
Math. Struct. in Comp. Science (2005), vol. 15, pp. 773–819. c© 2005 Cambridge University Press

doi:10.1017/S0960129505004846 Printed in the United Kingdom

Abstract hierarchical graph transformation†

GIORGIO BUSATTO‡, HANS - J ÖRG KREOWSKI§ and

SABINE KUSKE§

‡Carl v. Ossietzky Universität, Fachbereich Informatik, 26111 Oldenburg

Email: giorgio.busatto@informatik.uni-oldenburg.de
§University of Bremen, Department of Computer Science, P.O. Box 330440

D-28334 Bremen

Email: {kreo,kuske}@informatik.uni-bremen.de

Received 11 May 2003; revised 15 February 2005

In this paper we introduce a new hierarchical graph model to structure large graphs into

small components by distributing the nodes (and, likewise, edges) into a hierarchy of

packages. In contrast to other known approaches, we do not fix the type of underlying

graphs. Moreover, our model is equipped with a rule-based transformation concept such

that hierarchical graphs are not restricted to being used only for the static representation of

complex system states, but can also be used to describe dynamic system behaviour.

1. Introduction

Graphs are very popular structures for representing the relationships among various

entities in an intuitive diagrammatic way, and they are used for this purpose in many

areas of computer science and beyond. But the comprehensibility of graphs works only

as long as the graphs in consideration can be kept small. Unfortunately, there are many

applications where one must deal with rather large graphs. As a prominent example, think

of the Internet with millions of web pages as nodes and millions of hyperlinks as edges −
a graph in which one easily gets lost (see, for example, Botafogo et al. (1992)). One must

also take into account that graphs that represent states of systems may be subject to

updates and transformations to reflect the dynamics of systems. Moreover, the notion of

graphs is of a quite generic nature offering directed and undirected graphs as well as

hypergraphs, unlabelled and labelled graphs as well as typed and attributed graphs, and

many other variations. In the literature, one encounters quite a variety of remedies for

these problems:

1 To deal properly with large graphs, various hierarchical graph models have been

proposed (Pratt 1979; Harel 1988; Engels and Schürr 1995; Drewes et al. 2002;

Poulovassilis and Levene 1994; Busatto et al. 2000).

† This work was partially supported by the ESPRIT Working Group Application of Graph Transformation

(APPLIGRAPH) and the EC TMR Network General Theory of Graph Transformation Systems

(GETGRATS).

https://doi.org/10.1017/S0960129505004846 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129505004846

G. Busatto, H.-J. Kreowski and S. Kuske 774

2 To generate and update graphs in a suitable way, various rule-based models of graph

transformation have been developed (Rozenberg 1997; Ehrig et al. 1999a; Ehrig et al.

1999b).

3 To cover many kinds of graphs within the same framework, the concepts of high-level

replacement systems (Ehrig et al. 1991a; Ehrig et al. 1991b) and graph transformation

approaches (Kreowski and Kuske 1996; Andries et al. 1999; Kreowski and Kuske

1999b) have been introduced. While the former defines a specific type of rule

application for arbitrary categories of graphs, the latter even allows different notions

of rule application.

If one specifies graphs by means of rules, the further problem of managing large sets of

rules may occur. Again one finds some remedies in the literature:

4 To deal with large graph transformation systems, several structuring concepts are

suggested (Kaplan et al. 1991; Grosse-Rhode et al. 1998; Schürr and Taentzer 1995;

Schürr and Winter 2000; Ehrig and Engels 1996; Heckel et al. 2000; Kreowski and

Kuske 1999b; Drewes et al. 2000). While most of them were designed for particular

types of graph transformation, the concepts of graph transformation units and modules

(see Kreowski and Kuske (1999a) for a survey) are based on the notion of graph

transformation approaches, which is parametric with respect to the kind of graphs

and rule application to be used.

All known hierarchical graph models concern specific types of graphs and do not

take into account the genericity of the graph notion. Moreover, most models do not

consider the transformational aspect. Hierarchical graph transformation is rarely studied.

On the other hand, although the notions of high-level replacement systems and graph

transformation approaches include hierarchical graphs in principle, they have not yet been

investigated explicitly in such a context.

In the present paper, we try to combine all four aspects. The aim is to propose a

hierarchical graph model that provides a structuring principle for graphs independent

of their type and that can be equipped with an adequate transformation concept. In

Section 3, we introduce an abstract hierarchical graph model that is generic with respect

to the type of graphs to be structured in a hierarchical way. A hierarchical graph in

our sense consists of an underlying graph (of whatever kind), a hierarchy graph and a

connection relation. The nodes of the hierarchy graph may be interpreted as packages that

contain nodes of the underlying graph and, likewise, its edges, where the containment is

described by the connection relation. In this respect, we follow the approach in Busatto et

al. (2000) and adopt the structuring ideas of grouping and aggregation of objects as known

from object orientation and the database area. Section 4 is devoted to the transformation

of hierarchical graphs. If all three components stem from suitable graph transformation

approaches, the hierarchical graphs form a hierarchical graph transformation approach

such that the rule-based transformation of hierarchical graphs is provided, and structuring

concepts for hierarchical graph transformation systems are made available. As a first major

instantiation of our abstract hierarchical graph model, we show in Section 5 that one of

the most frequently used graph transformation approaches, the so-called double-pushout

(DPO) approach, can be adapted in a suitable way to the graph, hierarchy and connection

https://doi.org/10.1017/S0960129505004846 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129505004846

Abstract hierarchical graph transformation 775

components of hierarchical graphs such that one gets a hierarchical graph transformation

approach based on the DPO approach. As the main technical result of this paper, we

show in Section 6 that hierarchical graphs over the DPO approach can be flattened into

ordinary graphs in such a way that the transformation of hierarchical graphs is compatible

with the transformation of their flattened versions. Throughout the paper, our proposal

is illustrated by an example of a simplified version of a distributed project management

system, which we develop in Section 2. The paper is concluded by a discussion of related

approaches in Section 7 and a preview of future work in Section 8.

2. A running example

In this section we present a running example, which will help us illustrate our discussion

in subsequent sections. We will also convey a first intuition of the basic concepts of

hierarchical graphs, namely the ideas of grouping and encapsulating graph elements.

The example considers a particular case of graph modelling, namely the modelling of

hypertexts in the world-wide web (WWW). The WWW is a distributed information system

based on the Internet. The web contains collections of documents (nodes, or pages) with

cross-references (or hyperlinks) between them. Pages are provided by different web sites.

Hyperlinks are attached to pages through some kind of place-holders called anchors. The

WWW can be modelled as a large graph, the pages and anchors being the nodes and the

hyperlinks being the edges.

To give a concrete example, let us suppose that a software company maintains web

pages documenting two projects: a network traffic analysis software project (NTA), which

is meant for the analysis of data traffic on a computer network, and a network configuration

software project (NC), which assists in the design and configuration of computer networks.

The pages for these two projects can have links between them, but there can also be links

across project boundaries (for example, in respect of software modules that are shared

between the two projects). We also want to model the fact that the company has two sites,

one in Trento and one in Torino, and that pages can be provided by either of the two sites.

Figure 1 shows a graphical representation of the company’s web. Projects, sites, pages

and anchors are represented as nodes, where Pi stands for page i and small filled squares

denote anchors. Each project is documented by three pages, which are not necessarily

located at the same web site. Pages are linked through unlabelled directed edges to the

project they document and to the site that provides them. Anchors are also linked to the

pages they belong to by unlabelled directed edges. Hyperlinks are shown as λ-labelled

directed edges.

As you can see from the picture, a graphical representation of a hypertext quickly

becomes very complex, difficult to understand, and of little use for, say, an author who

has to develop and maintain the projects’ documentation.

In fact, authors often adopt strategies to handle the complexity of the hypertexts they

are developing, taking into account additional information. For example, pages can be

grouped according to their contents, and every group of pages can be given a start page

or home-page, that is, a page through which all other pages in the group can be accessed.

An arbitrary user of the WWW can create hyperlinks to any page inside such a group,

https://doi.org/10.1017/S0960129505004846 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129505004846

G. Busatto, H.-J. Kreowski and S. Kuske 776

Torino

Trento

NTA

NC

P1

P2
λ

P3

P4

P5
λ

P6

λ

λ

λ

λλ

λ

λ

λ

λ

Fig. 1. Web sites, projects, pages, and anchors.

but the home-page is the most reliable page to which one can refer, as it is left to the

maintainer of the home-page to add the necessary hyperlinks to the other pages in the

group. Hence, only start pages should be accessible from the outside.

What we have seen at a very concrete level is an illustration of two general concepts,

which are often found together in software engineering, and in many other areas of

computer science, namely the concepts of grouping and encapsulation. These concepts are

very well known, but we wish to briefly recall them here, and to illustrate them from the

point of view of our example.

1 Grouping. When we have to deal with (design, understand, use) a complex system, it

is useful to identify services that are provided by groups of components of the system.

For example, pages P4, P5, P6 provide the service of documenting project NC. By

grouping these pages and making this grouping explicit, we can model the abstraction

associated with them, namely the service they provide.

2 Encapsulation. When an external user wants to use a service, he or she is not interested

in how that service is implemented, but would like to have just the minimal knowledge

needed to use the service. In this case it is useful to distinguish between those elements

https://doi.org/10.1017/S0960129505004846 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129505004846

Abstract hierarchical graph transformation 777

in a grouping that provide access to the service (the user interface) by an external user,

and those that only serve to implement the service. The latter elements of our system

should be hidden from the user, or encapsulated in the grouping. In our example, we

assume that page P4 is the start page of project NC, and therefore all other pages in

the project should be hidden.

Hierarchical graphs are an extension of ordinary graphs, where the grouping of

graph elements into higher-level, layered structures is modelled explicitly. The idea

of encapsulation is also present in some hierarchical graph approaches, although less

frequently. In this case we speak of encapsulated hierarchical graphs.

The hierarchical graph model presented in this paper provides a primitive kind of

encapsulation since nodes and edges of a graph are only contained in certain components

of the hierarchy (called packages). However, we do not provide explicit import/export

interfaces between packages to control such containment, so we prefer to use the term

hierarchical graph instead of encapsulated hierarchical graph.

In Figure 2, we show a possible hierarchical decomposition for our running example.

We want to capture the following abstractions:

1 Documentation for one project. Here we have packaged all the pages and anchors

belonging to the documentation of one project in one grouping, depicted by the lightly

shaded rectangular areas in the picture. For example, pages P4, P5 and P6, together

with their internal anchors, form one such grouping.

2 Structure of a page. Here we want to consider a page together with its anchors as an

abstraction on its own. This can be useful for an author who wants to change a page

while having an overview of its structure. The page groupings are depicted as darker

rectangular areas inside project groupings. Notice that the page groupings are nested

in the project groupings, thus building a hierarchical structuring of the graph.

Although it is not explicitly depicted in the figure, one can also imagine that nodes are

hidden or visible with respect to a given grouping. For example, one can imagine that

page P4 is visible (exported) with respect to project NC, since it is referenced (used) by

pages external to the project. On the other hand, pages P5 and P6 should be hidden in

the project, since they are not used by any external page. As a consequence, since page

P6 is not visible in the documentation of project NTA, it is not possible to draw any edge

from an anchor inside that project to P6. This means that graph elements can be hidden

(encapsulated) inside the hierarchy, and this implies constraints on the hierarchical graph

itself by forbidding some edges.

A hierarchical graph data model must allow the representation of this kind of

information (hierarchy, visibility), and enforce possible constraints that derive from it (for

example, forbidden edges to hidden nodes). Looking more specifically at our hypertext

example, these concepts are not supported in the basic model of the WWW, but more

recent hypertext models do support such higher level structuring (see, for example,

collections in Maurer (1996)).

Our running example already gives us a first rough idea of the most important aspects

of hierarchical graphs. They can be summarised as follows:

1 Grouping. Graph elements can be grouped together to form higher level structures.

https://doi.org/10.1017/S0960129505004846 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129505004846

G. Busatto, H.-J. Kreowski and S. Kuske 778

Torino

Trento

NTA

NC

P1

P2
λ

P3

P4

P5
λ

P6

λ

λ

λ

λλ

λ

λ

λ

λ

Fig. 2. Web sites, projects, pages, and anchors.

2 Encapsulation/visibility. Graph elements can be hidden inside the hierarchy.

3 Constraints. The hierarchical structure and visibility information can introduce

constraints on the underlying graph

As already hinted, we do not consider encapsulation in this paper, although it is

considered in some existing approaches (Engels and Schürr 1995; Busatto et al. 2000). A

possible future extension is to investigate the transformation of hierarchical graphs with

encapsulation.

In the next section, we give a formal definition of our hierarchical graph model.

3. Graph packages and hierarchical graphs

In this section we introduce our notion of a hierarchical graph. The information that we

want to model by means of hierarchical graphs concerns the grouping of graph elements.

Grouping is related to the notion of aggregation, as known from object orientation (see,

for example, Rumbaugh et al. (1991)). Aggregation is a special kind of association, which

describes a part-of relationship between an aggregate class and its subcomponents. In our

https://doi.org/10.1017/S0960129505004846 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129505004846

Abstract hierarchical graph transformation 779

running example the links between anchors and pages can be considered as aggregation

links.

Aggregation allows us to group together the subobjects of a given object, and therefore

it provides some kind of grouping. However, if we look again at the example, we see that

there can be groupings that are not modelled adequately as aggregations. For example,

pages are grouped according to projects they document, but they are not subcomponents

of a project. Rather, we can think of the association between pages and sites as an

aggregation, that is, that a web site is made up of web pages.

Besides this conceptual difference between our idea of grouping and the idea of

aggregation, there is a technical one. In fact, aggregation always implies the existence of

an aggregate object. On the other hand, a generic grouping mechanism should not rely

on the existence of a grouping element in the graph (object, node, hyperedge, and so on),

although this can be the case.

For these reasons, we think that a generic grouping mechanism should use some

primitive that is distinct from nodes and edges of the graph. We call our grouping

primitive a graph package, or simply a package. A graph package will be a generic

container for graph elements (nodes and edges).

Our decoupled approach can be contrasted with coupled approaches, where the

hierarchical structure is coded in the graph itself, for example, through the use of complex

nodes (that is, nodes that have an entire subgraph as their internal content, see, for

example, Engels and Schürr (1995)), or of complex edges (see, for example, Drewes

et al. (2002)).

A coupled approach is usually tailored to a specific application and supports a particular

kind of hierarchical graph model. In our opinion, a coupled approach can hardly claim

to be general enough, while a decoupled approach is better suited for defining a general

hierarchical graph concept. If we define the hierarchy separately from the underlying

graph, and associate elements of the graph to elements of the hierarchy, it is then much

easier to specify properties of the hierarchy and the graph separately, and study their

interactions. In a decoupled approach we can decide at a later stage whether the hierarchy

should be a tree or a dag, whether it should be a stand-alone structure or be associated

to nodes or edges, or a combination of the two, and so on.

Summarising, we are going to model a hierarchical graph as an underlying flat graph, on

top of which we add a hierarchy structure. The hierarchy is, in turn, modelled as a graph,

namely a directed acyclic graph or dag. The elements of the hierarchy are called graph

packages, while edges in the hierarchy graph model the containment relation between

packages. The underlying graph and the hierarchy are connected to each other by a third

graph, called the coupling graph.

After giving some basic definitions in Section 3.1, we define our hierarchical graph

model in Section 3.2.

3.1. Basic definitions

In this section we introduce the basic definitions that we need for modelling the underlying

graph of a hierarchical graph, the hierarchy, and the coupling between the two.

https://doi.org/10.1017/S0960129505004846 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129505004846

G. Busatto, H.-J. Kreowski and S. Kuske 780

We first consider the underlying graph, that is, the graph that is actually being

structured. We have tried to make minimal assumptions on the underlying graph. In

this way, our concept can be applied to several existing kinds of graphs (for example,

directed/undirected, typed/untyped, labelled graphs, hypergraphs, and so on) provided

they satisfy some assumptions.

We have identified the following essential elements that allow us to structure a graph in

a hierarchical fashion:

— A graph should have nodes. No matter whether they be labelled, unlabelled, typed,

untyped, attributed, and so on, what is essential is that a graph contains nodes that

we would like to structure in some way.

— A graph should have edges. Edges model relations between nodes, and often some

kind of proximity information, thus defining the localities in the graph. It will not

be unusual for a node and all its neighbours to be in the same component of the

hierarchy.

We think that all other elements that can appear in a graph are marginal with respect

to hierarchical structuring. For example, attributes should not be put anywhere in the

hierarchy.

