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We study the Cauchy problem of certain Boussinesq-α equations in n dimensions
with n = 2 or 3. We establish regularity for the solution under
∇u ∈ L1(0, T ; Ḃ0

∞,∞(Rn)). As a corollary, the smooth solution of the
Leray-α–Boussinesq system exists globally, when n = 2. For the Lagrangian averaged
Boussinesq equations, a regularity criterion ∇θ ∈ L1(0, T ; L∞(R2)) is established.
Other Boussinesq systems with partial viscosity are also discussed in the paper.

1. Introduction

The interactive motion of a passive scalar (e.g. temperature) and the atmosphere
is modelled by the following Boussinesq equations:

vt + (v · ∇)v + ∇π = θen,

θt + v · ∇θ = 0,

div v = 0, (x, t) ∈ R
n × R+,

(v, θ)|t=0 = (v0, θ0), x ∈ R
n.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(B)

Here n = 2 or 3, e2 := (0, 1)T and e3 := (0, 0, 1)T. System (B) for n = 2 has been
the subject of numerous studies [1,2,14]. In [1,2], the following regularity criterion
was proved:

∇θ ∈ L1(0, T ; L∞(R2)). (1.1)

For the three-dimensional case, we refer the reader to [5] and references therein.
When θ = 0, (B) reduces to the well-known Euler equations

vt + (v · ∇)v + ∇π = 0,

div v = 0, (x, t) ∈ R
n × R+,

v|t=0 = v0, x ∈ R
n.

⎫⎪⎬
⎪⎭ (E)
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The global existence for the three-dimensional Euler equations (E) is a very
challenging open question. The main difficulty is understanding the effect of vortex
stretching, which is absent from the two-dimensional Euler equations. As part of the
effort to understand the vortex-stretching effect, various simplified model equations
have been proposed in the literature. An interesting recent development is the
Lagrangian averaged Euler equations [7, 8]:

vt + (u · ∇)v +
∑

j

vj∇uj + ∇π = 0,

u − α2∆u = v,

div u = div v = 0,

v|t=0 = v0, x ∈ R
n.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(α-E)

The averaged Euler models have been used to study the average behaviour of the
three-dimensional Euler and Navier–Stokes equations and used as a turbulent clo-
sure model [3]. The global existence of the three-dimensional Lagrangian averaged
Euler equations is still an open question, although the Lagrangian averaged-Navier–
Stokes equations have been shown to have global existence [6, 12]. In [4], Fan and
Ozawa proved the following regularity criterion for (α-E):

∇u ∈ L1(0, T ; Ḃ0
∞,∞(Rn)). (1.2)

Motivated by the above interpretation of the averaged Euler–Lagrange equations,
we can clearly apply the same averaging principle to the Boussinesq equations (B).
We obtain the following Lagrangian averaged Boussinesq equations:

vt + u · ∇v +
∑

j

vj∇uj + ∇π = θen, (1.3)

θt + u · ∇θ = 0, (1.4)

u − α2∆u = v, (1.5)
div u = div v = 0, (1.6)

(v, θ)|t=0 = (v0, θ0), x ∈ R
n, n = 2, 3. (1.7)

We also consider the following version of the Leray-α–Boussinesq model:

vt + u · ∇v + ∇π = θen,

θt + u · ∇θ = 0,

u − α2∆u = v,

div u = div v = 0,

(v, θ)|t=0 = (v0, θ0), x ∈ R
n, n = 2, 3,

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(1.8)

and the following version of the modified Leray-α–Boussinesq model:

vt + v · ∇u + ∇π = θen,

θt + u · ∇θ = 0,

}
(1.9)
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u − α2∆u = v,

div u = div v = 0,

(v, θ)|t=0 = (v0, θ0), x ∈ R
n, n = 2, 3.

⎫⎪⎬
⎪⎭ (1.9 cont.)

By standard energy estimates, it is easy to prove the well-posedness of local
strong solutions to problem (1.3)–(1.7), (1.8) and (1.9), and hence we omit the
details here.

