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Long-term measurements were performed at the Qingtu Lake Observation Array site
to obtain high-Reynolds-number atmospheric surface layer flow data (Reτ ∼ O(106)).
Based on the selected high-quality data in the near-neutral surface layer, the amplitude
modulation between multi-scale turbulent motions is investigated under various
Reynolds number conditions. The results show that the amplitude modulation effect
may exist in specific motions rather than at all length scales of motion. The most
energetic motions with scales larger than the wavelength of the lower wavenumber
peak in the energy spectra play a vital role in the amplitude modulation effect;
the small scales shorter than the wavelength of the higher wavenumber peak are
strongly modulated, whereas the motions with scales ranging between these two
peaks neither contribute significantly to the amplitude modulation effect nor are
strongly modulated. Based on these results, a method of decomposing the fluctuating
velocity is proposed to accurately estimate the degree of amplitude modulation. The
corresponding amplitude modulation coefficient is much larger than that estimated by
establishing a nominal cutoff wavelength; moreover, it increases log-linearly with the
Reynolds number. An empirical model is proposed to parametrize the variation of
the amplitude modulation coefficient with the Reynolds number and the wall-normal
distance. This study contributes to a better understanding of the interaction between
multi-scale turbulent motions and the results may be used to validate and improve
existing numerical models of high-Reynolds-number wall turbulence.

Key words: turbulent boundary layers, atmospheric flows

1. Introduction
Turbulent coherent structures that are persistent in time and space are responsible

for the production and dissipation of wall-bounded turbulence and thus are important
to the understanding of turbulence dynamics (summarized by Robinson 1991; Marusic
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et al. 2010a; Dennis 2015). Coherent structures with a large streamwise scale (on
the scale of the boundary layer thickness δ and larger), which are commonly termed
large-scale motions (LSMs) and very-large-scale motions (VLSMs) or ‘superstructures’
(Hutchins & Marusic 2007a), have been verified to be an important, and perhaps
dominant, feature in the outer region of wall turbulence (Tomkins & Adrian 2003;
Drobinski et al. 2004; Monty et al. 2007; Bailey et al. 2008; Hutchins et al. 2012).
The hairpin vortex packet model (Kim & Adrian 1999; Adrian, Meinhart & Tomkins
2000) suggests that LSMs (∼3δ) are created by hairpin vortices aligning coherently
in the streamwise direction (called the hairpin vortex packet), and packets may also
align with other packets to create even larger structures (i.e. VLSMs (∼6δ)), where
the hairpin vortex is an important elementary coherent structure that explains many
features observed in the wall turbulence. LSMs and VLSMs are associated with
the wavelengths of the higher and lower wavenumber peaks in the pre-multiplied
spectra of the streamwise velocity (Kim & Adrian 1999; Guala, Hommema & Adrian
2006; Balakumar & Adrian 2007; Vallikivi, Ganapathisubramani & Smits 2015), and
VLSMs become more dominant in high-Reynolds-number atmospheric surface layer
(ASL) flows (Wang & Zheng 2016). These large- and very-large-scale structures
carry a substantial portion of the turbulent kinetic energy and Reynolds shear stress
(Guala et al. 2006; Balakumar & Adrian 2007; Wang & Zheng 2016) and have been
found to strongly influence the near-wall cycle through superposition and amplitude
modulation (Hutchins & Marusic 2007b; Mathis, Hutchins & Marusic 2009a; Guala,
Metzger & McKeon 2011). The phenomenon of LSM/VLSM amplitude modulation
of small-scale motions indicates that the outer region energy may impart to the
near-wall region (Mathis et al. 2009a) and thus contributes to a better understanding
of the near-wall turbulence production mechanism (not completely ‘autonomous’
when referring to the near-wall cycle). Accurately estimating the degree of amplitude
modulation is a prerequisite for predictive models of near-wall turbulent motions
(Marusic, Mathis & Hutchins 2010b; Mathis, Hutchins & Marusic 2011a; Mathis et al.
2013). Moreover, the phenomenon of amplitude modulation suggests the viability of
specifically targeting the large- and very-large-scale structures in order to control
turbulence (Hutchins et al. 2011; Deng, Huang & Xu 2016). Therefore, studies of
amplitude modulation have attracted the attention of many researchers.

The phenomenon of LSMs modulating the amplitude of small-scale energy was
originally studied by Brown & Thomas (1977). They performed measurements
of the streamwise velocity and the shear stress with an array of hot wires and
hot-film wall-shear-stress sensors in a turbulent boundary layer (TBL) at Reτ = 3413
(Reτ = δUτ/ν is the friction Reynolds number or Kármán number, where Uτ

and ν denote the friction velocity and the kinematic viscosity, respectively). By
comparing the low-frequency fluctuations with the rectified high-frequency smoothed
signals, they found a high-frequency large amplitude fluctuation occurring near the
maximum in the slowly varying part of the signal (in addition to the turbulent
duct flow studies of Rajagopalan & Antonia 1980). Based on streamwise velocity
time-series data measured in numerous shear flows (including boundary layers,
mixing layers, wakes and jets), Bandyopadhyay & Hussain (1984) examined the
correlations between the low-frequency signal and a signal similar to the envelope of
the high-frequency component. The results indicated a significant coupling between
scales in all flows. Using atmospheric data, Hunt & Morrison (2000) found that
the large-scale features in the logarithmic layer become dominant and influence the
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near-wall region under sufficiently high-Reynolds-number conditions. They categorized
the influence as a ‘top-down’ mechanism that is different from the ‘bottom-up’
mechanism commonly proposed in lower-Reynolds-number studies. The phenomenon
of amplitude modulation was highlighted in Hutchins & Marusic (2007b) by studying
the fluctuating velocity signals (Reτ = 7300) acquired in the High Reynolds Number
Boundary Layer Wind-Tunnel (HRNBLWT) at the University of Melbourne. They
found that the much larger scales in the logarithmic region appear to modulate the
amplitude of the small-scale fluctuations as follows: the amplitudes of the small
scales were larger within large-scale positive fluctuations, whereas the small scales
became relatively quiescent within large-scale negative fluctuations.