As far as edges are concerned, we are still left with the problem that there are many

different kinds of graphs, where nodes are connected to each other through edges in

different ways. We abstract from the different kinds of graphs by only modelling the fact

that edges are incident in nodes (nodes are attached to edges).

Summarising, our abstract notion of graph only assumes the existence of a set of

nodes and a set of edges, and of an incidence relation between them. We call these three

elements the skeleton of a given graph. The skeleton will serve as an interface between

the underlying graph and the hierarchy dag. Any graph (structure) for which there exists

a skeleton can be hierarchically structured.

Definition 3.1 (Graph and graph skeleton). A graph skeleton is a triple S = (N,E, ι), where

N and E are finite sets, called the set of nodes and the set of edges of S , and ι ⊆ E × N

is a binary relation, called the incidence relation of S . A graph is any structure G that

provides a skeleton SG = (NG, EG, ιG).

We will use NS , ES , ιS , respectively, to refer to the components of a graph skeleton S .

Given a skeleton S , a node n ∈ NS and an edge e ∈ ES , we will write ιS (e, n) instead of

(e, n) ∈ ιS . We also define the set of items of S as IS := NS ∪ ES . Given a graph G and its

skeleton SG, we will also write NG for NSG , EG for ESG , ιG for ιSG , and IG for ISG .

Given a graph G, n ∈ NG and e ∈ EG such that ιG(e, n), we say that e is incident in n,

and that n is attached to or an attachment node of e.

A class of finite graphs G induces a corresponding class of skeletons S(G) :=

{(NG, EG, ιG) | G ∈ G}.

Notice that we do not require the set of nodes and the set of edges of the graph to be

disjoint. Thus our notion captures many kinds of graphs, including those where edges

between edges are allowed. Yet, in certain cases it is useful to keep the distinction between

https://doi.org/10.1017/S0960129505004846 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129505004846

Abstract hierarchical graph transformation 781

nodes and edges – for example, when speaking of hierarchies or coupling graphs – so we

explicitly speak about a set of nodes, a set of edges and a set of items.

Items will be used to relate the underlying graph to the hierarchy graph and to the

coupling graph (see below). The incidence relation will be used to express constraints on

the way items are distributed over the hierarchy.

In the following example, we illustrate graph skeletons for a specific kind of graph.

Example 3.2. Our running example uses directed graphs (to be formally defined shortly)

to model hyperweb structures. Nodes are not labelled, while edges have two kinds of

labels: λ for hyperlink edges and ‘unlabelled’ for structural links.

The skeleton of the graph in the example contains the set of nodes NG :=

{NTA, P1, P2, . . . }, the set of edges EG := {P1-NTA, P2-NTA, . . . } and the incidence relation

ιG := {(P1-NTA, P1), (P1-NTA, NTA), (P2-NTA, P2), (P2-NTA, NTA), . . . }.

We now define labelled directed graphs, which are needed for modelling the hierarchy of

a hierarchical graph.

Definition 3.3 (Directed graphs). Let Σ and ∆ be two fixed sets, called the node and the

edge alphabet, respectively. A labelled directed graph is a tuple G = (N,E, s, t, l, m), where:

N is a finite set of nodes; E is a finite set of edges of G, N ∩E = �; s, t : E → N are two

functions mapping each edge to its source and target node, respectively; and l : N → Σ,

m : E → ∆ are the node and edge labelling functions, respectively.

A graph A is a subgraph of a graph B (written, A ⊆ B) if NA ⊆ NB , EA ⊆ EB ,

sA = sB |NA, tA = tB |NA, lA = lB |NA, mA = mB |NA. For a function f and a set X ⊆ dom(f),

we use f|X to denote the restriction of f to X.

Given a labelled directed graph G, we will use NG for the set of its nodes, EG for the

set of its edges, sG and tG for its source and target functions, and lG and mG, respectively,

for its labelling functions.

A node-labelled directed graph is a tuple G = (N,E, s, t, l) defined as above, where we

have dropped the edge-labelling function. Similarly, if we only provide an edge-labelling

function, we obtain an edge-labelled graph. A tuple G = (N,E, s, t), with N, E, s and t

defined as above is an unlabelled directed graph.

Each directed graph G, be it labelled, node-labelled, edge-labelled or unlabelled, provides

a skeleton SG = (NG, EG, ιG), with ιG := {(e, sG(e)) | e ∈ EG} ∪ {(e, tG(e)) | e ∈ EG}. In other

words, all the types of directed graphs we have introduced are graphs in the sense of

Definition 3.1. Without giving the technical details, undirected graphs and various kinds

of hypergraphs can also be seen as graphs in this general sense.

In order to define the hierarchy of a hierarchical graph, we need a notion of directed

acyclic graph, which is described in the following definition.

Definition 3.4 (Directed acyclic graphs). Let G be a directed graph. Then a path in G

from m to n, for some m, n ∈ NG, is a sequence of edges e1, . . . , ek ∈ EG (k � 1) such that,

for all i = 1, . . . , k − 1, tG(ei) = sG(ei+1), sG(e1) = m and tG(ek) = n. A cycle in G is a path

from a node n ∈ NG to itself.

https://doi.org/10.1017/S0960129505004846 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129505004846

G. Busatto, H.-J. Kreowski and S. Kuske 782

A directed acyclic graph (dag) is a directed graph that contains no cycles. Given a

directed graph G, if there exists a node n ∈ NG such that, for all m ∈ NG − {n}, there

exists a path from n to m in G, we say that n is a root of G and we call G a rooted graph.

If G is a rooted graph that is also a dag, we call G a rooted dag. Notice that a rooted dag

G has exactly one root node, which we refer to by ρG.

Since we will use rooted dags for representing hierarchies of graph packages (see

Definition 3.6) we will often indicate the set of nodes of a rooted dag D as PD . We also

define a relation �D between nodes of D as

�D := {(p, q) ∈ PD × PD | ∃e ∈ ED : sD(e) = p ∧ tD(e) = q}.

(Notice that, in general, �D is not transitive.)

Now that we have defined all the concepts we need for modelling the hierarchy of a

hierarchical graph, we still lack a way to model the coupling between the underlying

graph and the hierarchy. To this end we introduce coupling graphs.

Definition 3.5 (Coupling graphs). A coupling graph is a (bipartite) directed graph B where

NB is partitioned into the sets AB and PB such that for all e ∈ EB , we have sB(e) ∈ AB
and tB(e) ∈ PB (that is, if all edges are oriented from the first to the second set of nodes),

and B satisfies the following completeness condition: for every a ∈ AB there exists some

p ∈ PB and an edge e ∈ EB such that sB(e) = a and tB(e) = p, (that is, every node in AB
is connected to at least one node in PB).

From now on, a coupling graph, which is also called a connection graph, will be a system

B = (AB, PB, EB, sB, tB, lB, mB) where AB and PB are two disjoint finite sets of atoms and

packages, respectively, EB is the set of edges of B, sB : EB → AB and tB : EB → PB are

the source and target functions, and lB and mB are the labelling functions. For a coupling

graph B, we define a containment relation

CB := {(a, p) ∈ AB × PB | ∃e ∈ EB : a = sB(e) ∧ p = tB(e)}.

We use the notation PB , AB and CB , because coupling graphs determine in which packages

the atoms of a hierarchical graph are contained (see Definition 3.6).

Although node and edge labels are not needed for the definition of coupling graphs,

considering labelled bipartite graphs will be technically convenient in Sections 5 and 6,

where we want to use the traditional DPO transformation approach to transform these

graphs.

3.2. Hierarchical graphs

In this section we define hierarchical graphs as a combination of three graphs that are

glued to each other by means of their items.

Definition 3.6 (Hierarchical graphs). A hierarchical graph (HG) is a system H = (G,D, B),

where G is a graph in the sense of Definition 3.1, D is a rooted dag, B is a coupling graph

with AB = IG and PB = PD satisfying, for each p ∈ PD , the following condition: for every

https://doi.org/10.1017/S0960129505004846 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129505004846

Abstract hierarchical graph transformation 783

e ∈ EG and n ∈ NG with ιG(e, n), CB(e, p) implies CB(n, p), that is, if an edge e is contained

in a package p of the hierarchy, then all nodes in which the edge is incident are contained

in p also.

The elements of the set PD are called graph packages, or simply packages. D is called

the hierarchy dag. CB ⊆ IG × PD is the containment relation between the items and the

packages of G. If p, p′ ∈ PD and p �D p′, we say that p′ is a superpackage (or parent

package) of p and that p is a subpackage (or child package) of p′. Two packages that have

a common parent package are called siblings.

We also consider plain hierarchical graphs, defined as above but with AB = NG and

NG∩EG = � (the edges are not part of the hierarchy). The condition on edges formulated

above is always trivially satisfied.

This notion is general enough to capture several other approaches to hierarchical graphs

(see, for example, Busatto and Hoffmann (2001) and Busatto (2002)). The plain variant

provides a simpler model that can be used when the location of edges in the hierarchy is

not important.

Figure 3 depicts a hierarchical graph where the three components (hierarchy, underlying

graph and coupling) are shown separately.

Torino

Trento

NTA

NC

P1

P2
λ

P3

P4

P5
λ

P6

λ
λ

λ

λλ

λ

λ

λ
λ

Fig. 3. A hierarchical graph.

https://doi.org/10.1017/S0960129505004846 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129505004846

G. Busatto, H.-J. Kreowski and S. Kuske 784

In Definition 3.6, we have introduced a condition relating nodes, edges and packages

saying that if an edge is contained in a package, then all its attachment nodes are also

contained in the same package. This avoids the unreasonable situation where a package

‘sees’ an edge but does not see some of its attachment nodes.

We have also restricted the hierarchy graph to be a directed acyclic graph. Those

approaches to hierarchical graphs that only allow tree-like hierarchies can be seen as a

particular case. There also exist approaches (for example, Pratt (1979)) where arbitrary

(even cyclic) hierarchies are allowed but we think that dags are closer to the usual intuition

of a ‘layered structure’. However, our model can be easily adapted to this more general

notion of hierarchy by dropping the appropriate restrictions from Definition 3.6.

We now introduce some useful notation.

Definition 3.7 (Notation for hierarchical graphs). Given a hierarchical graph H = (G,D, B),

we use GH to denote G, DH to denote D, and BH to denote B.

Let G be a class of finite graphs in the sense of Definition 3.1, D be a class of rooted

dags and B be a class of coupling graphs. Then we define the class H(G,D,B) to be the

smallest class containing all hierarchical graphs (G,D, B) ∈ G × D × B.

On the other hand, given a class of hierarchical graphs H, we can define the classes

GH := {GH | H ∈ H}, DH := {DH | H ∈ H}, BH := {BH | H ∈ H}. Notice that

H ⊆ GH × DH × BH.

4. Hierarchical graph transformation

In this section we consider hierarchical graph transformation. We assume that hierarchical

graphs are modelled as in Section 3, that is, a hierarchical graph is a combination of an

underlying graph, a hierarchy graph and a containment relation between packages and

elements of the graph (nodes and possibly edges). We model the containment relation as

a graph, called the coupling graph.

Our main interest is in rule-based hierarchical graph transformation. We have considered

two possible approaches to it:

1 Ad-hoc rules, accessing all the components (hierarchy, underlying graph, coupling

graph) of a hierarchical graph at the same time, and taking advantage of the particular

approach chosen for modelling hierarchical graphs. An example of such an approach

is Drewes et al. (2002).

2 A transformation approach that is as independent as possible from the choice of

underlying graph and already existing rules for these graphs. This approach should

allow us to lift existing graph transformation rules to hierarchical graph transformation

rules.

Following our main goal of developing an abstract model of hierarchical graph

transformation, we adopt the second approach. In fact, packages are meant as a generic,

approach-independent concept for structuring graphs, and we would like to specify

package transformation in a similar fashion, making as few assumptions as possible about

the underlying graphs, and reusing existing techniques for specifying their transformation.

https://doi.org/10.1017/S0960129505004846 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129505004846

Abstract hierarchical graph transformation 785

Bearing in mind our model of a hierarchical graph, namely, a combination of three

independent graphs with constraints between them, it is natural to apply a similar

principle to graph transformation rules. In order to do this, we use the concept

of a graph transformation approach, as described in Kreowski and Kuske (1996) (see

also Kuske (1999) and Kreowski and Kuske (1999a; 1999b)). We assume three graph

transformation approaches: one for specifying graph transformations, one for specifying

hierarchy transformations, and one for specifying transformations on the coupling graphs.

In this section we show how three transformation approaches like these can be combined

into a hierarchical graph transformation approach. In the combined approach, the three

component graphs of a HG are transformed by independent rules, but consistency

conditions between them are ensured.

The rest of Section 4 is structured as follows. In Section 4.1, we recall the concept

of a graph transformation approach, and we introduce the notation necessary for the

following subsections. In Sections 4.2 and 4.3, we introduce the concept of a hierarchical

graph transformation approach, and show how to construct such an approach, given three

transformation approaches for the components of a hierarchical graph. In Section 4.4, we

extend our running example to illustrate our hierarchical graph transformation approach.

4.1. Graph transformation approaches

The notion of a graph transformation approach (see, for example, Kreowski and

Kuske (1996), Kreowski et al. (1997), Kreowski and Kuske (1999a), Kuske (1999) and

Kreowski and Kuske (1999b)) has been introduced as an abstraction of approaches

to graph transformation existing in the literature. This concept has been used for the

definition of transformation units (again see Kreowski and Kuske (1996)), which is an

approach-independent mechanism that can be used to structure graph transformation

systems, and to add control of rule application.

A graph transformation approach assumes the existence of a class of graphs G, a class

of rules, and a rule application operator, which associates to each rule r a binary relation

⇒r on G, such that a pair (G,G′) in ⇒r indicates that G′ is directly derived from G via

rule r. Furthermore, a graph transformation approach contains control conditions that

provide control of rule application, and graph class expressions that allow us to define

classes of graphs (for example, initial and final graphs of a graph transformation system).

Here is the formal definition of graph transformation approaches.

Definition 4.1 (Graph transformation approach). A system A = (G,R,⇒,C,E) is a graph

transformation approach if:

— G is a class of graphs,

— R is a class of rules, whose semantics is provided by the rule application operator ⇒
that associates with every rule r ∈ R a binary relation ⇒r⊆ G × G,

— C is a class of control conditions such that the semantics of each C ∈ C is a binary

relation SEM(C) ⊆ G × G,

— E is a class of graph class expressions such that the semantics of each X ∈ E is a set

SEM(X) ⊆ G.

https://doi.org/10.1017/S0960129505004846 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129505004846

G. Busatto, H.-J. Kreowski and S. Kuske 786

Note that the definition of a graph transformation approach actually captures the more

general situation where we have a class of objects that are transformed by rules. In fact,

in the above definition, no assumptions are made about the kind of graphs to be used: the

class G can even contain structures other than graphs, provided we also have a class of

rules and a rule application operator. We will exploit the generality of this approach in the

next section in order to define hierarchical graph transformation approaches. An example

of a graph transformation approach will be sketched in Section 4.4. The interested reader

can find more examples in Kuske (1999, Section 2.1).

Graph transformation approaches model graph transformation from an abstract point

of view, and rules and graphs are considered atomic entities. As a consequence, it is not

possible to model such information as rule left- and right-hand sides, nodes and edges

inside these graphs, the fact that some of these nodes and edges are preserved, deleted

or created, and so on. In a similar way, it is not possible to speak about elements of the

transformed graphs, and about them being preserved/deleted/newly created. On the other

hand, we need this information if we want to coordinate the transformation of different

components of a hierarchical graph: nodes inside different rules must be identified, and

the components of a hierarchical graph must be manipulated in such a way as to respect

this identification. This additional information is modelled by using the refined notion of

a tracking graph transformation approach.

In a tracking approach, rule skeletons model the required internal structure of rules by

means of a left- and right-hand side graph skeleton, and a partial morphism between the

two. In this way, we can speak about nodes and edges inside a rule, and, through the

partial morphism from the left- to the right-hand side, we can track preserved elements of

the rule. The same construct is used to refine the notion of a direct derivation step. (These

ideas are borrowed from the SPO graph transformation approach, see, for example, Ehrig

et al. (1997).)

The notion of a rule skeleton relies on that of a partial (graph) skeleton morphism.

Definition 4.2 (Skeleton morphisms). Given two graph skeletons S1 = (N1, E1, ι1),

S2 = (N2, E2, ι2), a (partial) skeleton morphism µ : S1 → S2 is a pair of partial functions

µN : N1 → N2, µE : E1 → E2, such that, for all e ∈ E1 and n ∈ N1, if e ∈ dom(µE) and

ι1(e, n), then n ∈ dom(µN) and ι2(µE(e), µN(n)).

