} ∩ {X′(t) 
→ ∞} is equivalent to the existence
of at least two distinct points in the set of accumulation points of {μ′(t)}∞t=1, say x1 and x2. Now
take q1, q2 ∈ Qd such that ‖qj − xj‖ ≤ 1/n, j = 1, 2, then μ′ ∈ B1/n(xj ) ⊆ B2/n(qj ), j =
1, 2, i.o.; moreover, ‖q1 − q2‖ ≥ 8/n − 1/n − 1/n = 6/n, as required. Thus, it suffices to
prove that P(Eq1,q2,n) = 0 for all n ∈ N and q1, q2 ∈ Qd such that ‖q1 − q2‖ ≥ 6/n in order
to show that the left-hand side of (8) has measure zero, and then the theorem will follow.

For simplicity, w.l.o.g. assume that q1 = 0 and denote E = E0,q2,n, R = 2/n, and G =
(supp ζ ) ∩ (B2R(0) \ BR(0)). Since every path from B2/n(0) to B2/n(q2) must cross G, on E

the shell G must be crossed i.o. (by this we mean that ‖μ′(t)‖ > 2R i.o. and ‖μ′(t)‖ < R i.o.);
see Figure 1.

Since X′(t) 
→ ∞ on E, it follows from Theorem 1 that F(t) → 0 a.s. on E and therefore,
additionally, X′(t) ⊂ G i.o. (the core points cannot jump over the set G once the spread is
sufficiently small); moreover, the set G is regular by Lemma 6. We also have the following
result.

Lemma 7. Under Assumption 2, given N − K points x1, . . . , xN−K in G, there are constants
a, σ ∈ (0, 1) depending on N , K , and σG only, such that

P({F({ζ1, . . . , ζK, x1, . . . , xN−K}′) ≤ aF({x1, . . . , xN−K})}) ≥ σ.

Remark 3. Note the similarity of this statement with Lemma 5; the difference here, however,
comes from the fact that the probability of decay σ does not depend on the value of F , thanks
to Assumption 2.

Proof. We start with the K = 1 case. Due to the translation invariance of F we can
assume w.l.o.g. that

∑N−1
i=1 xi = 0. Let D = maxi,j∈{1,...,N−1} ‖xi −xj‖, assume, additionally,
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that ‖x1‖ ≥ ‖xk‖ for all k, and take xj such that ‖x1 − xj‖ ≥ D/2. Let

μ′ = x2 + · · · + xN−1 + ζ

N − 1
= ζ − x1

N − 1
and Fold = F({x1, . . . , xN−1}).

If we take ζ ∈ B(1/8)
√

Fold/N (x1) then

‖ζ − x1‖ ≥ ‖x1 − xj‖ − ‖ζ − xj‖ ≥ D

2
− 1

8

√
Fold

N
.

From this we can deduce that ‖ζ − x1‖2 ≥ D2/8 ≥ Fold/4(N − 1) for some fixed a ∈ (0, 1)

(which is only a function of N and K). By Lemma 4, the event {ζ 
∈ BH
√

2Fold
(xj )}, where

H = √
N − K − 1, implies that {ζ1, x1, . . . , xN−1}′ = {x1, . . . , xN−1} (that is, ζ is eliminated)

and by Lemma 6 we can assume that δ and σ are chosen such that

P(ζ ∈ B(1/8)
√

FoldN(xj ) | ζ ∈ BH
√

2Fold
(xj )) ≥ σ.

Skipping the first few steps that are identical to those in Lemma 5, we obtain the following
bound:

F({ζ, x2, . . . , xN−K}) =
N−1∑
i=2

‖xi − μ′‖2 + ‖ζ − μ′‖2 ≤
(

1 − 1

4(N − 1)2

)
Fold.

Since F({ζ, x2, . . . , xN−K}) < Fold, one of the points x1, . . . , xN−1 must be discarded. Thus,
in the K = 1 case, we can pick a = 1 − 1/4(N − 1)2. For general K , one can make an
argument analogous to the one made at the end of the proof of Lemma 5. �

We return to the proof of Theorem 2. Define, for t ≥ 0,

η(t) = inf{s ≥ t + 1 : X′(s) 
= X′(s − 1) or F(s) = 0}.
(Note that, by definition, if F(η(t)) = 0, that is, all the points of the core have converged to a
single point, then η(t + 1) = η(t) + 1. So from now on we assume that this is not the case.)
Fix some large M ≥ 5 such that

aσM ≤ 1
16 ,

define τ0 = τ
(M)
0 such that

X′(τ0) ⊆ B7R/4(0) \ B5R/4(0), F (τ0) ≤ R2

M24M
,

and set τi = η(τi−1), i = 1, 2, . . . (that is, the next time the core changes). Since F(t) → 0
on E, and we cross G i.o., we must visit the region B7R/4(0) \ B5R/4(0) i.o. as well, therefore,
E ⊆ AM = {τ (M)

0 < ∞} for all M ∈ N.
For m ≥ 0, define

A′
m = A′

m,M =
{
F(τ(m+M)2) ≤ R2

M242m+M

}
,

A′′
m = A′′

m,M = {X′(τ(m+M)2) ⊆ B[2−2−m−2]R(0) \ B[1+2−m−2]R(0)}, (9)

AM = Am,M = Am−1 ∩ (A′
M ∩ A′′

M).

Note that the definition is even consistent for m = 0 if we define A−1 = {τ0 < ∞} and that, in
principle, Am, A′

m, and A′′
m also depend on M , but we omit the second index where this does

not create a confusion.
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Lemma 8. It holds that P(Am+1 | AM) ≥ 1 − e−σ 2(m+M), m = 0, 1, 2, . . . .