The studies mentioned above have demonstrated the presence of the amplitude
modulation phenomenon. Based on these observations, Mathis et al. (2009a)
developed a mathematical tool to quantify the degree of the amplitude modulation.
They divided the streamwise velocity fluctuations into short- and long-wavelength
components by establishing a nominal cutoff wavelength (λc = δ) and defined the
amplitude modulation coefficient (denoted by RAM) by calculating a meaningful
correlation coefficient between the long-wavelength components and the filtered
envelope of the small-scale fluctuations (obtained via the Hilbert transformation). By
comparing the results of single-point and two-point analyses, they suggested that
the single-point amplitude modulation coefficient provides a reasonable estimate of
the degree of modulation. Moreover, the demodulation procedure was only weakly
dependent on the choice of the convection velocity and the cutoff wavelength.
Based on this quantitative method, Mathis et al. (2009a) investigated the amplitude
modulation coefficient with laboratory TBL data (Reτ = 2800–19 000) acquired in the
HRNBLWT and ASL data (Reτ = 6.5× 105) obtained at the Surface Layer Turbulence
and Environmental Science Test (SLTEST) site. They found a high level of correlation
near the wall (greater than 0.6), which decreased significantly with the wall-normal
distance in the logarithmic region. The amplitude modulation coefficient was found
to reach zero at approximately the mid-point of the logarithmic region and become
negative at higher wall-normal distances. This indicated a reversal in the modulation
behaviour in the upper logarithmic and wake layers; i.e. the small-scale fluctuations
were more energetic within large-scale negative fluctuations. They suggested that
the negative coefficient may be attributed to intermittency effects at the top of the
boundary layer. In addition, they found that the amplitude modulation coefficient
increased log-linearly with the Reynolds number in the buffer layer (between the
near-wall viscous region and the logarithmic region). Subsequently, Mathis et al.
(2009b) applied the quantitative method to pipe and channel flows (Reτ ≈ 3000) and
concluded that the amplitude modulation coefficients (cutoff wavelength λc= δ) in the
internal and external wall-bounded turbulences remain invariant in the inner region,
irrespective of the flow case. More recently, studies of the amplitude modulation
coefficient have suggested that the wall-normal profile of RAM exhibits a strong
resemblance to the skewness profile of the streamwise velocity fluctuations. For
example, Schlatter & Örlü (2010) compared the amplitude modulation coefficient
(λc = δ) with the skewness factor using experimental and synthetic streamwise
velocity signals (800 < Reτ < 5500). They found a clearly linear relation between
these two physical quantities that have clear fundamental differences and thus
concluded that RAM may not be an independent tool for quantifying the degree of
amplitude modulation. Mathis et al. (2011b) further divided the skewness factor into
four terms using a scale-decomposed streamwise velocity signal at higher Reynolds
number conditions of Reτ = 2800–19 000. By analysing all of the terms of the
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scale-decomposed skewness factor, they suggested that the Reynolds number trend
of the skewness factor is strongly related to the amplitude modulation effect and
proposed an alternative diagnostic tool for the degree of amplitude modulation.

Based on these studies of the amplitude modulation coefficient, Marusic et al.
(2010b) and Mathis et al. (2011a) proposed a predictive model with which the
statistics of the streamwise velocity fluctuations in the inner region of the wall
turbulence can be predicted using only the large-scale velocity information measured
in the logarithmic region. Similarly, Marusic, Mathis & Hutchins (2011), Inoue et al.
(2012) and Mathis et al. (2013) presented a fluctuating wall-shear-stress time-series
predictive model. These predictive models are significant because the accurate
measurements and simulations of the turbulent motion behaviour close to the solid
boundary (where the most important physics processes occur) are the most challenging.
The effective applications of the amplitude modulation further highlight its importance.
Therefore, recent studies on amplitude modulation still attract the attention of many
researchers. For example, Talluru et al. (2014) extended the amplitude modulation
coefficient to all three components of the velocity with measurements from cross-wire
probes in the TBL at Reτ = 15 000 and found that the modulation of the small-scale
energy by the large-scale structures (λc = δ) is relatively uniform across all three
velocity components. Tsuji, Marusic & Johansson (2016) studied the interaction
between pressure fluctuations in TBL flows at Reτ = 3585–6455 and found that the
large- and small-scale pressure fluctuations also have a small amplitude modulation
effect, but there is a time-lag between them (also observed in previous numerical
results for a pipe flow in Luhar, Sharma & McKeon 2014). Squire et al. (2016) and
Pathikonda & Christensen (2017) explored the inner–outer interactions in rough-wall
TBL flows at Reτ = 14 700, z+o = 546 and Reτ = 4850, 5650, z+o = 612, 726, respectively
(as well as the numerical simulations in Nadeem et al. 2015; Anderson 2016). By
comparing the results with those from the smooth-wall TBL, they found that the
rough wall increases the amplitude modulation coefficient (λc = δ and λ+c = 7000),
though the roughness effect weakens as the wall-normal distance increases.

In summary, the amplitude modulation of the small scales by LSMs/VLSMs has
been widely investigated. However, the vast majority of the studies of amplitude
modulation were conducted at low or moderate Reynolds numbers. Because
VLSMs become more and more dominant in the wall turbulence with increasing
Reynolds number (Hutchins & Marusic 2007a,b; Wang & Zheng 2016), it is
necessary to investigate the VLSM amplitude modulation of the small scales under
very-high-Reynolds-number conditions. Previous studies employed a nominal cutoff
wavelength (usually taken as δ) to divide the fluctuating velocity into large- and
small-scale components. Much less is known about which scales of motion dominate
the amplitude modulation and which scales are significantly subject to the modulation
effect. This directly affects the accurate estimate of the amplitude modulation
coefficient. In addition, studies of the Reynolds number dependence of the amplitude
modulation coefficient at high Reynolds numbers are quite scarce. Therefore, the
present work aims to investigate the amplitude modulation between multi-scale
turbulent motions and its variation with Reτ based on high-Reynolds-number
experimental data obtained from long-term observations in the ASL.

This paper is organized as follows. Section 2 describes the experimental set-up for
the field measurements in the ASL at the Qingtu Lake Observation Array (QLOA) site
and the data selection and pretreatment. Section 3 introduces the mathematical method
used to estimate the degree of amplitude modulation between motions with different
length scales. The results for the variation of the amplitude modulation coefficient
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with different scales of turbulent motion and the high-Reynolds-number effects of the
amplitude modulation coefficient across the logarithmic region are provided in § 4. The
conclusions from this study are summarized in § 5.

2. Experimental set-up and data processing

The ASL represents some of the highest Reynolds number conditions that can be
achieved terrestrially (Marusic et al. 2010a); thus, it is seen as a useful benchmark
for high-Reynolds-number flow experiments (Guala et al. 2011). Therefore, to
investigate the amplitude modulation of small scales by LSMs/VLSMs under
very-high-Reynolds-number conditions, we performed ASL observations for clean
wind (without sand and dust particles) at the QLOA site in western China. The
QLOA can perform synchronous multi-point measurements of the three-dimensional
turbulent flow field for both wind-blown sand movement and clean wind. This area
is passed by a monsoon in the spring, and the soil crust (due to the large salt
content) keeps airborne dust to a minimum, which makes it possible to acquire
observational data under a large range of wind velocities in the near-neutral ASL.
This is beneficial to this study. To date, the ASL observations have been conducted
over a duration of more than 7000 h. The three components of the wind velocity and
the temperature were measured by sonic anemometers (Gill Instruments R3-50 and
Campbell CSAT3B) at a sampling rate of 50 Hz. Twelve sonic anemometer probes
were placed on a wall-normal array distributed logarithmically in the vertical direction
from z = 0.5 to 30 m (where z denotes the wall-normal distance). The fluctuating
velocity signals acquired at different heights were employed in the analysis of
the amplitude modulation. Additional details about the arrangement of the array,
measurement techniques and experimental apparatus can be found in Wang & Zheng
(2016).

