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The drainage of a viscous gravity current into a deep porous medium driven by both
the gravitational and capillary forces is considered in two steps. We first study the one-
dimensional case where a layer of fluid drains vertically into an infinitely deep porous
medium. We determine a transition from the capillary-driven regime to the gravity-
driven regime as time proceeds. Second, we solve the coupled spreading and drainage
problem. There are no self-similar solutions of the problem for the entire time period,
so asymptotic analyses are developed for the height, depth and front location in both
the early-time and the late-time periods. In addition, we present numerical results
of the governing partial differential equations, which agree well with the self-similar
solutions in the appropriate asymptotic limits.

Key words: gravity currents, porous media, thin films

1. Introduction

Gravity currents occur when a fluid propagates horizontally along a base (or
along a ceiling) into another fluid with a different density (see, e.g. Simpson 1982;
Huppert 1982b; Gratton & Minotti 1990; Huppert & Woods 1995; Ungarish &
Huppert 2000; Hallez & Magnaudet 2009; Zheng, Rongy & Stone 2015b); of course,
similar dynamics can occur along inclined boundaries (see, e.g. Huppert 1982a;
Lister 1992; Vella & Huppert 2006). One special case is the gravity current flowing
over a permeable porous medium, where fluid loss occurs due to various drainage
mechanisms, such as buoyancy and capillarity. This situation exists in everyday life,
such as liquid droplets spreading on paper (see, e.g. Gillespie 1958; Borhan & Rungta
1992; Clarke et al. 2002), or in industrial processes, such as CO2 leakage through a
permeable caprock in a geological sequestration project (see, e.g. Pritchard, Woods
& Hogg 2001; Neufeld & Huppert 2009) or in geological processes, such as the
motion of the brackish water currents over the permeable bottom of estuaries (see,
e.g. Thomas, Marino & Linden 1998; Ungarish & Huppert 2000).

† Email address for correspondence: hastone@princeton.edu
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The influence of capillary effects on the drainage of a viscous gravity current 515

Many previous studies in this context have focused on the buoyancy-driven fluid
drainage from a propagating gravity current. For example, Thomas et al. (1998)
and Ungarish & Huppert (2000) have studied the inertial gravity currents with
buoyancy-driven drainage. For viscous gravity currents, Acton, Huppert & Worster
(2001) studied a gravity current spreading on and seeping into an infinitely deep
porous medium, purely driven by gravitational forces. On the other hand, when the
porous medium is of finite thickness, the problem has been studied, for example,
by Davis & Hocking (1999) and Pritchard et al. (2001) for the case of an outward
spreading current, and by Zheng, Shin & Stone (2015c) for the case of an inward
spreading current. Other buoyancy-driven drainage situations may occur when there
is a fault within the base (see, e.g. Neufeld et al. 2011; Vella et al. 2011), or there
exists an edge (see, e.g. Zheng et al. 2013). In addition, Yu, Zheng & Stone (2016)
recently studied the drainage of a viscous gravity current through both a permeable
substrate and a fixed edge.

Another important situation occurs when the fluid drainage from a spreading
gravity current is driven by the capillary forces, such as when a permeable substrate
is wettable by the fluid. Several previous studies have investigated the capillary effects
on the gravity current. For example, Woods & Farcas (2009) and Sayag & Neufeld
(2016) investigated the effects of the capillary entry pressure on the leakage through a
permeable rock, which is non-wettable by the spreading fluid. Also, there are studies
of capillary retention, i.e. a certain amount of fluid is left inside the porous medium,
through which the main current has passed, due to the capillary effects (Kochina,
Mikhailov & Filinov 1983; Hesse, Orr Jr & Tchelepi 2008; Farcas & Woods 2009;
Juanes, MacMinn & Szulczewski 2010; MacMinn et al. 2010; MacMinn, Szulczewski
& Juanes 2011; Nordbotten & Dahle 2011). In addition, the problem of two-phase
gravity currents due to the action of the capillary forces has been investigated by
Golding et al. (2011), Golding, Huppert & Neufeld (2013). However, the effects of
the capillary-driven drainage is still an open question.

In this paper, we study the drainage of a viscous gravity current into a deep porous
medium, where the motion is driven by both the gravitational and capillary forces.
In particular, we emphasize the influence of the capillary effects on the dynamic
behaviours of the current. First, we establish a one-dimensional drainage model in
§ 2, considering that a fluid drains into a deep porous medium in the vertical direction.
Then, in § 3, we investigate the two-dimensional problem where a viscous gravity
current drains vertically into a deep porous medium while horizontally spreading over
the medium. For the two-dimensional problem, since there are no self-similar solutions
for the entire time period, we investigate the early-time (§ 3.3) and the late-time (§ 3.4)
asymptotic behaviours where self-similar solutions are available. We also numerically
solve the governing partial differential equations to verify the self-similar solutions in
the asymptotic limits, and to study the time transition between the early-time and the
late-time asymptotic behaviours in § 3.5. In addition, we highlight the influence of the
capillary effects for the two-dimensional problem (§ 4) and study the time transition
between the early-time and the late-time self-similar behaviours. Finally, we close
our paper in § 5 with some final remarks.

We note that the flow considered here has a dense liquid flowing over a less
dense fluid (a gas phase in the porous media). Thus, it is natural to expect that a
Rayleigh–Taylor-type instability can occur within the porous material and transverse
to the main flow direction of the gravity current. Such gravitational instabilities
were noticed in the experiments of Acton et al. (2001) at relatively long times (the
late-time period) and so there was a large time period over which the standard
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gravity current analysis rationalized the spreading. This gravitational instability has
also been studied experimentally (see, e.g. Saffman & Taylor 1958; Neufeld et al.
2010; MacMinn et al. 2012; Huppert, Neufeld & Strandkvist 2013; Tsai, Riesing &
Stone 2013) and numerically and theoretically (see, e.g. Hewitt, Neufeld & Lister
2013). In the early-time period, where the capillary effects are important, as discussed
below, it is then safe to neglect the gravitational instability.

2. One-dimensional drainage
In order to address the two-dimensional problem of a viscous gravity current

draining into a deep porous medium, we first consider a one-dimensional configuration
sketched in figure 1. An infinitely deep porous medium with uniform porosity φ and
permeability k lies below z= 0. Liquid initially placed on top of the material drains
into the porous medium, driven by both the gravitational and capillary forces. We are
interested in the height of the liquid h(t) above the porous medium and the depth
of the liquid `(t) penetrating into the porous medium, as functions of time t. Here,
we neglect the possibility of any instability that would destroy the one-dimensional
drainage scenario.

Two situations are considered here: (i) the liquid is of a fixed volume, with an
initial height h0; (ii) the liquid is continually added into the system above the porous
medium, with the total volume V as a function of t given by

V = qtα, (2.1)

where q and α are constants. In particular, α= 0 and 1 indicate, respectively, the cases
of a fixed-volume release and constant-rate addition.

In the liquid above the porous medium, the pressure p(z, t) can be assumed to be
hydrostatic and hence is given by

p(z, t)= p0 + ρg(h− z), for 0 6 z 6 h(t), (2.2)

where p0 is the atmospheric pressure at the top of the liquid layer, ρ is the density
of the liquid and g is gravitational acceleration. In the porous medium, neglecting the
inertial effects, Darcy’s law yields

µv

k
=−∂p

∂z
− ρg, (2.3)

where µ is the viscosity of the liquid and v is the Darcy velocity, which is the
volume flux of liquid per unit area of the porous medium transverse to the flow. The
one-dimensional continuity equation requires that the vertical velocity v is independent
of z, thus the pressure distribution in the porous medium is linear with z. Assuming
that the viscous stresses can be neglected at the liquid–air interface (i.e. the capillary
number is small, µv/γ � 1, where γ is the interfacial tension), then the boundary
conditions are

p= p0 + ρgh, at z= 0, (2.4a)

p= p0 − 2γ cosθ
R

, at z=−`(t), (2.4b)

where R denotes the average pore radius and θ is the contact angle of the liquid
with respect to the solid (see the inset in figure 1). We only consider the case when
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Liquid

Porous medium

 0

FIGURE 1. (Colour online) Sketch of the configuration of one-dimensional drainage of a
liquid with density ρ and viscosity µ into a infinitely deep porous medium with porosity
φ and permeability k driven by both the gravitational and capillary forces. The vertical
axis is denoted by z and the top of the porous medium is located at z = 0. The height
and the depth of the liquid above and inside the porous medium are denoted by h and
`, respectively. The pressure distribution given by (2.5) is shown on the right. The inset
highlights the enhanced drainage caused by the capillary forces.

θ ∈ [0, π/2]. Here, equation (2.4b) indicates that the porous medium is initially dry,
i.e. the pores are filled with air. Hence, we can determine the pressure in the porous
medium as

p(z)= p0 + ρgh
(

1+ z
`

)
+ 2γ cosθ

R

( z
`

)
, for −`(t)6 z 6 0. (2.5)

When θ ∈ [ 0,π/2 ), the porous medium is wettable by the liquid. When θ =π/2, the
capillary forces are expected to have no influence on the drainage, so we recover the
case of purely gravity-driven drainage (Acton et al. 2001).

Differentiating (2.5) with respect to z and substituting the result into (2.3), we find
the time-dependent drainage velocity

v =− k
µ

(
ρg
(

h
`
+ 1
)
+ 2γ cosθ

R`

)
, for −`(t)6 z 6 0. (2.6)

The first term on the right-hand side is caused by gravity and the second term is
caused by the capillary forces. In order to compare their magnitudes, we define a
Bond number, which is the ratio of the contribution from gravity to that from the
capillary forces

Bo≡ (h+ `)/h∗, (2.7)
where

h∗ ≡ 2γ cosθ/Rρg (2.8)
is a capillary length scale. Since we only consider the case when θ ∈ [0, π/2], we
note that h∗ > 0.
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When Bo� 1, i.e. h+ `� h∗, the drainage is mainly driven by the capillary forces.
In contrast, when Bo � 1, h + ` � h∗, gravity dominates. Thus, when h + ` ≈ h∗,
both effects are important. We note that since h(t) and `(t) are, in general, functions
of time t, the Bond number defined in (2.7) depends on time. Therefore, the relative
magnitude of the capillary forces and the gravitational forces can change with time
as drainage proceeds.

The time rate of change of the liquid volume inside the porous medium equals the
flux of liquid into the porous medium across the plane at z= 0. Therefore,

φ
d`
dt
=−v. (2.9)

After combining equations (2.6) and (2.9), we obtain an evolution equation for `(t):

φ
d`
dt
= k
µ

(
ρg
(

h
`
+ 1
)
+ 2γ cosθ

R`

)
. (2.10)

Then, by specifying an equation for the total volume and the initial condition `(0)= 0,
we can solve for both `(t) and h(t).

