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Abstract

Objective: Previous studies have shown differences in the regional brain structure and function
between patients with bipolar disorder (BD) and healthy subjects, but little is known about the
structural connectivity between BD patients and healthy subjects. In this study, we evaluated the
disease-related changes in regional structural connectivity derived from gray matter magnetic
resonance imaging (MRI) scans. Methods: The subjects were 73 patients with BD and 80
healthy volunteers who underwent 3-Tesla MRI. Network metrics, such as the small world
properties, were computed. We also performed rendering of the network metric images such
as the degree, betweenness centrality, and clustering coefficient, on individual brain image.
Then, we estimated the differences between them, and evaluate the relationships between
the clinical symptoms and the network metrics in the patients with BD. Results: BD patients
showed a lower clustering coefficient in the right parietal region and left occipital region, com-
pared with healthy subjects. A weak negative correlation between Youngmania rating scale and
clustering coefficient was found in left anterior cingulate cortex. Conclusions: We found
differences in gray matter structural connectivity between BD patients and healthy subjects
by a similarity-based approach. These points may provide objective biological information
as an adjunct to the clinical diagnosis of BD.

Significant outcome

• BD patients showed the lower clustering coefficient in some regions.
• Young mania rating scale was correlated with clustering coefficient.
• These regional network changes preceded gray matter volume changes.

Limitations

• We could not detect any change of small-worldness in BD patients.
• The spatial resolution of the images derived from the similarity-based approach was rel-
atively low.

• We did not control for psychotropic drugs in the neuroimaging analyses.

Introduction

Bipolar disorder (BD) is one of the top 10 most debilitating of all illnesses (Hirschfeld & Vornik,
2005) and affects an estimated 1–3% of the population (Narrow et al., 2002; Angst et al., 2003;
Merikangas et al., 2007). Structural brain magnetic resonance imaging (MRI) meta-analysis in
patients with BD has revealed structural changes in the cortical and subcortical prefrontal-
limbic regions, involving the orbitofrontal cortex, ventral anterior cingulate cortex, insula,
amygdala, and hippocampus (Strakowski et al., 2005; Ellison-Wright & Bullmore, 2010;
Hallahan et al., 2011; Houenou et al., 2011; Ganzola & Duchesne, 2017). Other MRI studies
on BD have revealed increased cortical thickness in the temporoparietal region (Rimol et al.,
2010), while studies using diffusion tensor imaging have revealed white matter abnormalities
in the anterior and posterior cingulate cortex, superior longitudinal fasciculus, inferior
fronto-occipital fasciculus, and cerebellum (Versace et al., 2010; Ambrosi et al., 2013; Nortje
et al., 2013; Jenkins et al., 2016).

https://doi.org/10.1017/neu.2020.45 Published online by Cambridge University Press

https://www.cambridge.org/neu
https://doi.org/10.1017/neu.2020.45
mailto:ota@ncnp.go.jp
https://orcid.org/0000-0001-8873-0822
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/neu.2020.45&domain=pdf
https://doi.org/10.1017/neu.2020.45


Graph theoretical analyses of neuroimaging data have increased
our understanding of the topological organisation of structural and
functional brain networks (Bullmore & Sporns, 2009; Hosseini
et al., 2012). Graph theory has been used to describe brain mor-
phology, with networks based on covariation of gray matter vol-
ume, white matter microstructure, or thickness between each
area across people. Regarding the neural network in BD, previous
studies have detected a reduced clustering coefficient and global
efficiency (Leow et al., 2013; Collin et al., 2016; O’Donoghue
et al., 2017; Wang et al., 2017). On the other hand, another study
showed that the whole brain analysis revealed no significant differ-
ence between the BD patients and healthy subjects (Forde
et al., 2015).