Theorem 1.1. Let (v0, θ0) ∈ H3 and div v0 = 0 in R
n(n = 2, 3). There exists a

positive time T such that (1.3)–(1.7), (1.8) or (1.9) has a unique solution (v, θ) in
(0, T ) such that

(v, θ) ∈ L∞(0, T ; H3).

The aim of this paper is to study the regularity conditions of the problem (1.3)–
(1.7), (1.8) and (1.9). We will prove these below.

Theorem 1.2. Let (v0, θ0) ∈ H3 and div v0 = 0 in R
n. Let (v, θ) be a smooth

solution to (1.3)–(1.7), (1.8) or (1.9). If u satisfies (1.2), then the solution (v, θ)
can be extended beyond T .

When n = 2, testing (1.8)1 for v and using

‖θ‖L2 � ‖θ0‖L2 ,

we easily get
u ∈ L∞(0, T ; H2),

whence we obtain

∇u ∈ L∞(0, T ; H1) ⊂ L∞(0, T ; BMO) ⊂ L∞(0, T ; Ḃ0
∞,∞).

By theorem 1.2, this proves the following theorem.

Theorem 1.3. Let (v0, θ0) ∈ H3 and div v0 = 0 in R
2. Then the two-dimensional

problem (1.8) has a global-in-time smooth solution (v, θ) such that

(v, θ) ∈ L∞(0, T ; H3(R2))

for any T > 0.

Remark 1.4. We are unable to prove theorem 1.3 for the two-dimensional prob-
lem (1.3)–(1.7) or for (1.9).

Theorem 1.5. Let (v0, θ0) ∈ H3 with div v0 = 0 in R
2. Let (v, θ) be a smooth

solution to the two-dimensional problem (1.3)–(1.7). If θ satisfies (1.1), then the
solution (v, θ) can be extended beyond T .

Remark 1.6. We cannot prove theorem 1.5 for the two-dimensional problem (1.9).

Definition 1.7 (Triebel [15]). Let {φj}j∈Z be the Littlewood–Paley dyadic de-
composition of unity that satisfies

φ̂ ∈ C∞
0 (B2 \ B1/2), φ̂j(ξ) = φ̂(2−jξ)
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and ∑
j∈Z

φ̂j(ξ) = 1

for any ξ �= 0. The homogeneous Besov space Ḃs
p,q := {f ∈ S ′ : ‖f‖Ḃs

p,q
< ∞} is

introduced by the norm

‖f‖Ḃs
p,q

:=
( ∑

j∈Z

‖2jsφj ∗ f‖q
Lp

)1/q

for s ∈ R, 1 � p, q � ∞.

In the proofs below, we will use the following bilinear commutator and product
estimates due to Kato and Ponce [9] and Kenig et al . [10]:

‖Λr(fg) − fΛrg‖Lp � C(‖∇f‖Lp1 ‖Λr−1g‖Lq1 + ‖Λrf‖Lp2 ‖g‖Lq2 ), (1.10)

‖Λr(fg)‖Lp � C(‖f‖Lp1 ‖Λrg‖Lq1 + ‖Λrf‖Lp2 ‖g‖Lq2 ), (1.11)

with

r > 0, Λ := (−∆)1/2 and
1
p

=
1
p1

+
1
q1

=
1
p2

+
1
q2

.

We will also use the following Gagliardo–Nirenberg inequality (see [13] for a
generalized form):

‖∇∆u‖2
L4 � C‖∇u‖L∞‖∇∆2u‖L2 . (1.12)

2. Proof of theorem 1.2

This section is devoted to the proof of theorem 1.2. Since we deal with the regularity
conditions for smooth solutions, we only need to establish the a priori estimates
for smooth solutions.