Proof. First, note that Am ⊆ A′′
m+1. Indeed, since 2K < N , we must have, in the core of

the new configuration, at least one point from the previous core (this is not true, in general,
if 2K ≥ N ), so

min
x∈X′(t+1)

‖x‖ ≥ min
x∈X′(t)

‖x‖ − D(t + 1)

and, as a result on Am, we have

dist(X′(τ(m+M+1)2), BR(0)) = min
x∈X′(τ

(m+M+1)2 )
‖x‖ − R

≥ min
x∈X′(τ

(m+M)2 )
‖x‖ − R −

τ
(m+M+1)2∑

t=τ
(m+M)2+1

D(t)

≥ min
x∈X′(τ

(m+M)2 )
‖x‖ − R − [2(m + M) + 1]

√
2F(τ(m+M)2)

≥
(

1 + 1

2m+2 − 1 − 2(m + M) + 1√
M242m+M

)
R

≥
(

1

2m+2 − 1

2m+3

2(m + M) + 1

M2M+m−3

)
R

≥ R

2m+3

since, for all j ≥ 0, we have D(t + j) ≤ √
2F(t) by Lemmas 2 and 3, and (2(m + M) +

1)/M2M+m−3 < 1 for all m ≥ 0 as long as M ≥ 5. By a similar argument

dist(X′(τ(m+M+1)2), (B2R(0))c) = 2R − max
x∈X′(τ

(m+M+1)2 )
‖x‖ ≥ R

2m+3

and, hence, A′′
m+1 occurs.

Consequently, when AM occurs, X′(t) ⊆ G for all t ∈ (τ(m+M)2 , τ(m+1+M)2). At the same
time the core undergoes N = 2(m+M)+1 changes between the times τ(m+M)2 and τ(m+M+1)2 .
During each of these changes the function F does not increase, and with probability at least σ

decreases by a factor at least a < 1 regardless of the past, by Lemma 7. Hence,

P(F (τ(m+M+1)2) > aσN/2F(τ(m+M)2)) ≤ P

(
Y1 + · · · + YN <

σN

2

)
,

where Yi are i.i.d. Bernoulli(σ ) random variables. It suffices now to obtain a bound on the
right-hand side, since aσN/2 ≤ aσ(m+M) ≤ aσM ≤ 1

16 . However, the bound for the sum of Yi

follows from the Hoeffding inequality [3]:

P

(
Y1 + · · · + YN <

σN

2

)
≤ exp

(
−σ 2N

2

)
≤ exp(−σ 2(m + M)).

Consequently, A′
m+1 and, hence, Am+1 also occur with probability at least exp(−σ 2(m+M)).

This completes the proof. �
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We continue with the proof of Theorem 2. Note that, for a fixed M , Am,M is a decreasing
sequence of events. Let ĀM = ⋂∞

m=0 Am,M . Lemma 8 implies, by induction on m, that

P(ĀM) = P(A0,M)

∞∏
m=1

P(Am,M | Am−1,M)

≥ P(A0,M)

∞∏
m=1

(1 − e−σ 2(M+m))

≥ P(A0,M)

[
1 −

∞∑
m=1

e−σ 2(M+m)

]

≥ P(A0,M)[1 − σ−2e−σ 2M ].
It is straightforward to see that on ĀM the points of the core X′(t) do not ever leave the set
G after time τ0, hence, supt>τ0

‖μ′(t)‖ < 3R/4 on ĀM . At the same time on E, we must
visit B2/n(q2) which lies outside of the convex hull of G, thus, supt>τ0

‖μ′(t)‖ > 3R/4 and,
therefore, E ∩ ĀM = ∅. Since E ⊆ A0,M and ĀM ⊆ A0,M , we have

P(E) = P(E \ ĀM)

≤ P(A0,M \ ĀM)

= P(A0,M) − P(ĀM)

≤ σ−2e−σ 2MP(A0,M)

≤ σ−2e−σ 2M for any M ≥ 0.

Since M can be arbitrarily large, we see that P(E) = 0. �

4. The K = d = 1 case

In the K = 1 case and the space R1, we can obtain some more detailed results, given some
further assumptions. If d = 1, we also write X′(t) → +∞ whenever limt→∞ min{x, x ∈
X′(t)} = ∞; similarly, write X′(t) → −∞ whenever limt→∞ max{x, x ∈ X′(t)} = −∞.

Assumption 3. (At most exponential oscillations in the tail.) Suppose that there exist some
R+, R− ∈ R, and a constant C ≥ 0 such that, for any a ≥ R+ and u > 0, we have

P(a + u < ζ ≤ a + 2u) ≤ CP(a < ζ ≤ a + u).

Similarly, for all a ≤ R− and u < 0, we have

P(a + 2u < ζ ≤ a + u) ≤ CP(a + u < ζ ≤ a).

Remark 4. Observe that nearly all common continuous distributions satisfy this assumption
(exponential, normal, Pareto, and so on). An example of a distribution for which the assumption
is not fulfilled is, for example, one with the density

f (x) =
{

1
2 e−|x|, �x� is even,

e−2|x| otherwise,

which has support on the whole R.
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By iterating the property in Assumption 3 for a ≥ R+, we find that, for k = 1, 2, . . . ,

P(ζ ∈ (a + (k − 1)u, a + ku]) ≤ Ck−1P(ζ ∈ (a, a + u]).
It also follows that if we take R+ < a < b < c then

P(ζ ∈ (b, c]) ≤ P(ζ ∈
�(c−a)/(b−a)�⋃

k=1

(a + (k − 1)(b − a), k(b − a)])

≤
�(c−a)/(b−a)�∑

k=1

Ck−1P(ζ ∈ (a, b]). (10)

Using (10) one can compare the probabilities of selecting a new point in the intervals of different
length and/or that are not consecutive; we see that in this case the upper bound we obtain is a
polynomial in C.

Remark 5. The assumption is somewhat related to the concept of O-regular variation (see [1,
p. 65]) in the following sense. If we let g(x) = P(R+ < ζ ≤ R+ + x) for x > 0, then we see
from (10) that lim supx→∞ g(tx)/g(x) ≤ ∑�t�

k=1 Ck−1 for t ≥ 1. Therefore, g is an O-regularly
varying function; moreover, if the support of ζ is R+ and R+ = 0, then the distribution function
of ζ itself is an O-regularly varying function.

Assumption 3 immediately implies that the tail region is free of isolated atoms; moreover, it
turns out that the tail region is free of atoms altogether.

