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3Dipartimento di Matematica, Università di Pavia, Via Ferrata 5, 27100, Pavia,

Italy (lidia.stoppino@unipv.it)

(Received 2 November 2018; revised 17 January 2019; accepted 17 January 2019;

first published online 12 March 2019)

Abstract Let X be a normal complex projective variety, T ⊆ X a subvariety of dimension m (possibly

T = X) and a : X → A a morphism to an abelian variety such that Pic0(A) injects into Pic0(T ); let L be

a line bundle on X and α ∈ Pic0(A) a general element.
We introduce two new ingredients for the study of linear systems on X . First of all, we show the

existence of a factorization of the map a, called the eventual map of L on T , which controls the behavior

of the linear systems |L ⊗α||T , asymptotically with respect to the pullbacks to the connected étale covers

X (d) → X induced by the d-th multiplication map of A.

Second, we define the so-called continuous rank function x 7→ h0
a(X|T , L + x M), where M is the pullback

of an ample divisor of A. This function extends to a continuous function of x ∈ R, which is differentiable
except possibly at countably many points; when X = T we compute the left derivative explicitly.

As an application, we give quick short proofs of a wide range of new Clifford–Severi inequalities, i.e.,

geographical bounds of the form

volX |T (L) > C(m)h0
a(X|T , L),

where C(m) = O(m!) depends on several geometrical properties of X , L or a.
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1. Introduction

The aim of this paper is to introduce a new notion of asymptotic behavior of line bundles

on irregular varieties, that we call eventual behavior, and to investigate its applications.

These results have striking formal analogies with the usual asymptotic study, as in

[22] and [23], but are in fact quite different, and so are the proofs. We introduce the

eventual map, a new way of associating a map to a line bundle on a variety of maximal

Albanese dimension, only formally remindful of the Iitaka fibration, and the continuous

rank function, a continuous function defined on a line in the space of R-divisor classes

that has properties similar to those of the volume function. In the last part of the paper

we make the relation between continuous rank and volume precise by giving explicit lower

bounds for their ratio that imply, as a special case, new strong geographical bounds for

irregular varieties of general type.

We work in the following relative set-up. Let X be a normal complex projective variety,

let T ⊆ X be a subvariety and let a : X → A be a morphism to an abelian variety. Assume

that a|T is strongly generating, i.e., that the induced homomorphism Pic0(A)→ Pic0(T )
is injective. Notice that this condition implies in particular that Pic0(A)→ Pic0(X) is

also injective; so we identify Pic0(A) with its image in Pic0(X) and for α ∈ Pic0(A) we

denote a∗α simply by α.

For any integer d > 1 consider the connected variety X (d) defined by the following

cartesian diagram, where µd is multiplication by d on A:

X (d)
µ̃d
−−−−→ X

ad

y ya

A
µd
−−−−→ A

(1.1)

and set T (d) := µ̃∗d(T ). We fix L ∈ Pic(X), set L(d) = µ̃∗d(L) and we study the linear

system |L(d)⊗α||T (d) for α ∈ Pic0(A) general and d sufficiently large and divisible.

All the results in the paper are developed in this relative setting, but for simplicity in

this introduction we describe only the case when T = X and X has maximal a-dimension,

i.e., when a is generically finite onto its image. However, we wish to stress that the relative

set-up, considered here for the first time, not only is intrinsically interesting but it is

indispensable for the applications in the second part of the paper, since even to prove

the statements in the absolute case X = T one has to use the relative version, taking as

T a general element of a suitable linear system.
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The first part of the paper is concerned with the study of the map given by |L(d)⊗α| for

d � 0. The generic value h0
a(X, L) of h0(X, L ⊗α) for α ∈ Pic0(X), called the continuous

rank [2], is a measure of positivity of L: indeed if h0
a(X, L) > 0 then L is big (see

Proposition 3.2). Our main result here (Theorem 3.7) is the existence, when h0
a(X, L) > 0,

of a generically finite dominant rational map, the eventual map, ϕ : X → Z such that:

(1) a is composed with ϕ,

(2) for d large and divisible enough and α ∈ Pic0(A) general the map given by |L(d)⊗α|
is obtained from ϕ by base change with the d-th multiplication map.

Properties (1) and (2) characterize the eventual map up to birational isomorphism. This

is a completely new way of associating a map to a line bundle on an irregular variety

via an asymptotic construction, in a situation where the Iitaka fibration is birational and

therefore gives no information. Notice also that when L = K X and a is the Albanese map

ϕ is a new intrinsic invariant of varieties of maximal Albanese dimension, the eventual

paracanonical map: we study this case in detail in [4]. Recently Jiang in [20] obtains

further results on the characterization of this factorization and completely classifies the

structure of the eventual paracanonical map in dimensions 2 and 3.

The second theme of the paper is the study of the continuous rank h0
a(X, L) of a line

bundle L on X . One of the motivations for studying this invariant rather than h0(X, L)
is its behavior under multiplication maps as in (1.1): one has

h0
ad
(X (d), L(d)) = d2q h0

a(X, L).

Using this property, it is easy to see that, given a line bundle M = a∗H with H ample

on A, one can define in a natural way h0
a(X, L + x M) for rational values of x . We prove

that this function extends to a continuous convex function on R and compute its left

derivative.

This “continuous continuous rank function” is a subtle invariant, that is not easy to

compute explicitly (see Examples 7.1, 7.3, 7.4, Remark 7.6 and Question 7.7), and we

believe will have many applications in the study of the geometry of irregular varieties.

In this paper we present one: we use it to prove several new Clifford–Severi inequalities

(cf. § 6).

These are inequalities of the form:

vol(L) > C(n)h0
a(X, L),

where C(n) is an explicit positive constant depending on the dimension n of X .

Inequalities of this type can be regarded as a quantitative version of the remark, made

at the beginning of the introduction, that if h0
a(X, L) > 0 then L is big, and therefore

vol(L) > 0. The main known Clifford–Severi inequalities are the following [2] (cf. also [35]

for the case L = K X ): for any nef L we have

vol(L) > n!h0
a(X, L), (1.2)

while if K X − L is pseudoeffective:

vol(L) > 2n!h0
a(X, L). (1.3)
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The reason for naming these type of inequalities after Clifford is the continuous Clifford

inequality

vol(L) = deg L > 2h0
a(X, L),

for a line bundle L on a curve X with 0 6 deg L 6 2g(X)− 2, which can be easily deduced

from the usual Clifford Theorem using the covering trick introduced in [27]. Not only this

is the simplest instance of an inequality of the type under consideration but is the starting

step of the inductive argument in the proof of the generalized Clifford–Severi inequalities.

When X is a minimal surface of general type and maximal Albanese dimension and

L = K X , the inequality (1.3) reads

K 2
X > 4χ(K X ), (1.4)

and is known as the “Severi inequality”. It has a long history, from the incorrect proof of

Severi [33] in 1932, to the complete proof given by the second named author in 2005 [27],

passing through [9, 32, 34] and [19].

The Severi inequality can be written also as c2
1 > 1

2 c2, where c1, c2 are the Chern classes

of the minimal surface X , and therefore is an inequality between topological invariants.

Probably it was this fact that hid for some years that the natural generalizations (1.2)

and (1.3) of the Severi inequality to nef line bundles on variety of any dimension n.

The properties of the continuous rank functions and of the volume functions allow us

to translate the induction process used in [2] into an integration of a combination of these

functions, and a simple application of the fundamental theorem of calculus. This is the

main point of the argument that allows us to give a new slick proof of the inequalities

(1.2) and (1.3) for any (not necessarily nef) L and to extend them to the relative case.

More importantly, applying this new method we can give better inequalities depending

on the geometry of the map a. More precisely, we prove the following, in case if K X − L
is pseudoeffective (see § 6):

(a) when a is not composed with an involution

vol(L) > 9
4 n! h0

a(X, L);

(b) when a is birational onto its image

vol(L) > 5
2 n! h0

a(X, L).

To give an idea of the significance of these inequalities we spell out here their

consequences for X a minimal Q-Gorenstein n-fold of maximal Albanese dimension with

terminal singularities. In this case the generalized Clifford–Severi inequality (1.3) implies

(taking L = K X ):

K n
X > 2 n!χ(ωX ). (1.5)

If albX is not composed with an involution, inequality (a) implies:

K n
X > 9

4 n!χ(ωX ), (1.6)

If albX is birational onto its image, then inequality (b) gives:

K n
X > 5

2 n!χ(ωX ). (1.7)
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Inequality (1.6) had recently been proven only for surfaces in [25]; inequality (1.7) is

completely new even in the surface case. All three inequalities show how strongly the

geometry of the Albanese map affects the numerical invariants of a variety of general type.

We do not know whether (1.6) and (1.7) are sharp: in the case of surfaces it is expected

(cf. Question 7.13) that K 2
X > 6χ(ωX ) holds when the Albanese map is birational, and

(1.7) gives the first effective result in this direction.

In the last section we work out several examples and pose some questions.

In the paper [5] we give another application of the methods introduced here: we prove

a characterization of all triples (X, a, L) attaining equality in (1.2) or in (1.3).

It is worth mentioning that Jiang and Pareschi in [21] introduce some natural

generalizations of our continuous rank functions, prove some interesting applications and

provide evidence toward a positive answer to Question 7.7.

2. Set-up and preliminaries

2.1. Notation and conventions

We work over the complex numbers; varieties (and subvarieties) are assumed to be

irreducible and projective.

In this paper the focus is on birational geometry, so a map is a rational map and we

denote all maps by solid arrows.

Given maps f : X → Y and g : X → Z , we say that g is composed with f if there exists

a map h : Y → Z such that g = h ◦ f . Given a map f : X → Y and an involution σ of X ,

we say that f is composed with the involution σ if f ◦ σ = f .

We say that two dominant maps f : X → Z , f ′ : X → Z ′ are birationally equivalent if

there exists a birational isomorphism h : Z → Z ′ such that f ′ = h ◦ f .

A map f : X → Y is said to be generically finite if dim f (X) = dim X , i.e., we do not

require that f be dominant.

If a : X → A is a generically finite morphism to an abelian variety, we say that X
has maximal a-dimension. If a : X → A is a morphism to an abelian variety such that

the induced homomorphism a∗ : Pic0(A)→ Pic0(X) is injective, we say that a is strongly

generating.

Numerical equivalence is denoted by ≡; given line bundles L , L ′ ∈ Pic(X) we write

L 6 L ′ if L ′− L is pseudoeffective.

Let X be a variety, T ⊆ X a subvariety, and L ∈ Pic(X); we denote by volX (L) the

volume of L on X and by volX |T (L) the restricted volume of L on T (cf. [14] for the

definition of the restricted volume).

Given a variety X and a subvariety T ⊆ X , we denote by H0(X |T , L) the image of the

restriction map H0(X, L)→ H0(T, L |T ), by h0(X |T , L) its dimension and by |L||T the

corresponding subspace of |L |T |.
If d is a non-negative integer, we write “d � 0” instead of “d large and divisible

enough”.

https://doi.org/10.1017/S1474748019000069 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748019000069


2092 M. A. Barja et al.

2.2. Covering trick

Let X be a variety of dimension n and let a : X → A be a morphism to an abelian variety

of dimension q.

In this subsection we assume in addition that the map a is strongly generating. Note

that in particular a(X) generates the abelian variety A.

We introduce the following notations and geometric constructions that will be used

throughout all the paper:

• H is a fixed very ample divisor on A and we set M = a∗H .

• If d > 0 is an integer, we denote by µd : A→ A the d-th multiplication map; the

following cartesian diagram defines X (d) and the maps ad and µ̃d :

X (d)
µ̃d
−−−−→ X

ad

y ya

A
µd
−−−−→ A

(2.1)

The variety X (d) is irreducible since a is strongly generating. In addition, the map ad
is again strongly generating, and is generically finite if a is. This is proved in [3] for

smooth surfaces, but the proof works without modifications for varieties of arbitrary

dimension.

• If T ⊆ X is a subvariety such that a|T is strongly generating, then we denote the

preimage of T in X (d) by T (d). Note that T (d) is again irreducible.

• For L ∈ Pic(X) we write L(d) := µ̃d
∗L; we also set Md = a∗d H . Notice that by [6, Prop.