2.1. Fixed volume
If the liquid is of a fixed volume (fixed initial height h0), we have

h(t)+ φ`(t)= h0. (2.11)

Introducing the scalings

H = h
h0
, L= `

h0
, T =

(
kρg
φµh0

)
t, and H∗ = h∗

h0
= 2γ cosθ

h0Rρg
, (2.12a−d)

we obtain two dimensionless equations for the dynamics:

dL
dT
=
(

H
L
+ 1
)
+ H∗

L
, (2.13a)

H + φL= 1, (2.13b)

where the terms (H/L + 1) and H∗/L on the right-hand side of (2.13a) represent
the drainage caused by gravity and the capillary effects, respectively. Note that when
H∗= 0, equations (2.13a,b) reduce to the governing equations of the one-dimensional
purely gravity-driven drainage of a liquid of a fixed volume (Acton et al. 2001).

By substituting equation (2.13b) into (2.13a), we obtain a nonlinear ordinary
differential equation (ODE) for L(T):

dL
dT
= H∗ + 1

L
+ 1− φ. (2.14)

Along with the initial condition L(0) = 0, an implicit analytical solution for L(T)
can be found:

T = L
1− φ −

(H∗ + 1)
(1− φ)2 ln

(
1− φ

H∗ + 1
L+ 1

)
. (2.15)

Here, we point out another rescaling for this specific case for α= 0: T̃ ≡ (1− φ)T ,
then we arrive at an equation with only one parameter (H∗+ 1)/(1−φ). Even though
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FIGURE 2. (Colour online) The dimensionless depth of the liquid, L, as a function of
time T in the one-dimensional drainage model with φ = 0.37. (a) Fixed volume, α = 0.
All of the liquid has drained out after T = Td. (b) Continuous addition, α= 1. The liquid
starts accumulating above the porous medium after T > Ta. The shaded area means the
regime where the current model described by (2.18a,b) is invalid.

the new rescalings are more meaningful for showing the influence of parameters, we
still use the original rescaling (2.12a–d) and the corresponding equations (2.13) and
(2.14) and solution (2.15) in the following discussion in order to be more consistent
with the rescalings and the dimensionless equations for α 6= 0.

We find from (2.15) that in the early-time period, i.e. T � 1, for the case with
capillary forces, i.e. H∗> 0, the term (H∗+ 1)/L dominates in (2.14), i.e. the capillary
forces are important. The time dependence of the depth at early times is L∝ T1/2. In
the late-time period, i.e. T � 1, the term ‘1− φ’ dominates, i.e. the capillary forces
are negligible. The time dependence of the depth at late times is L∝T . The transition
between these two distinct dynamics occurs near T∗ =O(1).

Note that there is confinement such that L ∈ [0, 1/φ], because when L = 1/φ, all
of the liquid has drained into the porous medium (see (2.13b)). Thus, there exists
a critical drain-out time Td, which corresponds to L(Td) = 1/φ, as determined from
(2.15). For longer times, there is no pressure gradient in the liquid and the pressure
is given by (2.4b). From (2.3), we obtain that the velocity is only driven by gravity, i.e.
u≡−ρgk/µ; thus, L increases linearly with T , and the liquid would be expected to
just move downwards as a plug inside the porous medium. We find that it is possible
that all of the liquid has drained into the porous medium before the transition between
the early-time and late-time behaviours occurs.

The time evolution of the depth L, as given in (2.15), is shown in figure 2(a), where
we choose the porosity φ= 0.37, which is a representative value for packed beads. In
both cases of the drainage driven only by gravity, i.e. H∗ = 0 (solid blue curve), and
the drainage driven by both gravitational and capillary forces, e.g. H∗ = 100 (dashed
orange curve), the early-time dependence is L∝ T1/2, although capillary effects (H∗)
increase the prefactor, i.e. capillary effects enhance the drainage. At a critical time Td,
where L= 1/φ ≈ 2.70, all of the liquid has drained into the porous medium and our
model is invalid afterwards (shaded area).
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2.2. Continuous addition of liquid
When the liquid is continuously added above the porous medium, the total volume of
the liquid is changing with time, so that

h+ φ`= qtα, α > 0. (2.16)

By introducing the rescalings

H =
(

kρg
φµ

)−(α/(α−1))

q1/(α−1)h, (2.17a)

L=
(

kρg
φµ

)−(α/(α−1))

q1/(α−1)`, (2.17b)

T =
(

kρg
φµq

)−(1/(α−1))

t, (2.17c)

H∗ =
(

kρg
φµ

)−(α/(α−1))

q1/(α−1)h∗, (2.17d)

we obtain the dimensionless equations:

dL
dT
=
(

H
L
+ 1
)
+ H∗

L
, (2.18a)

H + φL= Tα. (2.18b)

Of course, equation (2.18a) is the same as (2.14), except that the definition of H∗ is
different. When H∗ = 0, equations (2.18a,b) return to the governing equations for the
problem of one-dimensional purely gravity-driven drainage of a continuously added
liquid (Acton et al. 2001).

We note that (2.18a,b) only hold for H > 0, i.e. the liquid can accumulate above
the porous medium. In this case, the liquid supply rate, Qsupp ≡ dV/dT = αTα−1, is
sufficient to compensate for the liquid loss rate, Qloss ≡ φdL/dT , due to the drainage.
It is possible that the liquid will drain out because of insufficient supply, in which
case the model (2.18a,b) fails to describe the dynamics. Depending on the value of
α, we next discuss the drain-out scenarios in more detail.

2.2.1. α < 1
When α < 1, similar to the case of α = 0, equations (2.18a,b) are valid before a

critical drain-out time Td. By substituting (2.18b) into (2.18a), we obtain a nonlinear
ODE for L(T):

dL
dT
= H∗ + Tα

L
+ 1− φ. (2.19)

With the initial condition L(0)= 0, equation (2.19) can be solved numerically. For the
early-time period, i.e. T� 1, the capillary forces dominate and the time dependence
of the depth is L ∝ T1/2. For the late-time period, i.e. T � 1, gravity dominates and
the time dependence of the depth is L∝ T .

The critical drain-out time Td can be obtained by setting φL(Td)= Tαd , i.e. when all
of the added liquid just drains into the porous substrate, and there is no liquid above
(H = 0). After the drainage occurs, i.e. T > Td, the model (2.18a,b) fails. We expect
that the porous medium will be unsaturated with the added liquid, and the post-drain-
out dynamics is beyond the scope of current work.
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2.2.2. α = 1
When α= 1, the liquid supply rate is constant, Qsupp≡ 1, which is smaller than the

early-time liquid loss rate Qloss(T)≈ φ(H + H∗ + L)/L, because L� 1. Hence, there
is no liquid accumulation at the beginning, i.e. H = 0. As time proceeds, L increases
and hence Qloss decreases. After a critical time Ta, the liquid loss rate becomes smaller
than the liquid supply rate, i.e. Qloss(Ta)=1, then the liquid starts to accumulate above
the porous medium, i.e. H > 0. This criterion yields an implicit equation:

φ

(
1+ H∗

L(Ta)

)
= 1. (2.20)

From global volume conservation (2.18b), we obtain L(Ta)= Ta/φ, which when used
with (2.20) provides

Ta = φ2H∗

1− φ . (2.21)

After T >Ta, the governing equation of L(T) is also given by (2.19) with the initial
condition L(Ta)= φH∗/(1− φ), with which we can numerically solve for L(T). For
the late-time asymptotic behaviours, i.e. T � 1, it is safe to neglect the influence of
the regime when T < Ta. From the scaling arguments, we know that in the late-time
period, i.e. T� 1, there is a regime of constant speed invasion of the porous medium,
where

H(T)→
(

1− φ − φ
2 + φ√(1− φ)2 + 4

2

)
T, (2.22a)

L(T)→ 1− φ +√(1− φ)2 + 4
2

T. (2.22b)

As an example, the numerical solutions for the cases when α = 1, φ = 0.37 are
shown in figure 2(b) when H∗ = 0 (solid blue curve), and H∗ = 100 (dashed orange
curve). With respect to (2.21), the critical starting time and the corresponding starting
depth for H∗ = 0 is Ta = L(Ta) = 0, and those for H∗ = 100 are Ta ≈ 21.7 and
L(Ta)≈ 58.7. The regime when T < Ta is where the current model fails, so we denote
it with a shaded area. We find that the numerical solutions for H∗=0 collapse with the
asymptotic solution (black dotted curve) given by (2.22b) for the entire time period,
while those for H∗ = 100 collapse with the asymptotic solution at late times, which
means that neither the capillary effects nor the drain-out occurring in the early-time
period influence the late-time behaviours.

2.2.3. α > 1
When α > 1, the liquid supply rate Qsupp(T) = αTα−1 is small at the beginning,

while the liquid loss rate Qloss(T) is large, so (2.18a,b) are invalid until a critical time
Ta, where the liquid supply rate starts to exceed the liquid loss rate, i.e. Qsupp(T) >
Qloss(T). Then, the liquid starts to accumulate above the porous medium, i.e. H > 0
when T > Ta. Thus, similar to the case when α = 1, we can estimate Ta by setting
Qsupp(Ta)=Qloss(Ta), which yields an implicit equation:

φ

(
1+ H∗

L(Ta)

)
= αTα−1

a . (2.23)
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0

z

x

Spreading

Drainage

Deep porous medium

u

FIGURE 3. (Colour online) A sketch of a viscous gravity current spreading over and
draining into a porous medium. The front location is denoted by xf (t). The interface
shapes above and in the porous medium are denoted by h(x, t) and `(x, t) respectively.
The inset highlights the enhanced drainage caused by the capillary forces.

We cannot obtain a simple expression for L(Ta) from the global volume conservation
as that for α = 1, because when α > 1, the porous medium is unsaturated with the
liquid in the early-time period, which is beyond the scope of current work. However,
because the late-time asymptotic behaviours are not influenced by what happens at
early times, we can still use (2.19) to predict that in the late-time period, i.e. T� 1,
gravity dominates, and the late-time time dependence of the depth is L∝ T (α+1)/2.

3. Gravity currents with drainage
In this section, we consider a two-dimensional problem with vertical drainage

coupled with horizontal spreading. As sketched in figure 3, a viscous liquid with
viscosity µ and density ρ spreads horizontally on an infinitely deep homogeneous
porous medium with uniform porosity φ and permeability k. In addition, the liquid
drains into the porous medium because of the gravitational and capillary forces. The
front location is denoted by xf (t), and the shapes of the current above and inside the
porous medium are, respectively, represented by the height of the current h(x, t), and
the depth of the penetrating liquid inside the porous medium `(x, t) (see figure 3).