Claim 1. Suppose that Assumption 3 holds. Then P(ζ = x) = 0 for every x ∈ (−∞, R−) ∪
(R+, ∞).

Proof. Assume to the contrary that there exists x ∈ (−∞, R−) ∪ (R+, ∞) such that P(ζ =
x) > 0. Since P(ζ = x) = P(

⋂∞
n=1{ζ ∈ (x − 1/n, x]}), by the continuity of probability, it

follows that there exists N such that P(ζ ∈ (x − 1/N, x]) ≤ (1/2C + 1)P(ζ = x), which
implies that P(ζ ∈ (x − 1/N, x)) ≤ 1/2CP(ζ = x). Therefore, we have

P

(
ζ ∈

(
x − 1

2N
, x − 1

N

])
≤ P

(
ζ ∈

(
x − 1

N
, x

))

≤ P(ζ = x)

2C

≤ 1

2C
P

(
ζ ∈

(
x − 1

2N
, x

])
,

which contradicts Assumption 3. �
Theorem 3. Suppose that K = 1 and ζ satisfies Assumption 3 for some R+ and R−. Then
X′ 
→ ∞ a.s. and, consequently, by Theorem 1 we have F(t) → 0 a.s. Additionally,{

lim inf
t→∞ x(1)(t) > R+

}
∪
{

lim sup
t→∞

x(N−1)(t) < R−
}

⊆ {X′(t) → φ for some φ}

except perhaps a set of measure 0. Finally, if R− > R+ then P(X′(t) → φ for some φ) = 1.

Remark 6. The last part of Theorem 3 applies to many distributions for which supp ζ = R, for
example, to normal, Laplace, or Cauchy distributions (one can take R+ = −1 and R− = +1).
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Proof. We begin with the first statement of the theorem. Given some L ≥ 1, from now on
assume that AL = {√2F(0) < L/2, |ζ0;k| < L, k = 1, . . . , N} occurs, this will imply that
D(t) ≤ L/2 for all t . Since the distance between any two points in the core at time t is bounded
by D(t), it follows that if one core point diverges to +∞ so must all the other points. Similarly,
if one of the points diverges to −∞ so must all of the rest. Therefore, it is enough to show that
P({X′(t) → +∞} ∪ {X′(t) → −∞}) = 0. We will now prove that X′(t) 
→ +∞ a.s.; the
proof that X′(t) 
→ −∞ a.s. is completely analogous.

Let πa = inf{t : √
2F(t) < a/2}, η1,a = τ1,a = πa , and, for k > 1, let

τk,a = inf{t > ηk−1,a : x(1)(t) > R+ + a},
ηk,a = inf{t > τk,a : x(1)(t) < R+ + a}, γk,t,a = min(ηk,a, τk,a + t),

where x(1)(t) denotes the left-most point of the core at time t . If τk,a = ∞ for some k then we
set ηm,a = τm,a = ∞ for all m ≥ k. It is obvious that on AL, πL = 0. Furthermore,

{τk,L = ∞} ∩ {ηk−1,L < ∞} ⊆
{

lim sup
t→∞

x(1)(t) ≤ R+ + a
}

⊆ {X′(t) 
→ +∞}.

Let Ck = {ηk,L < ∞} and note that

( ∞⋂
k=2

Ck

)
⊆ {X′(t) ⊆ BR++2L(0) i.o.} ⊆ {X′(t) 
→ +∞}.

Since (
⋂∞

k=1 Ck) ⊆ {X′(t) 
→ +∞}, if we could also show that

P

(( ∞⋂
k=2

Ck

)c

∩ {X′(t) → +∞}
)

= P

(( ∞⋃
k=2

{ηk,L = ∞}
)

∩ {X′(t) → +∞}
)

= 0, (11)

then it would follow that P(AL ∩ {X′(t) 
→ +∞}) = P(AL) and since P(
⋃∞

L=1 AL) = 1, it
would then follow from the continuity of probability that P(X′(t) → +∞) = 0.

Now we show that P({ηk,L = ∞} ∩ {X′(t) → +∞}) = 0 for every k > 1, which will
establish (11). For this purpose (and for the purpose of showing the other statements of the
theorem), we will need the following lemma.

Lemma 9. For some fixed k > 1 and a > 0, let

hc(s) = (
√

F(s) + c[μ′(s) + max(0, −R+)]) 1AL
.

Then there exists c > 0 such that limt→∞ hc(γk,t,a) exists a.s. on τk,a < ∞.

Proof. We will show that hc(γk,t,a) is a nonnegative supermartingale with respect to
{Fγk,t,a

}t≥0, and then the result will follow from the supermartingale convergence theorem.
In order to simplify the notation, from now on we set γt = γk,t,a throughout the proof of this
lemma. First, observe that the positivity of hc(γt ) is ensured by the term c max(0, −R+), and
by the definition of γt and πa . Therefore, from now on we can assume that R+ ≥ 0 w.l.o.g.
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We have

E|hc(s)| ≤ E[(√F(s) + c|μ′(s)|) 1AL
]

≤ E

[(√
F(0) + c

(
|μ′(0)| +

s∑
l=1

|μ′(l) − μ′(l − 1)|
))

1AL

]

≤ E

[(
L

2
√

2
+ c

(
|μ′(0)| +

s∑
l=1

D(l)

))
1AL

]

≤ E

[(
L

2
√

2
+ c

(
L +

s∑
l=1

√
2F(l)

))
1AL

]

≤ E[(L + c(L + s
√

2F(0))) 1AL
]

≤ L

(
1 + c

(
1 + s

2

))
< ∞,

where we used Lemma 3, the fact that |μ′(0)| ≤ maxx∈X′(0) |x| ≤ L, |μ′(s + 1) − μ′(s)| ≤
D(s + 1), s ≥ 0, and that F is nonincreasing. Hence, E|hc(s)| < ∞. We use 1A to denote the
indicator function on the event A.