2.3.5] we have that H ≡ 1
d2µ
∗

d H and so Md ≡
1

d2 M (d).

• Given α ∈ Pic0(A), we denote again by α its pullback to X , T , X (d), etc.. . . For instance,

we write H0(X (d), L(d)⊗α) instead of H0(X (d), L(d)⊗ a∗dα). Observe also that using

this convention we have L(d)⊗αd
= (L ⊗α)(d).

2.3. Continuous rank

Let X be a normal variety of dimension n, let a : X → A be a morphism to an abelian

variety of dimension q and let L be a line bundle on X . As in [2, Definition 2.1], we define

the continuous rank of L (with respect to a) as the integer

h0
a(X, L) := min{h0(X, L ⊗α) | α ∈ Pic0(A)}.

Remark 2.1. When X is smooth and L = K X + D is the adjoint of a nef divisor D, we

have h0
a(X, L) = χ(L) by generic vanishing (cf. [28, Theorem B]). If in addition D is

big, then by the Kawamata–Viehweg vanishing theorem, h0
a(X, L) = χ(L) = h0(X, L). In

general, by [8] we have that h0
a(X, L) > h0(X, L)− h1(X, L).

Given a subvariety T ⊆ X , there exists a non-empty open set of Pic0(A) where

h0(X |T , L ⊗α) is constant. We define the restricted continuous rank h0
a(X |T , L) to be

this generic value.
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Note that if T is a proper subvariety of X , then h0
a(X |T , L) need not be the minimum

value of h0(X |T , L ⊗α).

Remark 2.2. Observe that the restricted continuous rank only depends on the class of L
in Pic(X)/Pic0(A).

Remark 2.3. Since we assume that X is normal, the continuous rank is invariant under

birational morphisms X̃ → X . Without the normality assumption on X , the continuous

rank may increase passing from X to X̃ .

Remark 2.4. By Remark 2.3, if we blow up X along T and normalize, both h0
a(X, L) and

h0
a(X |T , L) stay the same. So we may reduce to the case where T is a Cartier divisor and,

in particular, we have that h0
a(X |T , L) = h0

a(X, L)− h0
a(X, L − T ) is the difference of two

(non-restricted) continuous rank functions.

The fundamental property of the continuous rank is the following (notation as in § 2.2):

Proposition 2.5 (Multiplicativity of the continuous rank). In the above set-up, assume

that a|T is strongly generating. Then for every d > 0 one has:

h0
ad
(X (d)|T (d) , L(d)) = d2q h0

a(X |T , L).

Proof. When T = X , the claim is [2, Proposition 2.8]. The general case follows from this

in view of Remark 2.4.

Remark 2.6. Let a : X → A be a morphism and let T ⊆ X be a subvariety such that the

natural maps a∗ : Pic0(A)→ Pic0(X) and a∗
|T : Pic0(A)→ Pic0(T ) have the same kernel

(for instance, this holds if the restriction map Pic0(X)→ Pic0(T ) is injective). Denote

by A′ the abelian variety dual to Pic0(A)/ ker(a∗): the map a factorizes as X
a′
→ A′

f
→ A,

where a′|T is strongly generating and f is a morphism of abelian varieties. Since one has

h0
a(X |T , L) = h0

a′(X |T , L), when proving statements about the continuous rank one can

assume that a|T is strongly generating and use the machinery of § 2.2.

2.4. Continuous resolution of the base locus

Here we recall, and slightly refine, the results of [2, § 3].

Let X be a normal variety of dimension n, let a : X → A be a morphism to an abelian

variety of dimension q and let L be a line bundle on X with h0
a(X, L) > 0. We denote

by Urk ⊆ Pic0(A) the open set consisting of the α’s such that h0(X, L ⊗α) is equal to the

minimum h0
a(X, L). The continuous evaluation map of L is defined as

ev : ⊕α∈Urk H0(X, L ⊗α)⊗α−1
→ L (2.2)

and we denote by S the subscheme of X such that the image of ev is equal to IS L.

Let σ : X̃ → X be a smooth modification of X such that σ ∗IS = OX̃ (−D) for some

effective divisor D. We call D the continuous fixed part and P := σ ∗L(−D) the continuous

moving part of L.
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Assume that a is strongly generating; then there exists a positive integer d such that,

denoting by gd : X̃ (d )→ X̃ the connected étale cover induced by µd : A→ A (see diagram

(2.3) below),

X̃ (d )

ãd
��

λ

''

gd
// X̃

ã
��

σ
// X

a
��

A
µd
// A

(2.3)

we have

• for all α ∈ Pic0(A), the system |P(d)⊗α| is free;

• for α ∈ Pic0(A) general, D(d) and |P(d)⊗α| are the fixed and moving parts, respectively,

of |λ∗L ⊗α|.

Remark 2.7. Consider now a subvariety T ⊆ X such that T is not contained in Sing X
and h0

a(X |T , L) > 0. It is possible to choose the modification σ : X̃ → X in such a way

that T is not contained in the exceptional locus of σ−1 and therefore the strict transform

T̃ ⊆ X̃ is defined.

2.5. Galois group of maps

We give here some general results that we use later.

Given a generically finite dominant map f : X → Y of irreducible varieties we denote

by Gal( f ) the group of birational automorphisms φ of X such that f ◦φ = f , namely

Gal( f ) is the Galois group of the field extension C(Y ) ⊆ C(X).

Proposition 2.8. Let f : X → Y ⊆ Pr be a generically finite dominant morphism of

varieties of dimension > 2; let K be a hyperplane section of Y , let Σ = f
−1

K and let

h : Σ → K be the restricted map.

If K is general then the restriction homomorphism Gal( f )→ Gal(h) is an isomorphism.

Proof. Possibly after removing a proper closed subset of Y and its preimage in X , we

may assume that f : X → Y is a finite étale morphism of smooth varieties. By [15,

Theorem 1.1(A)], if K is general Σ is irreducible, hence connected.

In this situation Gal( f ) coincides with the group Galtop( f ) of deck transformations of

the topological cover f and the same is true for h. Choose base points x0 ∈ Σ and y0 =

f (x0) ∈ K and denote by N1 (respectively, N2) the normalizer of f∗π1(X, x0) (respectively,

h∗π1(Σ, x0)) in π1(Y, y0) (respectively, π1(K , y0)). Then the group Galtop( f ) (respectively,

Galtop(h)) can be identified with N1/( f∗π1(X, x0)) (respectively, N2/(h∗π1(Σ, x0))). In the

following commutative diagram

π1(Σ, x0) −−−−→ π1(X, x0)

h∗

y y f∗

π1(K , y0) −−−−→ π1(Y, y0)
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the horizontal arrows are surjective by [15, Theorem 1.1(B)]. This shows that every

element of Galtop(h) extends to an element of Galtop( f ), namely the map Gal( f )→ Gal(h)
is surjective. Since Gal( f )→ Gal(h) is clearly injective, this completes the proof.

The next result is a straightforward generalization of [25, Lemma 3.3], but we include

the proof for the reader’s convenience (notation as in § 2.2).

Lemma 2.9. Let X be smooth of general type and let a : X → A be a morphism to an

abelian variety such that a is strongly generating and X has maximal a-dimension.

Then there exists a constant C such that for every prime p > C and d = pk , k > 0,

one has:

Gal(a) = Gal(ad).

Proof. Let n := dim X . By the main result of Hacon, McKernan and Xu in [17], there

exists a constant M such that for every n-dimensional variety Y of general type the order

of the group Autbir (Y ) of birational automorphisms of Y is 6 M volY (KY ).

Take C = M volX (K X ), let p > C be a prime and d = pk a power of p. The Galois

group G ∼= Z2q
d of µ̃d is a subgroup of Autbir (X (d)), and it is a p-Sylow subgroup, because

|Autbir (X (d))| 6 M volX (d)(K X (d)) = Md2q volX (K X ) = d2qC < d2q p.

In addition, since the number of p-Sylow subgroups is a divisor of |Autbir (X (d))|
d2q < p and is

congruent to 1 modulo p, it follows that G is the only p-Sylow subgroup, namely G is a

normal subgroup.

So every birational automorphism of X (d), and thus in particular every element of

Gal(ad), descends to an automorphism of X . So we have a homomorphism Gal(ad)→

Gal(a) that is the inverse of the natural inclusion Gal(a)→ Gal(ad).

2.6. Factorization of morphisms

In this subsection varieties are irreducible but not necessarily projective. The results here

are certainly well known but, lacking a suitable reference, we spell them out here for the

reader’s convenience.

Lemma 2.10. Let f : X → Y be a finite morphism of varieties with Y normal. If

g : X → Z is a morphism such that g( f −1(y)) is a point for general y ∈ Y , then g( f −1(y))
is a point for all y ∈ Y .

Proof. Up to replacing f : X → Y with its Galois closure, we may assume that X is

normal and f is Galois with Galois group 0. In particular, the fibers of f are 0-orbits.

Now the claim follows since for all γ ∈ 0 the set {x | g(γ x) = g(x)} is closed by definition

and contains a non-empty open set by assumption, and therefore it is equal to X .

Lemma 2.11. Let f : X → Y and g : X → Z be proper morphisms of varieties. If Y is

normal, f is surjective and g( f −1(y)) is a point for all y ∈ Y , then g descends to a

morphism ḡ : Y → Z .

Proof. Denote by T ⊆ Y × Z the image of the product morphism f × g, which is a

closed subset. The first projection Y × Z → Y restricts to a proper bijective morphism
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π : T → Y . Since Y is normal, π is an isomorphism and ḡ is obtained by composing π−1

with the morphism T → Z induced by the second projection.

Corollary 2.12. Let f : X → Y and g : X → Z be proper morphisms of varieties. If f is

surjective and g( f −1(y)) is a point for y ∈ Y general, then g descends to a rational map

ḡ : Y → Z .

Proof. Follows from Lemma 2.11 by replacing Y by a smooth open subset Y0 such that

g( f −1(y)) for all y ∈ Y0 and X by X0 = f −1(Y0).

3. The eventual map and the eventual degree

Throughout all the section we fix:

• a normal variety X of dimension n and a subvariety T ⊆ X of dimension m > 0 such

that T is not contained in Sing X ;

• a morphism a : X → A to an abelian variety of dimension q such that a|T is strongly

generating;

• a line bundle L on X with h0
a(X |T , L) > 0.

We use freely the notation introduced in § 2.

3.1. Eventual degree of a line bundle

Definition 3.1. We say that a certain property holds generically for L (with respect to

a) iff it holds for L ⊗α for general α ∈ Pic0(A); similarly, we say that a property holds

eventually for L (with respect to a) iff it holds for L(d) for d � 0.

For instance, we say that |L||T is eventually generically birational if for d � 0 the

system |L(d)⊗α||T is birational for general α ∈ Pic0(A).
Using the above terminology, we formulate a partial analogue of [2, Theorem 3.6] that

we use repeatedly:

Proposition 3.2. In the above set-up, if T has maximal a|T -dimension, then |L||T
eventually gives a generically finite map. In particular, L |T is big.

Proof. By Remark 2.7, we may argue as in the proof of [2, Theorem 3.6] and reduce to

the case when X is smooth and, up to taking base change with a suitable multiplication

map, |L ⊗α| is a free system for every α ∈ Pic0(A). To prove the claim, we show that

under these assumptions if F is a connected component of a general fiber of the map

ϕ : T → Z induced by |L||T , then a(F) is a point.

Indeed, the line bundle L |F is trivial, since |L| is base point free, hence (L ⊗α)|F and

α|F are linearly equivalent for every α ∈ Pic0(A). Since |L ⊗α| is also free, it follows that

(L ⊗α)|F = α|F is trivial for every α ∈ Pic0(A), namely the map Pic0(A)→ Pic0(F) is

trivial. So it follows that a is constant on F .

For any given integer d > 0, we denote by ϕ[d] : T (d)→ Z [d] the dominant map induced

by |L(d)||T (d) .
We start with a very useful technical result:
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Lemma 3.3. Let d > 0 be a fixed integer and denote by G ∼= Z2q
d the Galois group of µd .

Then:

(i) G acts faithfully on Z [d];

(ii) if |L ⊗ η||T is base point free for every η ∈ Pic0(A)[d], then G acts freely on Z [d].