3.1. Governing equations for spreading with drainage
We use lubrication theory (see, e.g. Batchelor 1967), which is applicable when the
horizontal length is much larger than the vertical length scale, i.e. xf (t) � h(0, t)
and xf (t)� `(0, t), and inertial effects can be neglected, in which case the problem
can be simplified in standard steps for the fluid velocity u = (u(x, z, t), v(x, z, t)).
In particular, for the liquid above the porous medium, the vertical velocity v is
negligible compared with the horizontal velocity u. Thus, u can be solved with the
no-slip boundary condition at z = 0 and zero shear stress condition at z = h(x, t),
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The influence of capillary effects on the drainage of a viscous gravity current 523

which yields

u(x, z, t)= g
2ν
∂h
∂x

z(z− 2h), for 0 6 z 6 h(x, t), (3.1)

where ν =µ/ρ is the kinematic viscosity of the liquid.
The one-dimensional continuity equation including the leakage into the substrate can

be written with respect to u, v and h as

∂h
∂t
+ ∂

∂x

(∫ h

0
u dz
)
= v(x, 0, t), (3.2)

where u, v are given by (3.1) and (2.6), respectively. Remember that the model
for the vertical drainage velocity requires a gravity current contacting a dry porous
medium, which implies that the speed of horizontal imbibition is much slower than
that of spreading, i.e. |∂`/∂t| � |dxf /dt|. Here, v < 0 for drainage into the substrate.
Substituting u and v into (3.2), we obtain

∂h
∂t
− 1

3

(g
ν

) ∂

∂x

(
h3 ∂h
∂x

)
=− k

µ

(
ρg
(

h
`
+ 1
)
+ 2γ cosθ

R`

)
, (3.3)

where the second term on the left-hand side is a nonlinear diffusive term and the right-
hand side is caused by drainage, i.e. the substrate acts like a sink.

Next, for the liquid draining into the porous medium, the horizontal velocity
calculated by Darcy’s law is (k/µ)(∂p/∂x), while the vertical velocity is (k/µ)(∂p/∂z),
where the pressure p is given by (2.5). The ratio of the horizontal velocity to the
vertical velocity scales with `/xf . Thus, as long as xf � `, we can neglect the
horizontal velocity inside the porous medium, and write the continuity equation for
the flow in the porous medium as

φ
∂`

∂t
= k
µ

(
ρg
(

h
`
+ 1
)
+ 2γ cosθ

R`

)
. (3.4)

Finally, the global volume conservation of the liquid is given by

∫ xf (t)

0
(h+ φ`) dx= qtα, (3.5)

where the definitions of q and α are the same as those in (2.1), which characterize
how liquid is added into the system from the origin above the substrate. The
associated boundary conditions at the front are

h= `= 0, and h3 ∂h
∂x
→ 0, at x= xf , (3.6a,b)

where the last boundary condition means that there is no liquid entrainment at the
front location. The initial conditions for the continuous addition case (α > 0) are

h(x, 0)= `(x, 0)= 0, for α > 0. (3.7)
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For the fixed-volume case (α= 0), initial conditions are given according to particular
problems. One representative initial condition is a step shape, in which case we can
write the initial condition as

h(x, 0)=
{

h0, 0 6 x 6 q/h0,

0, x> 1,
, `(x, 0)= 0, for α = 0. (3.8)

With boundary conditions described in (3.6a,b) and the initial condition for α > 0 in
(3.7) or initial condition for α= 0 in (3.8), we can solve the three governing equations
(3.3)–(3.5) for three unknowns h(x, t), `(x, t) and xf (t).

3.2. Non-dimensionalization
We now non-dimensionalize equations (3.3)–(3.5) by introducing dimensionless
variables

H = h/hc, L= `/hc, T = t/tc, X = x/xc, XF(T)= xf /xc, and H∗ = h∗/hc,
(3.9a−f )

where, when α 6= 3, the characteristic scales are given by

hc=
(

3q2ν2αk1−2α

g2α

)1/6−2α

, xc=
(

q4ν4α

31−αg4αk3α+1

)1/6−2α

, and tc=
(

3ν6q2

g6k5

)1/6−2α

.

(3.10a−c)
Thus, we arrive at the dimensionless governing equations (α 6= 3)

∂H
∂T
− ∂

∂X

(
H3 ∂H
∂X

)
=−

(
H +H∗

L
+ 1
)
, (3.11a)

∂L
∂T
= 1
φ

(
H +H∗

L
+ 1
)
, (3.11b)

∫ XF(T)

0
(H + φL) dX = Tα. (3.11c)

We note that when H∗ = 0, equations (3.11a–c) reduce to the governing equations of
two-dimensional purely gravity-driven drainage (Acton et al. 2001).

The term H∗/L on the right-hand side of (3.11a,b) represents capillary-driven
drainage, and the term H/L + 1 represents gravity-driven drainage. This problem
statement highlights that for α 6= 3, the dynamics depends on three independent
dimensionless parameters H∗, α and φ. We focus on the influence of H∗ and α in
the current work.

When α= 3, the characteristic height hc can be chosen arbitrarily, and the other two
characteristic variables are chosen according to

xc = h2
c√
3k
, and tc = νhc

kg
. (3.12a,b)

For convenience, we can choose hc = h∗, which makes H∗ = 1. In this way, the three
dimensionless governing equations for α = 3 are

∂H
∂T
− ∂

∂X

(
H3 ∂H
∂X

)
=−

(
H + 1

L
+ 1
)
, (3.13a)
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∂L
∂T
= 1
φ

(
H + 1

L
+ 1
)
, (3.13b)

∫ XF(T)

0
(H + φL) dX =QTα, (3.13c)

where Q = 31/2qν3/(k5/2g3) is a dimensionless parameter describing how fast the
liquid addition is. Note that we non-dimensionalize the equations for α= 3 and α 6= 3
in different ways but use the same dimensionless notations for both cases, because
the governing equations as shown in (3.11a–c) and (3.13a–c) are indeed similar,
which allows us to analyse the problems in similar ways without addressing each
case separately.

The term 1/L on the right-hand side of (3.13a,b) represents capillary-driven
drainage, and the term H/L + 1 represents gravity-driven drainage. For this case,
the dynamics depends on two independent dimensionless parameters Q and φ (α= 3).
We will discuss the influence of Q in appendix D.

In addition, the dimensionless boundary conditions at the front are

H = L= 0, and H3 ∂H
∂X
→ 0, at X = XF(T). (3.14a,b)

The initial conditions are

H(X, 0)= L(X, 0)= 0, if α > 0, (3.15)

H(X, 0)=
{

H0, 0 6 X 6 1/H0,

0, X > 1,
L(X, 0)= 0, if α = 0. (3.16)

With boundary conditions described in (3.14a,b) and the initial conditions for α > 0
in (3.15) or initial conditions for α= 0 in (3.16), we can numerically solve the three
governing equations (3.11a–c) for three unknowns H(X,T), L(X,T) and XF(T). Before
discussing the numerical results of the partial differential equations (PDEs) (3.11a–c)
and (3.13a–c), we first construct the asymptotic solutions for the early-time and the
late-time periods.

3.3. Asymptotic analysis: the early-time period
We note that for the special case when H∗ = 0, α = 3, Acton et al. (2001) identified
an exact similarity solution valid for all times. Otherwise, there are no self-similar
solutions for (3.11a–c) for the entire time period since it is impossible to balance each
term as a function of time. Hence, we use asymptotic analysis in both early-time and
late-time periods. We first use scaling arguments to obtain the time dependence of H,
L and XF, and then solve for the self-similar solutions in the early-time and late-time
periods, respectively. A summary of the most important features identified below is
provided in table 1.

In the early-time period, i.e. T � 1, there are three possible regimes, depending
on the addition exponent α. The method to determine the regimes is described in
appendix A.1. The time dependence of H, L, XF and the dominant terms in (3.11a–c)
are listed in table 1. When 06α< 1/2, the height H is much larger than L and H∗ at
early times, and it decreases as time T increases because of insufficient liquid supply.
This means that the capillary effects (∼H∗/L) are negligible compared with gravity
(∼H/L + 1), and the governing equations (3.11a–c) reduce to those for the case of
purely gravity-driven drainage (Acton et al. 2001). When 1/2< α < 7/4,H increases
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Regimes and boundaries Scalings Equation (3.11a) (3.11b) (3.11c)

I: 0 6 α < 1/2 H ∼ T (2α−1)/5,
H
T
∼ H4

X2
F

L
T
∼ H

L
HXF ∼ Tα

L∼ T (α+2)/5,

XF ∼ T (3α+1)/5

α = 1/2 H ∼ 1,
H
T
∼ H4

X2
F

L
T
∼ H

L
∼ H∗

L
HXF ∼ T1/2

L∼ T1/2,

XF ∼ T1/2

II: 1/2<α < 7/4 H ∼ T (2α−1)/5,
H
T
∼ H4

X2
F

L
T
∼ H∗

L
HXF ∼ Tα

L∼ T1/2,

XF ∼ T (3α+1)/5

α = 7/4 H ∼ T1/2,
H
T
∼ H4

X2
F
∼ H∗

L
L
T
∼ H∗

L
HXF ∼ LXF ∼ T7/4

L∼ T1/2,

XF ∼ T5/4

III: α > 7/4 H ∼ Tα/2−3/8,
H4

X2
F
∼ H∗

L
L
T
∼ H∗

L
LXF ∼ Tα

L∼ T1/2,

XF ∼ Tα−1/2

TABLE 1. Asymptotic behaviours of H, L and XF and dominant terms in the governing
equations (3.11a–c) in the early-time period (T� 1).

with time T . Since H and L are small at early times, we obtain H∗/L� H/L + 1,
i.e. the drainage (see (3.11b)) is mainly driven by the capillary forces. Finally, when
α > 7/4, H increases with time T . In this case, the spreading and capillary-driven
drainage are the most important factors and they balance each other in (3.11a). In this
limit, the time derivative of H in (3.11a) is negligible, so the flow above the porous
medium is quasi-steady at leading order.

3.3.1. Regime I: 0 6 α < 1/2
Now, we present the self-similar solutions. When 0 6 α < 1/2, the governing

equations (3.11a–c) reduce to

∂H
∂T
− ∂

∂X

(
H3 ∂H
∂X

)
= 0, (3.17a)

∂L
∂T
= 1
φ

H
L
, (3.17b)

∫ XF(T)

0
H(X, T) dX = Tα. (3.17c)
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As is clear from (3.17a), spreading dominates over drainage in the continuity equation
of the liquid above the porous medium, and the global volume conservation is
dominated by the liquid above the porous medium (see (3.17c)). Thus, the solutions
for H(X, T) and XF(T) recover Huppert’s (1982) solution, where a gravity current
spreads over a rigid horizontal surface without drainage.