Since {γt < ηk,a} ∈ Fγt , we have

E[hc(γt+1) − hc(γt ) | Fγt ] = E[(hc(γt+1) − hc(γt ))(1{γt=ηk,a} + 1{γt<ηk,a}) | Fγt ]
= E[(hc(γt + 1) − hc(γt )) 1{γt<ηk,a} | Fγt ]
= E[hc(γt + 1) − hc(γt ) | Fγt ] 1{γt<ηk,a}
≤ max(0, E[(hc(γt + 1) − hc(γt )) | Fγt ]) 1{γt<ηk,a}
≤ max(0, E[(hc(γt + 1) − hc(γt )) | Fγt ]).

It suffices now to show that E(h(γt +1)−h(γt ) | Fγt ) ≤ 0 a.s. Since γt ≤ ηk,a , we can deduce
that

x(1)(γt ) ≥ x(1)(ηk,a) ≥ x(1)(ηk,a −1)−D(ηk,a −1) > R+ +a−√
2F(πa) > R+ + 1

2a. (12)

From the above inequalities we see that all the core points lie to the right of R+ at time γt , since
this region is free of atoms, we can conclude that D(γt ) > 0 a.s. Recall that the points of the
core at time γt are ordered as x(1)(γt ) ≤ · · · ≤ x(N−1)(γt ), and let ζ = ζγt+1.

We now introduce some new variables, where we drop the time indices for the sake of brevity:

D = D(γt ), F = Fγt , yk = x(k)(γt ) − x(1)(γt )

D
, ζ ′ = ζ − x(1)(γt )

D
,

Fo = √
F({y1, . . . , yN−1}), Fn = √

F({y1, . . . , yN−1, ζ ′}′),
μ′

o = μ({y1, . . . , yN−1}), μ′
n = μ({y1, . . . , yN−1, ζ

′}′).
At time γt the transformed core consists of the new points (y1, . . . , yk) such that 0 = y1 ≤
· · · ≤ yN−1 = 1. Note that we will always reject ζ ′ if ζ ′ < −1 but this is equivalent to
ζ < x(1)(γt ) − D, which is bounded below by x(1)(γt ) − a/2. By (12) this is strictly larger
than R+ so we can conclude that ζ is accepted into the core only if it lies to the right of R+.
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Furthermore, if a > −1 then, since ζ is independent of F , it follows that

P(ζ ′ ∈ (a + u, a + 2u]) = P(ζ ∈ ((a + u)D + x(1)(γt ), (a + 2u)D + x(1)(γt )])
≤ CP(ζ ∈ (aD + x(1)(γt ), (a + u)D + x(1)(γt )])
= CP(ζ ′ ∈ (a, a + u]), (13)

hence, Assumption 3 translates to ζ ′. If we combine (13) with the same type of argument as
in (10), we see that if −1 < a < b < c then

P(ζ ′ ∈ (b, c]) ≤
�(c−a)/(b−a)�∑

k=1

Ck−1P(ζ ′ ∈ (a, b]). (14)

Due to the translation invariance of
√

F and μ, we have

μ′(γt + 1) − μ′(γt ) = D(μ′
n − μ′

o), F (γt + 1) − F(γt ) = D(
√

Fn − √
Fo),

implying
1

D
(h(γt + 1) − h(γt )) = √

Fn − √
Fo + c(μ′

n − μ′
o).

Denote �h = √
Fn − √

Fo + c(μ′
n − μ′

o); since D > 0 a.s., it follows that

E[(h(γt+1) − h(γt )) | F ] ≤ 0

is equivalent to E[�h | F ] ≤ 0.
If the new point ζ is sampled then either 0, 1, or ζ ′ is eliminated in the next step. There are

three different cases, either ζ ′ < 0, ζ ′ ∈ (0, 1), or ζ ′ > 1 (recall that ζ has no atoms under
Assumption 3). The new centre of mass for the whole configuration is thus

μn = ζ ′ + Mμ′
o

M + 1
,

where M = N − 1. If point 0 is eliminated then the centre of mass of the new core is
μ′

n = ζ ′/M + u′
o. If point 1 is eliminated then μ′

n = (ζ ′ − 1)/M + μ′
o. Note that, by Claim 1,

our probability measure is nonatomic to the right of R+ and, therefore, the probability of a tie
between which point should be eliminated is 0; consequently, we can disregard these events.

In the ζ ′ < 0 case, only ζ ′ or 1 can be eliminated. Point 1 is eliminated if and only if
μn − ζ ′ < 1 − μn. This is equivalent to ζ ′ > (M(2μ′

o − 1) − 1)/(M − 1). So in this case
point 1 is eliminated if and only if ζ ′ ∈ ((M(2μ′

o − 1) − 1)/(M − 1), 0). Denote this event by

L1 =
{

min

(
M(2μ′

o − 1) − 1

M − 1
, 0

)
< ζ ′ < 0

}
.

In the ζ ′ ∈ (0, 1) case, ζ ′ is never eliminated, but one of points 0 or 1 must be. Point 0 is
eliminated if and only if μn > 1 − μn, which is equivalent to ζ ′ > (M + 1)/2 − Mμ′

o, hence,
ζ ′ ∈ (min((M + 1)/2 − Mμ′

o, 1), 1). Let

B0 =
{

min

(
M + 1

2
− Mμ′

o, 1

)
< ζ ′ < 1

}
.
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Point 1 is eliminated if ζ ′ ∈ (0, 1) \ [min((M + 1)/2 − Mμ′
o, 1), 1]. Let

B1 =
{

0 < ζ ′ < min

(
M + 1

2
− Mμ′

o, 1

)}
.

Finally, in the ζ ′ > 1 case, only ζ ′ or 0 can be eliminated. Point 0 will be eliminated if
ζ ′ − μn and if and only if ζ ′ < 2Mμ′

o/(M − 1), that is, if ζ ′ ∈ (1, max(2Mμ′
o/(M − 1), 1)).

Let

R0 =
{

1 < ζ ′ < max

(
2Mμ′

o

M − 1
, 1

)}
.