Since (1.8) and (1.9) are easier, we study only the problem (1.3)–(1.7).
First, from (1.4) and (1.6), it follows easily that

‖θ(t)‖L2∩Ln � ‖θ0‖L2∩Ln . (2.1)

Testing (1.3) by u, using (1.5), (1.6) and (2.1), we see that

1
2

d
dt

∫
u2 + α2|∇u|2 dx =

∫
θen · u dx � ‖θ0‖L2‖u‖L2 ,

whence we obtain
‖u‖L∞(0,T ;H1) � C. (2.2)

Testing (1.3) by v, using (1.6) and (2.1), we find that

1
2

d
dt

∫
v2 dx � C‖∇u‖L∞‖v‖2

L2 + ‖θ0‖L2‖v‖L2 . (2.3)
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Applying Λ3 to (1.3), testing by Λ3v, using (1.6), (1.10) and (1.11), we infer that

1
2

d
dt

∫
|Λ3v|2 dx �

∣∣∣∣
∫

(Λ3(u · ∇v) − u · ∇Λ3v) · Λ3v dx

∣∣∣∣
+

∑
j

∣∣∣∣
∫

Λ3(vj∇uj) · Λ3v dx

∣∣∣∣ +
∣∣∣∣
∫

Λ3θen · Λ3v dx

∣∣∣∣
� C(‖∇u‖L∞‖Λ3v‖L2 + ‖Λ3u‖L4‖∇v‖L4

+ ‖v‖L4‖∆2u‖L4 + ‖Λ3θ‖L2)‖Λ3v‖L2 . (2.4)

We use (1.12), (1.5) and (2.2) to bound

‖Λ3u‖L4‖∇v‖L4 � C‖Λ3u‖L4(‖∇u‖L4 + ‖Λ3u‖L4)

� C‖Λ3u‖L4(‖∇u‖8/(8+n)
L2 ‖Λ3u‖n/(8+n)

L4 + ‖Λ3u‖L4)

� C‖Λ3u‖L4(1 + ‖Λ3u‖L4)

� C + C‖Λ3u‖2
L4

� C + C‖∇u‖L∞‖∇∆2u‖L2

� C + C‖∇u‖L∞‖Λ3v‖L2 , (2.5)

where (in the second inequality) we used

‖∇u‖L4 � C‖∇u‖8/(8+n)
L2 ‖Λ3u‖n/(8+n)

L4 .

In what follows, we will use the following two Gagliardo–Nirenberg inequalities
(also found in [13]):

‖Λ4u‖L4 � C‖∇u‖β
L∞‖Λ5u‖1−β

L2 , (2.6)

‖∆u‖L4 � C‖∇u‖1−β
L∞ ‖Λ5u‖β

L2 , (2.7)

with β = (4 − n)/(16 − 2n).
Using (2.6), (2.7), (1.5) and (2.2), we bound

‖v‖L4‖∆2u‖L4 � C(‖u‖L4 + ‖∆u‖L4)‖∆2u‖L4

� C(1 + ‖∆u‖L4)‖∆2u‖L4

� C‖∆2u‖L4 + C‖∆u‖L4‖∆2u‖L4

� C‖∇u‖1/4−n/16
L2 ‖Λ5u‖3/4+n/16

L2 + C‖∇u‖L∞‖Λ5u‖L2

� C + C‖Λ3v‖L2 + C‖∇u‖L∞‖Λ3v‖L2 . (2.8)

Inserting (2.7) and (2.8) into (2.4), we obtain

1
2

d
dt

∫
|Λ3v|2 dx � C‖∇u‖L∞‖Λ3v‖2

L2 + C‖Λ3v‖2
L2 + C‖Λ3θ‖2

L2 + C. (2.9)
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Taking Λ3 to (1.4), testing by Λ3θ, using (1.10), (2.1), we deduce that

1
2

d
dt

∫
|Λ3θ|2 dx

�
∣∣∣∣
∫

(Λ3(u · ∇θ) − u · ∇Λ3θ)Λ3θ dx

∣∣∣∣
� C‖∇u‖L∞‖Λ3θ‖2

L2 + C‖∇θ‖L4‖Λ3u‖L4‖Λ3θ‖L2

� C‖∇u‖L∞‖Λ3θ‖2
L2 + C‖θ‖1/2

Ln ‖Λ3θ‖1/2
L2 · ‖∇u‖1/2

L∞‖Λ5u‖1/2
L2 · ‖Λ3θ‖L2

� C‖∇u‖L∞‖Λ3θ‖2
L2 + C‖Λ3θ‖3/2

L2 · ‖∇u‖1/4
L∞ · ‖∇u‖1/4

L∞‖Λ5u‖1/2
L2

� C‖∇u‖L∞‖Λ3θ‖2
L2 + C‖∇u‖1/3

L∞‖Λ3θ‖2
L2 + C‖∇u‖L∞‖Λ3v‖2

L2 . (2.10)