Notice that this definition ensures that whenever an edge belongs to the domain of a

partial morphism, its attachment nodes also belong to the domain of that morphism, that

is, no ‘dangling’ mappings are allowed.

In the following definition, we explain how skeleton morphisms can be used as rule

(respectively, direct derivation) skeletons.

Definition 4.3 (Rule and derivation skeleton). A rule skeleton is a triple S = (LS ,RS , tr),

where LS , RS are graph skeletons, and tr : LS → RS is a partial skeleton morphism.

Given two graphs G, H such that H directly derives from G in some graph transformation

approach, a morphism ϕ : SG → SH will be called a direct derivation skeleton.

https://doi.org/10.1017/S0960129505004846 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129505004846

Abstract hierarchical graph transformation 787

LS RStr

SG

g

SG′

h

ϕ

Fig. 4. Tracking derivation.

A tracking graph transformation approach (see Definition 4.4) is a graph transformation

approach where:

— rules always provide rule skeletons;

— direct derivation steps always provide direct derivation skeletons; and

— such pairs of skeletons agree on preserved/created/deleted graph elements.

Definition 4.4 (Tracking graph transformation approach).

A graph transformation approach A = (G,R,⇒,C,E) is tracking if:

1 Every rule r ∈ R provides a rule skeleton (LS r,RS r, tr r).

2 For every rule r ∈ R, for all graphs G,G′ ∈ G, if there is a direct derivation step G ⇒r

G′, then there exists at least one tuple 〈g, h, ϕ〉, where g : LS → SG and h : RS → SG′

are skeleton morphisms, and (SG, SG′ , ϕ) is a direct derivation skeleton such that

h ◦ tr = ϕ ◦ g,

that is, such that the diagram of Figure 4 commutes.

While rule skeletons and direct derivation skeletons allow us to track preserved graph

elements between two graphs, tracking derivation adds consistency constraints between a

rule skeleton and a direct derivation skeleton by means of matching morphisms.

4.2. Combining graph transformation approaches

Since we model hierarchical graphs as triples of graphs, it seems natural to apply graph

transformation to the components of a hierarchical graph in order to define hierarchical

graph transformation. This is done by means of a standard construction (Construction 1)

that allows us to define hierarchical graph transformation if three appropriate graph

transformation approaches are available. This method has the advantage that it does not

require a new notion of graph transformation and it does not force one to choose a priori

an existing graph transformation approach.

To begin with, we need special names for transformation approaches where the class

of graphs contains hierarchical graphs, hierarchy graphs and coupling graphs.

Definition 4.5 (Special transformation approaches). We call a tuple AH =

(H,RH,⇒H,CH,EH), where H is a class of hierarchical graphs, and the other

https://doi.org/10.1017/S0960129505004846 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129505004846

G. Busatto, H.-J. Kreowski and S. Kuske 788

components are defined analogously to Definition 4.1, a hierarchical graph transformation

approach.

We call a graph transformation approach AD = (D,RD,⇒D,CD,ED) a hierarchy

transformation approach if D is a class of rooted dags. We call a graph transformation

approach AB = (B,RB,⇒B,CB,EB) a coupling transformation approach if B is a class of

coupling graphs.

In the following construction, we show how to build a hierarchical graph transformation

approach as a combination of a graph transformation approach, a hierarchy

transformation approach and a coupling transformation approach. This construction

allows us to add hierarchical structuring to any graph transformation approach as an

orthogonal concept.

Construction 1. Let G be a class of graphs, D be a class of rooted dags and B be

a class of coupling graphs, and, for x ∈ {G,D,B}, let Ax = (x,Rx,⇒x,Cx,Ex) be a

graph transformation approach, a hierarchy transformation approach and a coupling

transformation approach, respectively.

Then a loose hierarchical graph transformation approach

LH(AG,AD,AB) = (H,RH,⇒H,CH,EH)

is induced as follows:

— H := H(G,D,B).

— RH := RG × RD × RB.

— Given a rule r = (γ, δ, β), its semantics relation ⇒r⊆ H × H is defined for H =

(G,D, B), H ′ = (G′, D′, B′) ∈ H as follows: H ⇒r
H H ′ iff G ⇒γ

G G
′ and D ⇒δ

D D′ and

B ⇒β
B B′.

— CH := CG × CD × CB and, for C = (CG, CD, CB) ∈ CH, the semantics is defined by

SEM H(C) := {((G,D, B), (G′, D′, B′)) ∈ H × H |
(G,G′) ∈ SEM G(CG) ∧
(D,D′) ∈ SEM D(CD) ∧
(B,B′) ∈ SEM B(CB)}.

— EH := EG × ED × EB, and, for X = (XG, XD, XB) ∈ EH, the semantics is defined by

SEM H(X) := SEM G(XG) × SEM D(XD) × SEM B(XB) ∩ H.

While the classes of rules, control conditions and graph class expression are defined as the

Cartesian products of the corresponding component classes, their semantics is constructed

componentwise, too, but the resulting triples of graphs, dags and connecting graphs must

also form hierarchical graphs. A rule r ∈ RH is called a loose hierarchical rule.

A loose hierarchical graph transformation approach LH(AG,AD,AB) is tracking if

AG, AD and AB are tracking.

It can be useful to assume that the three component approaches always have an identity

rule (with obvious semantics), which can be used when we do not want to modify the

hierarchy, the graph or the couplings, while transforming the other components.

https://doi.org/10.1017/S0960129505004846 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129505004846

Abstract hierarchical graph transformation 789

A hierarchical graph transformation approach built according to Construction 1 is

called loose because there is little coordination between these transformations, which

could lead to unexpected/unwanted results. For example, let (G,D, B) ⇒r (G′, D′, B′) be a

direct derivation step defined as above, where G ∼= G′ contains exactly one node, D ∼= D′

contains exactly two packages, B ∼= B′ contains the node and the two packages, and

assigns the node to one of the two packages. This derivation step can easily be defined

by a triple of identity rules. Now, since direct derivation steps are often defined up to

isomorphism, nothing guarantees that the components of (G′, D′, B′) are glued in the

appropriate way, and it could happen that the only node of the hierarchical graph is

moved from one package to the other.

If the component approaches are tracking, we can extend loose hierarchical graph

transformation to support coordination, as discussed in the following subsection. The

notion of a loose hierarchical graph transformation approach can be considered an

intermediate step for the definition of coordinated hierarchical graph transformation.

4.3. Hierarchical graph transformation

We are now ready to define (coordinated) hierarchical graph transformation approaches.

We will first define coordinated rules, that is, triple rules whose left- and right-hand sides

are glued in a similar way to the way the components of a hierarchical graph are. We

then define coordinated hierarchical graph transformation and extend Construction 1 in

order to take this additional information into account.

Coordinated rules are triples of graph transformation rules with additional information

about correspondences between elements of the coupling graph rule and elements of the

other rules. For example, we can specify that a certain package in the hierarchy rule is

the same as a package in the coupling graph rule.

While the notion of a tracking graph transformation approach allows us to specify

correspondences between elements within a rule, coordination permits us to specify

external correspondences between elements of different rules. In coordinated hierarchical

transformation we will require that such external and internal correspondences are

compatible.

Before introducing coordinated rules, we need the notion of commutativity for certain

diagrams containing two partial morphisms and two relations between graph skeletons.

The two morphisms will be rule skeletons and the relations will model the gluing of

skeletons along common elements.

Definition 4.6 (Gluing rule skeletons). Let S1 and S2 be graph skeletons, and f : S1 → S2

be a partial skeleton morphism. We will often abuse notation and consider f as a

function f : IS1
→ IS2

defined, for all n ∈ NS1
∩ dom(fN), as f(n) := fN(n) and, for all

e ∈ ES1
∩ dom(fE), as f(e) := fE(e).

Let S1, S2, S3, S4 be four graph skeletons, l : S1 → S2 and r : S3 → S4 be two partial

skeleton morphisms, and ∼upper ⊆ IS1
× IS3

and ∼lower ⊆ IS2
× IS4

be two relations. We say

that the quadruple 〈l, r,∼upper ,∼lower 〉 commutes if, for all a ∈ IS1
and for all c ∈ IS3

, we

have that if a ∼upper c, then, either:

https://doi.org/10.1017/S0960129505004846 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129505004846

G. Busatto, H.-J. Kreowski and S. Kuske 790

S1 S3
∼upper

S2

l

S4

r

∼lower

Fig. 5. Gluing rule skeletons.

— a �∈ dom(l) and c �∈ dom(r); or

— a ∈ dom(l) and c ∈ dom(r) and l(a) ∼lower r(c).

In such a case, we say that the rule skeletons l : S1 → S2 and r : S3 → S4 are glued via

the relations ∼upper , ∼lower .

Consider a diagram like that of Figure 5. Intuitively, the notion of commutativity

introduced in Definition 4.6 states that if two elements of the upper skeletons are related

through ∼upper , then either they are both mapped to two elements of the lower skeletons

that are related through ∼lower , or they are both outside the domain of the two partial

morphisms in the diagram.

Definition 4.7 (Coordinated rules). For x ∈ {G,D,B}, let Ax = (x,Rx,⇒x,Cx,Ex) be

three tracking graph transformation approaches. Furthermore, let R ⊆ RG × RD × RB be

a class of triple rules. Then a coordinated rule over R is a system

r = (γ, δ, β,∼L
γ ,∼R

γ ,∼L
δ ,∼R

δ)

where (γ, δ, β) ∈ R and we have

∼L
γ ⊆ ILS γ

×NLS β

∼R
γ ⊆ IRS γ

×NRS β

∼L
δ ⊆ NLS δ

×NLS β

∼R
δ ⊆ NRS δ

×NRS β

such that all relations are injective†, and the two quadruples 〈tr γ, trβ,∼L
γ ,∼R

γ 〉 and

〈trδ, trβ,∼L
δ ,∼R

δ 〉 commute. We use CO(R) for the class of all coordinated rules over

R.

In Figure 6, we depict the relations and morphisms of a coordinated hierarchical graph

rule r = (γ, δ, β,∼L
γ ,∼R

γ ,∼L
δ ,∼R

δ)

We are now ready to describe coordinated hierarchical graph transformation and

coordinated hierarchical graph transformation approaches. This completes the definition

of our framework.

† We say that a relation R ⊆ A × B is injective if for all a �= a′ ∈ A, b �= b′ ∈ B, neither (a, b), (a′, b) ∈ R, nor

(a, b), (a, b′) ∈ R hold.

https://doi.org/10.1017/S0960129505004846 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129505004846

Abstract hierarchical graph transformation 791

LS γ

RS γ

tr γ

LS β

RS β

trβ

LS δ

RS δ

trδ

∼L
γ

∼R
γ

∼L
δ

∼R
δ

Fig. 6. Coordinated rule diagram.

Definition 4.8 (Coordinated HG transformation approach). We consider a tracking graph

transformation approach AG = (G,RG,⇒G,CG,EG), a tracking hierarchy transformation

approach AD = (D,RD,⇒D,CD,ED), and a tracking coupling transformation

approach AB = (B,RB,⇒B,CB,EB). Let LH(AG,AD,AB) = (H,R,⇒,C,E) be

the corresponding tracking loose hierarchical graph transformation approach. Then, a

coordinated hierarchical graph transformation approach over LH is a hierarchical graph

transformation approach

AH = (H,CO(R),�,C,E)

where, for all H,H ′ ∈ H, H = (G,D, B), H ′ = (G′, D′, B′), for all rules r ∈ CO(R),

r = (γ, δ, β,∼L
γ ,∼R

γ ,∼L
δ ,∼R

δ), we have that H �r H ′ if and only if:

1 H ⇒(γ,δ,β) H ′.

2 We can build a diagram like the one in Figure 7, where the front horizontal relations

are defined as†

∼G := {(a, a) | a ∈ AB}
∼G′

:= {(a, a) | a ∈ AB′ }
∼D := {(p, p) | p ∈ PB}
∼D′

:= {(p, p) | p ∈ PB′ }

and all squares in the diagram commute.

If we look at the diagram in Figure 7 again, we notice that:

— The back squares exist and commute since r is a coordinated rule.

— If G ⇒γ
G G′, D ⇒δ

D D′, B ⇒β
B B′, the vertical side and middle squares exist and

commute since the three component approaches are tracking.

In the rest of the paper, we will often drop the term coordinated, assuming that all

the hierarchical graph transformation approaches we consider are coordinated. Notice

also that all the constructions and definitions presented in this section can be applied

† Recall that AB = IG, AB′ = IG′ , PB = PD , PB′ = PD′ .

https://doi.org/10.1017/S0960129505004846 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129505004846

G. Busatto, H.-J. Kreowski and S. Kuske 792

LS γ

RS γ

SG

SG′

tr γ

mγ

m′
γ

ϕγ

LS β

RS β

SB

SB′

trβ

mβ

m′
β

ϕβ

LS δ

RS δ

SD

SD′

trδ

mδ

m′
δ

ϕδ

∼L
γ

∼R
γ

∼G

∼G′

∼L
δ

∼R
δ

∼D

∼D′

Fig. 7. Skeleton for a coordinated derivation step.

to plain hierarchical graphs, provided that for every hierarchical graph H(G,D, B) we

assume AB = NG, and for every coordinated rule r = (γ, δ, β,∼L
γ ,∼R

γ ,∼L
δ ,∼R

δ) we require

∼L
γ ⊆ NLS γ

×NLS β
and ∼R

γ ⊆ NRS γ
×NRS β

.

4.4. An example

We now illustrate hierarchical graph transformation by defining some transformations

for our web example (see Section 2). In this example, we use the double-pushout (DPO)

approach to graph transformation, which we briefly explain in this subsection in an

informal and intuitive way, postponing formal definitions until Section 5. We use plain

hierarchical graphs here, meaning that the location of edges in the hierarchy is omitted.

The traditional DPO approach uses node and edge labelled directed graphs. This means

that, when we instantiate our framework to the DPO approach, we obtain hierarchical

graphs that are triples of node and edge labelled directed graphs. In our specific example,

we still have to choose an appropriate labelling for these graphs. For the underlying

graph we use the set of node labels ΣG = {prj, site, page, anc} so that we will be able to

distinguish between four types of nodes, and the set of edge labels ∆G = {λ, σ}, where

λ labels link edges originating from anchors (again see Figure 1) and σ labels structural

edges, that is, all other edges. The sets of node labels and edge labels for the hierarchy

graph are ΣD = ∆D = {⊥}, that is, we have only one node and edge label, which is

equivalent to having no edge labelling at all. The set of node labels for the coupling graph

is ΣB := ΣG ∪ ΣD, whereas its edge label alphabet ∆B = {⊥} contains only one element,

as for hierarchy graphs. Provided ΣG ∩ ΣD = �, we can use labels to distinguish package

nodes from atom nodes, and therefore a coupling graph B = (PB, AB, EB, sB, tB, lB, mB)

will be represented as a directed graph B = (PB ∪ AB, EB, sB, tB, lB, mB).

We recall that in our example we have projects documented by web pages. We also have

packages associated to projects, which contain the nodes and links related to a project’s

documentation. Inside project packages, we have page packages, containing the nodes

https://doi.org/10.1017/S0960129505004846 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129505004846

Abstract hierarchical graph transformation 793

Graph rule

::=

1’: page

2’: page

3’: page

Hierarchy rule

::=

‘a: ⊥

a’ = ‘a

b’: ⊥

Coupling rule

::=

‘a: ⊥

a’ = ‘a

b’: ⊥

1’: page

2’: page

3’: page

Fig. 8. Creating a package and some internal nodes.

and edges describing the internal structure of each page. In this setting, we consider the

following two transformations:

1 Add a new project together with its three (currently empty) pages. Adding a project

involves creating its package, creating its pages, and putting the pages inside the

project package. The new package must be hung on some existing package.

2 Add a hyperlink from a given page to a target page within the same project. This involves

adding an anchor to the source page, adding an edge from that anchor to the target

page, and adding the anchor to the package of the source page.

We specify these transformations by means of hierarchical graph rules.