By defining a similarity variable s ≡ X/(ξf T (3α+1)/5), where ξf is a stretching
constant to be determined, the shape of the current can be written in a self-similar
form, described as XF = ξf T (3α+1)/5, H= ξ 2/3

f T (2α−1)/5f (s), and L=φ−1/2ξ
1/3
f T (α+2)/5g(s)

on the domain s∈ [0, 1]. Here, f (s), g(s) and ξf can be determined from the equations:

( f 3f ′)′ + (3α + 1)
5

sf ′ − (2α − 1)
5

f = 0, (3.18a)

(3α + 1)
5

sg′ − (α + 2)
5

g=− f
g
, (3.18b)

ξf =
(∫ 1

0
f (s) ds

)−3/5

, (3.18c)

subject to boundary conditions f (1) = g(1) = 0. The primes in (3.18a,b) denote
differentiation with respect to s. We can also determine the local asymptotic behaviour
at the front from (3.18a), which yields

f (s)∼
(

9α + 3
5

)1/3

(1− s)1/3, as s→ 1−. (3.19)

Equation (3.19) provides the values of f (1 − ε) and f ′(1 − ε) with ε � 1. Together
with g(1) = 0, they can be used to numerically solve ODEs (3.18a,b) by shooting
from s= 1− ε towards s= 0. The stretching constant ξf can be obtained from (3.18c).
The asymptotic behaviour of g(s) as s→ 1− is

g(s)∼
(

1
2

)1/2 ( 45
3α + 1

)1/3

(1− s)2/3, as s→ 1−. (3.20)

Thus, we obtain the relation, g(s)∝ ( f (s))2, near the location of the front.
The functions f (s) and ξf are given by Huppert (1982b). We also find that H∗ does

not appear in (3.18a–c), so f (s), g(s) and ξf are independent of H∗. As an example,
we set α = 0, for which we can find analytical solutions

f (s)=
(

3
10

)1/3

(1− s2)1/3, (3.21a)

g(s)= (300)1/6
[∫ 1

s

(1− ŝ2)1/3

ŝ2
dŝ
]1/2

s2, (3.21b)

ξf ' 1.41. (3.21c)

The normalized self-similar solutions f /fmax and g/gmax for α = 0 are shown in
figure 4 as the red curve, where the subscript ‘max’ denotes the maximum values of
the functions.

The current theory is based on the assumptions that xf (t)� h(0, t), xf (t)� `(0, t)
and |dxf /dt| � |∂`/∂t| (so that the spreading gravity current is always flowing over
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FIGURE 4. (Colour online) Normalized self-similar shapes given by analytical solutions
in § 3.3 and appendix B under different addition exponents α in the early-time period, i.e.
T � 1. For the regime boundaries α = 1/2, 7/4, we choose the dimensionless capillary
length H∗ = 1 and φ = 0.37. For the special case α = 3, we choose Q= 1.

dry porous media). Using the analytical results in this section, we arrive at the self-
consistent requirement:

(
g2αkα+2

q2ν2α

)5/2(3−α)(α+2)

� T� φ5/2−4α

(
q2ν2α

g2αkα+2

)5/2(3−α)(1−2α)

. (3.22)

As long as the left-hand side of (3.22) is much smaller than 1, and the right-hand
side is of order 1 or much larger than 1, the drainage theory is valid in the early-time
period.

3.3.2. Regime II: 1/2<α < 7/4
When 1/2<α < 7/4, the governing equations (3.11a–c) reduce to

∂H
∂T
− ∂

∂X

(
H3 ∂H
∂X

)
= 0, (3.23a)

∂L
∂T
= 1
φ

H∗

L
, (3.23b)

∫ XF(T)

0
H(X, T) dX = Tα. (3.23c)
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Given that (3.23a,c) are the same as (3.17a,c) in regime I and subject to the same
boundary and initial conditions, we conclude that H(X, T) and XF(T) are the same as
that in regime I. The small difference between these two problems is in the dynamics
for L(X,T), which includes H∗: the time evolution of L(X,T) is mainly driven by the
capillary effects here while it is mainly driven by gravity in regime I.

A similarity variable is defined as s ≡ X/(ξf T (3α+1)/5), so we can rewrite the
functions as XF = ξf T (3α+1)/5, H = ξ 2/3

f T (2α−1)/5f (s) and L = (H∗/φ)1/2T1/2g(s) on the
domain s ∈ [0, 1]. As mentioned above, f (s) and ξf are the same as the solutions in
regime I, and so are independent of H∗. The ODE and the boundary condition for
g(s) are

3α + 1
5

sg′ − 1
2

g=−1
g
, (3.24a)

g(1)= 0, (3.24b)

which yields
g(s)= [2 (1− s5/3α+1

)]1/2
. (3.25)

We note that f (s), g(s) and ξf are all independent of H∗. As an example, the
normalized self-similar shape for α = 1 is shown in figure 4 as the black curve. The
stretching constant is computed as ξf ≈ 1.00.

Again, we can a posteriori validate the approximations made in the derivation of the
governing equations. In particular, the assumptions that xf (t)� h(0, t), xf (t)� `(0, t)
and |dxf /dt| � |∂`/∂t| provide the self-consistent requirements:

T�
(

g2αkα+2

q2ν2α

)5/2(3−α)(α+2)

and T�
(

H∗

φ

)5/6α−3 (g2αkα+2

q2ν2α

)5/3(3−α)(2α−1)

.

(3.26a,b)

As long as the right-hand sides of (3.26a,b) are much smaller than 1, the drainage
theory is valid in the early-time period.

We can also solve for L(X, T) directly from (3.23b), which yields

L2(X, T)= 2H∗

φ
(T − T0(X)), (3.27)

where T0(X) is the time when the front reaches the location X, i.e. XF(T0)=X, because
the drainage starts at X when XF(T0)= X. From the scaling of X, we obtain

XF(T)= ξf T3α+1/5. (3.28)

By combining equations (3.27) and (3.28), we can obtain an explicit expression for
L(X, T):

L(X, T)=
(

2H∗

φ

)1/2
[

T −
(

X
ξf

)5/3α+1
]1/2

. (3.29)

We note that the derivation of (3.29) is equivalent to that of (3.25), but with more
physical insights.
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3.3.3. Regime III: α > 7/4
When α > 7/4 and α 6= 3 the governing equations (3.11a–c) reduce to

∂

∂X

(
H3 ∂H
∂X

)
= H∗

L
, (3.30a)

∂L
∂T
= 1
φ

H∗

L
, (3.30b)

∫ XF(T)

0
L(X, T) dX = 1

φ
Tα. (3.30c)

We note that there is no time derivative term in (3.30a), which means that the flow
above the porous medium is quasi-steady. Also, equation (3.30c) indicates that H� L
in this regime, which means that almost all of the liquid is in the porous medium.

In this case, a similarity variable is defined as s ≡ (H∗φ)1/2X/(ξf Tα−1/2), and we
can rewrite the functions as XF= (H∗φ)−1/2ξf Tα−1/2, H= (H∗φ)−1/8ξ

1/2
f Tα/2−3/8f (s) and

L= (H∗/φ)1/2T1/2g(s) on the domain s ∈ [0, 1]. Hence, we can rewrite the equations
(3.30a–c) as

( f 3f ′)′ = 1
g
, (3.31a)

2α − 1
2

sg′ − 1
2

g=−H∗

g
, (3.31b)

ξf =
(∫ 1

0
g(s) ds

)−1

. (3.31c)

The self-similar depth g(s) can be solved analytically from (3.31b) with boundary
condition g(1)= 0, which yields

g(s)= 21/2
(
1− s2/2α−1

)1/2
. (3.32)

In addition, from (3.31c), we obtain an analytical expression for the stretching constant

ξf = 2−(1/2)
(∫ 1

0

(
1− s2/2α−1

)1/2
ds
)−1

. (3.33)

Also, an asymptotic analysis of (3.31a) near s= 1, subject to f (1)= 0, provides

f (s)∼
(

8
3

)1/4

(2α − 1)1/8(1− s)3/8, as s→ 1−. (3.34)

Equation (3.34) gives the values of f (1− ε) and f ′(1− ε) with ε� 1, which are used
in a shooting procedure to numerically solve (3.31a) from s= 1− ε towards s= 0. It
can be seen from (3.31a–c) that f (s), g(s) and ξf are all independent of H∗.

Once again the assumptions that xf (t)�h(0, t), xf (t)� `(0, t) and |dxf /dt|� |∂`/∂t|
provide the self-consistent requirements:

T� (H∗φ)3/4α−1
(

g2αkα+2

q2ν2α

)4/(3−α)(4α−1)

and T� (H∗)1/α−1

(
g2αkα+2

q2ν2α

)1/2(3−α)(α−1)

.

(3.35a,b)
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So long as the right-hand sides of (3.35a,b) are much smaller than 1, the drainage
theory is valid in the early-time period.

Finally, for α = 3 the governing equations (3.13a–c) reduce to

∂

∂X

(
H3 ∂H
∂X

)
= 1

L
, (3.36a)

∂L
∂T
= 1
φ

1
L
, (3.36b)

∫ XF(T)

0
L dX = Q

φ
T3. (3.36c)

In this case, a similarity variable is defined as s ≡ φ1/2X/(Qξf Tα−1/2), and we can
rewrite the functions as H = Q1/2φ−1/8ξ

1/2
f Tα/2−3/8f (s) and L = φ−1/2T1/2g(s) on the

domain s∈ [0, 1]. Hence, we can rewrite the (3.36a–c) as (3.31a–c), and use the same
steps to solve for the solutions. For this case, f (s), g(s) and ξf are all independent of
Q. The normalized self-similar shape for α=3 is shown in figure 4 as the green curve.
The stretching constant is calculated as ξf ≈ 1.44.

From figure 4, we can see that the self-similar shape of the current is thinner for
larger addition exponents α, which corresponds to smaller addition rates when T� 1.
This result is intuitive because the smaller is the addition rate, the less liquid is in the
system, which is consistent with a thinner current shape.

3.4. Asymptotic analysis: the late-time period
In the late-time period, i.e. T � 1, the term H∗/L in (3.11a,b) is negligible for any
α, i.e. the reduced governing equations are the same as the case of purely gravity-
driven drainage (Acton et al. 2001). This result is because in the late-time period,
as we show below, capillary forces are limited to the small area near the front, and
hence, are negligible for the shape of the current at leading order. Although H∗ does
not influence the self-similar solutions in the late-time period, it influences the early-
time self-similar solutions and the transition between the early-time and the late-time
periods, which will be discussed later. We note that Acton et al. (2001) only presented
a self-similar solution for α = 3, and numerically predicted a receding front in the
late-time period for the case when α = 0, while we include capillary effects and
systematically discuss late-time self-similar solutions for any α.

We begin with the case of 0 6 α < 1, because in this range of α both the scaling
arguments and the numerical solutions of the PDEs predict that the front will recede
after it reaches its maximum position Xmax. As an example, the time evolution of the
current above the porous medium for α = 1/2, φ = 0.37 and H∗ = 1 obtained by
solving the PDEs is shown in figure 5, in which the current front advances at early
times and then recedes at late times. The time when the front reaches Xmax ≈ 0.936
is Tmax ≈ 0.4.

During the receding of the front, the scaling arguments from (3.11c) do not hold
because for X ∈ [XF(T), Xmax], all of the liquid has drained into the porous medium
and then it moves downwards like a plug with a time-independent length Lleft(X). The
value of Lleft(X) is equal to the depth of the liquid inside the porous medium when
the receding front reaches the position X. Thus, the total liquid volume should be
rewritten as ∫ XF(T)

0
(H + φL) dX +

∫ Xmax

XF(T)
φLleft dX = Tα. (3.37)
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FIGURE 5. (Colour online) The time evolution of the current above the porous medium
when α=1/2, φ=0.37, H∗=1. The front advances at early times (red curves) and recedes
at late times (blue curves).