In spite of the above advances in graph theory, it remains
unclear which measures are the most appropriate to define nodes
and edges in graph theory focussing on cortical morphology.
Automated anatomical labelling (AAL) has been widely used to
define the nodes (Tzourio-Mazoyer et al., 2002), but the require-
ments of AAL might obscure subtle structural differences that are
of particular interest in clinical populations. A previous study
developed a new method for the construction of networks from
individual cortices based on intracortical similarities in the gray
matter (Tijms et al., 2012). They showed that the network metrics
calculated by the similarity-based method were similar to other
studies measured by graph theoretical analyses, and high repro-
ducibility of the measures. Their results demonstrate that intra-
cortical similarities can be used to provide a robust statistical
description of individual gray matter morphology, and some stud-
ies using this method revealed disease-related brain network
changes in Alzheimer’s disease (Tijms et al., 2013) and multiple
sclerosis (Rinkus et al., 2019).

In this study, we examined differences in the structural brain
network between BD and healthy subjects using a new, similarity-
based approach.

Aims of the study

The aim of this study was to examine differences in structural brain
network indices between participants with BD and healthy subjects
using a new similarity-based approach.We hypothesised that parts
of the network thought to play a role in controlling the emotion
would show a connectivity change in patients with BD.

Methods

Participants

The subjects were 73 patients with depressed-BD and 80 healthy
subjects. A consensus diagnosis by psychiatrist (MO, SH, or TT)
was made according to the Diagnostic and Statistical Manual of
Mental Disorders, 5th Edn. (DSM-5) criteria (American Psychiatric
Association, 2013), on the basis of unstructured interviews;
the Japanese version of the Mini-International Neuropsychiatric
Interview (MINI [Sheehan et al., 1998]), based on structured inter-
views; and the information frommedical records. All patients were
rated with the Hamilton Depression Rating scale (HAM-D) for
their depressive symptoms (Hamilton, 1960) and with the
Young mania rating scale (Young et al., 1978). Daily doses of anti-
depressants were converted to imipramine equivalents, and daily
doses of antipsychotics, including depot antipsychotics, were con-
verted to chlorpromazine equivalents using published guidelines
(American Psychiatric Association, 1997; Inada & Inagaki, 2015).

Controls were recruited from the community through local
magazine advertisements and an announcement on our website.
These participants were interviewed for enrolment by a research
psychiatrist using the Japanese version of MINI. Participants were
excluded if they had a prior medical history of central nervous sys-
tem disease or severe head injury, or if they met the criteria for sub-
stance abuse or dependence. Those individuals who demonstrated
a history of psychiatric illness or contact with psychiatric services
were excluded from the control group.

After the studchary was explained to each participant, his or her
written informed consent was obtained for participation in the
study. This study was approved by the ethics committee of the
National Center of Neurology and Psychiatry, Japan, and complied
with the Helsinki Declaration of 1975, as revised in 2008.

MRI data acquisition and processing

The MR studies were performed on a 3-T MR system (Philips
Medical Systems, Best, the Netherlands). High spatial resolution,
3-dimensional (3D) T1-weighted images were used for the mor-
phometric study. 3D T1-weighted images were acquired in the sag-
ittal plane (repetition time [TR]/echo time [TE], 7.18/3.46; flip
angle, 10°; effective section thickness, 0.6 mm; slab thickness,
180 mm; matrix, 384 × 384; field of view [FOV], 261 × 261 mm;
number of signals acquired, 1), yielding 300 contiguous slices
through the brain.