For these types of ASL observations, the field environmental conditions are complex
and uncontrollable. Therefore, to obtain reliable datasets for the analysis of the
high-Reynolds-number wall turbulence, it is necessary to perform specific selection
and pretreatment on the raw data. The data processing includes correction for the
wind direction (Wilczak, Oncley & Stage 2001), steady wind selection (judged by the
nonstationary index provided in Foken et al. 2004), thermal stability judgment (Monin
& Obukhov 1954) and de-trending (Hutchins et al. 2012). Following the standard
practice in the analysis of ASL data (Wyngaard 1992), the measured data were
divided into multiple hourly time series for subsequent analysis to ensure statistical
convergence (Hutchins et al. 2012). The data processing procedure is consistent
with Hutchins et al. (2012) and Wang & Zheng (2016) and is not detailed herein.
After applying the data processing procedure, 70 sets of high-quality hourly data in
the near-neutral ASL are subsequently analysed in this study. The key information
relating to the selected datasets is listed in table 1 in appendix A. Wang & Zheng
(2016) and Liu, Bo & Liang (2017) performed data validations by checking some
basic statistics of these datasets against the existing experimental and theoretical
results from canonical zero-pressure-gradient TBL flows. The comparisons confirmed
that the selected ASL data acquired at the QLOA site exhibit properties that are
typical of canonical TBL flows in general and thus can be used in studies of
high-Reynolds-number wall turbulence.

The ASL was approximately neutrally stratified when satisfying the condition of
|z/L| < 0.1 (Högström 1988; Högström, Hunt & Smedman 2002; Metzger, McKeon
& Holmes 2007), where |z/L| is the Monin–Obukhov thermal stability parameter.
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In addition, the friction velocity Uτ was estimated by fitting the mean streamwise
velocity profile following the chart method of Clauser (1956). The von Kármán
constant was adopted as 0.41 according to the ASL studies in Marusic et al. (2013).
The kinematic viscosity ν was calculated through the barometric pressure and the
temperature at the QLOA site (Tracy, Welch & Porter 1980). The ASL thickness
δ was estimated based on the streamwise turbulent intensity formula provided in
Marusic et al. (2013), which is detailed in Wang & Zheng (2016).

3. Estimate of the amplitude modulation coefficient

The single-point amplitude modulation coefficient developed by Mathis et al.
(2009a) is defined as the correlation coefficient between the large-scale component and
the filtered envelope of the small-scale fluctuations. It is obtained from the measured
streamwise velocity fluctuations as follows. First, the fluctuating streamwise velocity
signal u+ (where u+= u/Uτ , and z+= zUτ/ν is the inner-flow scaling) is decomposed
into large and small components (u+L and u+S , respectively). The Hilbert transformation
(Spark & Dutton 1972; Sreenivasan 1985; Hristov, Friehe & Miller 1998; Huang, Shen
& Long 1999; Ouergli 2002) is then applied on the small-scale fluctuations to extract
the corresponding envelope E(u+S ). The envelope E(u+S ) represents the changes in the
amplitude of these scales, but it tracks not only the large-scale modulation events due
to the LSMs/VLSMs in the logarithmic region but also the small-scale variations in
the carrier signal. To remove this effect, the envelope is low-pass filtered at the same
cutoff wavelength as the large-scale component. Hence, we obtain a filtered envelope
EL(u+S ) that describes the modulation signal of the small-scale fluctuations by the
LSMs/VLSMs. Finally, the meaningful correlation coefficient RAM of the filtered
envelope EL(u+S ) with the large-scale velocity fluctuation u+L is defined as

RAM(z+)=
u+L EL(u+S )√

u+L
2
√

EL(u+S )2
, (3.1)

where
√

u+L
2 and

√
EL(u+S )2 denote the root mean squares of the signal u+L and

the filtered envelope EL(u+S ), respectively. In this study, we employ different cutoff
wavelengths, λc1 and λc2, to obtain the large-scale component u+L (λx > λc1) and
the small-scale component u+S (λx < λc2 or λc2 < λx < λc1). In addition, these
cutoff wavelengths are varied to investigate the amplitude modulation coefficient
between multi-scale turbulent motions. That is, the single-point amplitude modulation
coefficient from Mathis et al. (2009a) is used as an indicator, but with varying cutoff
wavelengths.

4. Results and discussion

This section explores the amplitude modulation between multi-scale turbulent
motions based on the high-Reynolds-number experimental data in the ASL to
determine the specific scales of turbulent motions that should be examined when
referring to the amplitude modulation. On this basis, the high-Reynolds-number
effects of the amplitude modulation in the logarithmic region are examined by
plotting RAM at different Reynolds numbers.
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4.1. Amplitude modulation between multi-scale turbulent motions
According to Guala et al. (2006) and Balakumar & Adrian (2007), the motions with
length scales between 0.1πδ and πδ are termed LSMs, the motions with lengths larger
than πδ are VLSMs and the lengths of small-scale motions are shorter than 0.1πδ,
nominally. Therefore, as an example to explore the amplitude modulation between
different scales of turbulent motion, the large-scale component is low-pass filtered
as λx > 3δ, and the small-scale components for different cases are filtered as λx <
3δ, 0.3δ < λx < 3δ and λx < 0.3δ. An example of the resulting decomposition is
given in figure 1 for all three cases at the wall-normal location z≈ 0.006δ. Figure 1
shows the decoupling procedure used to calculate the amplitude modulation coefficient,
where figure 1(a) plots the raw signal u+ and the very-large-scale component u+L (λx>
3δ) and figure 1(b–d) shows the small-scale fluctuating component u+S (λx < 3δ in
figure 1I, 0.3δ < λx < 3δ in figure 1II and λx < 0.3δ in figure 1III), the corresponding
envelope E(u+S ) and the filtered envelope EL(u+S ) (black solid line), respectively. In
addition, the amplitude modulation of the LSMs (0.3δ <λx< 3δ) onto the small scales
(λx < 0.3δ) is shown in figure 1(IV). It should be noted that the motions with scales
0.3δ <λx< 3δ are taken as the small-scale component in figure 1(II), whereas they are
the large-scale component in figure 1(IV). It is seen in figure 1(I) that an amplitude
modulation effect from the VLSMs onto the motions with scales of λx < 3δ is visible.
The short-wavelength fluctuating signals are more intense during the very-large-scale
positive u+L fluctuation (marked with the vertical dashed lines), as observed in the
laboratory TBL at low and moderate Reynolds numbers (Hutchins & Marusic 2007b;
Mathis et al. 2009a,b; Baars, Hutchins & Marusic 2017). The amplitude modulation
coefficient is approximately 0.2.