In the late-time period, we are only interested in the asymptotic behaviours of H and
XF. Thus, instead of using the global volume conservation equation (3.37), we now
write it in an equivalent way as a flux condition at the origin:

H3 ∂H
∂X

∣∣∣∣
x=0

=−αTα−1, if α > 0, (3.38a)

∂H
∂X

∣∣∣∣
x=0

= 0, if α = 0. (3.38b)

The late-time asymptotic behaviours are listed in table 2. There are three regimes:
0<α < 1, 1 6 α < 3 and α > 3; and two special case: α = 0 and α = 3. The method
to determine the regimes are described in appendix A.2. Next, we will solve for the
late-time self-similar solutions in the three regimes (see §§ 3.4.1–3.4.3), and for the
special case when α = 0 (see § 3.4.4) and α = 3 (see appendix C).

3.4.1. Regime IV: 0<α < 1
When 0<α< 1, as mentioned above, the front recedes after it reaches its maximum

position Xmax, and the height H decreases as time proceeds. The governing equation
(3.11a) reduces to

∂

∂X

(
H3 ∂H
∂X

)
= 1, (3.39)

which means that the flow above the porous medium is quasi-steady. By integrating
equation (3.39) from X= 0 to X=XF(T) and recalling H3∂H/∂X= 0 at the front, we
obtain

XF(T)= αTα−1, (3.40)

where we have used the boundary condition (3.38a). We can also solve for H(X, T)
from (3.39) with boundary conditions (3.14a,b), which yields

H(X, T)= 21/4(αTα−1 − X)1/2, (3.41)
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Regimes and boundaries Scalings Equation (3.11a) (3.11b) Global volume

α = 0 H ∼ τ , H
τ
∼ 1

XF ∼ τ 1/2,

IV: 0<α < 1 H ∼ T (α−1)/2,
H4

X2
F
∼ 1

L∼ T,

XF ∼ Tα−1

V: 1 6 α < 3 H ∼ T (α−1)/2,
H4

X2
F
∼ 1

L
T
∼ 1 LXF ∼ Tα

L∼ T, (3.11c)

XF ∼ Tα−1

α = 3 H ∼ T,
H
T
∼ H4

X2
F
∼ 1

L
T
∼ H

L
∼ 1 HXF ∼ LXF ∼ T3

L∼ T, (3.11c)

XF ∼ T2

VI: α > 3 H ∼ T (2α−1)/5,
H
T
∼ H4

X2
F

L
T
∼ H

L
HXF ∼ Tα

L∼ T (α+2)/5, (3.11c)

XF ∼ T (3α+1)/5

TABLE 2. Asymptotic behaviours of H, L and XF and dominant terms in the governing
equations (3.11a,b) and the global volume conservation equation (3.11c) or (3.37) in the
late-time period (T� 1). Here, τ ≡ Td − T , which represents the approaching time for the
drain-out.

in which we have substituted the expression (3.40) for XF(T). From (3.40) and (3.41),
we know that even though the front recedes and the height decreases, the liquid will
not drain out in a finite time. The normalized current shape can be obtained by
combining equations (3.40) and (3.41), which yields

H(X, T)
Hmax(T)

=
(

1− X
XF(T)

)1/2

. (3.42)

A representative example when α = 1/2 is shown in figure 7. For this case, the
late-time self-similar solutions for Hmax(T) and XF(T) are

Hmax(T)= 2−(1/4)T−(1/4), XF(T)= 1
2 T−(1/2), (3.43a,b)

which are calculated, respectively, from (3.41) and (3.40) by setting α = 1/2 and
X = 0. It can be seen that the PDE solutions for XF(T),Hmax(T) and the normalized
current shape approach their late-time self-similar solutions (3.42) and (3.43a,b) in
figure 7(a–c).

With a receding front at late times, the only assumption we need to justify the
original governing equations is xf (t) � h(0, t); the other two assumptions, xf (t) �
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`(0, t) and |dxf /dt| � |∂`/∂t|, are only necessary for calculating the depth ` that
the fluid penetrates into the porous medium, which does not play an important role
in the governing equation (3.39) for this regime. Thus, we arrive at a self-consistent
requirement:

T�
(

g2αkα+2

q2ν2α

)1/(3−α)(α−1)

. (3.44)

As long as the right-hand side of (3.44) is much larger than 1, the drainage theory is
valid in the late-time period.

3.4.2. Regime V: 1 6 α < 3
When 1 6 α < 3, the governing equations (3.11a–c) reduce to

∂

∂X

(
H3 ∂H
∂X

)
= 1, (3.45a)

∂L
∂T
= 1
φ
, (3.45b)

∫ XF(T)

0
L(X, T) dX = 1

φ
Tα. (3.45c)

By defining the similarity variable as s≡ X/(ξf Tα−1), we can rewrite the functions
as XF = ξf Tα−1, H = ξ 1/3

f T (α−1)/2f (s) and L= φ−1Tg(s) on the domain s ∈ [0, 1], and
then write equations (3.45a–c) as

( f 3f ′)′ − 1= 0, (3.46a)
(1− α)sg′ + g− 1= 0, (3.46b)

ξf =
(
φ

∫ 1

0
g(s) ds

)−1

. (3.46c)

By solving equations (3.46a–c) with boundary conditions f (1) = g(1) = 0,
f 3f ′|s=1 = 0, we can obtain an analytical solution for f (s), g(s) and ξf , given by

f (s)= 21/4(1− s)1/2, and g(s)=
{

1, if α = 1,(
1− s1/α−1

)
, if 1<α < 3,

(3.47a,b)

ξf = α. (3.47c)

Note that when α= 1, the self-similar depth g(s) is a step function at leading order,
which means that as time proceeds, the shape of the liquid–air interface in the porous
medium approaches a shock solution. In addition, XF → 1 when T→∞ for α = 1,
i.e. the current front reaches a steady position in the late-time period. The normalized
self-similar shapes for α = 1 (red curve), 1.1 (orange curve) are shown in figure 6.

The assumptions that xf (t)� h(0, t), xf (t)� `(0, t) and |dxf /dt| � |∂`/∂t| provide
the self-consistent requirements

T�
[(

g2αkα+2

q2ν2α

)1/2α−6

φ

]1/2−α

, when 1 6 α < 2, (3.48a)
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FIGURE 6. (Colour online) Normalized self-similar shapes of the current under different
addition exponents α in the late-time period, i.e. T� 1. For the regime boundary α = 3,
we choose Q= 1 and φ= 0.37. The dimensionless capillary length H∗ does not influence
the late-time normalized self-similar shapes.

1�
(

g2αkα+2

q2ν2α

)1/2α−6

φ, when α = 2, (3.48b)

T�
[(

g2αkα+2

q2ν2α

)1/2α−6

φ

]1/2−α

, when 2<α < 3. (3.48c)

Thus, we recognize that as long as (3.48b) is satisfied, the drainage theory is valid in
the early-time period.

3.4.3. Regime VI: α > 3
When α > 3, the simplified governing equations are the same as those in regime I

(§ 3.3.1) in the early-time period, so the solutions of H, L and XF should also be the
same. As an example, the normalized self-similar shape for α= 5 is shown in figure 6
as the blue curve with the stretching constant ξf ≈ 0.75. From figure 6, we can see
that for larger addition exponents α, i.e. larger addition rates when T� 1, the shape
above the porous medium is fatter, while the shape inside the porous medium changes
from a step function to a thinner shape and then becomes fatter again.

Once again we recall that the current theory is based on the assumptions that
xf (t) � h(0, t), xf (t) � `(0, t) and |dxf /dt| � |∂`/∂t|, so that we arrive at the
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FIGURE 7. (Colour online) The late-time asymptotic behaviours, i.e. T� 1, when α= 1/2,
φ = 0.37, H∗ = 1. (a) The front location XF as a function of time T , where the triangles
represent the PDE numerical results, and the dashed blue curve represents the late-time
self-similar solution (3.40). (b) The maximum height Hmax as a function of time T , where
the circles represent the PDE numerical results and the dashed blue curve represents the
self-similar solution (3.41). (c) The normalized shape of the current above the porous
medium, where the PDE numerical solutions (red curve) in the direction of the arrow are
at T = {1, 2, 3, 6}, respectively, and the self-similar shape is given by (3.42) (blue curve).
The dimensionless capillary length H∗ is only used to numerically solve PDEs (3.11a–c),
without influencing the self-similar solutions.
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self-consistent requirements:

T�
(

g2αkα+2

q2ν2α

)5/2(3−α)(α+2)

and T� φ5/2(1−2α)

(
g2αkα+2

q2ν2α

)5/2(3−α)(2α−1)

. (3.49a,b)

As long as the right-hand sides of (3.49) are of order 1 or smaller, the drainage theory
is valid in the late-time period.

3.4.4. Special case: α = 0
For the fixed-volume case, i.e. α= 0, as mentioned above, the front will recede after

it reaches its maximum position Xmax and the height H decreases as time proceeds.
Meanwhile, there exists a time when all of the liquid has drained into the porous
medium, which is denoted as Td. The difference between the current case and regime
IV (§ 3.4.1) is that the time derivative term dominates in the governing equation
(3.11a).

We performed many numerical simulations, which suggest that a self-similar
solution exists for the height H(X, T) in the limit when T→ Td (see figure 8(a) for
typical solutions). We define an approach time τ ≡ Td − T , and also assume that
L�H when T→ Td. Then, the governing equation (3.11a) reduces to

∂H
∂τ
+ ∂

∂X

(
H3 ∂H
∂X

)
= 1. (3.50)

The two boundary conditions for α = 0 are

∂H
∂X

∣∣∣∣
X=0

= 0, and H(XF, τ )= 0, (3.51a,b)

where XF(τ ) is the front location. Now, we aim to solve equation (3.50) with boundary
conditions (3.51a,b) for a self-similar solution for H(X, τ ) in the limit when τ→ 0.