The first rule, depicted in Figure 8, illustrates the transformation ‘create project’. It

is composed of three double-pushout rules: the graph rule, the hierarchy rule, and the

coupling rule. Each DPO rule has the following elements:

— The left-hand side, which specifies a pattern graph to be found in the graph to be

transformed (the host graph). In Figure 8, the graph rule has an empty left-hand

side, which means that it can always be applied since the empty pattern is trivially

contained in every graph. The left-hand side of the hierarchy and of the coupling rule

contains one package with label ⊥ and identifier ‘a. This means that we have to match

a ⊥-labelled node in both the hierarchy and the coupling graph. The left-hand side is

depicted on the left of (or, for layout reasons, above) the ::= symbol.

— The right-hand side, which specifies the transformation to be performed on the nodes

and edges of the host graph matched by the left-hand side. In Figure 8, all nodes and

edges in the right-hand side of the graph rule are new, which means that they must

be added to the host graph. In the right-hand side of the hierarchy and coupling rule

the package with identifier a’ is preserved from the left-hand side (notice the notation

a’ = ‘a) while all other nodes are new. If a node or edge only appears in the left-hand

side, it must be deleted.

https://doi.org/10.1017/S0960129505004846 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129505004846

G. Busatto, H.-J. Kreowski and S. Kuske 794

Graph rule

::=

‘1: page ‘2: page

1’ = ‘1 2’ = ‘2

3’: anc

σ λ

Hierarchy rule

::=

‘a: ⊥

‘b: ⊥ ‘c: ⊥

a’ = ‘a

b’ = ‘b c’ = ‘c

Coupling rule

::=

‘b: ⊥

‘c: ⊥

‘1: page

‘2: page

b’ = ‘b

c’ = ‘c

1’ = ‘1

2’ = ‘2

3’: anc

Fig. 9. Adding a hyperlink.

Notice that we have used the same identifiers for nodes in the graph and the coupling rule,

and for packages in the hierarchy and the coupling rule. This expresses the coordination

between rules. Since we are dealing with plain hierarchical graphs, there is no coordination

for the edges of the underlying graph.

After this brief illustration of double-pushout rules and their semantics, we concentrate

again on the first hierarchical rule. The graph rule has an empty left-hand side and three

page nodes on the right-hand side, and thus it specifies the creation of three new page

nodes. The hierarchy rule specifies the creation of a new package. The coupling rule

specifies that that new package must contain the three new pages. The vertical dashed

line in the coupling rule, separates the package part (on the left) from the graph part

(on the right) of the transformation. Note that we use a special notation for package

nodes. The fact that the three new pages are put in the correct package is ensured by the

coordination information (they are put in package b).

The second hierarchical rule, depicted in Figure 9, specifies the transformation ‘add

hyperlink’. The graph part of the rule indicates that we should find two page nodes in

the underlying graph, add a new anchor node and link it to the first page with a new

structural link and to the second page with a new hyperlink. The hierarchy rule specifies

that three packages are found in the hierarchy such that the second and the third are

subpackages of the first. The rule preserves this situation. The first package represents

the common project package in which the two page packages (second and third package)

must be. The coupling rule specifies that there must be two page nodes contained in two

different packages and that after the application there must be a new anchor node, which

https://doi.org/10.1017/S0960129505004846 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129505004846

Abstract hierarchical graph transformation 795

is put in the package that contains the target of the σ-edge. This is again ensured by the

coordination between the graph and the coupling rule.

5. A hierarchical double-pushout approach

In this section, we want to instantiate our framework for hierarchical graph transformation

using the double-pushout (DPO) approach to graph transformation (see Ehrig (1979) and

Corradini et al. (1997)). Thus we will combine three graph transformation approaches

based on the double-pushout into a hierarchical graph transformation approach.

The main issue in this section concerns the restrictions that we have to impose on

hierarchy and on connection transformation rules. In fact, unrestricted application of

graph transformation rules to, say, hierarchy dags, can produce graphs that are no longer

rooted dags, and therefore violate the required structure of the hierarchy graph. Likewise,

unrestricted application of rules to connection graphs can yield graphs that are no longer

connection graphs. In Section 5.2, we study two conditions that can be statically checked

on DPO rules, and that together ensure that a rule always transforms hierarchy graphs into

hierarchy graphs, as shown in Proposition 5.12. In Section 5.3, an analogous condition for

the preservation of connection graphs is introduced, and its correctness and completeness

is proved in Proposition 5.20. Thus the results presented in Sections 5.2 and 5.3 provide a

characterisation of DPO hierarchical graph transformation.

In Section 5.1, we give preliminary definitions that are needed in the rest of the section.

These definitions, concerning the notion of DPO graph transformation, will be further

exploited in Section 6, where we investigate the translation of hierarchical graph DPO

rules into flat DPO rules, thus mimicking hierarchical graph transformation with flat

graph transformation.

5.1. Double-pushout graph transformation

The double-pushout approach (DPO) to graph transformation was introduced at the

beginning of the seventies (see Ehrig et al. (1973)) as a generalisation of Chomsky

grammars from strings to graphs . It is based on the pushout construction from category

theory, which can be described roughly as the gluing of two objects of some kind along

a common interface. Applied to graphs, such a construction allows us to glue two given

graphs G and H together by identifying some of their nodes and edges.

The basic transformation step in the DPO approach is based on the construction of a

diagram with two pushouts, where two of the graphs in the diagram represent the graph

G to be transformed and the graph H derived from G. We now present the basic notions

of the DPO approach, which we need in the remainder of the section.

To begin with, we need the notion of a graph morphism.

Definition 5.1 (Graph morphism, category of graphs). Given two labelled directed graphs

G, G′, a graph morphism ϕ : G → G′ from G to G′ is a pair of functions ϕ = (ϕN, ϕE),

where ϕN : NG → NG′ and ϕE : EG → EG′ , such that ϕN ◦ sG = sG′ ◦ϕE, ϕN ◦ tG = tG′ ◦ϕE,

lG = lG′ ◦ ϕN and mG = mG′ ◦ ϕE. Given two morphisms ϕ : G → H and ψ : H → K , we

https://doi.org/10.1017/S0960129505004846 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129505004846

G. Busatto, H.-J. Kreowski and S. Kuske 796

define the compound morphism ψ ◦ ϕ : G → K as the pair (ψN ◦ ϕN, ψE ◦ ϕE). Given a

graph G, the identity morphism on G is the pair idG = 〈idNG
, idEG〉, where idNG

: NG → NG

and idEG : EG → EG are the identity functions on the sets of nodes and edges of G,

respectively.

The category of directed graphs DG has labelled directed graphs as objects, graph

morphisms as arrows, identity morphisms as identity arrows, and composition of

morphisms as defined above as arrow composition.

A morphism ϕ is injective if ϕN and ϕE are injective functions. Given a graph morphism

ϕ = (ϕN, ϕE), we write ϕ for ϕN (respectively, ϕE) when it is clear that we mean the node

(respectively, edge) function. In what follows, if f : A → B and g : B → C are functions

(respectively, graph morphisms), we will often abbreviate g ◦ f to gf.

Graph transformation rules are defined in the following.

Definition 5.2 (Graph transformation rule). A graph transformation rule (or, simply, a

rule) is a tuple (L, i, K, j, R) where L, K and R are graphs, and i : K → L, j : K → R are

injective graph morphisms. If we assume that K is a subgraph of both L and R, we write

r = (L ⊇ K ⊆ R) or (L,K, R).

Given a rule r = (L, i, K, j, R), its component graphs are denoted by Lr , Kr and Rr ,

respectively. Lr is called the left-hand side of r, Rr is called the right-hand side of r, while

Kr is called the interface or gluing graph.

Rules can be applied to graphs to derive new graphs. Applying a rule involves constructing

two pushout diagrams (hence the name double-pushout). Before speaking about rule

application, we define the pushout construction.

Definition 5.3 (Pushout construction). A pushout in the category of graphs is a tuple of

graph morphisms

〈i : A → B, j : A → C, b : B → D, c : C → D〉
where:

— b ◦ i = c ◦ j,
— for all 〈b′ : B → D′, c′ : C → D′〉 such that b′ ◦ i = c′ ◦j, there exists a unique morphism

h : D → D′ such that b′ = h ◦ b and c′ = h ◦ c.

In the following remark we give the intuition behind the concept of a pushout, and show

how it can be constructed in the category of graphs.

Remark 5.4. Given a pair of graph morphisms 〈i : A → B, j : A → C〉, the pushout graph

D can be built from i and j by taking the disjoint union of the graphs B and C , and

identifying the nodes and edges that have the same preimage in A. A is called the gluing

graph because D is obtained by gluing B and C along A.

Now that we have defined the concept of a pushout, we can describe how a direct

derivation step is performed.

Definition 5.5 (Direct derivation). Given a graph G and a rule r = (L, i, K, j, R), if we can

build a diagram as in Figure 10, that is, if graphs D and H exist, together with morphisms

https://doi.org/10.1017/S0960129505004846 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129505004846

Abstract hierarchical graph transformation 797

KL i Rj

D

k

G

g

d H

h

d′

Fig. 10. DPO derivation step.

g : L → G, d : D → G, k : K → D, h : R → H , d′ : D → H , such that the two squares in

the diagram are pushouts in the category of labelled directed graphs DG, then we say

that a direct derivation of G from H using r exists. In such a case we write G ⇒r H . We

say that g (respectively, k, h) is a matching morphism and that it identifies an occurrence

of L in G (respectively, K in D, R in H).

If R is a set of rules and G, H are two graphs, with G ⇒R H , we mean that there exists

r ∈ R such that G ⇒r H .

Intuitively, we can find a direct derivation of a graph H from a graph G using a rule

r = (L, i, K, j, R) by performing the following steps:

1 Choose an occurrence of L in G, that is, a morphism g : L → G.

2 Check the gluing condition on K , and g (see, for example, Corradini et al. (1997) for

the details), which ensures that we can carry out the next step.

3 Construct the context graph D by removing g(L − K) from G, and morphisms

k : K → D, d : D → G such that

〈i : K → L, k : K → D, g : L → G, d : D → G〉

is a pushout – the pair 〈k : K → D, d : D → G〉 is called the pushout complement of

〈i : K → L, g : L → G〉.
4 Construct H by gluing D and R in K , that is, by constructing the pushout of

〈k : K → D, j : K → R〉.

Given a diagram like the one in Figure 10, we have that i, j are injective and, as a

consequence, that d and d′ are also. Therefore, when we find it convenient, we will assume,

without loss of generality, that L ⊇ K ⊆ R and G ⊇ D ⊆ H .

5.2. A characterisation of DPO hierarchy transformation

In this section we are going to define conditions that allow us to check whether a given

DPO rule transforms rooted dags into rooted dags. This will give a characterisation of

DPO hierarchy transformation.

To begin with, we observe once more that the DPO approach uses directed, node- and

edge-labelled graphs. Our hierarchy graphs are indeed directed graphs – more precisely,

rooted dags – where the node and edge labels are irrelevant. We will therefore assume,

throughout Section 5.2, that hierarchy graphs have a fixed trivial node and edge labelling,

by means of the alphabets Σ = ∆ = {⊥}.

https://doi.org/10.1017/S0960129505004846 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129505004846

G. Busatto, H.-J. Kreowski and S. Kuske 798

As far as the graph structure is concerned, it is our task to characterise the rules that

produce a correct hierarchy graph, and the ones that do not because they introduce cycles

and/or loops, thus breaking the rooted-dag structure. We will tolerate rules that introduce

parallel edges, since although a hierarchy with parallel edges specifies the child/parent

relation on packages redundantly, we will always obtain a correct � relation between

packages.

Another important issue concerns matching morphisms upon rule application and

whether they should be injective or not. The traditional DPO approach requires rule

morphisms to be injective, while the matching morphism can be an arbitrary one. In

Habel et al. (2001) it is proved that we can restrict matching morphisms to injective ones,

since the arbitrary approach can be simulated in the restricted one. Restricting ourselves

to injective morphisms is technically convenient because it ensures that all paths are

faithfully preserved by morphisms. A possible topic of future research is to extend our

results to the case where we allow non-injective morphisms. In what follows, all morphisms

are injective, unless we explicitly state that they are not.

We can now define dag preserving rules.

Definition 5.6 (Dag-preserving rules). A DPO rule r = (L, i, K, j, R) is dag-preserving iff,

for all graphs D,D′, if D is a dag and D ⇒r D
′, then D′ is a dag as well.

Before proceeding, we introduce some useful terms and notation concerning paths. If p

is a path in a graph G visiting the nodes u0, . . . , uh, . . . , uk, . . . , un (0 � h < k � n), we say

that uh precedes uk and that uk follows uh in p. Given a directed graph G, we introduce

the relations �G,�+
G ⊆ NG ×NG, defined for all u, v ∈ NG as follows:

— u �G v if there exists e ∈ EG with sG(e) = u and tG(e) = v;

— u �+
G v if there exists a path from u to v in G.

The notation �+
G indicates the transitive closure of �G.

We now consider the path-checking condition (see the following definition), which

is satisfied by a rule r if whenever the right-hand side contains a path between two

preserved nodes, then the left-hand side also contains a path between the same nodes.

This easy-to-check condition ensures that a rule always transforms dags into dags (see

Proposition 5.8).

Definition 5.7 (Path-checking condition). Given a rule r = (L, i, K, j, R), the path-checking

condition for r states that

∀u, v ∈ K : u �+
R v ⇒ u �+

L v

This condition gives us a characterisation of dag preserving rules, which is expressed by

the following proposition.

Proposition 5.8. A rule (L, i, K, j, R), where L, K and R are dags, is dag preserving iff it

satisfies the path-checking condition.

Before proving Proposition 5.8, we illustrate its meaning by means of an example in

Figure 11. On the left-hand side, a rule respecting the path-checking condition is depicted.

https://doi.org/10.1017/S0960129505004846 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129505004846

Abstract hierarchical graph transformation 799

1

2 3

1

2 3

1

2 3

1

2 3

1

2 3

1

2 3

1

2 3

1

2 3

1

2 3

1

2 3

1

2 3

1

2 3

Fig. 11. Path-checking condition: examples.

Gluing nodes and their images are indicated by means of numbers. The paths between

gluing nodes contained in the right-hand side have corresponding paths in the left-hand

side. This ensures that no cycles are introduced in a dag to which the rule is applied. A

rule violating the path-checking condition is shown on the right-hand side of the picture:

a new path from node 1 to node 3 is introduced. As a result, when applied to a dag that

contains a path between the same nodes in the opposite direction, the rule introduces a

cycle.

We now proceed with the proof of Proposition 5.8.

Proof.

— If : Without loss of generality, since i and j are injective, we suppose that K is a

subgraph of L and R. Let us then suppose that (L ⊇ K ⊆ R) satisfies the path-

checking condition, and that we have a direct derivation G ⇒r H , as depicted in

Figure 10, where all morphisms are injective. Suppose also that H is not a dag, while

G is.

Then we must have a cycle e1, . . . , ek (k � 2) in H . Since R is a dag, the cycle cannot

be the image of a cycle in R. This cycle cannot be the image of a cycle in D either. In

fact, if D contained a cycle, G would contain its image, contradicting the fact that G

is a dag.

Then we can decompose e1, . . . , ek into subpaths p1, . . . , p2n (for some n, n � k/2), such

that

– for all i = 0, . . . , n− 1, p2i+1 is the image of a path in R, and

– for all i = 1, . . . , n, p2i is the image of a path in D.

Each pi visits a sequence of nodes ui,0, ui,1, . . . , ui,ki , where (ui,j−1, ui,j) (j = 1, . . . , ki) are

the edges of the path in H . Then, for each pi, we let sH (pi) := ui,0 and tH (pi) := ui,ki ,

that is, we say the source (respectively, target) of a path is the source of its first

(respectively, the target of its last) edge.

https://doi.org/10.1017/S0960129505004846 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129505004846

G. Busatto, H.-J. Kreowski and S. Kuske 800

It is clear that, for each i = 1, . . . , 2n − 1, vi := tH (pi) = sH (pi+1), and that v2n :=

tH (p2n) = sH (p1). Then, since v1, . . . , v2n are images of nodes both in R and in D, they

must be images of preserved nodes in K . We refer to the corresponding nodes in R, D

and K using the same names v1, . . . , v2n.

Now, it is clear that, for each i = 1, . . . , n, p2i is the image of a path in D (by hypothesis)

which has an image in G. We then use p2, p4, . . . , p2n for the corresponding paths in G.

Finally, if we look at L, it surely contains images of v1, . . . , v2n from K . Furthermore,

for each i = 1, . . . , n − 1, since there is a path p2i+1 from v2i to v2i+1 in R, by the

path-checking condition there must be a path p′
2i+1 connecting the same pairs of nodes

in L. For the same reason, there exists a path p′
1 from v2n to v1 in L.