When the fluctuations of λx < 3δ are further divided into 0.3δ < λx < 3δ and
λx< 0.3δ components, it is seen in figure 1(II) that the amplitude modulation effect of
the VLSMs on the LSMs can be considered to be negligible (as well as the amplitude
modulation of LSMs on small scales shown in figure 1IV). The corresponding
amplitude modulation coefficients are close to zero. However, figure 1(III) shows that
the VLSMs have a more prominent amplitude modulation effect on the small-scale
motions of λx < 0.3δ than those of λx < 3δ in figure 1(I). The amplitude modulation
coefficient (RAM ≈ 0.32) is the maximum of all four cases. In summary, figure 1
suggests a significant difference in the amplitude modulation effect for different
scale motions, with the possible indication that the amplitude modulation from the
VLSMs is mainly reflected in the small-scale motions, whereas the LSMs are almost
unmodulated. This may be due to the fact that both the VLSMs and the LSMs are
significantly energetic, though there are differences in the length scales (Guala et al.
2006; Balakumar & Adrian 2007; Wang & Zheng 2016).

To investigate in detail the amplitude modulation effect between turbulent motions
with different length scales, figure 2 shows RAM for varying large- and small-scale
fluctuating components at z ≈ 0.006δ. The relatively reliable average results of RAM
for datasets with similar Reynolds numbers (±0.25 × 106) are presented in figure 2
and the following analyses to reduce the ASL experimental scatter. The corresponding
standard deviation is approximately ±0.11. The results for three Reynolds number
intervals (Reτ = (1.9–2.4), (2.8–3.3) and (3.4–3.9) × 106) are plotted in figure 2 for
comparison.

Figure 2(a) shows the amplitude modulation effect from the turbulent motions
with different large length scales (λx > aδ, where a varies) onto the small-scale
motions (λx < 0.3δ). It can be seen that RAM increases sharply with a as far as
a = 2.5 (peak RAM) and then decreases as a continues to increase; i.e. the cutoff
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FIGURE 1. (Colour online) Example of scale decomposition of the fluctuating streamwise
velocity signal at z≈ 0.006δ and Reτ ≈ 4.6× 106 for the amplitude modulation from the
VLSMs onto the fluctuating u+S components of (I) λx < 3δ, (II) 0.3δ < λx < 3δ and (III)
λx<0.3δ. (IV) Amplitude modulation of the LSMs (0.3δ <λx<3δ) onto small scales (λx<
0.3δ). (a) The raw fluctuating signal u+ and the very-large-scale fluctuation u+L for λx> 3δ,
(b) the small-scale component u+S , (c) the envelope of the small-scale component E(u+S )
and (d) the filtered envelope EL(u+S ) (solid line) against the very-large-scale component
(red dot-dashed line). For comparison, the mean of the filtered envelope has been adjusted
to zero. The dashed vertical lines show regions of positive very-large-scale fluctuations.

wavelength of the large-scale component corresponding to the peak RAM (denoted
by λcL−PR) is approximately 2.5δ. This indicates that the VLSMs with length scales
larger than λcL−PR contribute significantly to the amplitude modulation effect. The
VLSM (λx > λcL−PR) amplitude modulation of the turbulence motions with different
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FIGURE 2. (Colour online) Amplitude modulation coefficients between the large- and
small-scale components with different length scales at z ≈ 0.006δ for Reτ = (1.9–2.4),
(2.8–3.3) and (3.4–3.9) × 106. (a) Amplitude modulation from motions with different
large length scales (λx > aδ, where a varies) onto the small-scale motions (λx < 0.3δ).
(b) VLSM (λx > λcL−PR) amplitude modulation of the motions with different short length
scales (λx < bδ, where b varies).

short length scales (λx < bδ, where b varies) is shown in figure 2(b). The abscissa
is logarithmic to show the change in RAM more clearly when b is small. Figure 2(b)
shows that RAM exhibits a gradually slowing increase as log(b) decreases for all of
the Reynolds number conditions, and it appears to level off at approximately b= 0.04.
Thus, the cutoff wavelength of the small-scale component corresponding to the peak
RAM (denoted by λcS−PR) may be 0.04δ. This suggests that the turbulent motions with
length scales shorter than λcS−PR are more strongly modulated than the other scales
of motions. In addition, the variations of RAM with a and b at different Reynolds
numbers are qualitatively consistent.

To obtain more information about the amplitude modulation for different scale
motions at different heights, the analysis process in figure 2 is repeated for all
of the measurement heights in the wall-normal array. As examples, figure 3(a,b)
shows the results for z ≈ 0.003δ, 0.006δ, 0.011δ, 0.017δ, 0.033δ, 0.068δ and 0.2δ at
Reτ = (2.8–3.3) × 106. It is seen in figure 3(a) that the variations of RAM with a at
all of the wall-normal locations are systematic and follow the trend of first increasing
and then decreasing. However, there are significant differences in the position of
the peak RAM. The cutoff wavelength corresponding to the peak RAM at the lowest
measurement height (z ≈ 0.003δ) is approximately 1.5δ. With increasing z, λcL−PR

increases, as shown in figure 3(a) by the sequence of different symbols. The cutoff
wavelength λcL−PR at the highest measurement height (z ≈ 0.2δ) is approximately
10δ. The increase in λcL−PR indicates that the length scales of the turbulent motions
that contribute significantly to the amplitude modulation effect increase with the
wall-normal distance. In contrast, the magnitude of the peak RAM decreases with
the wall-normal distance. This is expected because the small-scale motions that are
subject to the amplitude modulation effect are more significant near the wall. In
addition, figure 3(b) shows that at all of the heights, RAM appears to level off with
decreasing log(b), and the position at which it levels off (λcS−PR) also varies with the
wall-normal distance. The cutoff wavelength λcS−PR at z ≈ 0.003δ is approximately
0.02δ, whereas it is approximately 1.5δ at the highest measurement height.
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FIGURE 3. (Colour online) Plot of RAM between the large- and small-scale fluctuating
components with varying length scales at z≈0.003δ,0.006δ,0.011δ,0.017δ,0.033δ,0.068δ
and 0.2δ for datasets with Reτ = (2.8–3.3) × 106, where (a) and (b) are the same as
those in figures 2(a) and 2(b), respectively. (c) Plot of RAM from the turbulent motions
with scales between λcS−PR and λcL−PR onto the small-scale component of λx < λcS−PR for
different Reynolds numbers. (d) Amplitude modulation of turbulence motions with scales
λx > λcL−PR on the small-scale component with wavelengths λcS−PR < λx < λcL−PR.