By balancing the first term on the left-hand side with the right-hand side of (3.50),
we obtain the time dependence of the height is H ∝ τ (see figure 8b). The numerical
solutions of the PDEs (3.11a–c) when α = 0 show XF ∝ τ 1/2 (see figure 8c). Hence,
the second term on the left-hand side of (3.50) scales with τ 3, which is negligible
compared with the other two terms in the equation when τ � 1. Now, in the limit
when τ→ 0, equation (3.50) reduces to

∂H
∂τ
= 1, (3.52)

which yields
H(X, τ )= τ − τ0(X), (3.53)

where τ0(X) is the time when the front reaches the location X, i.e. XF(τ0)=X. Based
on the numerical solutions for XF, we can write XF(τ )= ξf τ

1/2, which yields

τ0(X)=
(

X
ξf

)2

. (3.54)

By combining equations (3.52) and (3.54), we obtain the expression for the height:

H(X, τ )= τ −
(

X
ξf

)2

. (3.55)
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FIGURE 8. (Colour online) The asymptotic behaviours near the drain-out time, i.e. τ→ 0,
when α = 0, φ = 0.37, H∗ = 1, H0 = 10. (a) The normalized shape of the current above
the porous medium, where PDE numerical solutions (red curve) in the direction of the
arrow are at τ ={0.595,0.195,0.095,0.045,0.005}, respectively. In all the figures, the blue
arrows denote the evolution direction as time proceeds, i.e. τ→ 0. (b) The front location
XF as a function of time τ , where the triangles represent the PDE numerical results and
the dashed blue curve represents the fitting curve XF = 2τ 1/2. (c) The maximum height
Hmax as a function of time τ , where the circles represent the PDE numerical results, and
the dashed blue curve represents the self-similar solution, Hmax = τ . The dimensionless
capillary length H∗ is only used to numerically solve PDEs (3.11a–c), without influencing
the self-similar solutions.
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By substituting Hmax = τ , XF = ξf τ
1/2 into (3.55), we arrive at the self-similar shape

of the current:
H

Hmax
= 1−

(
X
XF

)2

. (3.56)

We solve the PDEs (3.11a–c) with α= 0, and find that near the drain-out time Td,
i.e. τ→ 0, the maximum height Hmax approaches the solution Hmax= τ (see figure 8b).
In addition, the normalized current shape above the porous medium approaches the
self-similar shape described by (3.56) as τ→ 0 (see figure 8a). We note the solution
(3.56) describes our numerical data but we do not have an a priori argument for the
functional form of XF(τ ).

Similar to regime IV, with receding front at late times, the only assumption we need
is xf (t)� h(0, t) since we are only interested in the fluid above the porous medium,
which provides a self-consistent requirement:

τ �
(

g2αkα+2

q2ν2α

)1/α−3

. (3.57)

As long as the right-hand side of (3.57) is of order of 1 or larger, the drainage theory
is valid in the late-time period.

3.5. Time transitions: the early-time to the late-time behaviours
In order to directly understand the time evolution of the current and to show the
transition from the early-time to the late-time behaviours, we solve the PDEs (3.11a–c)
numerically (see appendix E) to get the time evolution of the front location and the
shape of the current. We report results for three cases: α= 0, 1, 3, which correspond
to the cases of the fixed volume (α = 0), constant addition (α = 1) and the special
case (α= 3) where there is a self-similar solution for the entire time period in purely
gravity-driven drainage (Acton et al. 2001).

3.5.1. Fixed volume: α = 0
For the case when α = 0, i.e. a fixed volume, there are self-similar solutions in

two asymptotic time limits: T � 1 and T → Td. The good agreement between the
PDE numerical solutions and the self-similar solutions when T→Td has already been
discussed in § 3.4.4. Hence, we only focus on comparing the PDE numerical solutions
with the early-time self-similar solutions, i.e. T � 1, and the transition between the
early-time to the late-time asymptotic behaviours.

From the analysis in § 3.3.1, we know that when T � 1, the self-similar solutions
for the front location XF(T), the maximum height Hmax(T) and the maximum depth
Lmax(T) are

XF(T)= 1.41 T1/5, (3.58a)
Hmax(T)= 0.842 T−(1/5), (3.58b)

Lmax(T)= 1.63 φ−(1/2)T2/5. (3.58c)

The numerical solutions for XF(T), Hmax(T) and Lmax(T) from PDEs (3.11a–c) for
φ = 0.37, H∗ = 1 are compared with the self-similar solutions described by PDEs
(3.58a–c) in figure 9 with two initial conditions: (a,c,e) a step function given by
(3.16) with H0 = 10; (b,d,f ) a step function given by equations (3.16) with H0 = 3.
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FIGURE 9. (Colour online) The PDE numerical solutions and the early-time self-similar
solutions (3.58a–c) when α = 0, φ = 0.37, H∗ = 1 for XF(T), Hmax(T) and Lmax(T) with
initial conditions described by (3.16) with: (a,c,e) H0 = 10; (b,d,f ): H0 = 3. In all the
legends, ‘num soln’ = numerical solution.

We find that for both cases with different initial conditions, the PDE solutions need
some time to approach the early-time self-similar solutions, then collapse with the self-
similar solutions and finally depart from them. Also, the case with H0 = 10 exhibits
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FIGURE 10. (Colour online) The early-time evolution of the normalized shape of
the current, when α = 0, φ = 0.37, and H∗ = 1, with initial conditions (3.16)
and H0 = 10. The PDE numerical solutions for H shown in the direction of the
arrows are at T = {10−7, 10−6, 10−5, 10−4, 10−3, 0.01, 0, 1, 0.2, 0.3}, respectively.
The PDE numerical solutions for L shown in the direction of the arrow are at
T = {10−7, 10−6, 10−5, 10−4, 10−3}, respectively. In the legend, ‘soln’ = solution.

a longer time period when there is a good agreement between the PDE solutions and
the self-similar solutions than the case with H0 = 3, because only when H� L, are
the early-time self-similar solutions valid. A larger H0 guarantees longer time for the
assumption H�L to hold, which elongates the time span for validity of the early-time
self-similar solutions.

In addition, we observed a maximum value of the front location, XF,max in
figure 9(a,b), as denoted by the horizontal blue dashed line. After the front location
reaches XF,max, it starts to recede. Also, from figure 9(c,d), the maximum height
Hmax → 0 as time proceeds, which predicts a drain-out time Td, as denoted by the
black arrows. The receding front and the drain-out behaviour predicted by the PDE
solutions are consistent with the discussion in § 3.4.4.

We also show the time evolution of the normalized shape of the current in figure 10
when α = 0, φ = 0.37, H∗ = 1 with initial conditions (3.16) and H0 = 10. The PDE
solutions for H/Hmax (blue curve above the grey horizontal line) first approach, then
collapse with, and finally depart from the self-similar shape (red curve above the
grey horizontal line), as time proceeds. However, even though the PDE solutions for
L/Lmax (blue curve under the grey horizontal line) approach the self-similar shape
(red curve under the grey horizontal line), as time proceeds, there is no perfect
collapse as for H/Hmax. This difference is because when T � 1, L is determined by
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FIGURE 11. (Colour online) Time evolution of the shape of the current under constant
addition rate, i.e. α= 1, with φ = 0.37, H∗ = 1: (a) at early times; (b) at late times. The
results are calculated numerically from PDEs (3.11a–c).

H (see (3.17b)), which means only when H begins to follow its self-similar solution,
can L start approaching its self-similar solution. In this example, the time when H
agrees with its self-similar solution is too short for L to fully develop its early-time
self-similar shape.

3.5.2. Constant addition: α = 1
For constant addition, i.e. α= 1, the PDE numerical results of the current shape are

shown in figure 11(a) at early times and 11(b) at late times with φ= 0.37, H∗= 1. We
find that at early times H, L and XF all increase as time increases. However, at late
times, H and XF stay almost unchanged, while L increases, which means that because
of the insufficient addition rate, almost all the liquid added above the porous medium
is lost by drainage. We also notice that at very late times, e.g. T = 100, L approaches
a step function, which is consistent with the self-similar solution described by (3.47c).

The asymptotic analyses in §§ 3.3.2 and 3.4.2 give the asymptotic solutions for the
front location for α = 1:

XF(T)=
{

T4/5, T� 1,
1, T� 1.

(3.59)

The front location first advances and finally arrests.
The PDE numerical results of the time evolution of the front location XF(T) and the

self-similar solutions for α= 1 in the asymptotic time limits (see (3.59)) are shown in
figure 12(a), when φ = 0.37 and H∗ = 1. There is good agreement between the PDE
solutions (black triangles) and the predictions from the self-similar solutions in both
early-time (red dashed curve) and late-time (blue dotted curve) periods. The transition
between the early-time and late-time asymptotic behaviours occurs near T =O(1).

The asymptotic analyses in § 3.3.2 and 3.4.2 also provide the normalized self-similar
shapes of the current. For the early-time period, the self-similar depth is given by

g(s)= 2.32
√

1− s5/4, T� 1, (3.60)
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FIGURE 12. (Colour online) (a) Time evolution of the front location when α=1, φ=0.37
and H∗= 1. The numerical results of PDEs (3.11a–c) (black triangles) are compared with
the self-similar solutions in the early-time (red dashed curve) and late-time (blue dotted
curve) periods. (b) Time evolution of the normalized shape of the current. The numerical
results of PDEs (3.11a–c) at different times T are compared with the normalized self-
similar solutions in the early-time (thick red line) and late-time (thick blue line) periods.
In both cases, the shapes of the current approach the normalized self-similar shapes.

while the corresponding self-similar height f (s) can be solved numerically. For the late
times, the self-similar height f (s) and depth g(s) are given by (3.47a,b), respectively.
The comparisons of the normalized current shape, i.e. H/Hmax, L/Lmax versus X/XF,
at different times T with the normalized self-similar solutions f /fmax, g/gmax versus s
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FIGURE 13. (Colour online) Time evolution of the shape of the current under continuous
addition when α= 3, with φ= 0.37, Q= 1: (a) at early times; (b) at late times. The results
are calculated numerically from PDEs (3.11a–c).

when α= 1, φ= 0.37, and H∗= 1 are shown in figure 12(b). The shapes of the current
approach the normalized self-similar shapes in the asymptotic limits, T� 1 or T� 1.

3.5.3. Continuous addition: α = 3
For continuous addition when α= 3, the PDE numerical results of the current shape

at different times are shown in figure 13(a) at early times and (b) at late times, with
φ = 0.37, Q= 1. The three dimensionless variables, H, L and XF increase during the
entire time period. This result is because with a higher addition exponent α, the liquid
can still accumulate above the porous medium while draining into the porous medium.

The asymptotic analyses in § 3.3.3 and appendix C provide the early-time and late-
time solutions for the front location for α= 3. When φ= 0.37, Q= 1, the asymptotic
solutions of the front location are

XF(T)=
{

2.37 T5/2, T� 1,
0.60 T2, T� 1.

(3.61)

We compare the PDE results of the time evolution of the front location with the
asymptotic solutions for α= 3, φ= 0.37 and Q= 1 (see (3.61)) in figure 14(a). There
is good agreement between the PDE solutions (black triangles) and the predictions
from the asymptotic analysis in both early-time (red dashed line) and late-time (blue
dotted line) periods.

In addition, the normalized current shape, i.e. H/Hmax, L/Lmax versus X/XF, at
different times T are compared with the normalized self-similar solutions f /fmax,
g/gmax versus s when α= 3, φ = 0.37 and Q= 1 in figure 14(b). For the early times,
the self-similar depth (see § 3.3.3) is given by

g(s)= 2.32
√

1− s2/5, T� 1, (3.62)

while the corresponding self-similar height f (s) can be solved numerically. The late-
time self-similar shape is solved numerically by the method described in appendix C.
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FIGURE 14. (Colour online) (a) Time evolution of the front location when α = 3, φ =
0.37 and Q = 1. The numerical results of PDEs (3.11a–c) (black triangles) are compared
with the self-similar solutions in early-time (red dashed curve) and late-time (blue dotted
curve) periods. (b) Time evolution of the normalized shape of the current, when α = 3
φ = 0.37, and Q = 1. The numerical results of PDEs (3.11a–c) at different times T are
compared with the self-similar solutions in early-time (thick red line) and late-time (thick
blue line) periods. In both cases, the shapes of the current approach the self-similar shapes
in asymptotic limits.
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In both asymptotic limits, i.e. T � 1 or T � 1, the normalized current shapes from
the numerical results approach the normalized self-similar shapes.