Proof. (i) Since the group G acts on T (d) ⊆ X (d) and since the line bundle L(d), being a

pullback from X , has a natural G-linearization, there is an induced G-action on Z [d].
Let x ∈ T be a point that is not in the base locus of |L ⊗ η| for any

η ∈ Pic0(A)[d]. We are going to show that the points of W := µ̃d
−1(x) (which form

a G-orbit of cardinality d2q) are separated by |L(d)||T (d) , i.e., the natural restriction

map r : H0(X (d), L(d))→ H0(W, L(d)|W ) is surjective. The map r is G-equivariant;

the G-eigenspaces of H0(X (d), L(d)) are the subspaces Vη := µ̃d
∗H0(X, L ⊗ η) for η in

Pic0(A)[d], while H0(W, L(d)|W ) is isomorphic to the regular representation of G. It

follows that r is surjective iff for each η ∈ Pic0(A)[d] its restriction to the eigenspace Vη is

non-zero. By the choice of x , for every η ∈ Pic0(A)[d] we can find ση ∈ H0(X, L ⊗ η) with

ση(x) 6= 0; then τη := µ̃d
∗(ση) ∈ Vη does not vanish at any point of W , hence r(τη) 6= 0

and r is surjective, as claimed.

(ii) In this case the argument given in (i) implies that |L(d)||T (d) is free and that all the

G-orbits on Z [d] have cardinality d2q , and therefore G acts freely.

Let d > 0 be an integer. If for α ∈ Pic0(A) general the system |L(d)⊗α||T (d) gives

a generically finite map, then we denote by mL|T (d) the degree of this map; we set

mL|T (d) = +∞ otherwise. When T = X we drop T from the notation and simply write

mL .

Lemma 3.4. Assume that d1 is an integer with mL|T (d1) < +∞. If d2 is a multiple of d1,

then mL|T (d2) divides mL|T (d1).

Proof. By replacing (T, X, L) by (T (d1), X (d1), L(d1)), we reduce to the case where

mL|T (1) < +∞ and we show that mL|T (d) divides mL|T (1) for every d.

Now fix d; up to replacing L by L ⊗α for a general choice of α ∈ Pic0(A), we may assume

that the map ϕ given by |L||T and the map ϕ[d] given by |L(d)||T (d) are generically finite

of degree mL|T (1), mL|T (d), respectively; as before, we denote by Z , Z [d] the images of

ϕ, ϕ[d], respectively. By the following commutative diagram

T (d)
µ̃d
−−−−→ T

ϕ[d]
y yϕ

Z [d]
h

−−−−→ Z

(3.1)

we have d2qmL|T (1) = mL|T (d) deg h. By Lemma 3.3, the Galois group G of µd injects

into the Galois group of h. It follows that d2q divides deg h, and therefore mL|T (d) divides

mL|T (1).

Definition 3.5. We define the eventual degree of L (with respect to a and T ) as:

mL|T := min{mL|T (d) | d ∈ N∗}.
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Note that if T is of maximal a|T -dimension, then one has mL|T < +∞ by Proposition

3.2.

Remark 3.6. If mL|T < +∞, then by Lemma 3.4:

• eventually we have mL|T (d) = mL|T ;

• mL|T is the greatest common divisor of all the mL|T (d).

3.2. The factorization theorem

The main result of this section is the following:

Theorem 3.7 (Factorization theorem). Let X be a normal n-dimensional projective variety

and let a : X → A be a morphism to a q-dimensional abelian variety; let T ⊆ X be

a subvariety of dimension m not contained in Sing X and such that a|T is strongly

generating.

If L is a line bundle on X such that h0
a(X |T , L) > 0 and mL|T < +∞, then there exists

a generically finite map ϕ : T → Z of degree mL|T , uniquely determined up to birational

equivalence, such that:

(a) the map a|T : T → A is composed with ϕ;

(b) for d > 1 denote by ϕ(d) : T (d)→ Z (d) the map obtained from ϕ : T → Z by taking

base change with µd ; then the map given by |L(d)⊗α||T (d) is composed with ϕ(d) for

α ∈ Pic0(A) general.

In particular, for d � 0 the map ϕ(d) is birationally equivalent to the map given by |L(d)⊗
α||T (d) for α ∈ Pic0(A) general.

Definition 3.8. We call the map ϕ : T → Z introduced in Theorem 3.7 the eventual map

given by L on T . Note that eventual degree mL|T of L is actually the degree of the

eventual map.

In view of Proposition 3.2, Theorem 3.7 has the following immediate consequence,

which will be crucial for the arguments in the second part of the paper.

Corollary 3.9. Under the assumptions of Theorem 3.7 we have

(i) if a|T is generically injective, then the linear system |L||T is eventually generically

birational;

(ii) if a|T is not composed with an involution, then mL|T 6= 2.

In order to prove Theorem 3.7, we need to introduce some more notation and prove a

preliminary result. Let d > 0 be an integer; then:

– U (d)
rk ⊆ Pic0(A) denotes the non-empty open set consisting of the α’s such that

h0(X (d), L(d)⊗α) = h0
ad
(X (d), L(d)) and h0(X (d)|T (d) , L(d)⊗α) = h0

ad
(X (d)|T (d) , L(d));
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– if mL|T (d) < +∞, then U (d)
deg denotes the non-empty open subset of U (d)

rk consisting

of the α’s such that the map given by |L(d)⊗α||T is generically finite of degree

equal to mL|T (d).

We write Urk = U (1)
rk and Udeg = U (1)

deg.

Proposition 3.10. Assume that |L ⊗α| is base point free for every α ∈ Pic0(A) and that

mL|T (1) = mL|T < +∞; then there exist a variety Z and a surjective generically finite

morphism ϕ : T → Z of degree mL|T such that:

(a) the dominant map ϕα : T → Zα induced by |L ⊗α||T is birationally equivalent to ϕ

for every α ∈ Udeg;

(b) the map a|T : T → A is composed with ϕ.

Proof. (a) Note first that by Lemma 3.4, the condition mL|T (1) = mL|T implies mL|T (d) =
mL|T for every d > 0. Up to twisting L by a very general element of Pic0(A), we may

assume that 0 ∈ U (d)
deg for every d > 1; we denote by ϕ : T → Z the surjective generically

finite morphism of degree mL|T given by |L||T . We pick x ∈ T general and consider the

following continuous evaluation map on X :

ev : ⊕α∈Urk H0(X, Ix L ⊗α)⊗α−1
−→ Ix L . (3.2)

The image of ev is equal to IB L, where B is a subscheme of X such that {x} ⊆ B|T ⊆
ϕ∗(ϕ(x)); since x is general, ϕ∗(ϕ(x)) = ϕ−1(ϕ(x)) is reduced of cardinality mL|T , hence

B|T is also reduced and has cardinality ν 6 mL|T . We wish to prove that ν = mL|T and

therefore that B|T = ϕ−1(ϕ(x)).
Arguing as in the proof of [2, Lemma 3.2] one can prove that IB L is continuously

globally generated with respect to a. So by [12, Proposition 3.1] there exists d such that

µ̃d
∗(IB L)⊗α is generated by global sections for all α ∈ Pic0(A). Write B(d) := µ̃d

∗B, so

that µ̃d
∗(IB L) = IB(d)L

(d).

Let ϕ[d] : T (d)→ Z [d] be the surjective morphism induced by |L(d)||T (d) . By Lemma 3.3

the map h in diagram (3.1) is an étale G-cover, where G ∼= Z2q
d is the Galois group of µ̃d .

The 0-dimensional scheme B(d)|T (d) = µ̃d
∗(B|T ) is reduced of cardinality νd2q , since B|T

is reduced of cardinality ν and µ̃d is étale. On the other hand, B(d)|T (d) is the base locus

of |IB(d)L
(d)
||T (d) ⊆ |L

(d)
||T (d) , since IB(d)L

(d)
= µ̃d

∗(IB L) is generated by global sections.

Since L(d) is also generated by global sections, it follows that B(d)|T (d) is a union of fibers

of the map ϕ[d]. Since in addition B(d)|T (d) is G-stable, it contains the set

(h ◦ϕ[d])−1(ϕ(x)) = µ̃−1
d (ϕ−1(ϕ(x))),

which has cardinality d2qmL|T . Since ν 6 mL|T , we conclude that ν = mL|T , B(d)|T (d) =
µ̃−1

d (ϕ−1(ϕ(x))) and B|T = ϕ−1(ϕ(x)). Summing up, we have proven that for general x ∈ T
the fiber ϕ−1(ϕ(x)) is mapped to a point by ϕα for every α ∈ Urk. This proves that ϕα
is composed with ϕ for every α ∈ Urk (cf. Corollary 2.12). In particular, for α ∈ Udeg the

map ϕα is birationally equivalent to ϕ.

(b) Let P be the pullback to X ×Urk of the Poincaré line bundle on A×Pic0(A) and

set V := pr2∗(P ⊗ pr∗1 L), where pri is the i-th projection, i = 1, 2. Let νT : T ν → T and
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νZ : Zν → Z be the normalization maps, and let ϕν : T ν → Zν be the morphism induced

by ϕ. Let T ν → T̄
ϕ̄
→ Zν be the Stein factorization of φν : since |L ⊗α| is free for every

α ∈ Pic0(A) the map ϕα descends to T̄ for every α (cf. Lemma 2.11). Now the natural

morphism X ×Urk → P(V) induces a morphism T ν ×Urk → P(V) that, again by Lemma

2.11, descends to a morphism 8 : T̄ ×Urk → P(V); we denote by Z the image of 8.

Consider the map F : T̄ ×Urk → Zν ×Urk defined by F(x, α) = (ϕ̄(x), α). We have shown

in the proof of (a) that for x ∈ T̄ general the morphism 8 contracts F−1(F(x, α)) to a

point for all α ∈ Urk. Since F is a finite morphism and Zν ×Urk is a normal variety,

Lemma 2.10 and Lemma 2.11 imply that 8 descends to a morphism j : Zν ×Urk → Z.

Comparing degrees we see that j is birational.

Let N ∈ Pic(Z) be such that L = ϕ∗N and let ε : Ẑ → Zν be a desingularization.

Pulling back j∗OP(V)(1)⊗ pr∗1(νZ
∗N−1) to Ẑ ×Urk we obtain a line bundle that defines

a morphism Urk → Pic0(Ẑ), which in turn extends to a homomorphism ψ : Pic0(A)→
Pic0(Ẑ). We define the map g : Z → A as the composition of (ε ◦ νZ )

−1 with the Albanese

map Ẑ → Alb(Ẑ) followed by tψ : Alb(Ẑ)→ A. We claim that a|T and g ◦ϕ differ by a

translation in A. Without loss of generality, we may replace T by a smooth variety T ′

birational to it such that the induced map ϕ′ : T ′→ Ẑ is a morphism.

By the universal property of the Albanese map, the strongly generating map a′ : T ′→ A
induced by a|T is determined, up to translation in A, by a′∗ : Pic0(A)→ Pic0(T ′), and it

is clear from the construction of g that (g ◦ϕ′)∗ = a′∗.

Proof of Theorem 3.7. As in § 2.4, up to blowing up X we can consider the decomposition

L = P + D of L as the sum of its continuous moving and fixed parts. By § 2.4, taking

d � 0 we have that for α general |L(d)⊗α| = |P(d)⊗α| + D(d) and |P(d)⊗α| is base

point free for all α. In addition, by Lemma 3.4 we may assume that mL|T (d) = mL|T .

Up to twisting L by a very general element of Pic0(A), we may assume that 0 ∈ U (d)
deg

for every integer d > 1. By Proposition 3.10, we may choose d0 � 0 such that:

– |P(d0)||T induces a surjective morphism ϕ[d0] : T (d0)→ Z [d0] of degree mL|T ,

birationally equivalent to the morphism given by |P(d0)⊗α||T for every α ∈ U (d0)
deg ;

– ad0 |T (d0) = g ◦ϕ[d0] for some map g : Z [d0]→ A.