The amplitude modulation related to the turbulent motions with scales between
λcS−PR and λcL−PR are examined in figure 3(c,d). Figure 3(c) shows the amplitude
modulation effect from these motions (λcS−PR < λx < λcL−PR) onto the small-scale
component of λx < λcS−PR, and figure 3(d) shows the amplitude modulation of
the motions with scales larger than λcL−PR on the small-scale component of
λcS−PR < λx < λcL−PR. Within the experimental error, the RAM values in figure 3(c,d)
are found to be close to zero at all heights and Reynolds numbers, though RAM in
figure 3(d) is slightly larger near the wall. This indicates that the turbulent motions
with scales between λcS−PR and λcL−PR may have negligible contributions to the
amplitude modulation effect, and they are almost unmodulated by the larger motions
in the logarithmic region. In summary, figure 3 suggests that at different wall-normal
locations, the VLSMs with length scales larger than λcL−PR contribute significantly to
the amplitude modulation effect, whereas other motions with shorter length scales may
have negligible contributions; the small-scale motions with wavelengths λx < λcS−PR
are strongly modulated, whereas the larger motions are almost unmodulated. The
smaller RAM when a< λcL−PR/δ (as shown in figure 3a) may be due to the confusion
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FIGURE 4. Colour contour maps showing the variations of the amplitude modulation
coefficient RAM with the length scales of the large-scale components (λx > aδ) and
small-scale components (λx < bδ) (left vertical axis and bottom abscissa) and the
pre-multiplied energy spectra of the streamwise velocity fluctuations kxΦuu/U2

τ versus the
streamwise wavelength λx/δ (right vertical axis and top abscissa): (a) z ≈ 0.01δ and (b)
z≈ 0.02δ. The lines indicate the pre-multiplied energy spectra from 16 sets of hourly data
at Reτ = (2.8–3.3)× 106.

of the motions that have minor contributions to the amplitude modulation effect
in the process of extracting the large-scale modulation signal, and the smaller
RAM when a > λcL−PR/δ may be caused by missing some of the motions that
contribute significantly to the amplitude modulation effect. Similarly, the smaller
RAM in figure 3(b) may also be caused by the confusion of unmodulated signals or
by missing some of the signals that are significantly subject to the modulation effect.
That is, the inaccurate extraction of the large-scale components (modulating signals)
or small-scale components (carrier signals) during the demodulation procedure may
result in an underestimation of RAM.

The colour contours of the amplitude modulation coefficient RAM versus the length
scales of the large-scale components (λx > aδ) and small-scale components (λx < bδ)
at Reτ = (2.8–3.3) × 106 are shown in figure 4 to gain better insight into the
amplitude modulation between the multi-scale turbulent motions. According to Mathis
et al. (2009a), the degree of amplitude modulation is closely related to the energetic
signature of the LSMs/VLSMs in the logarithmic region. Therefore, the pre-multiplied
energy spectra of the streamwise velocity fluctuations kxΦuu/U2

τ (where kx = 2π/λx

denotes the streamwise wavenumber and Φuu is the power spectral density of the
streamwise velocity fluctuations) versus the streamwise wavelength λx/δ from the
same ASL datasets as the colour contours of RAM are also included in figure 4
for comparison. The analysis of the pre-multiplied spectra follows the methods of
Kim & Adrian (1999), Kunkel & Marusic (2006), Vallikivi et al. (2015) and Wang
& Zheng (2016).

An obvious concentration of the large RAM can be seen in figure 4(a,b), whereas
RAM is close to zero in the other areas. This may mean that not all of the length
scales of turbulent motions have an amplitude modulation effect between them; rather,
only specific motions do. The large RAM values are concentrated around a ≈ 4 on
the abscissa (a ≈ 5 in figure 4b) and on most of the lower part of the vertical axis
(as shown in figure 4a,b by the red areas). That is, at the outer-scaled wall-normal
location of z≈ 0.01δ, the VLSMs with length scales larger than 4δ (5δ for z≈ 0.02δ)
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FIGURE 5. (Colour online) Comparison of the large-scale cutoff wavelength corresponding
to the maximum RAM (λcL−PR) and the length scale of the distinct peak corresponding to
the VLSMs in the pre-multiplied energy spectra of the streamwise velocity fluctuations
(Λmax) for all measurement heights at different Reynolds numbers.

have the most significant contribution to the amplitude modulation effect on the small-
scale motions (λx < λcS−PR).

In addition, the pre-multiplied energy spectra of the streamwise velocity fluctuations
kxΦuu/U2

τ in figure 4 show a distinct peak in the long-wavelength region corresponding
to the VLSMs, whereas another peak corresponding to the LSMs is indistinct (as
observed in Vallikivi et al. 2015; Wang & Zheng 2016). This indicates that the
VLSMs in high-Reynolds-number ASL flows may be more dominant than those
under lower Reynolds number conditions (Hutchins & Marusic 2007a,b; Wang &
Zheng 2016). A comparison of the pre-multiplied energy spectra with the colour
contours of RAM shows that the positions of the distinct peak corresponding to the
VLSMs and the concentrated areas of the large RAM are in good agreement. That is,
the large-scale cutoff wavelength corresponding to the peak RAM (λcL−PR) might be
consistent with the length scale of the lower wavenumber peak in the pre-multiplied
energy spectra of the streamwise velocity fluctuations.