By comparing figures 11(b) and 13(b), we find that as time goes on, for α = 1,
the current above the porous medium becomes thinner and that in the porous medium
becomes fatter, while for α = 3, the current above the porous medium stays almost
unchanged and that in the porous medium becomes thinner. This difference is because
for small α, i.e. a slow addition in the late-time period, spreading of the current is
slower than the drainage, which leads to the thinner shape of the liquid above and a
fatter shape inside the porous medium, as time goes on. However, for large α, i.e. a
rapid addition in the late-time period, spreading of the current is comparable or faster
than the drainage, which makes the shape of the current inside the porous medium
thinner.

4. The influence of capillary effects
The influence of capillary effects is described by the dimensionless capillary length

H∗, as defined in (3.9), which is a measure of the capillary forces relative to the
gravitational forces. In the current work, we emphasize the influence of capillary
effects by investigating the influence of H∗ on both the self-similar solutions of H,
L and XF in the asymptotic time limits and the transition between the early-time and
the late-time behaviours. We also compare the results with the purely gravity-driven
drainage case (Acton et al. 2001), i.e. H∗ = 0. From the analysis in § 3.4, we know
that the capillary forces have no influence on the late-time self-similar solutions.
Thus, we focus on the influence of the capillary forces on the early-time self-similar
solutions.

4.1. The influence of capillary effects on the early-time self-similar solutions
Based on the analysis in § 3.3, we know the time dependence of the variables in the
early-time period, i.e. H∝TA, L∝TB, XF ∝TC, where the time exponents A, B and C
are given as the scaling exponents in table 1. Thus, we can write the dimensionless
variables as

H(X, T)= TAMH
f (s)
fmax

, L(X, T)= TBML
g(s)
gmax

, and XF(T)= TCMX, (4.1a−c)

where MH , ML and MX are the magnitudes of the height H, the length L and the front
location XF. For α 6= 3, they are defined as

MH ≡ (H∗)aφϕξm
f fmax, ML ≡ (H∗)bφχξ n

f gmax, and MX ≡ (H∗)cφψξf . (4.2a−c)

The values of the exponents a, b, c, m, n, ϕ, χ and ψ for different α are given in
§ 3.3 and appendix B. For α= 3, MH , ML and MX (see § 3.3.3) depend on Q instead
of H∗, and are given by

MH ≡Q1/2φ−1/8ξ
1/2
f fmax, ML ≡ φ−1/2gmax, and MX ≡Qφ−1/2ξf . (4.3a−c)

Based on (4.1a–c), the influence of capillary effects on the early-time self-similar
solutions are divided into three parts: (i) the capillary effects influence the time

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

12
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.125


The influence of capillary effects on the drainage of a viscous gravity current 547

102

101

100

10–1

10010–110–210–3 103102101

100

10–1

10010–110–210–3 103102101

(a) (b)

2

1

FIGURE 15. (Colour online) The influence of capillary forces on the magnitudes of the
early-time asymptotic solutions when φ = 0.37. (a) The magnitude of the depth ML as a
function of the dimensionless capillary length H∗, when α= 1/2, 7/4. (b) The magnitudes
of the height and the front location, i.e. MH and MX , as functions of H∗ when α = 7/4.

dependence, i.e. H∗ influences the values of A, B and C. (ii) The capillary effects
influence the magnitudes of the asymptotic solutions, i.e. H∗ influences MH , ML and
MX . (iii) The capillary effects influence the normalized self-similar shapes of the
current, i.e. H∗ influences f (s)/fmax and g(s)/gmax. We summarize the influence of the
capillary effects, i.e. H∗, on the asymptotic solutions of H, L and XF in the early-time
period for different addition exponents α in table 3.

For the influence of the capillary forces on the time dependence, we find that when
H∗ > 0, the time exponents A, B and C (see table 1) depend only on α but not H∗.
For the limiting case when H∗ = 0, i.e. the purely gravity-driven drainage, the time
dependence is also listed in table 3. By comparing the time dependence of capillarity
and gravity-driven drainage (H∗> 0) with that of purely gravity-driven drainage (H∗=
0), we find that for α < 1/2, there is no influence of capillary effects on the time
dependence. For 1/2 6 α 6 7/4, capillary effects enhance the accumulation of the
liquid in the porous medium, which can be seen from the smaller time exponent B
for H∗> 0 compared with H∗= 0. For α > 7/4, capillary effects not only enhance the
accumulation of the liquid in the porous medium, but also hinder the accumulation
and spreading of the liquid above the porous medium, i.e. greater A and C for H∗> 0
compared with H∗ = 0.

Capillary effects influence the magnitudes in two ways: first, when 1/2< α < 7/4
or α > 7/4, MH , ML and MX simply scale with H∗, i.e. a, b, c are not all zero and
the governing equations for f (s), g(s) and ξf are independent of H∗ (see §§ 3.3.2
and 3.3.3). Second, when α= 1/2 or 7/4, there is no scaling relationship, i.e. a= b=
c= 0 and the governing equations for f (s), g(s) and ξf includes H∗ (see appendices
B.1 and B.2). For the second case, the dependence of the magnitudes on the capillary
effects is shown in figure 15(a) for the dependence of ML on H∗ for both α = 1/2
and 7/4, and in figure 15(b) for the dependence of MH and MX on H∗ for α = 7/4.
From figure 15(a), we find that when α = 1/2 and 7/4, ML increases with H∗, and
there is an asymptotic relation ML ∝ (H∗)1/2 for large H∗. From figure 15(b), it can
be seen that for α = 7/4, both MH and MX decrease when H∗ increases.
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FIGURE 16. (Colour online) The influence of capillary forces on the normalized early-
time self-similar shape of the current when φ = 0.37 and (a) α = 1/2, (b) α = 7/4. The
normalized early-time self-similar shapes of a purely gravity-driven current, i.e. H∗ = 0
are also shown in both cases.

To summarize, for α < 1/2, there is no influence of H∗ on the magnitudes MH , ML
and MX . For 1/26α < 7/4, ML increases with H∗, while MH and MX are independent
of H∗. Finally, for α> 7/4 and α 6= 3, ML increases, while MH and MX decrease when
H∗ increases.

The capillary effects influence the normalized self-similar shapes only when α=1/2
and 7/4. As shown in figure 16, greater capillary forces, i.e. larger H∗, correspond
to a fatter shape of g(s)/gmax for both α = 1/2, and a thinner shape of f (s)/fmax for
α = 7/4.

4.2. The influence of capillary effects on the transition between early-time and
late-time behaviours

In order to study the influence of capillary effects on the transition between the
early-time and the late-time behaviours, we focus on the case when α= 1, where the
value of H∗ does not influence the self-similar solutions of the front location XF(T) in
both the early-time and late-time periods. As shown in figure 17, the PDE numerical
solutions of the front location XF(T) for H∗ = 100 depart earlier from the early-time
self-similar solution and approach later to the late-time self-similar solution than
the PDE numerical solutions for H∗ = 1. The results indicate that greater capillary
effects elongate the transition period between the early-time and late-time asymptotic
behaviours.

5. Summary and conclusions
In this paper, we theoretically and numerically studied the influence of capillary

effects on the drainage of a viscous gravity current into an infinitely deep porous
medium, which is wettable by the liquid. First, we investigated the one-dimensional
problem driven by both the gravitational and capillary forces in § 2. Depending on
the value of the addition exponent, α, there are three drain-out scenarios. In addition,
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FIGURE 17. (Colour online) The time evolution of the front location XF(T) under different
dimensionless capillary lengths H∗ = 1, 100, when α = 1, φ = 0.37. The PDE solutions
show that greater capillary effects, i.e. larger H∗, result in an earlier departure of the front
location XF(T) from the early-time self-similar solution while later they approach the late-
time self-similar solution.

we found that the influence of the capillary effects is limited to the early-time period,
where it enhances the drainage.

Secondly, we addressed the two-dimensional problem in § 3, where the viscous
gravity current drains into the porous medium while spreading above it. Since there
are no self-similar solutions for the front location and the current shape for the entire
time period, asymptotic analysis is employed to solve for self-similar solutions in
both the early-time and late-time periods. Different solutions are found depending
on the value of the addition exponent α. We also numerically solved the partial
differential equations to show the transition between the early-time and late-time
asymptotic behaviours. The PDE solutions show good agreement with the self-similar
solutions in asymptotic time limits. In addition, we discussed the influence of the
capillary effects on both the asymptotic behaviours and the transition between them.
For the former case, the results show that the capillary effects have no influence on
the late-time asymptotic behaviours, and the influence of the capillary effects on the
early-time asymptotic behaviours varies with α as summarized in § 4. For the latter
case, it is shown that the capillary effects elongate the transition period between the
early-time and late-time asymptotic behaviours.

The current work highlights that the capillary effects can increase the early-time
leakage of the liquid into a deep porous medium that is wettable by the liquid.
For example, the leakage of a saline water current into a permeable bottom of an
estuary depends on the pore sizes or wettability of the porous medium. Furthermore,
one natural extension of the current work is to a gravity current spreading within
a porous medium while it also drains into a permeable substrate. For example, this
problem is closely related to industrial projects of geological CO2 sequestration and
the leakage of supercritical CO2 from a underground storage sites (see, e.g. Lyle

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

12
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.125


552 Y. Liu, Z. Zheng and H. A. Stone

et al. 2005; Woods & Farcas 2009; Huppert & Neufeld 2014; Zheng et al. 2015a;
Guo et al. 2016). The current work shows how to study the capillary effects on the
liquid drainage into a permeable substrate, which can enhance the CO2 leakage from
the geological sequestration projects when CO2 wets the porous substrates.

We note that our model does not consider the hydrodynamic instability at
the fluid–fluid interface when a heavier fluid spreads above a lighter fluid. This
gravitational instability is observed experimentally in the late-time period during the
spreading of a gravity current over a porous medium, for example, by Acton et al.
(2001). However, the new flow regimes we identified in this paper only exist in the
early-time period, when the capillary effects are important. In the late-time period,
our model recovers that of pure gravity-driven drainage (Acton et al. 2001), and the
effects of gravitational instability are likely to be important as time progresses. The
detailed study is left for future work.
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Appendix A. Method to determine regimes

Here we describe the method we use to determine regimes according to the values
of the addition exponent α in the early-time and late-time asymptotic behaviours (see
tables 1, 2). Generally speaking, we compare the magnitudes for different terms in
(3.11a–c). For convenience, we sum up (3.11a) and (3.11b), which yields

∂H
∂T
− ∂

∂X

(
H3 ∂H
∂X

)
+ φ ∂L

∂T
= 0. (A 1)

A.1. Determining early-time regimes

We know that L increases with T from (3.11b), so in the early-time period, i.e. T�
1, we have L � 1. Meanwhile, we know that the liquid supply rate Qsupp = αTα−1

increases with decreasing α, and in the limit when α→ 0, H→ H0 > 0. Thus, H is
larger for smaller α.