Let G be the Galois group of µd0 and µ̃d0 ; the natural linearization of P(d0) = µ̃∗d0
(P)

descends to a G-action on the image Z [d0] of ϕ[d0] and therefore ϕ[d0] induces a morphism
ϕ : T → Z := Z [d0]/G. So we have a commutative diagram:

T (d0)
µ̃d0
−−−−→ T

ϕ[d0]
y yϕ

Z [d0] −−−−→ Zy y
A

µd
−−−−→ A

(3.3)
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By Lemma 3.3 (applied to P(d0)), the group G acts freely on Z [d0], and so degϕ =
degϕ[d0] = mL|T . Using the commutativity of the above diagram, the fact that H0(X, L ⊗
α) is the G-invariant subspace of H0(X (d0), L(d0)⊗αd0) and the fact that for general

β ∈ Pic0(A) the system |L(d0)⊗β|
|T (d0) is composed with ϕ[d0], it is easy to check that

|L ⊗α||T is composed with ϕ for general α ∈ Pic0(A). Therefore, by continuity, |L ⊗α||T
is composed with ϕ for α ∈ Urk.

So far we have proven the existence of ϕ : T → Z . Next we observe:

(1) if ϕ(d0) : T (d0)→ Z (d0) is the morphism obtained from ϕ : T → Z by taking base

change with µd0 , then by the commutativity of the lower square in diagram (3.3),

there is an induced G-equivariant map Z [d0]→ Z (d0). Since the maps Z [d0]→ Z and

Z (d0)→ Z are both étale Galois covers with group G, it follows that Z [d0]→ Z (d0)

is an isomorphism;

(2) if d ′ = kd0 is an integer divisible by d0 and we denote by ϕ[d
′
]
: T (d

′)
→ Z [d

′
] the map

given by |L(d
′)
| then, arguing as in (1) and using the isomorphism Z [d0]→ Z (d0),

we see that there is an isomorphism Z [d
′
]
→ Z (d

′).

By the choice of L and by Proposition 3.10, the above remarks suffice to prove that Z
satisfies property (b) of the statement for d � 0. The uniqueness of ϕ : T → Z up to

birational equivalence follows in a similar way: if ψ : T → W is another map of degree

mL|T satisfying properties (a) and (b) of the statement, then for d sufficiently large and

divisible there is a birational isomorphism W (d)
→ Z (d) which is compatible with the

action of the Galois group of µ̃d , and therefore descends to a birational isomorphism

W → Z .

Finally, take any integer k and set d = kd0. Denote by G the Galois group of µd and

by H the Galois group of µd0 and denote by ψ : T (k)→ Y := Z [d]/H the map induced

by ϕ[d]. Then arguing as above one shows that the map given by |L(k)⊗α| is composed

with ψ for α ∈ Pic0(A) general.

These remarks complete the proof.

4. The continuous rank function

We use freely the notation introduced in § 2. Throughout all the section we fix:

• a normal variety X of dimension n and a line bundle L on X ;

• a morphism a : X → A to an abelian variety of dimension q > 0;

• an ample divisor H on A; as usual, we write M := a∗H , and Md = a∗d H ;

• a subvariety T ⊆ X such that a|T is strongly generating (the case T = X is our main

interest).

Given a line bundle L on X we define Lx as the R-divisor L + x M on X .

4.1. Continuous continuous rank

We are going to extend the definition of the restricted continuous rank h0
a(X |T , Lx ) for

x ∈ Z to a function φT (x) for x ∈ R which is continuous and non-decreasing. In a sense,
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we construct a continuous continuous rank. When X = T this function is convex and we

are able to compute its left derivative explicitly.

Definition 4.1 (Extension to Q). Let T ⊆ X be subvariety such that a|T is strongly

generating; given x ∈ Q, choose d ∈ N>0 such that x = e
d2 with e ∈ Z. We define:

h0
a(X |T , Lx ) :=

1
d2q h0

ad
(X (d)|T (d) , L(d)+ eMd). (4.1)

Note that the definition does not depend on the choice of d by Proposition 2.5.

The main result of this section is the following:

Theorem 4.2. Let X be a normal variety of dimension n, a : X → A a morphism to an

abelian variety of dimension q > 0 and let L be a line bundle on X . Then:

(i) if T ⊆ X is subvariety such that a|T is strongly generating, then the function

h0
a(X |T , Lx ), x ∈ Q, extends to a continuous non-decreasing function φT : R→ R

which has one-sided derivatives at every point x ∈ R and is differentiable except at

most at countably many points;

(ii) the function φ := φX is convex and:

D−φ(x) = lim
d→∞

1
d2q−2 h0

ad
(X (d)
|Md
, (Lx )

(d)), ∀x ∈ R. (4.2)

Remark 4.3. If a|T is not strongly generating but it is not constant and the maps

a∗ : Pic0(A)→ Pic0(X) and a∗
|T : Pic0(A)→ Pic0(T ) have the same kernel, then (cf.

Remark 2.6) there is a morphism a′ : X → A′, with A′ a positive dimensional abelian

variety, such that a′
|T is strongly generating and h0

a(X |T , L) = h0
a′(X |T , L). So Theorem

4.2 also holds in this more general situation.

Remark 4.4. The extended continuous rank function is quite hard to compute in general,

even in dimension 1. In § 7 we give some explicit examples, mainly related to abelian

varieties (divisors and cyclic coverings) and curves.
In these examples we can see that the regularity properties of the continuous rank

functions cannot be improved in general. In Example 7.3, kindly pointed out to us by

Zhi Jiang, the function is not of class C1, nor convex.

Another property one might expect is that the continuous rank functions are piecewise

polynomial, as it happens in all the known examples (see Question 7.7). Recently Jiang

and Pareschi [21], among other interesting properties, proved a partial result in this

direction: the continuous rank functions are locally left and right defined by polynomials

around rational points.

We now turn to the proof of Theorem 4.2. We start with a simple calculus result.
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Lemma 4.5. Let I ⊆ R be an open interval and let f : I ∩Q→ R be a non-decreasing

function satisfying the “midpoint property”, namely such that for every t, t ′ ∈ Q one has

f (t)+ f (t ′)
2

> f
(

t + t ′

2

)
.

Then f extends to a continuous non-decreasing convex function g : I → R.

Proof. For x ∈ I we define g(x) = sup{ f (t) | t ∈ Q∩ I, t 6 x}. Clearly g extends f and

is non-decreasing. Observe that for every x we have f (x) = limn→+∞ f (tn) for some

sequence of rational numbers tn → x . It follows that also g has the midpoint property,

hence it is enough to prove that g is continuous, since a continuous function with the

midpoint property is convex.

Since g is non-decreasing, for every x ∈ I there exist g(x)− := limt→x− g(t) and

g(x)+ := limt→x+ g(t) and g is continuous at x iff g(x)− = g(x)+. So assume by

contradiction that g(x)− < g(x)+ and set ε = g(x)+− g(x)−. For n ∈ N large enough

we have g(x + 3
n ) < g(x)++ ε. Then we have

g
(

x −
1
n

)
+ g

(
x +

3
n

)
< g(x)−+ g(x)++ ε = 2g(x)+ 6 2g

(
x +

1
n

)
,

contradicting the midpoint property.

Lemma 4.6. In the assumptions of Theorem 4.2 the following hold:

(i) The function h0
a(X, Lx ), x ∈ Q, extends to a continuous non-decreasing convex

function φ : R→ R.

(ii) The function h0
a(X |T , Lx ), x ∈ Q, extends to a continuous non-decreasing function

φT : R→ R, which is the difference of two continuous convex functions.

Proof. First note that the functions h0
a(X, Lx ) and h0

a(X |T , Lx ) are clearly non-decreasing

for x ∈ Q.

(i) By Lemma 4.5 it is enough to show that x 7→ h0
a(X, Lx ) has the midpoint property

for x ∈ Q. So let x1 < x2 ∈ Q: using a suitable multiplication map we can reduce to the

case where x1, x2 and t = x2−x1
2 are integers. Let L ′ = Lx2 ⊗α for α general in Pic0(A), and

take R1, R2 ∈ |t M | general members. Obviously both H0(X, L ′− R1) and H0(X, L ′− R2)

are subspaces of H0(X, L ′), and H0(X, L ′− R1)∩ H0(X, L ′− R2) = H0(X, L ′− R1− R2)

since |M | has no fixed part. Hence

h0
a(X, Lx2) = h0(X, L ′) > dim(H0(X, L ′− R1)+ H0(X, L ′− R2))

= h0(X, L ′− R1)+ h0(X, L ′− R2)− h0(X, L ′− R1− R2)

= 2h0
a

(
X, L x1+x2

2

)
− h0

a(X, Lx1),

which gives the desired inequality.

(ii) Follows from (i) by Remark 2.4.

Lemma 4.7. For all d ∈ N>0 and all x ∈ R one has:

h0
a(X, Lx )− h0

a(X, L
(x− 1

d2 )
) =

1
d2q h0

ad
(X (d)|Md , (Lx )

(d)).
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Proof. All the functions involved are continuous by Lemma 4.6, so it is enough to prove

the statement for x ∈ Q.

So, pick x ∈ Q and let t ∈ N be such that (td)2x =: e is an integer. Since (Md)
(t)
=

t2 Mdt , we have the following exact sequence on X (dt):

0→ H0(X (dt), L(dt)
+ (e− t2)Mdt )→ H0(X (dt), L(dt)

+ eMdt )→

→ H0(X (dt)
|(Md )(t)

, L(dt)
+ eMdt )→ 0. (4.3)

Since, possibly after twisting by a very general element α ∈ Pic0(A), we may assume that

the h0’s in (4.3) are actually h0
a ’s, the claim follows by the multiplicative property of the

continuous rank functions (Proposition 2.5).

Proof of Theorem 4.2. (i) Follows from Lemma 4.6 and from the properties of convex

functions.

(ii) Since the left derivative D−φ exists at every point by (i), we can compute its value

at a point x as the limit of the increment ratio over the sequence {x − 1
d2 }d∈N, so formula

(4.2) is a consequence of Lemma 4.7.

4.2. Volume and restricted volume

In this section we recall some known results on the volume, interpreting them in our

set-up.

We keep the assumptions made at the beginning of § 4 and we assume in addition:

• X is smooth;

• X has maximal a-dimension; we denote by Σ ⊂ X the exceptional locus of a.

Under these assumptions we give the following:

Definition 4.8. Let T ⊆ X be an irreducible subvariety. We say that T is a-general if it

is not contained in Σ and the map a|T is strongly generating. (Note that an a-general

subvariety T ⊆ X has automatically maximal a|T -dimension.)

Let D be a big Q-divisor on X : we denote by B+(D) the augmented base locus of D,

as defined in [23, 10.3]. Recall (ibid.) that B+(D) depends only on the numerical class of

D and that for 0 < λ ∈ Q one has B+(λD) = B+(D).
For L ∈ Pic(X) integral, denote by CB(L) the support of the subscheme S ⊆ X , where

IS L is the image of the continuous evaluation map (2.2); in other words, CB(L) is the

set of points of X that belong to the base locus of |L ⊗α| for general α ∈ Pic0(A). Then

we have:

Lemma 4.9. Let L ∈ Pic(X) such that h0
a(X, L) > 0; then B+(L) is contained in Σ ∪

CB(L).

Proof. Note that L is big by Proposition 3.2. By [14, Theorem C], B+(L) is the

union of all the positive dimensional subvarieties V ⊆ X such that volX |V (L) = 0.

Let V be such a subvariety and assume by contradiction that V is not contained

in Σ ∪CB(L). Then V → A is generically finite onto its image and h0
a(X |V , L) > 0.
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By continuity (cf. Theorem 4.2), we have h0
a(X |V , L − εM) > 0 for 0 < ε � 1. So, up

to replacing L by a suitable multiple, we may assume h0
a(X |V , L −M) > 0. Since B+(L)

depends only on the numerical class of L, up to twisting by α ∈ Pic0(A) we may assume

that h0
a(X |V , L −M) = h0

a(X |V , L −M) > 0. But then 0 = volX |V (L) > volX |V (M) > 0, a

contradiction.

Proposition 4.10. Let T ⊆ X be an a-general subvariety such that h0
a(X |T , Lx ) 6≡ 0. Set

x0 := max{x | volX (Lx ) = 0} and x̄ := max{x | h0
a(X |T , Lx ) = 0}. Then:

(i) the function volX (Lx ), x ∈ Q, extends to a continuous function ψ : R→ R, which

is differentiable for x 6= x0 and

ψ ′(x) =

 0 x < x0

n volX |M (Lx ) x > x0

(ii) the function volX |T (Lx ), x ∈ Q, extends to a continuous function ψT : (x̄,+∞)→
R, depending only on the numerical class of L.