We begin with the M = 2 case. We have μ′
o = 1

2 , Fo = 1
2 , L1 = {−1 < ζ ′ < 0},

B1 = {0 < ζ ′ < 1
2 ]}, B0 = { 1

2 < ζ ′ < 1}, and R0 = {1 < ζ ′ < 2}. If point 1 is eliminated,
then Fn = ζ ′2/2, moreover, note that in this case, μ′

o−μ′
n is nonpositive. If point 0 is eliminated

then μ′
n = (1 + ζ ′)/2. We have

E(�h | F ) = E[(μ′
n − μ′

o) + c(Fn − Fo) | F ]
≤ cE[(Fn − Fo) 1{L1∪B1} | F ] + E[(μ′

n − μ′
o) 1{R0∪B0} | F ]

≤ 1
2cE[(ζ ′2 − 1) 1B1 | F ] + 1

2 E[ζ ′ 1{R0∪B0} | F ]
≤ 1

2c
(

1
4 − 1

)
P

(
0 < ζ ′ < 1

2

)
+ 2

2 P

(
1
2 < ζ ′ < 2

)
≤ − 3

8cP

(
0 < ζ ′ < 1

2

)
+ (1 + C + C2 + C3)P

(
0 < ζ ′ < 1

2

)
,

where we used (14) in the last inequality. It is obvious that the last expression can be made
negative for large enough c > 0, as required.

Let us now consider the M ≥ 3 case. First, we note that μ′
o ∈ (1/M, (M−1)/M) a.s., where

the lower bound is approached as y2, . . . , yM−1 all go to 0, while the upper bound is approached
as y2, . . . , yM−1 all go to 1. If we now denote by K0 the event that 0 is eliminated, and K1 the
event that 1 is eliminated, then we have K0 = R0 ∪ B0 and K1 = L1 ∪ B1. Furthermore,

μ′
n − μ′

o = ζ ′

M
1K0 +ζ ′ − 1

M
1K1 .

We also have

Fn =
(

Fo + M − 1

M
ζ ′2 − 2μ′

oζ
′
)

1K0

+
(

Fo + M − 1

M
ζ ′2 − 2(Mμ′

o − 1)

M
ζ ′ + 2(Mμ′

o − 1)

M
− M − 1

M

)
1K1 .

Observe that �h = h0 1K0 +h1 1K1 , where

hi = √
Fo + �i(ζ ′, μ′

o) + c
ζ ′

M
− √

Fo, i = 0, 1,

�i(x, y) = 1

M

{
(M − 1)x2 − 2Mxy, i = 0,

(M − 1)(x2 − 1) + 2(1 − x)(My − 1), i = 1.

Using this notation, we obtain

E[�h | F ] = E[h0 1K0 | F ] + E[h1 1K1 | F ]
= E[h0 1R0 | F ] + E[h0 1B0 | F ] + E[h1 1L1 | F ] + E[h1 1B1 | F ]
= I1 + I2 + I3,
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Figure 2: Possible locations of ζ ′.
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Figure 3: Possible combinations of ζ ′ and μ′
o.

where
I1 = (E[h1 1L1 | F ]) 1{μ′

o∈(1/M,(M−1)/2M)},
I2 = (E[h1 1L1 | F ] + E[h1 1B1 | F ] + E[h0 1R0 | F ]

+ E[h0 1B0 | F ]) 1{μ′
o∈((M−1)/2M,(M+1)/2M)},

I3 = (E[h0 1R0 | F ]) 1{μ′
o∈((M+1)/2M,(M−1)/M)} .

(See Figure 2 for the locations of ζ ′ for the events L1, B1, B0 and R0.) It suffices to show
that all the three terms in the expression for E[�h | F ] are nonpositive. The fact that I1 ≤ 0
is obvious, since if point 1 is eliminated then the core centre of mass must move leftwards,
while F is always nonincreasing. The term I2 is a little more complicated and requires more
careful study. We illustrate the possible combinations of ζ ′ and μ′

o in Figure 3. We now present
the following elementary statement.

Claim 2. Let � < 0. Then √
Fo + � − √

Fo ≤ − �

2M
.

Proof. The inequality follows from the fact that
√

F0 ≤ √
M/2 ≤ M and the trivial inequal-

ity
√

x + y − √
x ≤ y/2

√
x valid for all x > 0 and x + y ≥ 0. �
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Next, we obtain an upper bound for �1(x, y) on the rectangle

A1 =
{
(x, y) : M − 1

2M
≤ y ≤ 1

2
, 0 ≤ x ≤ 1

2

}
.

The critical point for �1(·, ·) is at (1, 1) which falls outside A1, hence, we only need to study
the boundary points of A1 to bound the maximum of �1 on A1. We have

�1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−M − 1

M
+ 2(My − 1)

M
≤ − 1

M
, x = 0,

−3(M − 1)

4M
+ My − 1

M
≤ −M + 1

4M
, x = 1

2 ,

M − 1

M
x2 + 3 − M

M
x − 2

M
≤ − 1

M
, y = (M − 1)/2M,

M − 1

M
(x2 − x) + x − 1

M
≤ − 1

M
, y = 1

2 .

Since M ≥ 3,

−M + 1

4M
≤ − 1

M

and, therefore,

�1 ≤ − 1

M
on A1.

Combining these bounds with Claim 2, we obtain, for (M − 1)/2M ≤ μ′
o ≤ 1

2 and 0 ≤ ζ ′ ≤ 1
2

(which is a subset of B1 ∩ {(M − 1)/2M ≤ μ′
o ≤ 1

2 }),
√

Fo + �1(ζ ′, μ′
o) − √

Fo ≤ − 1

2M2 . (15)

On the other hand, if μ′
o ≥ 1

2 and 0 ≤ ζ ′ ≤ 1 then

�0(ζ
′, μ′

o) ≤
(

M − 1

M
− 2μ′

o

)
ζ ′ ≤ − ζ ′

M

and, therefore, by Claim 2,

√
Fo + �0(ζ ′, μ′

o) − √
Fo ≤ − ζ ′

2M2 . (16)

Our next task is to find an upper bound for �0(x, y) on the rectangle

A2 =
{
(x, y) : 1

2
≤ y ≤ M + 1

2M
, 1 ≤ x ≤ 2M − 1

2M − 2

}
.