Once more, morphisms preserve paths and their ends, and therefore there are images

of p′
1, p

′
3, . . . , p

′
2n−1 in G, and v1, . . . , v2n are their ends. But then p′

1, p2, p
′
3, p4, . . . , p

′
2n−1, p2n

is a cycle in G, which contradicts the hypothesis that G is a dag.

As a final task, we must prove that no loops are introduced in H . If e ∈ EH is a loop,

e must either be the image of a loop in R or of a loop in D. However, R contains no

loops, since it is a dag. D does not contain any loops either, because they would be

mapped to loops in G, which is in turn a dag.

— Only if : Suppose (L ⊇ K ⊆ R) does not satisfy the path-checking condition. Then

there exist nodes u, v ∈ NK , such that u �+
R v but not u �+

L v.

Then we let G = (NG, EG, sG, tG, lG, mG) be a dag, such that NG = NL and EG = EL∪{e}
(with e �∈ EL), sG(e) = v, tG(e) = u, lG = lL, mG|L = mG and mG(e) has an arbitrary

value. It is clear that G is a dag, since there cannot be cycles that do not pass through

both u and v (otherwise the cycle would be in L already), nor can there be a cycle

going through u, and v, since this would mean u �+
L v.

Now, since the inclusion from L into G is a morphism, we can apply r to G, deriving a

graph H (see again Figure 10). Since the edge e of G is not an image of any edge in L,

it must be the image of some edge, which we also call e, in the pushout complement

D.

But then, v �H u (due to the image in H of edge e from D) and u �+
H v (because

u �+
R v), and then H contains a cycle.

The path-checking condition, which can be statically checked on DPO rules, gives a

characterisation of dag preserving rules.

Remark 5.9. In Habel et al. (1991), jungles – that is, acyclic hypergraphs that respect

some special conditions on the degree of their nodes and on their labelling – are used to

represent terms over a certain signature, and (DPO) jungle rewriting for specifying term

evaluation. In that paper, a characterisation of DPO jungle rules is provided, that is, of

rules that transform any given jungle into a jungle. The path-checking condition presented

in this paper is similar to that characterisation of jungle rules and, in particular, it borrows

the idea of checking that certain paths in the right-hand side of a rule correspond to

paths in the left-hand side (see Habel et al. (1991, Definition 4.2.b) for more details).

In addition to ensuring that a dag is transformed into a dag, we need to check that

the transformed hierarchy still has a root node. We now introduce, in Definition 5.10,

https://doi.org/10.1017/S0960129505004846 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129505004846

Abstract hierarchical graph transformation 801

1

2 3

1

2 3

1

2 3

1

2 3

1

2 3

1

2 3

1

2 3

1

2 3

1

2 3

1

2 3

1

2 3

1

2 3

Fig. 12. Root-preserving condition: examples.

rooted-dag preserving rules and, in Definition 5.11, a condition on DPO rules that will

ensure, together with the path-checking condition, that rooted dags are transformed into

rooted dags. This last property is proved in Proposition 5.12.

Definition 5.10 (Rooted-dag preserving rule). A DPO rule r is rooted-dag preserving iff for

all rooted dags G, for all graphs H , G ⇒r H implies that H is a rooted dag.

Definition 5.11 (Root-preserving condition). A DPO rule r = (L, i, K, j, R), where K is a

dag and L, R are rooted dags, respects the root-preserving condition if, whenever there

exists ρ ∈ NK with ρL = i(ρ), we have ρR = j(ρ).

This condition says that if the root ρL of the left-hand side is a preserved node, then

its image in the right-hand side R is the root ρR of R. On the left-hand side of Figure 12,

we consider a rule respecting the path-checking and the root-preserving condition. Since

the root of the left-hand side graph is a preserved node, it is also the root of the

right-hand side. This ensures that a rooted-dag is transformed into a rooted dag (see

Proposition 5.12). On the right-hand side we have a rule that respects the path-checking

condition but violates the root-preserving condition. This leads to a derivation where a

second root is added to a rooted dag.

In the following proposition, we will prove that any rule r satisfying both the path-

checking condition and the root-preserving condition transforms any rooted dag into a

rooted dag.

Proposition 5.12 (Rooted-dag preservation). A rule r = (L, i, K, j, R), where K is a dag and

L, R are rooted dags, is rooted-dag preserving iff it satisfies the path-checking condition

and the root-preserving condition.

Before proving this proposition, we need one definition and a few lemmas. The proofs of

the lemmas can be found in Appendix A. The definition deals with graphs whose paths

are oriented with respect to a given subgraph.

https://doi.org/10.1017/S0960129505004846 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129505004846

G. Busatto, H.-J. Kreowski and S. Kuske 802

Definition 5.13 (Oriented graphs). Given two graphs K ⊆ G, we say that G is in-oriented

with respect to K if for all u ∈ NG −NK , there exists a node v ∈ NK such that u �+
G v. In

such a case we write G � K .

Given two graphs K ⊆ G, we say that G is out-oriented with respect to K if for all

u ∈ NK , there exists a node v ∈ NG−NK such that u �+
G v. In such a case we write G ≺ K .

Remark 5.14. If K , G are dags with K ⊆ G and K �= �, we cannot have both G � K

and G ≺ K , because this would imply the existence of a cycle in G.

The first lemma states that the interface graph in a pushout diagram separates the two

graphs that are glued together.

Lemma 5.15. Given a pushout 〈i : A → B, j : A → C, c : C → D, b : B → D〉 in the

category of directed graphs, where all morphisms are injective, the subgraph bi(A) = cj(A)

separates b(B) from c(C) in D, that is, for every two nodes u ∈ b(NB), v ∈ c(NC), if there

exists a path u = u0, . . . , uk = v in D, then the path contains at least one node from cj(NA).

The second lemma studies the orientation of edges in the pushout complement of a given

pushout diagram with respect to the interface.

Lemma 5.16. Given a pushout 〈i : K → L, k : K → D, d : D → G, g : L → G〉 in the

category of directed graphs, where G is a rooted dag and all morphisms are injective, we

have the following:

1 If ρG ∈ g(NL), then D � k(K).

2 If ρG ∈ d(ND), then L � i(K).

The following remark follows immediately from Lemma 5.16.

Remark 5.17. Given a pushout 〈i : K → L, k : K → D, d : D → G, g : L → G〉 in the

category of directed graphs, where G is a rooted dag and all morphisms are injective, we

always have L � i(K) ∨ D � k(K), because ρG has a preimage in at least one of the dags

D and L. Since all the considered graphs are dags, from Remark 5.14 we also get that we

can never have L ≺ i(K) ∧ D ≺ k(K). This last observation will be used in the proof of

Proposition 5.12.

We are now ready to prove Proposition 5.12.

Proof of Proposition 5.12. We already know from Proposition 5.8 that a rule preserves

dags iff it satisfies the path-checking condition. We must show that, provided a rule

satisfies the path-checking condition, it preserves rooted dags iff it satisfies the root-

preserving condition.

— If : Let r = (L, i, K, j, R) be a rule satisfying the path-checking condition and the root-

preserving condition, and let G be a rooted dag to which the rule can be applied. Then

let g : L → G, k : K → D, h : R → H , d : D → G and d′ : D → H be graph morphisms

and graphs as in Definition 5.5 (see also Figure 10). We distinguish the following four

cases:

1 ρL is preserved (that is, it is the image of a node of K) and g(ρL) = ρG. We prove

that h(ρR) = ρH . Suppose that v ∈ NH .

https://doi.org/10.1017/S0960129505004846 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129505004846

Abstract hierarchical graph transformation 803

(a) If v = h(u) for some u ∈ NR , there exists a path u �+
R ρR in R. But then its

image in H from v to h(ρR) is the required path in H .

(b) If v = d′(u) for some u ∈ ND − k(NK), then d(u) �+
G ρG. Since ρG = g(ρL) =

gi(ρ), for some ρ ∈ NK , we can split the path from d(u) to ρG into two

subpaths d(u) �+
G dk(w), dk(w) �+

G ρG for some w ∈ NK , such that all the

nodes preceding dk(w) in the first path belong to d(ND − k(NK)). But then

u �+
D k(w), which implies d′(u) �+

H d′k(w). Now, if w = ρ, we are done, since

d′k(w) = hj(w) = hj(ρ) = h(ρR). Otherwise, if w �= ρ, we have j(w) �+
R ρR ,

which implies d′k(w) = hj(w) �+
H h(ρR) and, by concatenating the paths in H ,

we obtain v �+
H h(ρR), as required.

2 ρL is preserved and g(ρL) �= ρG. In this case, if there existed x ∈ NL such that

ρG = g(x), we would have x �+
L ρL, g(x) �+

G g(ρL) �+
G ρG = g(x), and G would

not be a dag. Therefore ρG cannot have a preimage in L, and there must exist

ρ ∈ ND \ k(NK) such that d(ρ) = ρG. We prove that ρH = d′(ρ). Suppose that

v ∈ NH .

(a) If v = h(u) for some u ∈ NR , then u �+
R ρR . This implies that v = h(u) �+

H h(ρR).

On the other hand, we have g(ρL) �+
G ρG, and, since L is a dag, all nodes

following g(ρL) in this path have no preimage in L, otherwise we would have a

cycle going through g(ρL) in G. Let ρ ∈ NK such that ρL = i(ρ) and ρR = j(ρ).

The path from g(ρL) to ρG = d(ρ) in G must have a preimage in D, which

implies that k(ρ) �+
D ρ. As a consequence, d′k(ρ) �+

H d′(ρ). By concatenating

paths in H , we have that v �+
H h(ρR) = d′k(ρ) �+

H d
′(ρ), as required.

(b) If v = d′(u) for some u ∈ ND − k(NK), then, since ρG is the root of G, we

have d(u) �+
G ρG and, if u �+

D ρ, then v �+
H d′(ρ), and we are done. Otherwise,

if not all the edges in the path from d(u) to ρG have a preimage in D, we

can decompose this path into paths d(u) �+
G dk(w), dk(w) �+

G ρG, for some

w ∈ NK , such that u �+
D k(w). In this case, we have v = d′(u) �+

H d′k(w) and

d′k(w) = hj(w) �+
H d′(ρ) (since j(w) ∈ NR , we fall back to case 2a above). By

concatenating paths in H , we have v �+
H d

′(ρ), as required.

3 ρL is not preserved (that is, it has no preimage in K) and g(ρL) = ρG. In this case

we prove that ρH = h(ρR) (note that the proof is very similar to case 1 above).

Suppose that v ∈ NH .

(a) If v = h(u) for some u ∈ NR , there exists a path v �+
H h(ρR) like in case 1a

above.

(b) If v = d′(u) for some u ∈ ND−k(NK), then d(u) �+
G ρG. Since ρG = g(ρL), we can

split the path from d(u) to ρG into two subpaths d(u) �+
G dk(w), dk(w) �+

G ρG for

some w ∈ NK , such that all the nodes preceding dk(w) in the first path belong to

d(ND − k(NK)). But then u �+
D k(w), which implies d′(u) �+

H d
′k(w). If j(w) = ρR

we are done, since d′k(w) = hj(w) = h(ρR). Otherwise, if j(w) �= ρR , we have

j(w) �+
R ρR , which implies d′k(w) = hj(w) �+

H h(ρR), and, by concatenating the

paths in H , we have v �+
H h(ρR), as required.

https://doi.org/10.1017/S0960129505004846 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129505004846

G. Busatto, H.-J. Kreowski and S. Kuske 804

4 ρL is not preserved and g(ρL) �= ρG. We prove that this case never occurs. In

fact, if g(ρL) �= ρG, G must contain at least two nodes and at least one edge.

Furthermore, g(ρL) �+
G ρG. By Lemma 5.15, there exists w ∈ i(NK) such that g(w)

lies on this path; as an extreme case, we can have g(w) = ρG, but we always have

w �= ρL, because ρL is not preserved. This implies that w �+
L ρL, and therefore

g(w) �+
G g(ρL) �+

G g(w), and G would not be a dag†.

— Only if : From Proposition 5.8, we already know that a rule that does not satisfy

the path-checking condition does not preserve dags. Let r = (L, i, K, j, R) be a rule

satisfying the path-checking condition and not satisfying the root-preserving condition.

Then there exists a node ρ ∈ NK such that ρL = i(ρ) and ρR �= j(ρ). In this case,

let γ �∈ NL be some node and e �∈ EL be some edge, and let G = (N,E, s, t, l, g) be

the rooted dag with N = NL ∪ {γ}, E = EL ∪ {e}, s(e) = ρL, t(e) = ρ (the labelling

functions are irrelevant). It is clear that γ = ρG is the root of G.

Then we can find a derivation from G to some graph H via rule r. Again, let g : L → G,

k : K → D, h : R → H , d : D → G and d′ : D → H be graph morphisms and graphs as

in Definition 5.5, with g being the inclusion of L in G. Since ρG ∈ d(ND − k(NK)), we

have that D ≺ k(K).

If we now look at the right-hand side of the rule r, we first observe that ρR must

be a new node, that is, there is no node ρ′ ∈ NK such that ρR = j(ρ′). If such a

node existed, we would have j(ρ) �+
R j(ρ

′) = ρR and, since the rule also respects the

path-checking condition, that ρL = i(ρ) �+
L i(ρ

′). But since ρL is the root of L, we also

have i(ρ′) �+
L ρL, and therefore a cycle, contradicting the hypothesis that L is a dag.

We therefore conclude that such a ρ′ ∈ NK does not exist, and therefore ρR is a new

node. As a result, we also have, for all nodes u ∈ NK , that j(u) �+
R ρR ∈ (NR − j(NK)),

that is, we have R ≺ j(K).

From Remark 5.17 and from the fact that D ≺ k(K) and R ≺ j(K), we conclude that

H is not a rooted dag.

5.3. A characterisation of DPO connection transformation

In this section we will consider what conditions must be satisfied by a DPO rule to ensure

it transforms connection graphs into connection graphs.

In Definition 3.5, we have defined connection graphs as special bipartite graphs with a

set of packages and a set of atoms connected to each other by binary edges. Since we want

to apply DPO rules to such graphs, we first need to translate connection graphs to labelled

directed graphs. A hint towards such a translation has already been given in Section 4.4.

The main problem is that in a directed graph we cannot distinguish between the ‘package

nodes’ and the ‘atom nodes’ of the connection graph that we want to represent. In order

to do this, we use different labels to distinguish between packages and nodes from the

underlying graph. As seen in Section 5.2, we label the packages of the hierarchy graph

with a special symbol ⊥. Furthermore, we assume that the underlying graph has a set

† Note that case 2 above is possible, since ρL has a preimage in the interface graph K , and therefore we can

have a path g(ρL) �+
G ρG with no intermediate node from L.

https://doi.org/10.1017/S0960129505004846 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129505004846

Abstract hierarchical graph transformation 805

of atom labels ΣA, with ⊥�∈ ΣA. Then for connection graphs we use a node alphabet

Σ = {⊥} ∪ ΣA, and the edge alphabet ∆ = {⊥} (edge labels in the connection graph are

irrelevant).

One could think of an alternative representation where the atoms are the sources of

coupling edges and packages are either the target of such edges or isolated nodes. This

solution has the drawback that one can easily turn an empty package p (isolated node)

into an atom by adding a new coupling edge starting from p. So, whenever we want to

add an atom a to a package q, we would have to add a new edge from a to q and check

that a already has an edge to some package q′ (a is actually an atom). We think that

this solution would make rules unnecessarily complex and we prefer distinguishing atoms

from packages by means of labels.

Let BT be the set of directed graphs over Σ and ∆ such that, for all B ∈ BT, for all

n ∈ NB , if lB(n) ∈ ΣA, then there exists an edge e ∈ EB with tB(e) = n and lB(sB(e)) = ⊥.

It is clear that connection graphs can be mapped one-to-one to directed graphs in BT.

We will therefore encode connection graphs using graphs of BT.

Before proceeding, we introduce some useful notation. Given a node n ∈ NB , we define

indegB(n) := #{e | n = tB(e)}, and outdegB(n) := #{e | n = sB(e)}. Given a label λ ∈ Σ,

we define the set Nλ
G := {n ∈ NG | lG(n) = λ}. Given a set of labels M ⊆ Σ, we define

NM
G :=

⋃
λ∈M N

λ
G (which is empty if M is empty).

Given a rule r = (L ⊇ K ⊆ R), we define the graphs

NEW (r) := (NR −NK,�,�,�, lR |(NR −NK),�)

DEL(r) := (NL −NK,�,�,�, lL|(NL −NK),�)

PRES (r) := (NK,�,�,�, lK ,�).

that is, the graph containing the newly created nodes of rule r, the graph of deleted nodes

and the graph of preserved nodes. We will use this notation again in Section 6.