Postprocessing of the MRI data

We calculated the small world properties, such as gamma (the ratio
of the network’s cluster coefficient and that of its randomised
version), lambda (the ratio of the average minimum path length
of the network and that of its randomised version), and sigma
(the small world coefficient, defined as the division of gamma
and lambda) (Humphries et al., 2006) by the similarity-based
method (Tijms et al., 2012). We also performed rendering of the
network metric images, including the degree, the number of links
connected to a node, betweenness centrality, the importance of
the node in the network, the clustering coefficient, and the measure
of network segregation using the same method (Tijms et al., 2012).
First, each individual 3D-T1 image was segmented using
the VBM8 toolbox (http://dbm.neuro.uni-jena.de/vbm/). Next, the
segmented gray matter image was resliced to 2 × 2 × 2 mm. The
network metric images were then calculated from the segmented
gray matter image at native space. Briefly, nodes in these networks
represent brain areas (regions of 3 × 3 × 3 voxels), and connections
are based on similarity in the spatial structure of gray matter den-
sity values as quantified with a Pearson’s correlation. Networks
were binarised using subject-specific thresholds as determined
with a random permutation method that ensured a similar chance
to include at most 5% spurious correlations in the network (Noble,
2009; Kate et al., 2018).

To evaluate network metric images voxel-basically, network
images were normalised with the diffeomorphic anatomical
registration using the exponentiated lie (DARTEL) registration
method (Ashburner, 2007). First, each individual 3D-T1 image
was coregistered and resliced to its native segmented 3D-T1
image as mentioned above. Next, the coregistered 3D-T1 image
was normalised with DARTEL. Finally, the transformation
matrix was applied to the network metric images. Then, each
image was smoothed by using a 10 mm full-width at half-
maximum Gaussian kernel.
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With respect to the regional gray matter volume differences
between groups, we normalized the individual 3D-T1 image by
VBM8. Each image was smoothed by using a 12 mm full-width
at half-maximum Gaussian kernel.

Statistical analysis

The differences in age and education years between the BD patient
group and healthy subjects were evaluated using a two sample t-
test, the differences in gender were evaluated using a chi-squared
test, and the differences in sigma, lambda, and gamma were evalu-
ated using analysis of covariance (ANCOVA) controlling for age
and gender. We estimated the association between the scores of
HAM-D and the Young mania rating scale and the network met-
rics, such as sigma, lambda, and gamma, by partial correlation
analyses controlling for age and gender. Statistical analyses were
performed using SPSS Statistics for Windows 23.0 software
(SPSS Japan, Tokyo).

Statistical analyses for degree, betweenness centrality, and clus-
tering coefficient images and regional gray matter volume were
performed using SPM8 software. Differences in network metrics
between two groups were assessed using the two sample t-test con-
trolling for age and gender. As for the clinical symptoms, we also
evaluated the relationships between the scores of HAM-D and
Young mania rating scale and MRI indices using the multiple
regression model controlling for age and gender in the patients
with BD. Only differences and correlations that met the following
criteria were deemed significant. In these cases, a seed level of
p< 0.01 (false discovery rate [FDR] corrected) and a cluster level
of p< 0.01 (uncorrected) were adopted.

Results

The demographic and clinical characteristics of the participants are
shown in Table 1. There was no significant difference in age, gen-
der or education year between the groups. We detected no signifi-
cant differences in small world properties between the two
diagnostic groups.We analysed the correlations between the scores
of HAM-D and the Young mania rating scale and the small world
properties, but these did not reach statistical significance.

There were significant reductions of clustering coefficient in the
left occipital region, and right parietal gyrus of BD patients (Fig. 1),
compared with healthy subjects. There were no significant
differences of regional betweenness centrality and gray matter vol-
umes between them. We evaluated the relationships between the
scores of HAM-D and Young mania rating scale and MRI indices
in the patients with BD. However, there were no significant corre-
lations between the MRI indices and clinical symptoms. Only a
weak negative correlation between the Young mania rating scale
and the clustering coefficient were detected at a low level (a seed
level of p< 0.001 [uncorrected] and a cluster level of p< 0.05
[uncorrected]) in the anterior cingulate cortex (Fig. 2).

Discussion

BD patients showed a lower clustering coefficient in the right pari-
etal region and left occipital region, compared with healthy sub-
jects. We also found the negative correlation between the Young
mania rating scale and clustering coefficient in the patients with
BD. To our knowledge, this is the first study to evaluate the
differences between BD patients and healthy subjects by a
similarity-based approach using structural 3D-T1 images.