Proof. (i) The existence of ψ follows from the continuity of the volume function on

N 1(X) [22, Theorem 2.2.44]. The function ψ is non-decreasing, hence it is identically

0 for x < x0; differentiability for x > x0 and the formula for ψ ′ are a consequence of

Theorem A and Corollary C of [7] (cf. also [24, Corollary C]).

(ii) For x ∈ (x̄,+∞)∩Q we have that 0 < h0
a(X |T , Lx ) = h0

a(X, Lx )− h0
a(X, IT Lx ) and

so we deduce that T is not contained in C B(L) and that h0
a(X, Lx ) 6= 0. Hence, by

Lemma 4.9 we deduce that T is not contained in B+(D) and the claim follows from

[14, Theorem A].

We will often use the following remark:

Lemma 4.11. In the hypotheses and notation of Proposition 4.10, one has:

volX (d)|T (d)((Lx )
(d)) = d2q volX |T (Lx ), ∀x > x̄, ∀d ∈ N>0

Proof. Let N be a line bundle on X such that h0
a(X |T , N ) > 0. By Lemma 4.9 we have

T 6⊆ B+(N ) and volX |T (N ) depends only on the numerical equivalence class of N by [14,

Theorem A]. Up to twisting by a very general α ∈ Pic0(X) we may assume h0(X |T , k N ) =

h0
a(X |T , k N ) for all k ∈ N, and therefore volX |T (N ) = m! limk→∞

h0
a(X |T ,k N )

km , where m :=
dim T . It follows that

volX (d)|T (d)(N ) = d2q volX |T (N ) (4.4)

by the multiplicativity of the continuous rank (Proposition 2.5).

Fix now a rational number x > x̄ and pick t ∈ N>0 such that t x is an integer. Then

(4.4) gives

d2q volX |T (Lx ) =
d2q

tm volX |T (t (Lx )) =
1

tm volX (d)|T (d)(t (Lx )
(d)) = volX (d)|T (d)((Lx )

(d)).

The claim now extends to all x ∈ (x̄,+∞) by continuity.
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4.3. Extension of the eventual degree

We keep the assumptions made at the beginning of § 4 .

Let x̄ := max{x ∈ R | h0
a(X |T , L + x M) = 0}. We can extend the definition of eventual

degree (cf. § 3.1) to line bundles of the form Lx , for x ∈ Q∩ (x̄,+∞), as we have done

for the continuous rank.

Take d ∈ N such that d2x is an integer and define mLx |T := mL(d)x |T (d)
. It is immediate

to see that mLx |T does not depend on the choice of d; we extend the definition to x ∈ R
by setting mLx |T = inf{mL t |T | t ∈ Q, t 6 x}. The function x 7→ mLx |T is non-increasing

and takes only finitely many values (by Theorem 3.7 the possible values are the positive

divisors of deg a|T ).

Note that even for x ∈ Q there is in general no eventual map associated to Lx . Indeed,

if x = e
d2 , then the map ad|T (d) has a factorization by a map of degree mLx |T , but this

factorization need not descend to T . However, it is possible to say something more in the

case when mLx |T = 2.

Proposition 4.12. Let T̃ → T be a desingularization and let x̄ be defined as above. If T̃
is of general type and there exist x1 < x2 ∈ (x̄,+∞) such that mLx1 |T = mLx2 |T = 2, then

a|T is composed with an involution.

Proof. Let C be the constant given by Lemma 2.9 for varieties of dimension m = dim T ,

and let p > C be a prime. For k large enough we may find a rational number x = e
pk

such that x1 < x < x2. In view of the assumptions and of the properties of the extended

eventual degree, we have mLx |T = 2. So, setting d = pk , by Theorem 3.7 the map

ad |T (d) : T (d)→ A is composed with an involution σd . In turn, by the choice of p and

by Lemma 2.9, the involution σd induces an involution σ of T such that a|T is composed

with σ .

5. Castelnuovo inequalities

5.1. Numerical degree of subcanonicity

In the case of curves, by Clifford’s Theorem the ratio of the degree of a line bundle to the

number of its global sections is controlled by the ratio of its degree to the degree of the

canonical sheaf. In [2] the concept of degree of subcanonicity was introduced in order to

formulate and prove the Clifford–Severi inequalities, that hold in arbitrary dimension and

can be regarded as a vast generalization of Clifford’s Theorem. Here we slightly modify

this definition in order to simplify the proofs, as follows.

Definition 5.1. Let X be a smooth variety of dimension n > 2, with a map a : X → A to

an abelian variety such that X is of maximal a-dimension. Let L ∈ Pic(X) be a big line

bundle.

(i) Fix H very ample on A and let M = a∗H . We define the numerical degree of

subcanonicity (with respect to M)

r(L ,M) :=
L Mn−1

K X Mn−1 ∈ (0,∞].
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(ii) We say that L is numerically r-subcanonical (with respect to M) if r(L ,M) 6 r .

For simplicity, we say that L is numerically subcanonical if it is numerically

1-subcanonical.

If n = 1 we define, consistently, r(L) = deg L
deg K X

.

Remark 5.2. The numerical degree of subcanonicity r(L ,M) of a big line bundle L has

the following properties:

• If r K X − L is pseudoeffective (i.e., if L is r -subcanonical in the sense of [2]), then L is

numerically r -subcanonical.

• r(L ,M) = ∞ if and only if K X Mn−1
= 0 and hence if and only if kod(X) = 0. Indeed,

the Kodaira dimension is non-negative since X is of maximal Albanese dimension. If

kod(X) > 1 then for some s the variety X is covered by divisors Q ∈ |sK X |, that are

contracted by a since H is very ample and QMn−1
= 0, contradicting the assumption

that X has maximal a-dimension.

• For any d ∈ N>0 we have r(L ,M) = r(L(d),M (d)) = r(L(d),Md). In particular, if L is

numerically r -subcanonical with respect to M , then so is L(d) with respect to M (d) and

Md .

• If L ′ 6 L, then r(L ′,M) 6 r(L ,M) and so if L is numerically r -subcanonical then so

is L ′.

• If L is numerically r -subcanonical with respect to M , and M ∈ |M | is a general divisor,

then L |M is numerically r -subcanonical with respect to M|M (note that L |M is still big).

5.2. Continuous Castelnuovo inequalities

Let us first recall the classical results, which are due mainly to Castelnuovo: see [1,

Chapter III, § 2]. Let C be a smooth curve and consider a subspace W ⊆ H0(C, L) of

dimension r + 1 > 2 such that the moving part of |W | is a base point free gr
d (hence

deg L > d). Consider the multiplication map

ρk : Symk W −→ H0(C, kL).

Let s :=
[

d−1
r−1

]
. If |W | induces a birational morphism, then we have the following estimate

on the rank of ρk [1, Lemma on p. 115]:

rk ρk − 1 >
s∑

l=1

(l(r − 1)+ 1)+
k∑

l=s+1

d. (5.1)

This implies the following inequalities:

Lemma 5.3. Let C be a smooth curve of genus g and |W | a linear system whose moving

part is a base point free gr
d on C. If k > 2 is an integer, then

(i) rk ρk > kr + 1;

(ii) If |W | induces a birational morphism and d 6 2g− 2, then

rk ρk > (2k− 1)r.
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Proof. In the birational case both inequalities follow immediately from equation (5.1)

observing that d > r and that for d 6 2g− 2 one has d > 2r , and therefore s > 2.

For (i), let us suppose that the linear series |W | is not birational. Then the morphism

it induces factors through a finite map of degree >2. Let 0 be the normalization of

the image and j : 0→ Pr the induced birational morphism. Then for any k > 2 the

image of ρk coincides with the image of the k-th multiplication map for the subspace of

H0(0, j∗OPr (1)) given by W , so the result follows from the birational case.

We now extend Castelnuovo’s result to the continuous setting in dimensions 1 and 2;

these results are used in § 6. In a forthcoming paper we will study extensions to arbitrary

dimension.

Proposition 5.4. Let X be a smooth variety of dimension n > 1 with a map a : X → A
to an abelian variety of dimension q and let C ⊆ X be a smooth curve such that a|C is

strongly generating. Let L ∈ Pic(X), and k ∈ N. Then

(i) h0
a(X |C , kL) > k h0

a(X |C , L).

(ii) If L |C is numerically subcanonical and deg a|C = 1, then h0
a(X |C , kL) > (2k− 1)

h0
a(X |C , L).

Proof. (i) Since the inequality is obviously satisfied if h0
a(X |C , L) = 0, we may assume

that h0
a(X |C , L) > 0. For d > 2, set Wd = H0

ad
(X (d)
|C(d) , L(d)). Observe that the image of the

k-th multiplication map

ρk,d : Symk Wd −→ H0
ad
(C (d), (kL)(d)|C(d))

is contained in H0
ad
(X (d)|C(d) , kL(d)). Then Lemma 5.3 (i) applied to Wd , and the

multiplicativity of the restricted continuous rank give

d2q h0
a(X |C , kL) = h0

ad
(X (d)|C(d) , (kL)(d)) > rk ρk,d

> kh0
ad
(X (d)|C(d) , L(d))− (k− 1) = d2qkh0

a(X |C , L)− (k− 1),

and so by letting d go to infinity we obtain

h0
a(X |C , kL) > kh0

a(X |C , L),

as wanted.

(ii) The second inequality can be proven in a similar way. Again we may assume

h0
a(X |C , L) > 0, the claim being trivially true otherwise.

Observe that, if deg a|C = 1, then by Theorem 3.7 we have that for d � 0 and α ∈

Pic0(A) general the map induced by the system |L ⊗α||C on C is generically injective. So

by Lemma 5.3(ii) we have the inequality

h0
ad
(X (d)|C(d) , (kL)(d)) > rk ρk,d > (2k− 1) h0

ad
(X (d)|C(d) , L(d))− (2k− 1)

and we just take the limit for d →∞ as in the proof of (i).

Now we can deduce the Continuous Castelnuovo inequalities for surfaces:
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Theorem 5.5. Let S be a smooth surface with map a : X → A to an abelian variety such

that S is of maximal a-dimension. Let L ∈ Pic(X), and k ∈ N. Then

(i) h0
a(S, kL) > k2 h0

a(S, L).

(ii) If deg a = 1 and L is numerically subcanonical for some M = a∗H , then h0
a(S, kL) >

(2k− 1)k h0
a(S, L).

Proof. By Remark 2.6, it is enough to consider the case when a is strongly generating.

(i) Take a very ample line bundle H on A and let M = a∗H . For x ∈ R set, as usual,

Lx = L + x M . Consider the functions

φ(x) := h0
a(S, Lx ) and φk(x) := h0

a(S, (kL)x ).

Take x = e
d2 ∈ Q. By Proposition 5.4 (i) applied to (S(d),Md , (Lx )

(d)), we have that

h0
ad
(S(d)|Md , (kLx )

(d)) > kh0
ad
(S(d)|Md , (Lx )

(d)). (5.2)

Since both sides of (5.2) are continuous functions of x , it follows that (5.2) holds for all

x ∈ R. Therefore by Theorem 4.2 we have

D−φk(kx) > k D−φ(x)

for all x ∈ R.

Now just compute

h0
a(S, kL) = φk(0) =

∫ 0

−∞

D−φk(t) dt = k
∫ 0

−∞

D−φk(ky) dy

> k2
∫ 0

−∞

D−φ(y) dy = k2φ(0) = k2h0
a(S, L).

(ii) Observe that for a general curve Md the map ad |Md is strongly generating and of

degree 1. Hence we can apply inequality (ii) of Proposition 5.4 in the argument above.

Corollary 5.6. Let S be a smooth minimal surface, with Albanese map of degree 1. Then

K 2
S > 5χ(ωS).

Proof. Let us apply Theorem 5.5(ii) to S and L = KS and to the Albanese map a : S→ A.

We get

χ(ω⊗2
S ) = h0

a(ω
⊗2
S ) > 6h0

a(ωS) = 6χ(ωS),

where the last equality follows by the Generic Vanishing Theorem.