To further investigate the relationship between the large-scale cutoff wavelength
corresponding to the peak RAM (λcL−PR) and the length scale of the lower wavenumber
peak in the pre-multiplied energy spectra (denoted by Λmax), figure 5 compares
λcL−PR/δ (abscissa) and Λmax/δ (vertical axis) for all measurement heights at
different Reynolds numbers. The low-wavenumber peak was identified as the distinct
peak in the long-wavelength region of the energy spectra. At locations where the
long-wavelength peak appeared more as a narrow shoulder rather than as a distinct
peak, the point of inflection was taken as an estimate of the peak location (following
Vallikivi et al. 2015). The relatively reliable average results are presented in figure 5,
and the corresponding standard deviation is approximately ±2δ. The grey dashed line
in figure 5 represents the complete consistency of the abscissa and the vertical axis.
The current ASL data agree well with the grey dashed line given the experimental
scatter; that is, λcL−PR/δ and Λmax/δ are consistent at all heights and Reynolds
numbers. The consistency of λcL−PR and Λmax means that the most energetic VLSMs
with scales larger than the wavelength of the energy spectra peak play a vital role
in the amplitude modulation of the small-scale motions. In other words, the existing
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FIGURE 6. Variations of the large- and small-scale cutoff wavelengths (λcL−PR and λcS−PR)
with the outer-scaled wall-normal distance z/δ. The filled symbols denote the current
ASL results for λcL−PR (filled black symbols) and λcS−PR (filled blue symbols). The open
symbols are the TBL results from Balakumar & Adrian (2007) (Reτ = 1476, 2395)
and Vallikivi et al. (2015) (Reτ = 72 500) for wavelengths (Λmax) associated with the lower
wavenumber peak (VLSMs, open black symbols) and the higher wavenumber peak (LSMs,
open blue symbols).

classification of VLSMs, LSMs and small-scale motions is somewhat empirical
(Guala et al. 2006; Balakumar & Adrian 2007), and the LSMs/VLSMs still contain
turbulent motions with various length scales and energetic signatures. The most
energetic motions are displayed as the energy peak in the pre-multiplied spectra (Kim
& Adrian 1999). In addition, the dominance of energy results in a more prominent
effect on the small-scale motions than that on other scales of motions and thus
exhibits a peak in the amplitude modulation coefficient.

As shown in figure 3(a,b), there are significant differences in the large- and
small-scale cutoff wavelengths (λcL−PR and λcS−PR) at different wall-normal distances.
To investigate the dependence of λcL−PR and λcS−PR on z, figure 6 plots the changes
in λcL−PR and λcS−PR versus the outer-scaled wall-normal distance z/δ for all three
Reynolds number conditions. The results show that the large-scale cutoff wavelength
λcL−PR increases systematically with z/δ and follows λcL−PR = 28(zδ)0.5, showing
simultaneous dependence on the wall-normal distance and the ASL thickness. The
small-scale cutoff wavelength λcS−PR scales with z as λcS−PR = 12z. The previously
documented TBL data for the wavelengths Λmax associated with the VLSMs (lower
wavenumber peak) and the LSMs (higher wavenumber peak) from Balakumar &
Adrian (2007) and Vallikivi et al. (2015) agree well with the scaling. This scaling
is also similar to that for the wavenumbers corresponding to the VLSM peak and
the LSM peak (i.e. kxδ ∼ (δ/z)0.5 and kx ∼ z−1, respectively; Vallikivi et al. 2015).
Therefore, it is appropriate to conclude that in the logarithmic region, the VLSMs
with length scales larger than 28(zδ)0.5 play a vital role in the amplitude modulation
effect, the small-scale motions with scales shorter than 12z are significantly subject
to the modulation effect and the LSMs with scales ranging between 12z and 28(zδ)0.5
neither contribute significantly to the amplitude modulation effect nor are strongly
modulated.

Therefore, the meaningful correlation coefficient between the VLSMs with scales
larger than 28(zδ)0.5 and the filtered envelope of the small-scale motions (λx < 12z)
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FIGURE 7. Wall-normal profiles of the amplitude modulation coefficient RAM for several
Reynolds numbers. The current ASL results are shown by solid and dot-dashed lines,
where the solid lines represent the peak RAM and the dot-dashed lines denote RAM (λc= δ)
estimated by establishing a nominal cutoff wavelength. The laboratory TBL and ASL
results available in Mathis et al. (2009a) are shown by dashed lines. Values of (a) RAM
plotted in outer-scaled z/δ unit and (b) RAM plotted in inner-scaled z+ unit.

is calculated as an alternative RAM to quantify the amplitude modulation effect more
specifically. Following this method, the wall-normal profiles of the calculated RAM
(peak RAM, shown by the solid lines) at different Reynolds numbers are shown in
figure 7 in terms of the outer and inner scaling and compared with that estimated
by establishing a nominal cutoff wavelength, i.e. RAM (λc = δ), which is shown by
the dot-dashed lines. Figure 7 also includes the results available in Mathis et al.
(2009a) from experiments in a laboratory TBL (HRNBLWT; Reτ = 2800, 7300 and
19 000) and ASL (SLTEST; Reτ = 6.5 × 105) flows. In addition to the existence
of the amplitude modulation effect in high-Reynolds-number ASLs, figure 7 shows
a significant difference between the RAM values obtained by these two methods.
The peak RAM is much larger than that estimated by establishing a nominal cutoff
wavelength (both for the current ASL results and the previous TBL data, as shown in
figure 7a) and remains positive in the entire logarithmic region. This is due to the peak
RAM specifically targeting the VLSMs that dominate the amplitude modulation and the
small-scale motions that are significantly subject to the modulation effect. Moreover,
figure 7(b) shows that the peak RAM increases with the Reynolds number when
inner-scaled with z+, the details of which will be explored in the next sub-section.

4.2. High-Reynolds-number effects
Because few studies have focused on the effects of the Reynolds number on the
amplitude modulation under very-high-Reynolds-number conditions, the variation
of RAM with Reτ at different heights in the logarithmic region using all of the
selected near-neutral ASL datasets is analysed in this sub-section. As suggested in
the previous sub-section, the correlation coefficient between the VLSMs with scales
of λx > 28(zδ)0.5 and the filtered envelope of the small-scale motions (λx < 12z)
can estimate the degree of amplitude modulation more accurately. Therefore, this
demodulation procedure is applied to each of the current ASL datasets. The value of
RAM (λc = δ) calculated by establishing a nominal cutoff wavelength is also analysed
as a comparison with the existing results available in the literature. The resulting peak
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FIGURE 8. (Colour online) Reynolds number evolution of the amplitude modulation
coefficient at (a) z+ = 20 000, (b) z+ = 32 000 and (c) 20< z+ < 100. The filled symbols
denote the current ASL data and the open symbols indicate laboratory TBL and ASL data
from Mathis et al. (2009a). The red circles denote the peak RAM and the black squares
are the results calculated by establishing a nominal cutoff wavelength λc = δ. The lines
are the fitting curves.

RAM and RAM (λc = δ) are summarized by red circles and black squares, respectively,
in figures 8(a) and 8(b) for z+ = 20 000 and 32 000. The fixed z+ is employed in
figure 8 to investigate the Reynolds number effects. The previously documented
laboratory TBL data for 20 < z+ < 100 and the corresponding fitting formula from
Mathis et al. (2009a) are also plotted in figure 8(c) for comparison.