Here we have used the Gagliardo–Nirenberg inequalities:

‖∇θ‖2
L4 � C‖θ‖Ln‖Λ3θ‖L2 , (2.11)

‖Λ3u‖2
L4 � ‖∇u‖L∞‖Λ5u‖L2 . (2.12)

Combining (2.9), (2.10), (2.3) and using the logarithmic Sobolev inequality [11]

‖∇u‖L∞ � C(1 + ‖∇u‖Ḃ0
∞,∞

log(e + ‖Λ5u‖L2)), (2.13)

we conclude that
‖(v, θ)‖L∞(0,T ;H3) � C. (2.14)

This completes the proof.

Remark 2.1. Consider the following three-dimensional Boussinesq-α system with
partial viscosity:

vt + u · ∇v +
∑

j

vj∇uj + ∇π − ∆v = θe3,

θt + u · ∇θ = 0,

u − α2∆u = v,

div u = div v = 0,

(v, θ)|t=0 = (v0, θ0).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.15)

It is easy to prove that theorem 1.2 holds for (2.15). Specifically, testing (2.15)1
by u and using (2.1), we have

u ∈ L2(0, T ; H2). (2.16)

Testing (2.15)1 by v, using (2.16), we easily get

u ∈ L2(0, T ; H3),

whence we obtain

∇u ∈ L2(0, T ; L∞) ⊂ L2(0, T ; BMO) ⊂ L2(0, T ; Ḃ0
∞,∞).
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Theorem 2.2. Let (v0, θ0) ∈ H3 and div v0 = 0 in R
3. Then (2.15) has a unique

smooth solution (v, θ) such that

(v, θ) ∈ L∞(0, T ; H3), v ∈ L2(0, T ; H4),

for any T > 0.

Remark 2.3. Theorem 2.2 also holds for the Leray-α–Boussinesq system with par-
tial viscosity:

vt + u · ∇v + ∇π − ∆v = θe3,

θt + u · ∇θ = 0,

u − α2∆u = v,

div u = div v = 0,

(v, θ)|t=0 = (v0, θ0).

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(2.17)

Remark 2.4. Theorem 2.2 also holds for the following modified Leray-α–Bous-
sinesq system with partial viscosity:

vt + v · ∇u + ∇π − ∆v = θe3,

θt + u · ∇θ = 0,

u − α2∆u = v,

div u = div v = 0,

(v, θ)|t=0 = (v0, θ0).

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(2.18)

3. Proof of theorem 1.5

First, we still have to prove (2.1) and (2.2).
Taking Λ to (1.4), testing by Λθ, using (1.6), (1.10) and (2.2), we see that

1
2

d
dt

∫
|Λθ|2 dx � ‖∇u‖L2‖∇θ‖L∞‖Λθ‖L2 � C‖∇θ‖L∞‖Λθ‖L2 ,

whence we obtain
‖θ‖L∞(0,T ;H1) � C, (3.1)

due to Gronwall’s inequality and (1.1).
Taking curl to (1.3), defining ω := curl v, we have

ωt + u · ∇ω = curl(θe2) = ∂1θ. (3.2)

Testing (3.2) by ω, using (1.6) and (3.1), we find that

1
2

d
dt

∫
ω2 dx �

∫
∂1θω dx � ‖∂1θ‖L2‖ω‖L2 ,

whence we obtain
‖ω‖L∞(0,T ;L2) � C. (3.3)

This proves
‖u‖L∞(0,T ;H3) � C,
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whence we obtain
‖∇u‖L∞(0,T ;Ḃ0

∞,∞) � C. (3.4)

This completes the proof thanks to theorem 1.2.