The function �0(·, ·) has its only critical point at (0, 0) which falls outside this rectangle, so
again we only need to study the boundary values of the rectangle. If x = 1 then

�0 = M − 1

M
− 2y ≤ M − 1

M
− 1 = − 1

M
.
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If x = (2M − 1)/(2M − 2) then

�0 = − (4My − 2M + 1)(2M − 1)

4M(M − 1)
=: f1(y),

and this function has a critical point at

y = M

2M − 2
>

M + 1

2M

which, thus, lies outside of the border of A2. Substituting in the endpoints, we obtain

f1

(
1

2

)
= − 2M − 1

4M(M − 1)
≤ − 1

2M
, f1

(
M + 1

2M

)
= − 3(2M − 1)

4M(M − 1)
≤ − 3

4M
≤ − 1

2M
.

If y = 1
2 then

�0 = M − 1

M
x2 − x ≤ − 1

4M
for all 1 ≤ x ≤ 2M − 1

2M − 2
.

If y = (M + 1)/(2M) then

�0 = M − 1

M
x2 − M + 1

M
x ≤ − 1

M
for 1 ≤ x ≤ 2M − 1

2M − 2
.

As a result, we conclude that

�0 ≤ − 1

4M
on A2.

Combining this with Claim 2, we find that when 1
2 ≤ μ′

o ≤ (M + 1)/2M and 1 ≤ ζ ′ ≤
(2M − 1)/2(M − 1) (this is a subset of R0 ∩ { 1

2 ≤ μ′
o ≤ (M + 1)/2M}),√

Fo + �0(ζ ′, μ′
o) − √

Fo ≤ − 1

8M2 . (17)

We will also again make use of the fact that, by definition, h1 1L1 ≤ 0 and h1 1B1 ≤ 0; therefore,

(E[h1 1L1 | F ] + E[h1 1B1 | F ]) 1{μ′
o∈((M−1)/2M,(M+1)/2M)}

≤ E[h1 1{B1} | F ] 1{μ′
o∈((M−1)/2M,1/2)} .

Now we make the following bounds:

I2 ≤ E[h1 1B1 | F ] 1{μ′
o∈((M−1)/2M,1/2)} +(E[h0 1R0 | F ]

+ E[h0 1B0 | F ]) 1{μ′
o∈((M−1)/2M,(M+1)/2M)}

≤ E[(√Fo + �1(ζ ′, μ′
o) − √

Fo) 1B1 | F ] 1{μ′
o∈((M−1)/2M,1/2)}

+ E[(√Fo + �0(ζ ′, μ′
o) − √

Fo)(1B0 + 1R0) | F ] 1{μ′
o∈(1/2,(M+1)/2M)}

+ c

M
(E[ζ ′ 1B0 | F ] + E[ζ ′ 1R0 | F ]) 1{μ′

o∈((M−1)/2M,(M+1)/2M)}

≤ E[(√Fo + �1(ζ ′, μ′
o) − √

Fo) 1{0≤ζ ′≤1/2} | F ] 1{μ′
o∈((M−1)/2M,1/2)}

+ E[(√Fo + �0(ζ ′, μ′
o) − √

Fo)(1B0 + 1{1≤ζ ′≤(2M−1)/2(M−1)}) | F ]
× 1{μ′

o∈(1/2,(M+1)/2M)}

+ c

M
(E[ζ ′ 1B0 | F ] + E[ζ ′ 1R0 | F ]) 1{μ′

o∈((M−1)/2M,(M+1)/2M)}, (18)
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where we used the fact that{
0 < ζ ′ <

1

2

}
∩
{

M − 1

2M
< μ′

o <
1

2

}
⊆

{
M − 1

2M
< μ′

o <
1

2

}
∩ B1,{

1 ≤ ζ ′ ≤ 2M − 1

2(M − 1)

}
∩
{

1

2
< μ′

o <
M + 1

2M

}
⊆

{
1

2
< μ′

o <
M + 1

2M

}
∩ R0,

and on B1, we have
h1 ≤ √

Fo + �1(ζ ′, μ′
o) − √

Fo.

We now study the terms in (18). Note that the term in the last line of (18) (a.s.) is equal to

c

M
(E[ζ ′ 1B0 | F ] + E[ζ ′ 1R0 | F ])(1{μ′

o∈((M−1)/2M,1/2)} + 1{μ′
o∈(1/2,(M+1)/2M)}),

while from (16) and (17), it follows that

E[(√Fo + �0(ζ ′, μ′
o) − √

Fo)(1B0 + 1{1≤ζ ′≤2M−1/2(M−1)}) | F ] 1{μ′
o∈(1/2,(M+1)/2M)}

≤
(

E

[
− ζ ′

2M2 1B0

∣∣∣∣ F

]
− 1

8M2 P

(
1 ≤ ζ ′ ≤ 2M − 1

2(M − 1)

))
1{μ′

o∈(1/2,(M+1)/2M)} .

From (15), it also follows that

E[(√Fo + �1(ζ ′, μ′
o) − √

Fo) 1{0<ζ ′<1/2} | F ] 1{μ′
o∈((M−1)/2M,1/2)}

≤ − 1

2M2 P

(
0 < ζ ′ <

1

2

)
1{μ′

o∈((M−1)/2M,1/2)} .

Furthermore, we note that

E[ζ ′ 1B0 | F ] ≤ P(B0) and E[ζ ′ 1R0 | F ] ≤ M

M − 1
P(R0) for

M − 1

2M
< μ′

o <
1

2
,

while

E[ζ ′ 1R0 | F ] ≤ M + 1

M − 1
P(R0) when μ′

o <
M + 1

2M
.