We can now define a condition on DPO rules that ensures that connection graphs are

transformed into connection graphs.

Definition 5.18 (Connection-graph preservation condition). A rule r = (L ⊇ K ⊆ R), where

L, K and R are directed graphs over {⊥} ∪ ΣA and {⊥}, satisfies the connection-graph

preservation condition iff, for all n ∈ NNEW(r) ∩ NΣA

R , we have indegR(n) > 0 and, for all

n ∈ NPRES (r) ∩NΣA

R , we have that indegR(n) = 0 implies indegL(n) = 0.

Let us call a node with label in ΣA an atom node and a node with label ⊥ a package

node. The above condition says that a new atom node must be connected to at least

one package node, and that if a preserved atom node is not explicitly connected by the

considered rule to some package node, then its left-hand side must also contain no edges

connecting the preserved atom node to a package node, otherwise the rule would remove

that edge, possibly making the preserved node isolated.

Definition 5.19 (Connection-preserving rules). A rule r = (L ⊇ K ⊆ R), where L, K and

R are directed graphs over Σ = {⊥} ∪ ΣA and ∆ = {⊥}, is connection preserving iff, for all

directed graphs B, B′ over Σ and ∆, if B ∈ TB and B ⇒r B
′, then B′ ∈ TB.

https://doi.org/10.1017/S0960129505004846 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129505004846

G. Busatto, H.-J. Kreowski and S. Kuske 806

Proposition 5.20. A rule r is connection preserving iff it satisfies the connection-graph

preservation condition.

Proof.

— If : Suppose that r = (L ⊇ K ⊆ R) is a rule satisfying the connection-graph

preservation condition, and suppose that G is a connection graph, H is a graph

such that G ⇒r H . Then there exists a graph D and morphisms g : L → G, k : K → D,

h : R → H , d : D → G and d′ : D → H such that the two resulting squares are pushouts.

We have to show that every atom node in H is connected to a package node. Let

n ∈ NΣA

H .

If n does not have a preimage in R, then n has only a preimage in D, which we also

denote by n. In this case there must exist an image of n in G (again denoted by n).

Since G is a connection graph, n has at least one incoming edge e in G. Furthermore,

n has no preimage in L, otherwise it should have one in K and consequently in R. But

then, also, the preimages of e and sG(e) can only be in D. These preimages also have

images in H , and therefore we have found the required edge for n in H .

If n does have a preimage in R, which we also denote by n, we have two sub-cases:

1 If n ∈ NNEW (r) ∩NΣA

R , then indegR(n) > 0, which means that we have the required

edge in R, which is mapped to a corresponding edge in H .

2 If n ∈ NPRES (r) ∩NΣA

R , then either indegR(n) > 0, and we are done, or indegR(n) = 0.

In the latter case, we also have indegL(n) = indegK(n) = 0. This means that there

are no incoming edges to n in any of the graphs of rule r in which n occurs.

Now, observe that n also has an occurrence in G (also denoted by n) and, since G

is a connection graph, there exists an edge e ∈ EG with tG(e) = n, which has no

preimage in L, and therefore has a preimage in D. But this means that e also has

an image in H , which is an incoming edge to n from some p ∈ N⊥
H as required.

— Only if : Suppose that r = (L ⊇ K ⊆ R) is a rule that does not satisfy the connection-

graph preservation condition. Then we can have two cases:

1 There exists n ∈ NNEW (r) ∩ NΣA

R such that indegR(n) = 0. Let G, H be two graphs

over Σ and ∆ such that G ⇒r H . Then there exists a graph D and morphisms

g : L → G, k : K → D, h : R → H , d : D → G and d′ : D → H such that the two

resulting squares are pushouts.

Since n is a new node, it is not in the interface graph K . As a result, n has no

image in D and h(n) has no incoming edges in H . But this means that n is an

atom node that has no containing package node in H , and H is not a connection

graph.

2 There exists n ∈ NPRES (r) ∩NΣA

R such that indegR(n) = 0 and indegL(n) > 0. Since

it should be the case that r preserves connection graphs, no matter to which

connection graph it is applied, let G be a graph constructed as below.

It is clear that N⊥
L �= �. In fact, there exists at least an edge e ∈ EL with tL(e) = n

and sL(e) ∈ N⊥
L . We let p := sL(e) (this is an arbitrary choice: any other ⊥-labelled

node can serve for our construction).

Then let G = (NG, EG, sG, tG, lG, mG), where

https://doi.org/10.1017/S0960129505004846 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129505004846

Abstract hierarchical graph transformation 807

(a) NG := NL and lG := lL.

(b) EG := EL � {eu | u ∈ NΣA

G ∧ indegL(u) = 0}, that is, we add an extra edge for all

atom nodes of L that have no incoming edges.

(c) ∀e ∈ EG, we let

sG(e) :=

{
p if u ∈ NΣA

G , indegL(u) = 0, and e = eu
sL(e) otherwise

and

tG(e) :=

{
u if u ∈ NΣA

G , indegL(u) = 0, and e = eu
tL(e) otherwise

and, finally, we let mG(e) := ⊥.

G is a connection graph because it is obtained from L by adding all possibly

missing edges, and the inclusion of L in G is a match, therefore we can apply r

to G. Let H be the derived graph, which means that there exists a graph D and

morphisms g : L → G, k : K → D, h : R → H , d : D → G and d′ : D → H such

that g is the inclusion of L in G and the two resulting squares are pushouts.

Now let us again consider node n, which violates the connection-graph preservation

condition. Since indegR(n) = 0, we must also have indegK (n) = 0, otherwise K

would contain an edge that has no image in R.

All incoming edges to n in G are matched by an edge in L (there are no new

edges added during the construction of G). Since these edges are not in K , they

are deleted by this application of r, and therefore H is not a connection graph.

With Proposition 5.20 we have provided a method for ensuring that a DPO rule preserves

the structure of connection graphs to which it is applied. Combined with Proposition 5.12,

we obtain a characterisation of DPO hierarchical graph transformation, in the sense that

we are able to use DPO transformation rules to specify hierarchical graph transformation,

and to check statically whether these rules transform hierarchical graphs into hierarchical

graphs.

6. Comparison with the flat double-pushout approach

In this section, we compare hierarchical with non-hierarchical graph transformation in

the double-pushout approach. To this end, the hierarchical graphs we consider consist

of triples of directed labelled graphs where only nodes can be grouped into packages.

(In general, nodes and edges can be grouped into packages.) This kind of hierarchical

graph allows a straightforward translation into flat directed labelled graphs as used in

the double-pushout approach by unifying the three components of a hierarchical graph.

The coordinated rules considered in this section contain only double-pushout rules as

described in the previous section. It turns out that under certain circumstances, for every

hierarchical graph transformation H �r H ′, there exists a direct derivation [H] ⇒r′ [H ′]

in the double-pushout approach, where [H] and [H ′] are obtained by flattening H and H ′,

respectively. More precisely, every coordinated rule r that is based on the double-pushout

approach and of a certain form can be translated into a set DPO(r) of double-pushout

https://doi.org/10.1017/S0960129505004846 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129505004846

G. Busatto, H.-J. Kreowski and S. Kuske 808

rules such that H �r H ′ if and only if [H] ⇒r′ [H ′] for some r′ ∈ DPO(r). Roughly

speaking, we require that for every coordinated rule (γ, β, δ,∼L
γ ,∼R

γ ,∼L
δ ,∼R

δ), the node set

of Lγ − Kγ be isomorphic to the atom set of Lβ − Kβ and the node set of Rγ − Kγ be

isomorphic to the atom set of Rβ − Kβ . Analogously, the ‘deleted/added packages’ of δ

must correspond to the ‘deleted/added packages’ of β.

Assumptions For the rest of this section, we assume:

1 Every hierarchical graph (G,D, B) consists of directed labelled graphs where the node

labels of G and D are disjoint sets. More precisely, B and D are interpreted as directed

labelled graphs (cf. Sections 5.2 and 5.3).

2 For every coordinated rule r = (γ, δ, β,∼L
γ ,∼R

γ ,∼L
δ ,∼R

δ), we have γ, δ and β are

double-pushout rules such that

DEL(γ) ∼= DEL(β)|atoms

DEL(δ) ∼= DEL(β)|packages
NEW (γ) ∼= NEW (β)|atoms

NEW (δ) ∼= NEW (β)|packages .

Here, DEL(β)|atoms restricts the node set of DEL(β) to its atoms, and

DEL(β)|packages restricts DEL(β) to its packages. Analogously, NEW (β)|atoms

restricts the node set of NEW (β) to its atoms and NEW (β)|packages to its packages

(cf. Section 5.3 for the definition of DEL and NEW .)

3 All occurrence morphisms in a hierarchical graph transformation step are injective.

This means that for every H �r H ′ with r = (γ, δ, β,∼L
γ ,∼R

γ ,∼L
δ ,∼R

δ), H = (G,D, B)

and H ′ = (G′, D′, B′), there exist derivations G ⇒γ G
′, G ⇒δ D

′, and B ⇒β B
′ in which

all occurrence morphisms are injective (cf. Definition 5.5).

4 For every coordinated rule r = (γ, δ, β,∼L
γ ,∼R

γ ,∼L
δ ,∼R

δ) and every (a, b) ∈ NKj
× NKβ

(j ∈ {γ, δ}), we have (a, b) /∈ ∼L
j implies (a, b) /∈ ∼R

j . (It is worth noting that, according

to Definition 4.8, r would not be applicable to a hierarchical graph if this condition

were not satisfied.)

The required isomorphisms between deleted/added atoms or packages in the second

assumption are not restrictive in the case of injective occurrence morphisms because when

a hierarchical graph H = (G,D, B) is transformed with a rule r = (γ, δ, β,∼R
γ ,∼L

δ ,∼R
δ), the

rule β manipulates the node set of G and D, and the edge set of B. Hence, every node of

G deleted by β must also be deleted by γ and every node of D deleted by β must also be

deleted by δ. Analogously, nodes added by β must also be added by either γ or δ.

The transformation of a hierarchical graph H = (G,D, B) into a directed labelled graph

is done by the union of its three components.

Construction 2 (Translation of hierarchical graphs). Let H = (G,D, B) be a hierarchical

graph. Then the corresponding directed labelled graph [H] is equal to (N,E, s, t, l, m),

where N = NG ∪ ND , E = EG ∪ ED ∪ EB and all edges keep their sources, targets and

labels, and all nodes keep their labels.

https://doi.org/10.1017/S0960129505004846 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129505004846

Abstract hierarchical graph transformation 809

For every graph H = [(G,D, B)] the component G will also be denoted by graph(H).

More generally, for every directed labelled graph H , the subgraph induced by the nodes

labelled with node labels is denoted by graph(H)†.

For every directed labelled graph G = (N,E, s, t, l, m) we define its skeleton skel (G) as

(N,E, ι) where ι = {(e, s(e)) | e ∈ E}∪{(e, t(e)) | e ∈ E} (cf. Section 3.1). Moreover, for every

double-pushout rule r = (L,K, R) we define its rule skeleton skel (r) as (skel (L), skel (R), trr)

where the domain of trr is equal to skel (K) and trr is the identity. It is easy to show

that the double-pushout approach is tracking (cf. Definition 4.4). In more detail, for every

direct derivation step G ⇒r G
′ with occurrence morphisms ḡ : L → G and h̄ : R → G′,

choose the tuple 〈g, h, ϕ〉 as follows. The skeleton morphism g : skel (L) → skel (G) is equal

to the occurrence morphism ḡ restricted to skel (L). Analogously, h : skel (R) → skel (G′)

is equal to h̄ restricted to skel (R). Moreover, choose ϕ : skel (G) → skel (G′) such that

dom(ϕ) = g(skel (K)) and ϕ(n) = h(trr(n
′)) for every n in dom(ϕ) with n = g(n′) (n′ ∈ K).

The next observation refers to a basic feature of the relations in coordinated rules. If

two items are related in a coordinated rule, in every derivation step they are both deleted,

or both added, or both kept. This means that no item that is in DEL(γ) or NEW (γ) can

be related to an item in Kβ , and no item of DEL(β) or NEW (β) can be related to Kβ .

The same holds for the deleted or added packages of δ. This property is fundamental for

the construction of double-pushout rules from coordinated rules presented in this section.

Observation 6.1. Let r = (γ, β, δ,∼L
γ ,∼R

γ ,∼L
δ ,∼R

δ) be a coordinated rule. Then for j ∈ {γ, δ}
we have (n, n′) ∈ ∼L

j implies (n, n′) ∈ NKj
× NKβ

or (n, n′) ∈ NDEL(j) × NDEL(β), and

(n, n′) ∈ ∼R
j implies (n, n′) ∈ NKj

×NKβ
or (n, n′) ∈ NNEW (j) ×NNEW (β).

Proof. Assume that the statement is false. Then the quadruples (trj , trβ ,∼L
j ,∼R

j) do not

commute (for j ∈ {γ, δ}). This contradicts the definition of coordinated rules.

For the translation of a coordinated rule r = (γ, δ, β,∼L
γ ,∼R

γ ,∼L
δ ,∼R

δ) into a set DPO(r)

of double-pushout rules, the rules γ, δ and β are glued together. Roughly speaking, every

r′ ∈ DPO(r) is constructed according to the following steps:

1 Build the disjoint union of δ, γ, and β.

2 Identify every deleted node of γ with a deleted atom of β in a one-to-one way such

that ∼L
γ is satisfied, that is, for (n, n′) ∈ ∼L

γ , n must be identified with n′.

3 Proceed analogously with the added nodes of γ and the deleted/added packages of δ.

4 Identify all nodes in the gluing parts of γ and β according to ∼L
γ and ∼R

γ .

5 Identify all nodes in the gluing parts of δ and β according to ∼L
δ and ∼R

δ .

For the formal construction of r′, the gluing of two graphs G and G′ with respect to

an injective (partial) graph morphism h : G → G′, denoted by (G+G′)/ ≡h, is constructed

by first building the disjoint union of G and G′ and then identifying x with h(x), for

every x ∈ dom(h) (cf. also Remark 5.4). We use the notation ≡h because h induces an

equivalence relation ≡h on the nodes and edges of G and G′ consisting of every pair

† For a graph H the subgraph induced by a subset N of its nodes consists of the nodes of N plus all edges

that connect some nodes in N. The subgraph of H induced by a subset E of the edges of H consists of all

edges in E plus all nodes that are attached to some edge in E.

https://doi.org/10.1017/S0960129505004846 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129505004846

G. Busatto, H.-J. Kreowski and S. Kuske 810

(x, x′) where either x = x′, or h(x) = x′, or h(x′) = x. This gluing construction can be

generalised in a straightforward way to the gluing of three graphs G, G′ and G′′ with

respect to injective (partial) graph morphisms h : G → G′ and h′ : G′′ → G′. The resulting

graph G+G′ +G′′/ ≡(h,h′) is obtained by first building the disjoint union of G, G′ and G′′,

and then identifying every item of G′ with its preimages in G and G′′. Analogously to the

gluing of graphs, we define the gluing of double-pushout rules with respect to injective

(partial) rule morphisms. An injective rule morphism from r = (L,K, R) to r′ = (L′, K ′, R′)

is a pair of injective (partial) graph morphisms del : L → L′ and new : R → R′ where

dom(del |K) = dom(new |K) and del (x) = new (x) for every x in dom(del |K). The resulting

double-pushout rule is equal to (L + L′/ ≡del , (K + K ′)/ ≡del |K, R + R′/ ≡new) and is

denoted by r+ r′/ ≡(del ,new). The generalisation of the gluing of two rules to the gluing of

three rules is also straightforward. More precisely, for rules r = (L,K, R), r′ = (L′, K ′, R′)

and r′′ = (L′′, K ′′, R′′), and injective (partial) rule morphisms g = (g1, g2) from r to r′ and

h = (h1, h2) from r′′ to r′, the rule r + r′ + r′′/ ≡(g,h) is defined by L + L′ + L′′/ ≡(g1 ,h1),

K +K ′ +K ′′/ ≡(g1|K,h1|K), R + R′ + R′′/ ≡(g2 ,h2)).

In the following construction we also consider the relation ∼L
γ , ∼R

γ , ∼L
δ and ∼R

δ as

injective (partial) graph morphisms ∼L
γ : Lγ → Lβ , ∼R

γ : Rγ → Rβ , ∼L
δ : Lδ → Lβ and

∼R
δ : Rδ → Rβ , defined in the obvious way as ∼L

γ (x) = y iff (x, y) ∈ ∼L
γ , and so on.