Remark 3.1. Consider the following two-dimensional Boussinesq-α system with
partial viscosity:

vt + u · ∇v +
∑

j

vj∇uj + ∇π = θe2, (3.5)

θt + u · ∇θ = ∂2
1θ, (3.6)

u − α2∆u = v, (3.7)
div u = div v = 0, (3.8)

(v, θ)|t=0 = (v0, θ0). (3.9)

Testing (3.6) by θ, using (3.8), we see that

1
2

d
dt

∫
θ2 dx +

∫
|∂1θ|2 dx = 0,

whence we obtain
‖∂1θ‖L2(0,T ;L2) � C. (3.10)

Taking curl to (3.5), we have (3.2). Thus, we arrive at (3.4). By theorem 1.5, this
proves the following theorem.

Theorem 3.2. Let (v0, θ0) ∈ H3 and div v0 = 0 in R
2. Then the problem (3.5)–

(3.9) has a unique smooth solution (v, θ) such that

(v, θ) ∈ L∞(0, T ; H3), ∂1θ ∈ L2(0, T ; H3),

for any T > 0.

Remark 3.3. Consider the following two-dimensional Boussinesq-α system with
partial viscosity:

vt + u · ∇v +
∑

j

vj∇uj + ∇π − ∂2
1v = θe2, (3.11)

θt + u · ∇θ = 0, (3.12)

u − α2∆u = v, (3.13)
div u = div v = 0, (3.14)

(v, θ)|t=0 = (v0, θ0). (3.15)

Taking curl to (3.11), denoting ω := curl v, we have

ωt + u · ∇ω − ∂2
1ω = ∂1θ. (3.16)

Testing (3.16) by ω, using (3.14) and (2.1), we see that

1
2

d
dt

∫
ω2 dx +

∫
|∂1ω|2 dx =

∫
∂1θ · ω dx = −

∫
θ · ∂1ω dx � ‖θ0‖L2‖∂1ω‖L2 ,
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whence we obtain
ω ∈ L∞(0, T ; L2).

Thus, we arrive at (3.4). By theorem 1.5, this proves the following theorem.

Theorem 3.4. Let (v0, θ0) ∈ H3 and div v0 = 0 in R
2. Then the problem (3.11)–

(3.15) has a unique smooth solution (v, θ) such that

(v, θ) ∈ L∞(0, T ; H3), ∂1v ∈ L2(0, T ; H3)

for any T > 0.
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products with applications to continuum theories. Adv. Math. 137 (1998), 1–81.

9 T. Kato and G. Ponce. Commutator estimates and the Euler and Navier–Stokes equations.
Commun. Pure Appl. Math. 41 (1988), 891–907.

10 C. Kenig, G. Ponce and L. Vega. Well-posedness of the initial value problem for the Kort-
eweg–de Vries equations. J. Am. Math. Soc. 4 (1991), 323–347.

11 H. Kozono, T. Ogawa and Y. Taniuchi. The critical Sobolev inequalities in Besov spaces
and regularity criterion to some semilinear equations. Math. Z. 242 (2002), 251–278.

12 J. Marsden and S. Shkoller. Global well-posedness for the Lagrangian averaged Navier–
Stokes (LANS-α) equations on bounded domains. Phil. Trans. R. Soc. Lond. A359 (2001),
1449–1468.

13 Y. Meyer. Oscillating patterns in some nonlinear evolution equations. In Mathematical
foundation of turbulent viscous flows, Lecture Notes in Mathematics, vol. 1871, pp. 101–
187 (Springer, 2006).

14 Y. Taniuchi. A note on the blow-up criterion for the inviscid 2D Boussinesq equations. In
The Navier–Stokes equations: theory and numerical methods (ed. R. Salvi), Lecture Notes
in Pure and Applied Mathematics, vol. 223, pp. 131–140 (Boca Raton, FL: CRC Press,
2002).

15 H. Triebel. Theory of function spaces (Birkhäuser, 1983).
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