We can now conclude with

I2 ≤
[
− 1

2M2 P

(
0 < ζ ′ <

1

2

)
+ c

M

(
P(B0) + M

M − 1
P(R0)

)]
1{μ′

o∈((M−1)/2M,1/2)}

+ E

[(
cζ ′

M
− ζ ′

2M2

)
1B0

∣∣∣∣ F

]
1{μ′

o∈(1/2,(M+1)/2M)}

+
(

− 1

8M2 P

(
1 < ζ ′ <

2M − 1

2(M − 1)

)
+ c

M

M + 1

M − 1
P(R0)

)
1{μ′

o∈(1/2,(M+1)/2M)}

≤
[

c

M

(
C1 + M

M − 1
C2

)
− 1

2M2

]
P

(
0 < ζ ′ <

1

2

)
1{μ′

o∈((M−1)/2M,1/2)}

+
[
C3

c

M

M + 1

M − 1
− 1

8M2

]
P

(
1 < ζ ′ <

2M − 1

2(M − 1)

)
1{μ′

o∈(1/2,(M+1)/2M)}

+ E

[
ζ ′
(

c

M
− 1

2M2

)
1B0

∣∣∣∣ F

]
1{μ′

o∈(1/2,(M+1)/2M)},
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where

C1 = P(ζ ′ ∈ (0, 1))

P(0 < ζ ′ < 1/2)
≥ P(B0)

P(0 < ζ ′ < 1/2)
,

C2 = P(ζ ′ ∈ (1, 2))

P(0 < ζ ′ < 1/2)
≥ P(R0)

P(0 < ζ ′ < 1/2)
,

C3 = P(ζ ′ ∈ (1, 2))

P(1 < ζ ′ < (2M − 1)/2(M − 1))
≥ P(R0)

P(1 < ζ ′ < (2M − 1)/2(M − 1))
.

From (14), it follows that these constants are all bounded above by some polynomial in C whose
power depends only on M; also note that ζ ′ ≥ 0 on B0 ∩{ 1

2 ≤ μ′
0 ≤ (M +1)/2M}. Therefore,

it is obvious that we can pick c small enough to make the first two terms in the last displayed
inequality above nonpositive. The last term is trivially nonpositive due to the fact that ζ ′ ≥ 0
on B0.

Now we show that I3 ≤ 0. We begin by finding an upper bound for �0(x, y) on the rectangle

A3 =
{
(x, y) : M + 1

2M
≤ y ≤ M − 1

M
, 1 ≤ x ≤ M

M − 1

}
.

We already know it is sufficient to study the boundary of this rectangle, since no extreme points
lie inside. If x = 1 then

�0 = M − 1

M
− 2y

M + 1

2M
≤ − 2

M
.

If x = M/(M − 1) then

�0 = M

M − 1
− 2M

M − 1
y ≤ − 1

M − 1
.

If y = (M + 1)/2M then

�0 = M − 1

M
x2 − M + 1

M
x ≤ − 1

M
.

If y = (M − 1)/M then

�0 = M − 1

M
(x2 − 2x) ≤ −2 − M

M
≤ − 1

M − 1
.

Hence,

�0 ≤ − 1

M
on A3,

and combining this with Claim 2, we find that if (M + 1)/2M ≤ μ′
o ≤ (M − 1)/M then

I3 = E[h0 1R0 | F ]
≤ E[(√Fo + �0(ζ ′, μ′

o) − √
Fo) 1{1≤ζ ′≤M/(M−1)} | F ] + c

M
E[ζ ′ 1R0 | F ]

≤ E

[(√
Fo − 1

M − 1
− √

Fo

)
1{1≤ζ ′≤M/(M−1)}

∣∣∣∣ F

]
+ c

M
E[2 1R0 ], (19)

where we used the fact that{
M + 1

2M
< μ′

o <
M − 1

M

}
∩
{

1 ≤ ζ ′ ≤ M

M − 1

}
⊆

{
M + 1

2M
< μ′

o <
M − 1

M

}
∩ R0
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for the first term and ζ ′ < 2 on R0 (since μ′
0 < (M − 1)/M) for the second term. If we apply

Claim 2 to the first term in (19), and again apply the fact that ζ ′ < 2 on R0 for the second term,
then we see that it is less than or equal to(√

Fo − 1

M − 1
− √

Fo

)
P

(
ζ ′ ∈

(
1,

M

M − 1

))
+ 2

c

M
P(ζ ′ ∈ (1, 2))

≤
(

− 1

2M(M − 1)
+ 2

c

M
C4

)
P

(
ζ ′ ∈

(
1,

M

M − 1

))
,

where

C4 = P(1 < ζ ′ < 2)

P(1 < ζ ′ < M/(M − 1))

which is again bounded above by some polynomial in C according to (14). Therefore, it is
clear that we can again pick c small enough to also make this term nonpositive which proves
that E[�h | F ] ≤ 0 and, hence, hk is a nonnegative supermartingale. �

Now we continue with the proof of Theorem 3. Fix k and a = L, and let c be defined by
Lemma 9. If we denote by h∞ the a.s. limit of hc(γk,t,L) as t → ∞ on {τk,L < ∞} ∩ {ηk,L =
∞}, then

h∞ = lim
t→∞(

√
F(τk,L + t) + cμ′(τk,L + t)) 1AL

=
(√

F∞ + lim
t→∞ cμ′(t)

)
1AL

,

that is, limt→∞ μ′(t) ∈ R on AL, implying X′(t) 
→ +∞.
We now prove the second statement of the theorem. Note that we have just proved that

F(t) → 0 a.s. and, hence, π1/n < ∞ a.s. for all n > 0. First, we show that

P

({
lim inf
t→∞ x(1)(t) > R+

}
∩ {X′(t) does not converge}

)
= 0. (20)

Indeed, let En = {lim inf t→∞ x(1)(t) ≥ R+ + 1/n}, then {lim inf t→∞ x(1)(t) > R+} =⋃∞
n=1En and it suffices to prove that P(En ∩ {X′(t) does not converge}) = 0. Note that

En ⊆
∞⋃

k=1

({ηk, 1/n = ∞} ∩ {τk, 1/n < ∞}) ⊆
∞⋃

k=1

{
lim

t
γk, t, 1/n = ∞

}
.

By Lemma 9, hc(γk,t,1/n)has an a.s. limit for some c > 0 on {ηk, 1/n = ∞}∩{τk, 1/n < ∞}∩AL;
thus,

P

(
AL ∩ {ηk, 1/n = ∞} ∩ {τk, 1/n < ∞} ∩

{
lim

t→∞ μ′(t) does not exist
})

= 0.