Because of Observation 6.1, the third assumption above and the definition of coordinated

rules, the relations induce injective (partial) rule morphisms g = (∼L
γ ,∼R

γ) from γ to β and

h = (∼L
δ ,∼R

δ) from δ to β.

Construction 3 (Translation of coordinated rules). Consider a coordinated rule r =

(γ, δ, β,∼L
γ ,∼R

γ ,∼L
δ ,∼R

δ).

1 Let del γ : DEL(γ) → DEL(β)|atoms , delδ : DEL(δ) → DEL(β)|packages ,
new γ : NEW (γ) → NEW (β)|atoms , new δ : NEW (δ) → NEW (β)|packages be

isomorphisms such that for j ∈ {γ, δ} del j(n) = n′ for all (n, n′) ∈ ∼L
j with n ∈ DEL(j),

and new j(n) = n′ for all (n, n′) ∈ ∼R
j with n ∈ NEW (j). Let g = (g1, g2) with

g1 = del γ ∪ ∼L
γ and g2 = newR

γ ∪ ∼R
γ , and let h = (h1, h2) with h1 = delδ ∪ ∼L

δ and

h2 = new δ∪∼R
δ . Then the double-pushout rule dpo(r, g, h) is equal to (γ+β+δ)/ ≡(g,h).

2 The set of all double-pushout rules constructed as described in 1 is denoted by

DPO(r).

As the construction indicates, we can build a set of double-pushout rules for every

coordinated rule r. This means that for every different quadruple of isomorphisms del γ ,

delδ , new γ and new γ , a double-pushout rule can be constructed.

The following lemma states that for every double-pushout rule r′ in the above

constructed set DPO(r), every application of r′ to a flattened hierarchical graph is

equivalent to an application of r to the corresponding non-flattened hierarchical graph.

Lemma 6.1. Let r = (γ, δ, β,∼L
γ ,∼R

γ ,∼L
δ ,∼R

δ) be a coordinated rule and let H = (G,D, B)

and H ′ = (G′, D′, B′) be hierarchical graphs. Let r′ ∈ DPO(r) such that [H] ⇒r′ [H ′].

https://doi.org/10.1017/S0960129505004846 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129505004846

Abstract hierarchical graph transformation 811

Then:

1 G ⇒γ G
′, B ⇒β B

′, D ⇒δ D
′; and

2 the diagram of Figure 7 can be constructed.

Proof.

1 Let r′ = (L,K, R) = dpo(r, p, q) with p = (p1, p2). For the derivation [H] ⇒dpo(r,p,q) [H ′],

let f : L → [H], h : K → Z and g : R → [H] be the corresponding occurrence

morphisms. Let fγ : Lγ → L be such that fγ(x) = [x]≡p1
for all x ∈ NLγ ∪ ELγ .

Let hγ : Kγ → K be the restriction of fγ to K . Let hγ : Kγ → Z = h ◦ hγ . By

definition, we have G = graph([H]), and [H] is isomorphic to (Z + L)/ ≡h. Hence,

G ∼= graph((Z + L)/ ≡h). Since atoms and packages are labelled disjointly, ≡h relates

only atoms with atoms and packages with packages. Different edges are not identified.

Hence we get G ∼= (graph(Z) + graph(L))/ ≡h|graph(K). Moreover, by Construction 3

and the definition of coordinated rules, fγ(Lγ) is a subgraph of graph(L) that is

isomorphic to Lγ , hγ(Kγ) is a subgraph of graph(K) that is isomorphic to Kγ and

graph(L) − fγ(Lγ) is a discrete graph that is equal to graph(K) − hγ(Kγ). Hence,

graph(L) ∼= (Lγ +graph(K))/ ≡hγ . This implies G ∼= (graph(Z)+Lγ)/ ≡hγ (because the

composition of two pushouts is a pushout).

Hence, G is the result of gluing Lγ and graph(Z) in Kγ . In the same way, it can

be shown that G′ is obtained by gluing Rγ and graph(Z) in Kγ . Hence, G ⇒γ G
′.

Analogously, we can show that B ⇒β B
′ and D ⇒γ D

′.

2 Since the double-pushout approach is tracking, we get in connection with point

one of this lemma that the vertical side and middle squares of Figure 7 exist and

commute. The back squares also exist and commute because r is a coordinated rule.

Let mγ and mβ be defined as the occurrence morphisms Lγ → G and Lβ → B in the

derivations constructed in point 1 (restricted to the skeletons of Lγ and Lβ). Then,

for all (n, n′) ∈ ∼L
γ we have mγ(n) = mβ(n

′). Hence (mγ(n), mβ(n
′)) ∈ ∼G, which implies

that the top left-hand square commutes. Analogously, it can be shown that the top

right-hand square and the bottom squares commute. It remains to show that the

front squares commute. Choose ϕγ(n) = m′
γ(trγ(n

′)) for every node n in mγ(K) with

n = mγ(n
′), where m′

γ is equal to the occurrence morphism from Rγ to G′ in the above

constructed derivation G ⇒γ G
′ (restricted to the skeleton of G). Now let n be a node

of G. Let a be a node of Kγ and let b be a node of Kβ such that mγ(a) = mβ(b) = n.

Then, by definition, n is in dom(ϕγ) and also in dom(ϕβ).

If (a, b) ∈ ∼L
γ , we get (a, b) ∈ ∼ γR and (m′

γ(a), m
′
β(b)) ∈ ∼G′

. Since m′
γ(a) = ϕγ(mγ(a))

and m′
β(b) = ϕβ(mβ(b)), we have (ϕγ(mγ(a)), ϕβ(mβ(b))) ∈ ∼G′

, that is, (ϕγ(n), ϕβ(n)) ∈
∼G′

.

If (a, b) /∈ ∼L
γ , we get, by definition, that fγ(a) and fβ(b) are distinct nodes of K that

are mapped to the same node in [H], say x. (The morphism fβ : Lβ → L is defined

analogously to fγ above.) By the third assumption above and the construction of

double-pushout rules from coordinated rules, fγ(a) and fβ(b) are distinct nodes in

R, which, by the definition of rule application in the double-pushout approach, are

mapped to the same node in [H ′] by the corresponding occurrence morphism of

https://doi.org/10.1017/S0960129505004846 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129505004846

G. Busatto, H.-J. Kreowski and S. Kuske 812

[H] ⇒dpo(r,p,q) [H ′]. Hence, we get that m′
γ(a) = m′

β(b), which implies (ϕγ(n), ϕβ(n)) ∈
∼G′

.

The next lemma states that for every hierarchical graph transformation there exists an

equivalent transformation on the flattened graphs. More precisely, for every hierarchical

graph transformation from H to H ′ via rule r, Construction 3 gives us a double-pushout

rule r′ such that [H] ⇒r′ [H ′].

Lemma 6.2. Let r = (γ, δ, β,∼L
γ ,∼R

γ ,∼L
δ ,∼R

δ) be a coordinated rule. Let H and H ′ be

hierarchical graphs such that H �r H ′. Then [H] ⇒r′ [H ′] where r′ ∈ DPO(r).

Proof. For H = (G,D, B) and H ′ = (G′, D′, B′), by definition, H �r H ′ implies G ⇒γ G
′,

B ⇒β B
′, and D ⇒δ D

′. Let fγ : Lγ → G, fβ : Lβ → B and fδ : Lδ → D, gγ : Rγ → G′,

gβ : Rβ → B′ and gδ : Rδ → D′ be the corresponding occurrence morphisms.

For (n, n′) ∈ NLγ × NLβ , let (n, n′) ∈ ≡p1
iff fγ(n) = fβ(n′), and for (n, n′) ∈ NLδ × NLβ ,

let (n, n′) ∈ ≡q1
iff fδ(n) = fβ(n′). Analogously, for (n, n′) ∈ NRγ × NRβ , let (n, n′) ∈ ≡p2

iff

gγ(n) = gβ(n′), and for (n, n′) ∈ NRδ ×NRβ , let (n, n′) ∈ ≡q2
iff gδ(n) = gβ(n′). (By definition,

≡p1
is compatible with ∼L

γ , and ≡p2
is compatible with ∼R

γ , and ≡q1
is compatible with

∼L
δ , and ≡q2

is compatible with ∼R
δ .) Let (L,K, R) = dpo(r, p, q).

Define f : L → [H] as follows. If n is a node of Lγ , f([n]≡p1
) = fγ(n). If n is an atom

of Lβ , f([n]≡p1
) = fβ(n). Analogously, if n is a package of Lδ , f([n]≡q1

) = fδ(n); and if

n is a package of Lβ , f([n]≡q1
) = fβ(n). Moreover, define f(x) = fγ(x) if x is an edge

of Lγ , f(x) = fβ(x) if x is an edge of Lβ , and f(x) = fδ(x) if x is an edge of Lγ . (The

graph morphism f may be non-injective, but only nodes of K can be identified.) Define

g : R → [H ′] analogously to f, that is, g([n]≡p2
) = gγ(n) if n is a node of Rγ , and so on.

Let Z = (G− fγ(Lγ −Kγ)) ∪ (B− fβ(Lβ −Kβ)) ∪ (D− fδ(Lδ −Kδ)). Then, by definition

and assumption, the following holds:

[H] − f(L−K) = (G ∪ B ∪ D) − f(L−K)

= (G− fγ(Lγ −Kγ)) ∪ (B − fβ(Lβ −Kβ)) ∪ (D − fδ(Lδ −Kδ))
∼= Z,

and

[H ′] − g(L−K) = (G′ ∪ B′ ∪ D′) − g(R −K)

= (G′ − gγ(Rγ −Kγ)) ∪ (B′ − gβ(Rβ −Kβ)) ∪ (D′ − gδ(Rδ −Kδ))
∼= (G− fγ(Lγ −Kγ)) ∪ (B − fβ(Lβ −Kβ)) ∪ (D − fδ(Lδ −Kδ))
∼= Z.

Hence, we get that [H] is obtained by gluing Z and L in K , and [H ′] is obtained by

gluing R and Z in K . This means [H] ⇒dpo(r,p,q) [H ′].

From the previous lemmas, we get the following theorem.

Theorem 6.3. Let H and H ′ be hierarchical graphs and let r be a coordinated rule. Then

H �r H ′ if and only if [H] ⇒r′ [H ′] for some r′ ∈ DPO(r).

https://doi.org/10.1017/S0960129505004846 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129505004846

Abstract hierarchical graph transformation 813

7. Related work

Hierarchical graphs appear in the computer science literature often as a means to model

complex networks of objects with additional structure on top of them. In this overview

of related work, we will first consider approaches to hierarchical graphs from the areas

of object-oriented modelling and databases (with particular attention to hypermedia),

and then concentrate on approaches from the graph grammar community, to which our

approach belongs.

In object orientation (see, for example, Rumbaugh et al. (1991)) and in databases (see,

for example, Elmasri and Navathe (1994)), it is common to model a certain domain as

a graph-like structure: objects (respectively, entities) correspond naturally to nodes of a

graph, while links (respectively, relationships) correspond to edges. In both communities,

the need for additional structuring is often felt, leading to the proposal of hierarchical

data models.

One of the first examples in this area is the higraph model, which is proposed in

Harel (1988) as a means for modelling database structures, for knowledge representation,

and as the basis for statecharts, which is a formalism for modelling reactive systems.

Compared to our model, higraphs are a coupled approach, where so-called blobs play

both the role of packages and of nodes. The blob hierarchy is acyclic. No operations are

defined for higraphs.

A second example is the Hypernode model, which was introduced in Poulovassilis and

Levene (1994), and was designed as a data model for databases. This model is again

coupled, since the hierarchy is based on complex nodes (called hypernodes). Hypernodes

are typed.

A final example we would like to consider is the modelling of hypertexts and

hypermedia: a hypertext can also be modelled naturally as a graph. In this area we also find

examples of hierarchical structuring, such as in the Hypermedia system Hyperwave (see

Maurer (1996)), where containers play a similar role to our packages and allow one to build

hierarchical hypertext structures, or in the hypermedia application design methodology

OOHDM (see, for example, Schwabe and Barbosa (1994)), where navigation contexts offer

similar primitives to structure the navigation space of a hypermedia application at design

time. Both containers and navigation contexts are added as a structuring primitive that is

not part of the underlying graph structure, and can therefore be considered as decoupled

approaches.

The first approach to hierarchical graphs in the graph-grammar community can be

found in Pratt (1979). Here hierarchical graphs are used as a model for data structures in

the implementation of programming languages. This approach also allows one to specify

rewrite rules based on node replacement to generate hierarchical graphs. Compared

with ours, this approach is a coupled approach (the hierarchy is built on nodes), and

the transformation is restricted to the generation of hierarchical graphs, whereas our

framework allows more general kinds of transformations, with both constructive and

destructive operations.

In Taentzer (1996), distributed graphs are introduced. These can be seen as a primitive

kind of hierarchical graph, where the hierarchy has only two levels. This approach uses

https://doi.org/10.1017/S0960129505004846 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129505004846

G. Busatto, H.-J. Kreowski and S. Kuske 814

the double-pushout approach to graph transformation to specify both hierarchy (network)

and local graph transformation.

The encapsulated hierarchical graph (EHG) model, which was proposed in Engels and

Schürr (1995), provides hierarchical structuring of graphs and encapsulation of graph

elements, together with a notion of hierarchical graph typing. It is, however, limited in

that it only allows tree-like hierarchies, does not provide any notion of transformation,

and it is coupled, since the hierarchy is built using particular nodes, called complex nodes.

The approach presented in Busatto et al. (2000) is an evolution of the EHG model, with a

simpler notion of typing and with the introduction of the idea of decoupling. This model

also provides some first ideas about operations on hierarchical graphs.

In Drewes et al. (2002), another hierarchical graph model is proposed, based on

hypergraphs. Here, only strict tree-like hierarchies are supported, that is, tree-like

hierarchies without edges (hyperedges) attached to nodes in different components of the

hierarchy. This approach is coupled, since the hierarchy is built using special hyperedges,

called frames. Hierarchical graph transformation is provided through an extension of the

double-pushout approach to graph transformation. This approach also provides a notion

of flattening for hierarchical graphs and hierarchical rules similar to ours.

In Engels and Heckel (2000), an approach to hierarchical graphs is presented, and is

again based on the double-pushout approach. This approach supports hierarchical graph

typing and typed hierarchical graph transformation. A major weakness of this approach

is that it does not provide any means to ensure that the hierarchy is well-formed (that it

is indeed a tree or dag), nor any means to preserve such structure during transformation.

Furthermore, this approach is coupled, since the hierarchy is built using nodes and

aggregation edges between them.

In Milner (2001; 2002), bigraphs, which are a variety of hierarchical graphs, are used

for modelling mobile computations. A bigraph consists of a graph (the monograph) and

a tree-like hierarchy (the topograph). The hierarchy is coupled: nodes in the monograph

are hierarchy components in the topograph. Boundary crossing edges are allowed.

Bigraph transformations can be specified through reaction rules; these describe a local

transformation of the monograph and of the topograph, thus resembling some kind of

coordinated hierarchical graph transformation. A possible topic for future research is to

compare reaction rules with hierarchical graph transformation rules more closely.

Finally, Palacz (2004) proposes a hierarchical graph model that supports multiple,

tree-like hierarchies where both nodes and edges can be used as hierarchy components.

Hierarchical graph transformation rules are based on the DPO graph transformation

approach. It is easy to verify that every rule in this approach satisfies our path-checking

condition; the root-checking condition is also satisfied because hierarchical transformation

rules (Definition 21) contain root-level morphisms.

8. Conclusions and future work

Although hierarchical graphs are often used in various areas of computer science, there

is no common understanding of what a hierarchical graph is, nor is there a common

hierarchical graph data model. This implies that different authors define their own

https://doi.org/10.1017/S0960129505004846 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129505004846

Abstract hierarchical graph transformation 815

hierarchical graph model, often re-discovering the same concepts over and over again,

and that the particular models mix general concepts of hierarchical graphs (hierarchical

structuring, constraints derived from this structuring) with concepts that are specific to a

given application (attributes, node and edge labels, . . .).

We therefore felt the need for a common hierarchical graph concept and data model,

which motivated the development of the hierarchical graph model proposed in this paper.

In this respect, we have achieved the following goals:

— Our model does not force one to choose a particular kind of graph (directed,

undirected, hypergraph) as the underlying graph to be structured.