6. Clifford–Severi inequalities

Let X be a smooth projective variety with a map a : X → A to an abelian variety that is of

maximal a-dimension. The Main Theorem of [2] (Clifford–Severi inequality) is sharp for

a subcanonical nef line bundle L on X . Here we extend that result in several ways. First

we drop the nefness assumption, working with volumes rather than with intersection

numbers, and we extend the result to the relative setting, considering the restricted

https://doi.org/10.1017/S1474748019000069 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748019000069


2110 M. A. Barja et al.

volume and the restricted continuous rank (Theorem 6.7). In addition, we strengthen the

inequality under extra assumptions on the geometry of the map a (Theorem 6.9). The

proofs are direct applications of the computations on the derivatives of the restricted

continuous rank and volume of § 4.

In this section, we will consider the following

Hypotheses 6.1. We assume that X is a smooth variety of dimension n > 1, a : X → A
is a map to an abelian variety such that X has maximal a-dimension, T ⊆ X is a smooth

a-general subvariety (Definition 4.8) of dimension m > 1 and L ∈ Pic(X) is a line bundle

such that T 6⊆ B+(L).

Remark 6.2. Observe that we have the following implications:

h0
a(X |T , L) 6= 0⇒ T 6⊆ B+(L)⇒ B+(L) 6= X (i.e., L is big),

where the first implication derives from Lemma 4.9.

Definition 6.3. In the Hypotheses 6.1, we define the slope of (X, T, L) with respect to a
as

λT (L) :=
volX |T (L)
h0

a(X |T , L)
∈ (0,+∞].

In the absolute case, i.e., when T = X , we will simply use the notation λ(L). Moreover,

when X = T , a = albX and L = K X we write λ(X).

Remark 6.4. Assume Hypotheses 6.1. The subvariety T is not contained in B+(L), and

so volX |T (L) depends only on the numerical equivalence class of L [14, Theorem A]. It

follows that λT (L) is an invariant of the class of L in Pic(X)/Pic0(A).

Remark 6.5. Assume Hypotheses 6.1. If η : X ′→ X is a birational morphism with X ′

smooth such that T is not contained in the exceptional locus of η−1 and T ′ ⊆ X ′ is the

strict transform of T , then we have λT (L) = λT ′(η
∗L). Indeed, the restricted continuous

rank does not change, since X is smooth, and the restricted volume is also invariant.

In addition, we have λT (L) = λT (d)(L
(d)) for every integer d > 0 by Proposition 2.5 and

Lemma 4.11.

We will need the following definition:

Definition 6.6. Let r ∈ (0,+∞) be a real number.

δ(r) =


2, r 6 1

2r
2r − 1

, r > 1
δ(r) =


3, r 6

1
2

6r
4r − 1

,
1
2
6 r 6 1

2r
2r − 1

, r > 1

Moreover we define, consistently, δ(∞) = δ(∞) = 1.
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The functions δ(r) and δ(r) are non-increasing functions and their graphs are given in

the following figure:

Now we can state the main theorems of this section:

Theorem 6.7 (Clifford–Severi inequalities 1). Let δ and δ be the functions of Definition

6.6. Assume that Hypotheses 6.1 hold and that L |T is numerically r-subcanonical with

respect to MT = a∗
|T H for some very ample H ∈ Pic0(A) (with r ∈ (0,∞]). Then

(i) λT (L) > δ(r)m!.

(ii) If T is of general type and a|T is not composed with an involution, then

λT (L) > δ(r)m!.

Theorem 6.8 (Clifford–Severi inequalities 2). In the Hypotheses 6.1 one has:

λT (L) > mL|T m!,

where mL|T is the eventual degree of L with respect to T (Definition 3.5).

Theorem 6.9 (Clifford–Severi inequalities 3). Assume that Hypotheses 6.1 hold, that

m = dim T > 2 and that KT − L |T is pseudoeffective. Then

(i) If deg a|T = 1, then λT (L) > 5
2 m!.

(ii) If T is of general type and a|T is not composed with an involution, then

λT (L) >
9
4

m!.

Remark 6.10. In the absolute case (X = T ), the condition that a be strongly generating is

not necessary and it is enough to ask that X be of maximal a-dimension (cf. Remark 2.6).

The inequality in Theorem 6.7(i) is the generalization of the Main Theorem in [2]

for restricted volume and continuous rank. The inequality in Theorem 6.9(ii) is a

generalization of an inequality given by Lu and Zuo for n = m = 2 and L = K X in [25].

The approach of Lu and Zuo is based on the analysis of the (second) relative Noether
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multiplication map on a fibered surface; their technique – similarly to what happens for

Xiao’s method – is replaced here by the operation of taking the sum of two integrals.

Remark 6.11. In the proof of Main Theorem in [2], it is proven how to reduce the case of

non-maximal a-dimension to the maximal one under certain hypothesis. With the same

argument, we can strengthen Theorem 6.7(i) to the more general inequality

λT (L) > δ(r)k!

where k is the a-dimension of X , provided the continuous moving divisor P of L is a-big.

For the case of the canonical line bundle we can even extend this result to the (singular)

minimal setting and obtain:

Corollary 6.12. Let X be a complex projective minimal Q-Gorenstein variety of dimension

n > 2, let albX : X → Alb(X) be the Albanese map and let ωX = OX (K X ) be the canonical

sheaf. If X is of maximal Albanese dimension, then

(i) K n
X > 2 n!χ(ωX ).

(ii) If deg albX = 1, then K n
X > 5

2 n!χ(ωX ).

(iii) If albX is not composed with an involution, then K n
X > 9

4 n!χ(ωX ).

Proof. The content of (i) is just [2, Corollary B]. Consider a desingularization σ : X ′→ X .

Then we have volX ′(K X ′) = volX (K X ) = K n
X . Since the singularities of X are rational and

ωX is the dualizing sheaf of X , we also have that h0
albX

(X ′, K X ′) = χ(ωX ′) = χ(ωX ). Then

we can apply Theorem 6.9.

Theorem 6.8 is a direct consequence of the properties of the eventual factorization (cf.

§ 3) and of Theorem 6.7, and we prove it first.

Proof of Theorem 6.8. Since the claim is trivial if h0
a(X |T , L) = 0, from now on we assume

h0
a(X |T , L) > 0.

By Remark 6.5 the slope λT (L) does not change if:

– we replace X by a smooth modification such that T is not contained in the

exceptional locus of the inverse map and we replace T by its strict transform;

– we replace (X, T ) with (X (d), T (d)) for some d � 0.

Hence (cf. § 2.4) we may assume that:

• L = P + D is the decomposition of L as the sum of the continuous moving and fixed

parts of L; so |P ⊗α| is base point free for all α ∈ Pic0(A) and |P ⊗α| is the moving

part of |L ⊗α| for α general;

• T is not contained in the support of D;

• mL|T (1) = mL|T (recall that mL|T < +∞ by Proposition 3.2);

• up to twisting by a general element of Pic0(A), we may assume that h0(X |T , L) =
h0

a(X |T , L) = h0(X |T , P) and that |L||T induces the eventual map (cf. Definition 3.8)

ϕ : T → Z , which is a morphism of degree mL|T .
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Caution: after these reduction steps the pair (X, T ) still satisfies Hypotheses 6.1, except

for the fact that T may not be smooth. We are going to bypass this problem by working

on a desingularization of T .

Observe that T is not contained in B+(P) by Lemma 4.9, so by [14, Corollary 2.17] we

have

volX |T (P) = Pm T = volT (P|T ).

Now we replace Z by a smooth model Z̃ and T by a smooth model T̃ such that the

induced map T̃ → Z̃ is a morphism. We abuse notation and we denote by the same letter

line bundles on T , Z and their pullbacks to T̃ , Z̃ . Since T is not contained in the support

of D and since the volume of a line bundle is invariant under pullback via a birational

morphism [22, Proposition 2.2.43], we have

volX |T (L |T ) > volT (P|T ) = volT̃ (P|T ) = mL|T volZ̃ (N ),

where N is a line bundle on Z such that P|T = ϕ∗(N ) and the last inequality holds by

[18, Lemma 3.3.6].

Finally, N pulls back to a nef line bundle on Z̃ , so by Theorem 6.7, we have:

volZ̃ (N ) > m!h0
ã(Z̃ , N )

where we denote by ã : Z̃ → A the induced map. Since h0
ã(Z̃ , N ) > h0

a(X |T , P) =
h0

a(X |T , L), the claimed inequality follows from the ones above.

Theorems 6.7 and 6.9 are proven by induction, using results on linear systems on curves

and surfaces as the first step.

Lemma 6.13. Let C be a smooth curve of genus g(C) > 2 and let a : C → A be a strongly

generating map to an abelian variety of dimension q > 0. Let L be a line bundle of positive

degree on C. Write s := r(L) = deg L
2g(C)−2 . Then:

(i) λ(L) > δ(s).

(ii) Assume that mL 6= 2. Then

λ(L) > δ(s).

Proof. The volume of a positive line bundle on a curve is just its degree and so λ(L) =
deg L

h0
a(C,L)

. The results are trivially true if h0
a(C, L) = 0, so we assume h0

a(C, L) 6= 0.

(i) If s > 1, then volC (L) = 2s
2s−1 h0(C, L) = δ(s)h0

a(C, L) by Riemann–Roch. If s 6 1,

then by Clifford’s Theorem applied to L(d) on C (d) we have

d2q volC (L) = volC(d)(L
(d)) > 2h0(C (d), L(d))− 2

> 2h0
ad
(C (d), L(d))− 2 = 2d2q h0

a(C, L)− 2.

Taking the limit for d →∞ we have the desired inequality.

(ii) If mL > 3, then we have volC (L) > 3h0
a(C, L) > δ̄(s)h0

a(C, L) by Theorem 6.8.

Otherwise, by assumption, we have that mL = 1. Hence, for α ∈ Pic0(A) general and

d � 0 the line bundle L(d)⊗α induces a birational map on C (d) by Theorem 3.7.
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So, since λ(L) = λ(L(d)) = λ(L(d)⊗α) (cf. Remarks 6.5 and 6.4), we may assume that

|L| induces a birational map on C .

Assume 1
2 < s 6 1. In this case the divisor 2L is non-special and by Riemann–Roch

and the continuous version of Castelnuovo’s inequality (Proposition 5.4) we have:

2 volC (L) = 2 deg L = h0
a(C, 2L)+ (g(C)− 1) > 3h0

a(C, L)+
deg L

2s

and the inequality deg L > 6s
4s−1 h0

a(C, L) = δ̄(s)h0
a(C, L) follows.

If s 6 1
2 we argue as in the proof of (i), since if mL = 1 the inequality deg L > 3h0

a(C, L)
holds by applying the so-called Clifford+ Theorem [1, III.3. ex.B.7] to (C (d), L(d)), and

the results follows by taking the limit for d →+∞.

Proof of Theorem 6.7. Since the claim is trivial for h0
a(X |T , L) = 0, we assume

h0
a(X |T , L) > 0. We observe that, as in the proof of Theorem 6.8, we can make a reduction

to the absolute case X = T . Indeed, by Remark 6.5 we may assume that we have applied

a blow-up and a base change by a multiplication map as in § 2.4. Hence, the continuous

decomposition L = P + D verifies:

• |L ⊗α| = |P ⊗α| + D for α ∈ Pic0(A) general;

• |P ⊗α| is base point free for every α ∈ Pic0(A);

• T is not contained in the support of D.

In this case we have that

volX |T (L) > volX |T (P) = Pm T = volT (P|T ),

where the first equality follows from Lemma 4.9 and [14, Corollary 2.17] since

h0
a(X |T , L) > 0, T is not contained in Σ and |P| is base point free. Observe also that

by construction we have h0
a(X, L) = h0

a(X, P) and, since T is not contained in D, we also

have

h0
a(X |T , P) = h0

a(X |T , L),

so it is enough to prove the inequality λ(P|T ) > δ(r)m! in case (i) and the inequality

λ(P|T ) > δ̄(r)m! in case (ii).