Using the continuity of probability again, applied to the sets AL, L → ∞, we can discard the
term AL in the expression above. Since F(t) → 0 a.s., from the first part of the theorem, we
have {

lim
t→∞ μ′(t) exists

}
= {X′(t) → φ for some φ},

except perhaps a set of measure zero; therefore,

P(En ∩ {lim X′(t) does not exist})
= P(En ∩ {lim μ′(t) does not exist})
≤ P

(
{ηk, 1/n = ∞} ∩ {τk,1/n < ∞} ∩

{
lim

t→∞ μ′(t) does not exist
})

= 0.
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Noting that En ⊆ En+1, (20) follows from the continuity of probability; the proof of the
respective statement for lim sup is completely analogous, and they together are equivalent to
the second statement of the theorem.

We now prove the last statement of the theorem. Assume that R+ < R− in Assumption 3.
Let u = lim inf t→∞ x(1)(t) and v = lim supt→∞ x(N−1)(t). Consider the event

Aa,b = {u < a} ∩ {v > b} for some a < b.

If b ≤ R− or a ≥ R+, we have already showed that we have convergence, so suppose that
b > R− and a < R+. We now make the observation that the interval [R+, R−] is regular
with parameters δ = 2

3 and r = 1/2C (see Definition 2), and in the event of Aa,b, we cross
the interval (a + (b − a)/2, b − (b − a)/2) i.o. However, since this interval also inherits the
regularity property, this would contradict Proposition 2, which states that a regular interval
cannot be visited i.o. a.s. and so P(Aa,b) = 0. From this, we can conclude that

P({X′(t) → φ for some φ}c) = P

( ⋃
a,b∈Q, a<R+, b>R−

Aa,b

)
= 0,

that is, the core converges to a point a.s. �

4.1. Strengthening Theorem 2.

In the d = 1 case, we can obtain stronger results than for the general case ζ ∈ Rd , d ≥ 1.
For any interval (a, b) ⊂ R and any δ ∈ (0, 1), we define a δ-truncation of (a, b) as

(a, b)δ =
(

a + δ

2
(b − a), b − δ

2
(b − a)

)
.

Definition 2. The interval (a1, b1) is called regular if there are δ, r ∈ (0, 1) such that, for any
(a2, b2) ⊆ (a1, b1), we have

P(ζ ∈ (a2, b2)δ | ζ ∈ (a2, b2)) ≥ r. (21)

Remark 7. We can iterate (21) in order to establish

P(ζ ∈ (· · · (a2, b2) δ) · · · )δ︸ ︷︷ ︸
k times

| ζ ∈ (a2, b2)) ≥ rk, k ≥ 2,

and the iteration of the δ-truncation eventually shrinks an interval to a point while rk is still in
(0, 1). Hence, it is not difficult to check that if Definition 2 holds for some δ ∈ (0, 1) it holds
for all δ in this interval.

Assumption 4. Suppose that any interval (a, b) such that P(ζ ∈ (a, b)) > 0 contains a regular
interval.

Remark 8. The property above seems to hold for all common distributions; the authors were
not able, in fact, to construct even a single counterexample, nor, unfortunately, to show that
none exists.

Theorem 4. Under Assumptions 1 and 4, X′(t) → φ ∈ [−∞, +∞] a.s.
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The proof of this theorem immediately follows from the next proposition, since, if {X′(t) 
→
±∞} = {μ′(t) 
→ ±∞} occurs, then μ′(t) either converges to a finite number or crosses some
interval i.o. However, every interval contains some regular interval by Assumption 4 and, by
Theorem 1, D(t) → 0 a.s. if μ′(t) 
→ ±∞, so the core must converge in this case.

Proposition 2. For any a, b such that a < b, with probability 1 μ′(t) cannot cross the interval
(a, b) infinitely many times.

Proof. Suppose the contrary. From Assumption 4, it follows that (a, b) contains some
regular interval, say (a1, b1), which must also be crossed i.o. Now the rest of the proof is
almost the same as that of Theorem 2 so we only highlight the differences, which lie in how
Assumption 4 is used (in place of the stronger Assumption 2) when we define our ‘absorbing’
region G. Here we let G = (a1, b1) and assume w.l.o.g. that a1 = 0 and b1 = R. Let ζ(t) and
M satisfy the conditions of Theorem 2 and define τ0 = τ

(M)
0 such that

X′(τ0) ⊆
[

1

4
R,

3

4
R

]
, F (τ0) ≤ R2

M24M
.

We define the events A′
m, A′′

m, Am for m = 1, 2, . . . as in (9) with the only change that

A′′
m = A′′

m,M = {X′(τ(m+M)2) ⊆ (2−(m+2)R, [1 − 2−(m+2)]R)}.
Since G is regular, Lemma 7 can still be applied. The rest of the proof is identical to that of
Theorem 2. �

Corollary 3. Suppose that supp ζ is bounded. Hence, under Assumptions 1 and 4 we have
X′(t) → φ ∈ R a.s.

Corollary 4. Suppose that K = 1 and that Assumption 4 is valid in some interval [a, b], and,
in addition, Assumption 3 is valid for some R− ≥ a and R+ ≤ b. Then X′(t) → φ ∈ R a.s.

Proof. Let u = lim inf t→∞ x(1)(t) and v = lim supt→∞ x(N−1)(t). Consider the event

Ac,d = {u ≤ c} ∩ {v ≥ d} for some c < d.

If d < R− or c > R+, we already know from Theorem 3 that we have convergence, so suppose
that both c, d ∈ [a, b]. In this case the interval (c+(d −c)/2, d −(d −c)/2) ⊂ [c, d] is visited
i.o. but, since this interval inherits the property of Assumption 4, it follows from Proposition 2
that P(Ac,d) = 0. Therefore,

P(X′(t) does not converge) = P

( ⋃
c,d∈Q, d<b, c>a

Ac,d

)
= 0,

that is, the core converges to a point a.s. �
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