— Our model does not force one to build the hierarchy using elements of the graph

(nodes, edges, hyperedges): the hierarchy is an independent structure into which

elements of a graph are distributed. We call such approaches decoupled.

— Our model does not force one to choose a particular graph transformation approach

to define operations on the underlying graph and on the hierarchy, rather it provides

a framework into which different graph transformation approaches can be plugged to

define concrete hierarchical graph transformation approaches. This result is achieved

by combining the idea of decoupling and the notion of a graph transformation

approach.

Besides defining an abstract framework for hierarchical graphs and their transformation,

we have instantiated it to the double-pushout approach, which has often been applied to

both graph transformation and hierarchical graph transformation (for the latter case, see

Section 7). Here we have addressed two issues: the definition of consistent transformations

on the hierarchy structure, meaning that we have to choose rules that do not produce

forbidden hierarchies, and the translation of hierarchical graphs and hierarchical graph

transformation to flat graphs and flat double-pushout transformation.

Our decoupled approach allows us to study the hierarchy structure and its

transformations separately, thus making it easier to deal with our consistency issues

in a general way. In our opinion, this problem has not been satisfactorily dealt with in the

literature (see, for example, Engels and Heckel (2000)), or has been solved by considering

only a restricted class of hierarchies (see, for example, Pratt (1979), Taentzer (1996)

and Drewes et al. (2002)). We have studied this problem for generic hierarchies in the

double-pushout approach, showing that it is possible to check statically whether a given

double-pushout rule specifies consistent transformations only.

The flattening of hierarchical graphs shows that it is possible to implement our double-

pushout hierarchical graph transformations using the plain double-pushout approach on

flat graphs. We have shown that hierarchical double-pushout rules can be translated to

sets of traditional flat rules that specify an equivalent transformation in flattened graphs.

A similar result can be found in Drewes et al. (2002).

As far as future work is concerned, a notion of typing and typed hierarchical graph

transformation is still not available in our approach, although there are already some

examples in the literature (Engels and Schürr 1995; Engels and Heckel 2000). Following

our decoupled approach, typing can be defined as a combination of typing on the

three components of a hierarchical graph. As a consequence, typed hierarchical graph

https://doi.org/10.1017/S0960129505004846 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129505004846

G. Busatto, H.-J. Kreowski and S. Kuske 816

transformation could also be obtained as a combination of typed transformation on the

component graphs. In spite of these first ideas, typed transformation in our model is still

a subject for future work.

Encapsulation can also be a useful feature for modelling certain domains (see Engels

and Schürr (1995)). Our model allows graph elements to be distributed arbitrarily in

a hierarchy, but it still provides no means to control such distribution. Import/export

interfaces in the style of Engels and Schürr (1995) seem an interesting option.

In this work we have instantiated our framework for hierarchical graph transformation

to the double-pushout approach since this approach is well known and commonly used

in the literature. It is, however, a natural development of this research to instantiate our

framework to other rule-based approaches to graph transformation (see also Busatto and

Hoffmann (2001) and Busatto (2002, Chapter 7)).

Appendix A. Proofs of lemmas

In this appendix we provide the proofs that we omitted in Section 5.

Lemma 5.15. Given a pushout 〈i : A → B, j : A → C, c : C → D, b : B → D〉 in the

category of directed graphs, where all morphisms are injective, the subgraph bi(A) = cj(A)

separates b(B) from c(C) in D, that is, , for every two nodes u ∈ b(NB), v ∈ c(NC), if there

exists a path u = u0, . . . , uk = v in D, then the path contains at least one node from cj(NA).

Proof. Let u ∈ c(NC) and v ∈ b(NB), and let u = u0, . . . , un = v be a path in D from u to

v for some n ∈ � : n > 0. Let k ∈ �, 0 � k < n, such that uk ∈ c(NC) and uk+1 ∈ b(NB).

If either uk or uk+1 are in bi(NA) = cj(NA), then we are done. Otherwise we have that

uk ∈ c(NC − j(NA)) and uk+1 ∈ b(NB − i(NA)). But in this latter case, there cannot be any

edge between uk and uk+1 in D.

Lemma 5.16. Given a pushout 〈i : K → L, k : K → D, d : D → G, g : L → G〉 in the

category of directed graphs, where G is a rooted dag and all morphisms are injective, we

have the following:

1 If ρG ∈ g(NL), then D � k(K).

2 If ρG ∈ d(ND), then L � i(K).

Proof. If ρG ∈ g(NL) then, for each u ∈ ND−k(NK) we have d(u) �+
G ρG. By Lemma 5.15,

we have that there exists at least one node v ∈ NK such that dk(v) is on that path (K

separates L from D). Let us choose v such that dk(v) is as near as possible to d(u). But then

we have found a path u �+
D k(v) all in D. This proves that if ρG ∈ g(NL) then D � k(K).

In a similar way, we can prove that if ρG ∈ d(ND) then L � i(K).

References

Andries, M., Engels, G., Habel, A., Hoffmann, B., Kreowski, H.-J., Kuske, S., Plump, D., Schürr, A.

and Taentzer, G. (1999) Graph transformation for specification and programming. Science of

Computer Programming 34 (1) 1–54.

https://doi.org/10.1017/S0960129505004846 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129505004846

Abstract hierarchical graph transformation 817

Botafogo, R.A., Rivlin, E. and Shneiderman, B. (1992) Structural analysis of hypertexts: identifying

hierarchies and useful metrics. ACM Transactions on Information Systems 10 142–180.

Busatto, G. (2002) An Abstract Model of Hierarchical Graphs and Hierarchical Graph Transformation,

Ph.D. thesis, Department of Computer Science, University of Paderborn, Germany.

Busatto, G., Engels, G., Mehner, K. and Wagner, A. (2000) A framework for adding packages

to graph transformation systems. In: Ehrig, H. et al. (eds.) Theory and Application of Graph

Transformation (TAGT’98), Selected Papers. Springer-Verlag Lecture Notes in Computer Science

1764 352–367.

Busatto, G. and Hoffmann, B. (2001) Comparing notions of hierarchical graph transformation.

In: Taentzer, G., Baresi, L. and Pezzè, M. (eds.) Workshop on Graph Transformation and Visual

Modelling, Satellite of ICALP’2001, Elsevier 312–318.

Corradini, A. and Montanari, U. (eds.) (1995) SEGRAGRA’95, Joint COMPUGRAPH/

SEMAGRAPH Workshop on Graph Rewriting and Computation. Electronic Notes in Theoretical

Computer Science 2.

Corradini, A., Montanari, U., Rossi, F., Ehrig, H., Heckel, R. and Löwe, M. (1997) Algebraic

approaches to graph transformation – part I: Basic concepts and double pushout approach.

In: Rozenberg, G. (ed.) Handbook of Graph Grammars and Computing by Graph Transformation,

Vol. 1: Foundations, Chapter 3, World Scientific 163–246.

Cuny, J., Ehrig, H., Engels, G. and Rozenberg, G. (eds.) (1996) Graph Grammars and Their

Application to Computer Science. Springer-Verlag Lecture Notes in Computer Science 1073.

Drewes, F., Hoffmann B. and Plump, D. (2002) Hierarchical graph transformation. Journal of

Computer and System Sciences 64 (2) 249–283.

Drewes, F., Knirsch, P., Kreowski, H.-J. and Kuske, S. (2000) Graph transformation modules

and their composition. In: Nagl, M., Schürr, A. and Münch, M. (eds.) Proc. Applications of

Graph Transformations with Industrial Relevance (AGTIVE’99). Springer-Verlag Lecture Notes

in Computer Science 1779 15–30.

Ehrig, H. (1979) Introduction to the algebraic theory of graph grammars. In: Claus, V., Ehrig, H.

and Rozenberg, G. (eds.) Graph-Grammars and Their Application to Computer Science and

Biology. Springer-Verlag Lecture Notes in Computer Science 73 1–69.

Ehrig, H. and Engels, G. (1996) Pragmatic and semantic aspects of a module concept for graph

transformation systems. In: Cuny, J., Ehrig, H., Engels, G. and Rozenberg, G. (eds.) Proc. Fifth

Intl. Workshop on Graph Grammars and Their Application to Comp. Sci.. Springer-Verlag

Lecture Notes in Computer Science 1073 137–154.

Ehrig, H., Engels, G., Kreowski, H.-J. and Rozenberg, G. (eds.) (1999) Handbook of Graph

Grammars and Computing by Graph Transformation, Vol. 2: Applications, Languages and Tools,

World Scientific.

Ehrig, H., Habel, A., Kreowski, H.-J. and Parisi-Presicce, F. (1991) From graph grammars

to high level replacement systems. In: Ehrig, H., Kreowski, H.-J. and Rozenberg, G. (eds.)

Graph Grammars and Their Application to Computer Science. Springer-Verlag Lecture Notes in

Computer Science 532 269–291.

Ehrig, H., Habel, A., Kreowski, H.-J. and Parisi-Presicce, F. (1991) Parallelism and concurrency in

high level replacement systems. Mathematical Structures in Computer Science 1 361–404.

Ehrig, H., Heckel, R., Korff, M., Löwe, M., Ribeiro, L., Wagner, A. and Corradini, A. (1997)

Algebraic approaches to graph transformation II: Single pushout approach and comparison with

double pushout approach. In: Rozenberg, G. (ed.) Handbook of Graph Grammars and Computing

by Graph Transformation, Vol. 1: Foundations, Chapter 4, World Scientific 247–312.

https://doi.org/10.1017/S0960129505004846 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129505004846

G. Busatto, H.-J. Kreowski and S. Kuske 818

Ehrig, H., Kreowski, H.-J., Montanari, U. and Rozenberg, G. (eds.) (1999) Handbook of

Graph Grammars and Computing by Graph Transformation, Vol. 3: Concurrency, Parallelism, and

Distribution, World Scientific.

Ehrig, H., Pfender, M. and Schneider, H. J. (1973) Graph grammars: An algebraic approach. In:

IEEE Conf. on Automata and Switching Theory, Iowa City 167–180.

Elmasri, R. and Navathe, S. B. (1994) Fundamentals of Database Systems, Benjamin/Cummings.

Engels, G. and Heckel, R. (2000) Graph transformation as unifying formal framework for system

modeling and model evolution. In: Welzl, E., Montanari, U. and Rolim, J. D. P. (eds.) Automata,

languages and programming: 27th International Colloquium, ICALP 2000, Geneva, Switzerland,

July 9–15, 2000: proceedings. Springer-Verlag Lecture Notes in Computer Science 1853 127–150.

Engels, G. and Schürr, A. (1995) Encapsulated hierachical graphs, graph types, and meta types. In:

Corradini, A. and Montanari, U. (eds.) SEGRAGRA’95, Joint COMPUGRAPH/SEMAGRAPH

Workshop on Graph Rewriting and Computation. Electronic Notes in Theoretical Computer

Science 2.

Grosse-Rhode, M., Parisi-Presicce, F. and Simeoni, M. (1998) Spatial and temporal refinement of

typed graph transformation systems. In: Proc. Mathematical Foundations of Computer Science.

Springer-Verlag Lecture Notes in Computer Science 1450 553–561.

Habel, A., Kreowski, H.-J. and Plump, D. (1991) Jungle evaluation. Fundamenta Informaticae XV

37–60.

Habel, A., Müller, J. and Plump, D. (2001) Double-pushout graph transformation revisited.

Mathematical Structures in Computer Science 11 (5) 637–688.

Harel, D. (1988) On visual formalisms. Communications of the Association for Computing Machinery

31 (5) 514–530.

Heckel, R., Hoffmann, B., Knirsch, P. and Kuske, S. (2000) Simple modules for GRACE. In:

Ehrig, H., Engels, G., Kreowski, H.-J. and Rozenberg, G. (eds.) Proc. Theory and Application of

Graph Transformations. Springer-Verlag Lecture Notes in Computer Science 1764 383–395.

Kaplan, S.M., Loyall, J. P. and Goering, S.K. (1991) Specifying concurrent languages and systems

with ∆-Grammars. In: Ehrig, H., Kreowski, H.-J. and Rozenberg, G. (eds.) Proc. Graph Grammars

and Their Application to Computer Science. Springer-Verlag Lecture Notes in Computer Science

532 475–489.

Kreowski, H.-J. and Kuske, S. (1996) On the interleaving semantics of transformation units—A

step into GRACE. In: Cuny, J., Ehrig, H., Engels, G. and Rozenberg, G. (eds.) Proc. Fifth Intl.

Workshop on Graph Grammars and Their Application to Comp. Sci.. Springer-Verlag Lecture

Notes in Computer Science 1073 89–106.

Kreowski, H.-J. and Kuske, S. (1999) Graph transformation units and modules. In: Ehrig, H.,

Engels, G., Kreowski, H.-J. and Rozenberg, G. (eds.) Handbook of Graph Grammars and Computing

by Graph Transformation, Vol. 2: Applications, Languages and Tools, Chapter 15, World Scientific

607–638.

Kreowski, H.-J., and Kuske, S. (1999) Graph transformation units with interleaving semantics.

Formal Aspects of Computing 11 (6) 690–723.

Kreowski, H.-J., Kuske, S. and Schürr, A. (1997) Nested graph transformation units. International

Journal of Software Engineering and Knowledge Engineering 7 479–502.

Kuske, S. (1999) Transformation Units – A Structuring Principle for Graph Transformation Systems,

Ph.D. thesis, Department of Mathematics and Computer Science, University of Bremen, Germany.

Maurer, H. (1996) Hyperwave, The Next Generation Web Solutions, Addison Wesley Longman.

Milner, R. (2001) Bigraphical reactive systems. In: Larsen, K.G. and Nielsen, M. (eds.) Proc. 12th

International Conference on Concurrency Theory, CONCUR 2001. Springer-Verlag Lecture Notes

in Computer Science 2154 16–35.

https://doi.org/10.1017/S0960129505004846 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129505004846

Abstract hierarchical graph transformation 819

Milner, R. (2002) Bigraphs as a model for mobile interaction. In: Corradini, A., Ehrig, H.,

Kreowski, H.-J. and Rozenberg, G. (eds.) Proc. First International Conference on Graph

Transformation, ICGT 2002. Springer-Verlag Lecture Notes in Computer Science 2505 8–13.

Palacz, W. (2003) Algebraic hierarchical graph transformation. Journal of Computer and System

Sciences 68 497–520.

Poulovassilis, A. and Levene, M. (1994) A nested-graph model for the representation and

manipulation of complex objects. ACM Transactions on Information Systems 12 (1) 35–68.

Pratt, T.W. (1979) Definition of programming language semantics using grammars for hierarchical

graphs. In: Claus, V., Ehrig, H. and Rozenberg, G. (eds.) Graph-Grammars and Their Application

to Computer Science and Biology. Springer-Verlag Lecture Notes in Computer Science 73 389–400.

Rozenberg, G. (1997, editor) Handbook of Graph Grammars and Computing by Graph Transformation,

Vol. 1: Foundations, World Scientific.

Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F. and Lorensen, W. (1991) Object Modelling and

Design, Prentice Hall.

Schürr, A. and Taentzer, G. (1995) DIEGO, another step towards a module concept for graph

transformation systems. In: Corradini, A. and Montanari, U. (eds.) SEGRAGRA’95, Joint

COMPUGRAPH/SEMAGRAPH Workshop on Graph Rewriting and Computation. Electronic

Notes in Theoretical Computer Science 2.

Schürr, A. and Winter, A. J. (2000) UML packages for PROgrammed Graph REwriting Systems.

In: Ehrig, H., Engels, G., Kreowski, H.-J. and Rozenberg, G. (eds.) Proc. Theory and Application

of Graph Transformations. Springer-Verlag Lecture Notes in Computer Science 1764 396–409.

Schwabe, D. and Barbosa, S.D. J. (1994) Navigation modelling in hypermedia applications. Technical

Report MCC 42/94, Departamento de Informática, PUC Rio.

Taentzer, G. (1996) Parallel and Distributed Graph Transformation: Formal Description and

Application to Communication-Based Systems, Ph.D. thesis, TU Berlin, Shaker Verlag.

Taentzer, G., Baresi, L. and Pezzè, M. (eds.) (2001) Workshop on Graph Transformation and Visual

Modelling, Satellite of ICALP’2001, Elsevier.

Welzl, E., Montanari, U. and Rolim, J.D. P. (eds.) (2000) Automata, languages and programming:

27th International Colloquium, ICALP 2000, Geneva, Switzerland, July 9–15, 2000: proceedings.

Springer-Verlag Lecture Notes in Computer Science 1853.

https://doi.org/10.1017/S0960129505004846 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129505004846