Since we passed to a birational modification of X and replaced T by its strict transform,

it is possible that the “new” T is not smooth. We get around this issue by considering a

resolution T̃ → T and replacing P|T by its pullback to T̃ , which we denote by the same

symbol, since:

• we have λT̃ (P|T ) 6 λT (P|T ) since if we pull back a line bundle via a birational morphism

the volume does not change [22, Proposition 2.2.43], while the continuous rank does

not decrease (Remark 2.3);

• the numerical degree of subcanonicity on T̃ of the pullback of L |T is the same as the

degree s of subcanonicity of L |T on the “original” T ;

• the numerical degree of subcanonicity of the pullback of P|T to T̃ is 6 s.

Now the proof works by induction on m = dim T .

Assume first that m = 1. First of all observe that L |T is r -subcanonical if and only

if s := r(L) 6 r . Since the functions δ and δ are non-increasing, it is enough to prove
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the inequality for s. Furthermore, in case (ii) if a|T is not composed with an involution

then the eventual degree of any line bundle is different from 2. As explained above, it

is enough to prove the claim in the absolute case T = X , where it follows directly from

Lemma 6.13(i) and (ii).

Now let us prove the theorem for m > 2, assuming the result in dimension m− 1. Again

by the reduction to the absolute case we may assume that X = T (and hence n = m). We

give the proof of the inductive step in the cases (i) and (ii) of the theorem separately.

Case (i)

Consider the functions

ψ(x) := volX (Lx ) and φ(x) := h0
a(X, Lx ).

Let M be a very general element of the linear system |M | and let Md be a very general

element of the linear system |Md |. By [7, Corollary C] (see also Proposition 4.10) we have

that

ψ ′(x) = n volX |M (Lx ).

for any x > x0, where x0 = max{t | volX (L t ) = 0}.
By Theorem 4.2 we have

D−φ(x) = lim
d→∞

1
d2q−2 h0

ad
(X (d)|Md , (Lx )

(d)).

We are going to prove that

ψ ′(x) > n!δ(r)D−φ(x).

Since ψ ′ is continuous (Proposition 4.10 ) and D−φ is non-decreasing, it is enough to prove

the inequality for rational values of x . Let x̄ ∈ R be the maximum of {x | h0
a(X, Lx ) = 0};

then x0 6 x̄ by Proposition 3.2 and the above inequality is trivially true for x 6 x̄ by

Lemma 4.10. So fix a rational x > x̄ . Since both ψ ′ and D−φ are multiplicative with

respect to base change by multiplication maps (Lemma 4.11 and Proposition 2.5), we

can assume that Lx is integral; in addition, by Remark 6.5 we may assume that we have

a decomposition Lx = Px + Dx as in § 2.4, where Px is the continuous moving part. Then

we have the following chain of inequalities

volX |M (Lx ) > volX |M (Px ) = Pn−1
x M =

1
d2q ((Px )

(d))n−1 Md

=
1

d2q−2 ((Px )
(d))n−1 Md =

1
d2q−2 volX (d)|Md

(Px
(d)), (6.1)

where the first and the last equality follow by Lemma 4.9 and [14, Corollary 2.17], since

|Px | is base point free and M and Md can be taken to be very general.

Observe also that

h0
ad
(X (d)|Md , (Px )

(d)) = h0
ad
(X (d)|Md , (Lx )

(d)). (6.2)

By Remark 5.2, if L is r -subcanonical (with respect to M) so are (Lx )
(d), (Lx )

(d)
|M(d) and,

as a consequence, (Px )
(d)
|Md

, for any d. Hence if (X, L , a) verifies the hypotheses of the

https://doi.org/10.1017/S1474748019000069 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748019000069


2116 M. A. Barja et al.

theorem, then we can conclude that (Md , (Px )
(d)
|Md
, ad |Md ) verifies the same hypotheses. So

the inductive assumption gives

volX (d)|Md
(P(d)x ) > (n− 1)!δ(r)h0

ad
(X (d)|Md , (Px )

(d)) = (n− 1)!δ(r)h0
ad
(X (d)|Md , (Lx )

(d)).

(6.3)

Combining (6.1), (6.2), (6.3) and taking the limit over d, we have

volX |M (Lx ) > (n− 1)!δ(r)D−φ(x)

and so

ψ ′(x) > n! δ(r) D−φ(x).

By Theorem 4.2 the function φ is convex, and therefore absolutely continuous, and by

Proposition 4.10 the function ψ is piecewise of class C1. So we may apply the Fundamental

Theorem of Calculus for the Lebesgue integral and compute

volX (L) = ψ(0) =
∫ 0

−∞

ψ ′(x) dx > δ(r) n!
∫ 0

−∞

D−φ(x) dx = δ(r) n!φ(0)

= δ(r) n! h0
a(X, L).

Case (ii)

Let us explain what has to be modified in the proof of Case (i) in order to prove

the formula in Case (ii). Observe that the general argument works just changing δ

to δ. However we need to check in addition that whenever we take base change by

a multiplication map or restrict to a subvariety the assumption that the variety is of

general type and that the corresponding map to A is not composed with an involution

still holds. In order to verify the latter condition, let C be the constant associated to the

variety of general type T given by Lemma 2.9. Then consider the set of natural numbers

D = {d = pk
| p > C is prime }. Observe that the set of points {x = c

d2 | c ∈ Z, d ∈ D } is

dense in R. So, it is enough to apply the density argument of Case (i) only to rational

numbers of this form. Also, all the limits for d ∈ N can be substituted by limits over

d ∈ D since the limits exist and we are taking a subsequence.

Consequently, if a is not composed with an involution, then neither is ad for d ∈ D by

Lemma 2.9. So we can apply Proposition 2.8 and conclude that ad |Md is not composed

with an involution, either.

The property that T be of general type is also maintained in all the inductive process

since then T (d) is also of general type and any section is, by adjunction.

In order to prove Theorem 6.9 we need first to prove the result for surfaces. Note that

point (ii) of the theorem is a generalization of [25, Theorem 3.1].

Proposition 6.14. Let S be a smooth surface with a : S→ A a strongly generating map to

an abelian variety such that S is of maximal a-dimension. Let L be a line bundle on S
and assume that KS − L is pseudoeffective. Then:

(i) If deg a = 1, then volS(L) > 5h0
a(S, L).

(ii) If S if of general type and a is not composed with an involution, then volS(L) >
9
2 h0

a(S, L).
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Proof. If h0
a(S, L) = 0, the result is trivially true. Otherwise, arguing as in the reduction

process at the beginning of the proof of Theorem 6.7, we may assume that the linear

system |L| is base point free. Since the inequalities we want to prove are invariant

under base change by multiplication maps, by Theorem 3.7 we can assume that the map

induced by |L| is generically finite of degree mL . Note that the condition that KS − L is

pseudoeffective is preserved during the reduction process.

Take a general C ∈ |L| and a general α ∈ Pic0(A) and consider the exact sequence

0 −→ H0(S, L ⊗α) −→ H0(S, L + (L ⊗α)) −→ H0(C, L + (L ⊗α)|C ).

Since L is base point free and KS − L is pseudoeffective, we have that L2 6 L KS and so

deg(2L |C ) 6 2g(C)− 2. So we can conclude that

L2
=

1
2 deg(2L |C ) > h0

a(C, 2L |C ) = h0(C, L + (L ⊗α)|C ) > h0
a(S, 2L)− h0

a(S, L), (6.4)

where the first inequality follows from Lemma 6.13(i).

(i) Assume that deg a = 1. Then by Theorem 5.5 (ii), with k = 2, we have that

h0
a(S, 2L) > 6h0

a(S, L) and the result follows by (6.4).

(ii) Assume now that a is not composed with an involution. Fix a very ample H on A,

let M = a∗H and take a smooth curve M in the linear system |M |.
Let x̄ 6 0 be the infimum of the x 6 0 such that mLx = 1 (take x̄ = 0 if this condition

is empty).

The map a is not composed with an involution. This property is not preserved by

a general base change, but the following claim only needs that the original map a be

non-composed: by Proposition 4.12 we have that mLx 6= 2 except possibly for the single

value x̄ . Hence mLx > 3 for all x < x̄ , and mLx = 1 for x > x̄ . Observe that, since we may

take Md general in a∗d |H |, we also have mL(d)x |Md
= 1 or > 3 in the cases x > x̄ or x < x̄ ,

respectively.

Let φ and φ2 be the functions defined in the proof of Theorem 5.5. If d � 0 is such

that (Lx )
(d) is integral, then the linear systems |(Lx )

(d)
||Md induce birational maps on

Md for x > x̄ , and so by a direct combination of the proofs of (i) and (ii) of Theorem 5.5,

we obtain that

h0
a(S, 2L) = φ2(0) =

∫ 0

−∞

D−φ2(t) dt = 2
∫ 0

−∞

D−φ2(2x) dx

= 2
∫ x̄

−∞

D−φ2(2x) dx + 2
∫ 0

x̄
D−φ2(2x) dx

> 2
∫ x̄

−∞

2D−φ(x) dx + 2
∫ 0

x̄
3D−φ(x) dx

= 4h0
a(S, L x̄ )+ 6h0

a(S, L)− 6h0
a(S, L x̄ ).

Plugging the above inequality in (6.4), we get

L2 > 5h0
a(S, L)− 2h0

a(S, L x̄ ). (6.5)

Now we will obtain a second inequality among these invariants, as follows. Consider now

the volume function

ψ(x) = volS(Lx ).
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Recalling the expression of ψ ′ given in Proposition 4.10, we apply Theorems 6.8 and 6.7

to (Md , (Lx )
(d)
|Md
, ad |Md ) to find inequalities involving ψ ′(x), D−φ(x) and m(Lx )(d)|Md

and

we obtain that

L2
= volS(L) = ψ(0) =

∫ 0

−∞

ψ ′(x) dx =
∫ x̄

−∞

ψ ′(x) dx +
∫ 0

x̄
ψ ′(x) dx

> 6
∫ x̄

−∞

D−φ(x) dx + 4
∫ 0

x̄
D−φ(x) dx = 6h0

a(X, L x̄ )+ 4h0
a(S, L)− 4h0

a(X, L x̄ )

= 4h0
a(S, L)+ 2h0

a(S, L x̄ ). (6.6)

and so the result follows by adding (6.5) and (6.6).

Proof of Theorem 6.9. The same argument as in Theorem 6.7 works, using induction on

m and taking the results of Proposition 6.14 for m = 2, with δ = 5 (respectively δ = 9
2 )

in case (i) (respectively (ii)) as the starting step.

7. Examples

In this section we make explicit computations of two kinds. First, we compute the

continuous rank function for some pairs (X, L). As we will see, the computations are

non-trivial already in the case of curves. In the second set of examples, we compute the

slope of many pairs, mainly using some covering construction. In both cases, the results

we obtain naturally lead us to some speculations, which we formulate as open questions.

7.1. Explicit computations of the continuous rank

Example 7.1 (Divisors in abelian varieties). Let A be an abelian variety of dimension

q and let Y ⊆ A be an ample normal divisor; we compute φ for L = 0 and H = M =
OA(Y ). Fix 0 < x ∈ Q and write x = e

d2 for some integers e, d. The divisor Y (d) is linearly

equivalent to d2Y +β for some β ∈ Pic0(A), so twisting the restriction sequence for Y (d)

in A by eY +α, where α ∈ Pic0(A) is general, we get:

0→ OA((e− d2)Y +α−β)→ OA(eY +α)→ OY (d)(eY +α)→ 0.

Using Kodaira vanishing and the fact that α is general, we get:

h0
ad
(Y (d), eX) = h0(A, eY +α)− h0(A, (e− d2)Y +α−β).

Setting s := h0(A, Y ), we have:

φ(x) =


0, x 6 0

sxq , 0 < x 6 1

s(xq
− (x − 1)q), x > 1

So φ is of class Cq−1 in this case and coincides with the restricted continuous rank function

for X = A and T = Y . Note also that for q = 2 and s = 1 we obtain the continuous rank

function for a curve of genus 2 with respect to its Abel–Jacobi map.
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Example 7.2 (Double covers of abelian varieties). If X → A is a double cover given by

the relation 2M ≡ B, where B is a smooth ample divisor, the rank function for X with

L = 0 can be computed arguing as in Example 7.1. Setting s := h0(A,M), and φ(x) =
h0

a(X, x M), one gets:

φ(x) =


0, x 6 0

sxq , 0 < x 6 1

s(xq
+ (x − 1)q), x > 1.