The current ASL data in figure 8(a,b) show that within the experimental scatter,
the variations of the peak RAM and RAM (λc = δ) with Reτ at different inner-scaled
heights follow an approximately log-linear increase. The previously reported results
in the near-neutral ASL acquired at the SLTEST site (shown by the up-pointing
triangle) also agree well with the Reynolds number trend of the current ASL data.
This trend is consistent with previous work showing that the outer spectral peak and
the inner-scaled near-wall peak in the streamwise turbulence intensity both increase
log-linearly with the Reynolds number (DeGraaff & Eaton 2000; Metzger & Klewicki
2001; Marusic & Kunkel 2003; Hoyas & Jimnez 2006; Hutchins & Marusic 2007a;
Hutchins et al. 2009; Vallikivi 2014). The outer spectral peak (or ‘outer’ energy
sites) represents the maximum magnitude of the VLSM spectral peak in the outer
region (Hutchins & Marusic 2007a; Vallikivi et al. 2015). This may indicate that
the increasing energetic signature of the VLSMs leads to the enhanced amplitude
modulation effect on the near-wall cycle, and the increase of the outer energy imparted
to the near-wall region (by superposition and modulation) resulting in the near-wall
peak of the streamwise turbulence intensity increases with the Reynolds number
(Metzger et al. 2001; Hutchins & Marusic 2007a,b). A parametric equation is fitted
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FIGURE 9. (Colour online) Variation of the intercept p with the inner-scaled wall-normal
distance z+. The filled symbols denote the current ASL results and the open symbols
are the results obtained by extracting and analysing the laboratory TBL data provided in
figure 13(a) of Mathis et al. (2009a).

to the current ASL data to model the variation of RAM with Reτ and is given as

RAM(z+)= k log(Reτ )+ p, (4.1)

which is shown by the solid lines in figure 8(a,b). The log-linear slope k for the
current ASL data remains nearly constant (0.28 ± 0.04) at different z+. To simplify
the model parameters, k is taken as 0.304, which is consistent with that for the
laboratory TBL data shown in figure 8(c). However, there is a significant difference
in the intercept p for varying z+ due to the decreasing RAM with the wall-normal
distance. In addition, the peak RAM is much larger than RAM (λc = δ) at all Reynolds
numbers, which is also reflected in the difference in the intercept p.

To investigate the variation of the intercept p with z+, the Reynolds number
evolutions of the amplitude modulation coefficient are analysed at different values
of z+. The fitted intercept p is plotted in figure 9, where the filled symbols are the
current ASL results, and the open symbols are the results obtained by extracting and
analysing the laboratory TBL data provided in figure 13(a) of Mathis et al. (2009a).
Figure 9 shows that the intercept p exhibits a gradually slowing decrease with log(z+)
in the log region, whereas p remains constant in the buffer layer (Mathis et al. 2009a).
The intercept p for the peak RAM is larger than that for RAM (λc= δ) across the entire
logarithmic region. To characterize the variation of p with z+, parametric equations
are fitted to the experimental data and are given as

p=−0.9 ln[0.61 ln(z+)], (4.2a)
p=−ln[0.57 ln(z+)], (4.2b)

for the peak RAM (shown by the red dot-dashed line in figure 9) and RAM (λc = δ)
(shown by the black dot-dashed line in figure 9), respectively. Equation (4.2b) agrees
well with the current ASL results and also with previously reported laboratory TBL
data (Mathis et al. 2009a).
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FIGURE 10. (Colour online) Comparison of RAM calculated by the empirical model (dot-
dashed line) with the experimental results (open circles) provided in Mathis et al. (2009a):
(a) Reτ = 2800, (b) Reτ = 7300, (c) Reτ = 19 000, (d) Reτ = 6.5× 105.

A single model for the amplitude modulation coefficient that accounts for both
the Reynolds number and the inner-scaled wall-normal distance can be proposed by
replacing the intercept p in (4.1) with (4.2), which is given as

RAM(Reτ , z+)= ln
Re0.132

τ

(0.61 ln z+)0.9
, (4.3a)

RAM(Reτ , z+)= ln
Re0.132

τ

0.57 ln z+
, (4.3b)

for the peak RAM and RAM (λc = δ), respectively. This empirical model depicts the
high-Reynolds-number effects on the amplitude modulation coefficient across the
logarithmic region of the boundary layer.

It is prudent to check the results estimated by the proposed empirical model against
other experimental results. Most previous studies estimated the amplitude modulation
coefficient by establishing a nominal cutoff wavelength. Thus, the results calculated
using (4.3b) for z+ > 100 (the plateau for 20 < z+ < 100 is taken to be the same
as the result at z+ = 100) are compared with the laboratory TBL results at Reτ =
2800, 7300 and 19 000 and the ASL observational data at Reτ = 6.5 × 105 (Mathis
et al. 2009a), as shown in figure 10. In figure 10, the dot-dashed line represents the
calculated results and the open circles represent the experimental data. The error bars
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(±0.05) indicate the uncertainty in the amplitude modulation coefficient due to the
choice of the cutoff wavelength (discussed in Mathis et al. 2009a). Within the small
scatter of the results, the calculated amplitude modulation coefficient agrees well with
the laboratory TBL and the ASL results in the logarithmic region (as shown on the left
side of the vertical dashed line), spanning over three orders of magnitude in Reτ . With
increasing z+, the calculated results gradually deviate from the experimental results in
the wake region (right side of the vertical dashed line). Therefore, the empirical model
of (4.3) provides a plausible estimation of the amplitude modulation coefficient in the
logarithmic region (100 < z+ < 0.15Reτ ) based on the known Reynolds number and
the inner-scaled wall-normal distance.

5. Conclusions

Long-term observations in the ASL were performed at the QLOA site, and
large amounts of high-Reynolds-number data were obtained. Based on the selected
high-quality near-neutral ASL data, the amplitude modulation between multi-scale
turbulent motions is investigated under various Reynolds number conditions. A
significant difference is found in the amplitude modulation effect for motions with
different scales. Further analysis of the amplitude modulation between motions with
different length scales indicates that not all of the length scales of turbulent motions
have an amplitude modulation effect between them; rather, several specific motions
have an effect. The most energetic VLSMs with scales larger than the wavelength of
the energy spectral peak in the lower wavenumber region (λx > 28(zδ)0.5) contribute
significantly to the amplitude modulation effect. The small-scale motions with scales
shorter than the wavelength of the higher wavenumber peak (λx < 12z) are strongly
modulated. However, the motions with scales ranging between 12z and 28(zδ)0.5

have negligible contributions to the amplitude modulation effect, and they are almost
unmodulated.