Previous diffusion tensor imaging studies found that BD
patients showed fractional anisotropy (FA) reduction in the supe-
rior longitudinal fasciculus and fronto-occipital fasciculus,
respectively (Versace et al., 2010; Ambrosi et al., 2013; Nortje
et al., 2013). The superior longitudinal fasciculus regulated the
focussing of attention in different parts of space (Makris et al.,
2005), and the fronto-occipital fasciculus has been implicated
in peripheral vision and processing of visuospatial information
(Schmahmann, 2004). Therefore, any of these regions might also
influence the visuo-spatial neuropsychologic dysfunction in BD
(Sweeney et al., 2000; Ferrier et al., 2004).

By whole brain analyses, the global efficiency, which is the
inverse of the average shortest path, and clustering coefficient were
shown to be impaired in BD (Leow et al., 2013; Collin et al., 2016;
O’Donoghue et al., 2017; Wang et al., 2017). However, one study
showed a higher path length and clustering coefficient in BD
patients than healthy subjects (Roberts et al., 2016), and another
showed that there was no significant difference in the whole brain
network between BD patients and healthy subjects (Forde et al.,
2015). Disturbances in large-scale structural networks in BD
appear subtle and are more likely to be confined to specific regions.
The subtle changes in the whole brain network observed in BDmay
reflect alterations to the disrupted connectivity of some specific cir-
cuits (Perry et al., 2019).

We detected that BD patients showed a negative correlation
between the Young mania rating scale and clustering coefficient
in the anterior cingulate cortex. Positron emission tomography
(PET) study found a significant correlation between the activa-
tion in the anterior cingulate and the score of the Young mania
rating scale (Rubinsztein et al., 2001). Further, single photon
emission computed tomography (SPECT) and resting state
functional MRI studies detected that manic patients showed
increased activity in the anterior cingulate (Goodwin et al., 1997;

Table 1. Demographic and clinical characteristics of the subjects

Variable

Patients with
bipolar disorder

Healthy
subjects

n= 73 n = 80

Mean ± SD Mean ± SD p-value

Males : Females 35 : 38 36 : 44 0.75

Age, years 40.0 ± 10.3 40.5 ± 11.6 0.81

Education, years 14.9 ± 2.3 15.0 ± 2.6 0.76

Onset, years 27.6 ± 10.5 – –

Antidepressant
medication, mg/day*

62.3 ± 117.0 – –

Antipsychotic
medication, mg/day#

119.5 ± 324.9 – –

Dose of lithium, mg/day 201.4 ± 319.9 – –

HAM-D 11.8 ± 7.6 – –

Young mania rating scale 1.7 ± 3.0 – –

Gamma 1.40 ± 0.03 1.40 ± 0.03 0.44

Lambda 1.03 ± 0.00 1.03 ± 0.00 0.88

Sigma 1.36 ± 0.03 1.36 ± 0.03 0.41

HAM-D, Hamilton’s depression rating scale.
*Imipramine equivalent.
#Chlorpromazine equivalent.
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Blumberg et al., 2000). It is known that anterior cingulate regulates
the emotion and executive functions (Gasquoine, 2013). The activa-
tion of brain areas involving anterior cingulate in manic patients
might result in the decrease of clustering coefficient in anterior
cingulate.

There were limitations in this study. First, our imaging resolu-
tion of network metrics was relatively low. For that reason, this
protocol was thought to be unsuitable to estimate the small
regional disease-related changes. However, we did identify small
changes such as the clustering coefficient in ACC, and our results
might suggest that this protocol would be suitable for the whole
brain analysis.

In conclusion, there were significant changes of network met-
rics in BD patients compared with the healthy volunteers, and
these network changes preceded affective disorder-related regional
gray matter volume changes. This point may provide objective bio-
logical information as an adjunct to the clinical diagnosis of BD.
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