Example 7.3 (Non-simple abelian varieties). This example, kindly pointed out to us by

Zhi Jiang, shows that the regularity properties of the continuous rank function given in

Theorem 4.2 cannot be improved without further assumptions.

Let A1 be an abelian variety of dimension q − 1 > 0, let C be an elliptic curve and set

X = A = A1×C . Let L be the pullback of an ample divisor on A1 and let M be a very

ample divisor on A.

We denote by φ(x) the continuous rank function h0
a(X, L + x M). We have:

φ(x) =


0 x 6 0

1
q!
(L + x M)q =

1
q!

q∑
i=1

(
q
i

)
x i M i Lq−i x > 0.

Note that φ is continuous but not differentiable for x = 0.

Assume now that q = 2, denote by L1, respectively L2 the pullback of a point of A1
respectively C , and set L = L1, M = L1+ L2 and take T to be a general element of |M |.
Then one easily computes

φT (x) =


0 x 6 0
1
2 (L + x M)2 = x + x2 0 < x 6 1
1
2 (L + x M)2− 1

2 (L + (x − 1)M)2 = 2x x > 1.

So the function φT (x) is not convex in this case.

Example 7.4. Let C be a smooth curve of genus g and a : C −→ A = J (C) the

Abel–Jacobi map. Consider L = OC , let H = 2 be the theta line bundle on A and

M = a∗2 the induced degree g divisor on C . Let φ(x) = h0
a(C, x M) be the absolute

continuous rank function induced and let φ̃(x) = h0
Id(A|C , x2) be the corresponding

restricted continuous rank function. We now compute completely φ̃(x).
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Proposition 7.5. With the notations above, we have:

(i)

φ̃(x) =


0 if x 6 0

xg if 0 6 x 6 1

gx + (1− g) if x > 1

(ii) φ(x) = φ̃(x) for all x /∈ (0, 1).

Proof. Clearly we have for all x ∈ R that φ(x) > φ̃(x) > 0, and that both are 0 if x 6 0.

By the Riemann–Roch theorem we have that φ(x) = gx + (1− g) if x ∈ Z, x > 2.

Moreover, φ(1) = h0
a(C,2) = 1. Using that φ(x) is a convex function, we deduce that

for x > 1, φ(x) = gx + (1− g).

On the other hand, the behavior of φ̃(x) is easy to compute in the interval [0, 1]. For this,

observe that h0
Id(A, IC,A(2)) = 0. Since the continuous rank function is non-decreasing,

we obtain that

for 0 6 x 6 1, φ̃(x) = h0
Id(A, x2) = xg

by the computation in Example 7.1.

In order to finish the proof, we need to obtain that h0(C, x M +α) = h0(A|C , x2+α)
for a general α and for all x > 1. Since both functions are continuous, it is enough to prove

it for rational values of x > 1. Assume that x = 1+ e
d2 > 1 (e > 0). The result follows

from the surjectivity of the map

H0(A,2(d)+ e2d +α) −→ H0(C (d),M (d)
+ eMd +α)

for a general α. In order to prove this surjectivity we will prove that h1(A, IC(d),A(2
(d)
+

e2d +α) = 0 for any e > 0 and any α.

By [29, Lemma 3.3] and [30, Example 3.10] we have that the sheaf F = IC,A(2) is

a GV-sheaf and so codimAV i (F) > i for all i > 1 by [28, Lemma 3.6]. Let F̃ = F (d)
=

IC(d),A(2
(d)). By the projection formula we have that V i (F̃) is a finite union of translates

of V i (F), and hence of the same dimension. Hence, again by [28, Lemma 3.6], we conclude

that F̃ is a GV-sheaf. The line bundle e2d is ample and hence I T0. By [31, Proposition

3.1] we deduce that F̃ ⊗ e2d is also an I T0 sheaf and hence we deduce the vanishing of

the higher twisted cohomology.

Remark 7.6. In [21, Proposition 7.6] Jiang and Pareschi prove that in the situation of

Example 7.4 the absolute rank function has the same expression as in Proposition 7.5(i),

and so in this case we have equality φ(x) = φ̃(x) holding for any x ∈ R. This answers a

question posed in a previous version of this paper.

Question 7.7. In all the examples that we are able to compute the continuous rank

function is piecewise polynomial. One wonders whether this is always the case. Recently

Jiang and Pareschi [21] obtained a partial result in this direction: given x0 ∈ Q, there

exist ε > 0 and polynomials P−(x) and P+(x) (depending on x0) such that φ(x) is given

by P−(x) and P+(x) in (x0− ε, x0] and [x0, x0+ ε), respectively.
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7.2. Computation of slopes

We consider the slope λ(X) for smooth varieties X of general type and maximal Albanese

dimension (“m.A.d.”) (cf. Definition 6.3). Recall that by the Generic Vanishing theorem

[16, 28] in this case h0
a(X, K X ) = χ(X, K X ).

Our first examples involve covering constructions and have non-birational Albanese

map.

Example 7.8 (Simple cyclic covers). Let Y be a smooth variety of m.A.d., of dimension

n > 1. Consider a simple cyclic cover of π : X → Y of degree t , given by a linear

equivalence of the form t L ∼ B, with B a smooth effective divisor (cf. [26, § 2]), so

that π∗OX = ⊕
t−1
0 L−i . We assume in addition that B is ample. The variety X is

smooth, since B is smooth, and the expression for π∗OX and Kodaira vanishing give

q(X) = h1(X,OX ) = h1(Y,OY ) = q(Y ). It is easy to check that the Albanese map of X
is aY ◦π , where aY is the Albanese map of Y . We have K X = π

∗(KY + (t − 1)L) by the

Hurwitz formula and χ(K X ) =
∑t−1

i=0 χ(KY + i L). The line bundle KY + (t − 1)L is big,

since KY is effective, hence X is of general type with χ(K X ) =
∑t−1

0 χ(KY + i L). It is

immediate to check that X is minimal if Y is.

If Y is an abelian variety, then one can compute explicitly

λ(X) = n!
t (t − 1)n∑t−1

0 in
.

So in the case t = 2 of double covers we obtain λ(X) = 2n!. For any t , we have λ(X) =
6(1− 1

2t−1 ) for n = 2 and λ(X) = 24(1− 1
t ) for n = 3. For any n, the polynomial s(t) :=∑t−1

0 in has degree n+ 1 and can be written as s(t) = 1
n+1 tn+1

−
1
2 tn
+ o(tn), hence for

fixed n the slope λ(X) tends to (n+ 1)! from below for t →+∞.

When Y is any variety of m.A.d., to compute the slope of X one has to apply the

Riemann–Roch theorem on Y and obtains in general a quite complicated formula. It is

easier to understand the asymptotic behavior of λ(Xm) when L = m H with H a fixed

ample divisor and m � 0. Consider for simplicity the case t = 2. If Xm → Y is a double

cover with smooth branch divisor Bm ∈ |2m H |, then

volXm (K Xm ) = 2 vol(KY +m H) = 2mn Hn
+ o(mn)

where the second equality is implied by the fact that vol(KY +m H) = mn vol(H + 1
m KY )

and by the continuity of the volume function. Since χ(Xm) =
mn

n! Hn
+ o(mn), we get

lim
m→+∞

λ(Xm) = 2n!.

Analogously, for any t > 2 the slope of a simple cyclic cover Xm → Y of degree t branched

on a general element of |tmL| approaches for m →∞ the value obtained when Y is an

abelian variety.

Example 7.9 (“Small perturbations” of the slope). The covering construction of Example

7.8 involves the choice of an ample divisor L.
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If one starts with any variety Y of general type and m.A.d. and performs the

construction with the variety Y (d) and the line bundle L = Md given by the covering

trick, by the multiplicativity properties of the volume and of the continuous rank, the

slope of the variety X (d) that one obtains can be computed as:

λ(X (d)) =
2 vol(KY (d) +Md)

h0
ad
(Y (d), KY (d) +Md)+ h0

ad
(Y (d), KY (d))

=
2 vol(KY +

1
d2 M)

h0
a(Y, KY +

1
d2 M)+ h0

a(Y, KY )
.

So, by the continuity of the volume and continuous rank functions, we obtain

limd→∞ λ(X (d)) = λ(Y ). A similar computation gives the same result when X (d) is a

simple cyclic cover of degree t of Y (d) branched on a divisor of |t Md | (cf. Example 7.8).

Note that the degree of the Albanese map gets multiplied by the degree t > 2 of the

cover used in the construction. Hence, given any Y of m.A.d. we can construct X with

λ(X) arbitrarily close to λ(Y ) and Albanese map of arbitrarily large degree.

Example 7.10 (The slope is unbounded for n > 3). One can write the Bogomolov–

Miyaoka–Yau inequality for surfaces of general type in the form λ(X) 6 9. The BMY

type inequality λ(X) 6 72 for Gorenstein minimal threefolds of general type is proven in

[11]. In dimension n > 3 there exist Q-Gorenstein varieties of general type and m.A.d.

with χ(K X ) = 0 [13, Example 1.13]; hence an analogue of the BMY inequality cannot

hold in general. However one might hope that for n-dimensional varieties of m.A.d. with

χ(K X ) > 0 a bound of the form λ(X) 6 C(n) holds. We use the construction of Example

7.9 to show that this is not the case. Let Y be a smooth variety of dimension n > 3 of

general type and m.A.d. with χ(KY ) = 0 (note that the minimal model of Y is necessarily

not Gorenstein). If X (d) is constructed as in Example 7.9, one has χ(K X (d)) > 0 and

limd→+∞ λ(X (d)) = λ(Y ) = +∞.

The examples that follow have Albanese map of degree 1.

Example 7.11 (Complete intersections). If A is an (n+ 1)-dimensional abelian variety and

X ⊆ A is a smooth ample divisor, then X is a minimal n-dimensional variety satisfying

λ(X) = (n+ 1)!.
More generally, let t > 0 be an integer, let A be an abelian variety of dimension n+ t ,

n > 2, and let X ⊆ A be a smooth complete intersection of t divisors in |L|, where L ∈
Pic(A) is ample. By adjunction we have K X = t L |X , hence X is minimal of general type.

By Lefschetz theorem the inclusion X ↪→ A is the Albanese map of X .

Standard computations give

λ(X) =
(n+ t)!tn∑t−1

i=0(−1)i
(t

i

)
(t − i)n+t

.

For t = 2, this gives λ(X) = (n+2)!2n−1

2n+1−1 >
(n+2)!

4 > (n+ 1)! and λ(X) = 48
7 for t = n = 2.

For t = 3 it gives λ(X) = (n+3)!3n−1

3n+2−2n+3+1 > (n+ 1)! and λ(X) = 36
5 for t = 3, n = 2.
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As in Example 7.8, replacing A by a smooth (n+ t)-dimensional variety Y of m.A.d.,

taking X a smooth complete intersection of t divisors in |m H | where H is an ample divisor

and letting m go to infinity we obtain values of λ(X) approaching the corresponding values

for the case when Y is an abelian variety.

Example 7.12 (Products and symmetric products of curves). Let n > 2 be an integer. If

X is the product of n curves of genus >2, then λ(X) = 2nn!.
Let now C be a curve of genus g > 0 and let X := C(n) be its nth symmetric product.

The variety X is smooth and the Albanese map is the addition map C(n)→ J (C), induced

by the Abel–Jacobi map C → J (C). The explicit computation of the slope in this case

is a bit messy, so we only give here the following estimate, that holds for n 6 g− 2:

n!2n (g− n− 1)n

(g− 1)(g− 2) . . . (g− n)
6 λ(X) 6 n!2n g

g− n
6 n!2n−1(n+ 2).

Hence for fixed n the slope of C(n) tends to n!2n for g→+∞.

Question 7.13. Among the previous examples, only Examples 7.11 and 7.12 can have

birational Albanese map. In both cases λ(X) > (n+ 1)!. So one may ask whether the

inequality λ(X) > 5
2 n! given in Theorem 6.9 may be strengthened to λ(X) > (n+ 1)!.

This is an interesting geographical problem already in the case of surfaces. By [10,

Theorem D], we have that λ(X) > 6 provided �1
X is globally generated outside a finite

number of points. For example, this gives a positive answer in the dimension 2 case, if a
is an immersion. No example of irregular surface with deg a = 1 and slope less than 6 is

known.
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