Therefore, the correlation coefficient between the VLSMs with scales larger than
28(zδ)0.5 and the filtered envelope of the small-scale motions (λx < 12z) could provide
a more accurate estimate for the degree of amplitude modulation. The corresponding
amplitude modulation coefficient (peak RAM) is much larger than that estimated by
establishing a nominal cutoff wavelength and remains positive in the entire logarithmic
region. Moreover, the peak RAM increases log-linearly with the Reynolds number in
the logarithmic region. An empirical model of the amplitude modulation coefficient
that accounts for both the Reynolds number and the inner-scaled wall-normal distance
is proposed to describe the effects of the Reynolds number across the logarithmic
region of the boundary layer. The comparisons of the calculated results with other
experimental data at different Reynolds numbers, spanning over three orders of
magnitude in Reτ , confirm that the empirical model provides a plausible estimation for
the amplitude modulation coefficient in the logarithmic region (100< z+ < 0.15Reτ ).

This work studies the amplitude modulation under very-high-Reynolds-number
conditions, which promotes progress in studying the high-Reynolds-number wall-
bounded turbulence that is prevalent and important in many engineering and scientific
applications. The investigation of the amplitude modulation between motions with
different length scales contributes to a better understanding of the interaction between
multi-scale turbulent motions. Experimental uncertainties are inevitably associated
with these ASL measurements; however, it appears that the ASL measurements can
be used as a representation of the very-high-Reynolds-number behaviour.
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Appendix A

No. Year Time and date Uτ Reτ ν z/L δ

(m s−1) (×106) (×10−5 m2 s−1) (m)

1 2013 13 April 18:00–19:00 0.30 2.4 1.80 0.008 143
2 2013 14 April 08:00–09:00 0.26 2.3 1.72 0.009 152
3 2013 18 April 08:00–09:00 0.35 4.6 1.53 −0.04 201
4 2013 22 April 08:00–09:00 0.27 3.0 1.69 −0.05 185
5 2013 7 May 11:00–12:00 0.26 2.2 1.75 −0.02 148
6 2013 7 May 14:00–15:00 0.34 2.8 1.75 −0.05 143
7 2013 7 May 15:00–16:00 0.36 3.0 1.75 −0.05 146
8 2013 23 May 16:00–17:00 0.34 3.1 1.79 −0.04 163
9 2013 23 May 17:00–18:00 0.36 3.2 1.78 −0.01 158
10 2014 11 April 18:00–19:00 0.29 3.3 1.77 −0.0002 199
11 2014 24 April 08:00–09:00 0.39 3.3 1.60 −0.008 137
12 2014 24 April 09:00–10:00 0.34 2.4 1.59 −0.02 112
13 2014 1 May 06:00–07:00 0.29 2.7 1.63 0.01 151
14 2014 1 May 07:00–08:00 0.28 3.6 1.63 −0.03 208
15 2014 9 May 07:00–08:00 0.20 2.5 1.58 −0.06 194
16 2014 12 May 18:00–19:00 0.26 4.1 1.85 −0.01 289
17 2014 13 May 01:00–02:00 0.35 2.0 1.75 0.03 100
18 2014 14 May 00:00–01:00 0.34 3.2 1.68 0.007 157
19 2014 18 May 19:00–20:00 0.24 2.2 1.77 0.02 159
20 2014 23 May 02:00–03:00 0.26 2.1 1.77 0.03 142
21 2014 23 May 07:00–08:00 0.28 2.2 1.74 −0.04 136
22 2014 23 May 19:00–20:00 0.33 1.9 1.84 0.007 105
23 2014 24 May 04:00–05:00 0.40 4.0 1.74 0.009 174
24 2015 27 March 17:00–18:00 0.33 4.5 1.70 −0.05 229
25 2015 1 April 13:00–14:00 0.42 3.6 1.64 −0.01 140
26 2015 1 April 14:00–15:00 0.42 4.3 1.64 −0.02 166
27 2015 1 April 15:00–16:00 0.44 4.1 1.64 −0.04 152
28 2015 1 April 16:00–17:00 0.37 3.6 1.65 −0.05 160
29 2015 1 April 17:00–18:00 0.28 3.3 1.64 −0.06 193
30 2015 1 April 18:00–19:00 0.27 2.4 1.63 −0.02 145
31 2015 2 April 20:00–21:00 0.30 2.8 1.63 −0.01 152
32 2015 2 April 21:00–22:00 0.27 2.5 1.62 −0.01 150
33 2015 2 April 22:00–23:00 0.29 3.6 1.62 −0.01 201
34 2015 3 April 08:00–09:00 0.19 2.3 1.60 −0.02 190
35 2015 10 April 17:00–18:00 0.40 3.9 1.71 −0.03 165
36 2015 10 April 18:00–19:00 0.34 3.1 1.70 −0.006 155
37 2015 14 April 18:00–19:00 0.31 2.7 1.78 0.01 155
38 2015 15 April 17:00–18:00 0.39 3.7 1.73 −0.04 164

TABLE 1. (continued)
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39 2015 15 April 18:00–19:00 0.37 3.5 1.72 −0.007 162
40 2015 30 April 00:00–01:00 0.46 2.1 1.77 0.01 81
41 2015 30 April 04:00–05:00 0.50 5.2 1.71 0.007 177
42 2015 30 April 05:00–06:00 0.51 5.4 1.70 0.005 179
43 2015 30 April 08:00–09:00 0.40 4.3 1.70 −0.02 182
44 2015 7 May 18:00–19:00 0.35 5.3 1.78 −0.03 269
45 2015 9 May 17:00–18:00 0.41 4.9 1.81 −0.04 216
46 2015 9 May 18:00–19:00 0.39 3.6 1.80 −0.004 165
47 2015 10 May 04:00–05:00 0.44 4.7 1.63 0.004 173
48 2015 10 May 07:00–08:00 0.37 3.8 1.64 −0.02 167
49 2015 10 May 08:00–09:00 0.46 4.5 1.65 −0.04 161
50 2015 10 May 18:00–19:00 0.37 5.0 1.68 −0.06 227
51 2015 14 May 18:00–19:00 0.36 4.9 1.79 −0.02 241
52 2015 26 May 22:00–23:00 0.22 1.6 1.79 0.05 130
53 2015 27 May 16:00–17:00 0.34 3.1 1.80 −0.03 163
54 2015 27 May 21:00–22:00 0.41 4.3 1.71 0.002 179
55 2015 29 May 01:00–02:00 0.32 2.5 1.74 0.01 135
56 2015 29 May 02:00–03:00 0.35 1.8 1.73 0.009 89
57 2015 29 May 03:00–04:00 0.35 3.8 1.72 0.007 185
58 2015 29 May 04:00–05:00 0.35 3.6 1.73 0.009 176

TABLE 1. Key information relating to the selected datasets in the neutral ASL.
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