Therefore, from (A 1) and (3.11b,c), we can find three regimes. (i) When α is small,
H� L and H�H∗, thus we balance the first two terms of (A 1), i.e. H/T ∼H4/X2,
the left-hand side with the first term on the right-hand side in (3.11b), i.e. L/T ∼
H/L, and the first term on the left-hand side with the right-hand side of (3.11c), i.e.
HX ∼ Tα. (ii) For moderate α, H� L but H�H∗, the only difference with the first
regime is that we balance the left-hand side with the first term on the right-hand side
of (3.11b), i.e. L/T ∼ H∗/L. (iii) For large α, H � L and H � H∗, we balance the
last two terms of (A 1), i.e. H4/X2∼ L/T , the left-hand side with the second term on
the right-hand side of (3.11b), i.e. L/T ∼H∗/L, and the second term on the left-hand
side with the right-hand side of (3.11c), i.e. LX∼ Tα. We can determine the boundary
between regime I and II by setting H/T ∼ H4/X2, L/T ∼ /L ∼ H∗/L and HX ∼ Tα,
which yields α = 1/2. The boundary between regime II and III is found by setting
H/T ∼H4/X2 ∼H∗/L, L/T ∼H∗/L and HX ∼ LX ∼ Tα, which yields α = 7/4.
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A.2. Determining late-time regimes

In the late-time period, i.e. T� 1, the liquid supply rate Qsupp= αTα−1 increases with
increasing α. Thus, H is larger for larger α. Also, because L increases with T , we
have L� 1 in the late-time period.

Therefore, from (A 1) and (3.17b,c), we can find two regimes. (i) For small α, H�
L, we balance the second term on the left-hand side with the last term on the right-
hand side of (3.11a), i.e. H4/X2∼ 1, the left-hand side with the last term on the right-
hand side of (3.11b), i.e. L/T ∼ 1, and the second term on the left-hand side with the
right-hand side of (3.11c), i.e. LX∼ Tα. (ii) For large α, H� L, we balance the first
term with the second term on the left-hand side of (3.11a), i.e. H/T ∼ H4/X2, the
left-hand side with the first term on the right-hand side of (3.11b), i.e. L/T ∼ H/L,
and the first term on the left-hand side with the right-hand side of (3.11c), i.e. HX∼
Tα. The regime boundary is found by setting H/T ∼H4/X2 ∼ 1, L/T ∼H/L∼ 1 and
HX ∼ LX ∼ Tα, which yields α = 3.

Appendix B. The early-time self-similar solutions
B.1. The special case: α = 1/2

In the early-time period, i.e. T � 1, for α = 1/2, the governing equations (3.11a–c)
reduce to

∂H
∂T
− ∂

∂X

(
H3 ∂H
∂X

)
= 0, (B 1a)

∂L
∂T
= 1
φ

H +H∗

L
, (B 1b)

∫ XF(T)

0
H(X, T) dX = T1/2. (B 1c)

The solutions for H(X, T) and XF(T) should be the same as those in regime I (see
§ 3.3.1) because the relevant governing equations (B 1a,c) are the same as (3.17a,c)
and they are subject to the same boundary and initial conditions. In other words, we
can define XF = ξf T1/2, H = ξ 2/3

f f (s), and s ≡ X/(ξf T1/2), where f (s) and ξf are the
same as that in regime I. Thus, we find ξf ≈ 1.112 for α = 1/2.

In addition, we can write L in a self-similar form as L= φ−1/2ξ
1/3
f T1/2g(s). Given

the solution of f (s), then g(s) can be determined numerically from

sg′ − g+ 2
f
g
+ 2ξ−2/3

f
H∗

g
= 0, (B 2)

subject to the boundary condition g(1)= 0.
It can be seen from (B 2) that the value of H∗ influences the solution for g(s) and

also the normalized depth g(s)/gmax. As an example, the normalized self-similar shape
for α = 1/2 and H∗ = 1 is shown in figure 4 as the blue curve.

Remembering that the current theory is based on the assumptions that xf (t)�h(0, t),
xf (t)� `(0, t) and |dxf /dt| � |∂`/∂t|, we can obtain the self-consistent requirements:

T�
(

gk5/2

q2ν

)2/5

, and φ−1/2

(
gk5/2

q2ν

)1/5

. (B 3a,b)

As long as the right-hand side of (B 3a) is much smaller than 1 and (B 3b) is
satisfied, the drainage theory is valid in the early-time period.
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B.2. The special case: α = 7/4
In the early-time period, i.e. T � 1, for α = 7/4 the governing equations (3.11a–c)
reduce to

∂H
∂T
− ∂

∂X

(
H3 ∂H
∂X

)
=−H∗

L
, (B 4a)

∂L
∂T
= 1
φ

H∗

L
, (B 4b)

∫ XF(T)

0
(H + φL) dX = 1

φ
T7/4. (B 4c)

A self-similar variable is defined as s≡X/(ξf T5/4), and we can rewrite the functions
as XF = ξf T5/4, H = ξ 2/3

f T1/2f (s) and L = (H∗/φ)1/2T1/2g(s) on the domain s ∈ [0, 1].
In this way, we can rewrite the (B 4a–c) as

( f 3f ′)′ + 5
4

sf ′ − 1
2

f − ξ−2/3
f

(H∗φ)1/2

g
= 0, (B 5a)

5
4

sg′ − 1
2

g+ 1
φ

H∗

g
= 0, (B 5b)

ξ
5/3
f

∫ 1

0
f (s) ds+ ξf (H∗φ)

1/2
∫ 1

0
g(s) ds− 1= 0. (B 5c)

The solution of g(s) should be the same as those in regimes II and III (see § 3.3.2,
3.3.3), because the governing equation (B 5b) is the same as equations (3.24b) and
(3.31b) when setting α = 7/4, and also the boundary condition g(1) = 0. Thus, we
can obtain

g(s)= [2 (1− s4/5
)]1/2

. (B 6)

The local asymptotic analysis of (B 5a) near s= 1 yields

f (s)∼
(

15
4

)1/3

(1− s)1/3 as s→ 1−, (B 7)

which provides the values of f (1− ε) and f ′(1− ε) for ε� 1. These conditions can be
used to numerically solve ODEs (B 5a,c) by shooting from s= 1− ε towards s= 0 for
a given ξf . We search for ξf until the value of the left-hand side of (B 5c) is smaller
than 10−6.

It can be seen from (B 5a,c) that the values of both H∗ and φ influence the
solutions for f (s) and ξf , and also the normalized height f (s)/fmax. As an example,
the normalized self-similar shape for α = 7/4, φ = 0.37 and H∗ = 1 is shown in
figure 4 as the orange curve. The stretching constant is computed as ξf ≈ 0.65.

The assumptions that xf (t)� h(0, t), xf (t)� `(0, t) and |dxf /dt| � |∂`/∂t| provide
the self-consistent requirements:

T�
(

g7/2k15/4

q2ν7/2

)8/15

and T�
(

H∗

φ

)2/3 (g7/2k15/4

q2ν7/2

)8/15

. (B 8a,b)

As long as the right-hand sides of (B 8a,b) are much smaller than 1, the drainage
theory is valid in a broad portion of the early-time period.
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Appendix C. The late-time self-similar solutions when α = 3

In the late-time period, i.e. T � 1, for α = 3 the governing equations (3.13a–c)
reduce to

∂H
∂T
− ∂

∂X

(
H3 ∂H
∂X

)
=−1, (C 1a)

∂L
∂T
= 1
φ

(
H
L
+ 1
)
, (C 1b)

∫ XF(T)

0
(H + φL) dX =QT3. (C 1c)

By defining the similarity variable s ≡ X/(ξf T2), we can rewrite the functions as
XF = ξf T2, H = ξ 2/3

f Tf (s) and L= ξ 1/3
f Tg(s) on the domain s ∈ [0, 1], and then write

equations (C 1a–c) as

( f 3f ′)′ + 2sf ′ − f − ξ−2/3
f = 0, (C 2a)

2sg′ − g+ 1
φ

f
g
+ ξ

−1/3
f

φ
= 0, (C 2b)

ξ
5/3
f

∫ 1

0
f (s) ds+ ξ 4/3

f φ

∫ 1

0
g(s) ds−Q= 0, (C 2c)

with boundary conditions f (1)= g(1)= 0.
The local analysis of (C 2a) near s= 1 yields

f (s)∼ 61/3(1− s)1/3 as s→ 1−. (C 3)

Equation (C 3) provides the values of f (1− ε) and f ′(1− ε) for ε� 1. Together with
g(1)= 0, they can be used to numerically solve ODEs (C 2a,b) by shooting from s=
1− ε towards s= 0 for a given ξf . We search for ξf until the value of the left-hand
side of (C 2c) is smaller than 10−6. From (C 3), we can see that the values of both
Q and φ influence the solutions for f (s), g(s) and ξf , and also the normalized current
shape f (s)/fmax and g(s)/gmax. As an example, the normalized self-similar shape for
α= 3, φ= 0.37 and Q= 1 is shown in figure 6 as the green curve with the stretching
constant ξf ≈ 0.60.

The assumptions that xf (t)� h(0, t), xf (t)� `(0, t) and |dxf /dt| � |∂`/∂t| provide
the self-consistent requirement:

T� k1/2Rρg
γ cosθ

. (C 4)

As long as the right-hand side of (C 4) is of order 1 or much smaller than 1, the
drainage theory is valid in the late-time period.

Appendix D. The influence of addition rate for α = 3

Now, we discuss the influence of addition rate, Q, on the dynamics of the current
for α= 3. Here, we focus on the effects of Q on the early-time self-similar and late-
time self-similar solutions.
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FIGURE 18. (Colour online) The influence of addition rate Q on the late-time asymptotic
solutions when α = 3, φ = 0.37. (a) The influence of Q on the magnitudes of the height
MH , the depth ML and the front location MX . (b) The influence of Q on the late-time
normalized self-similar shapes.

For the early-time self-similar solutions, Q does not influence the normalized self-
similar solutions f (s)/fmax and g(s)/gmax, but influences the magnitudes MH and MX ,
which are defined in (4.3a,c). There is simple scaling dependence, MH ∝ Q1/2 and
MX ∝Q.

For the late-time self-similar solutions, the three magnitudes are given by

MH ≡ ξ 2/3
f fmax, ML ≡ ξ 1/3

f gmax, and MX ≡ ξf . (D 1a−c)

Since the solutions for f (s), g(s) and ξf depend on Q (see (C 2a–c)), both the
magnitudes MH , ML and MX in (D 1a–c), and the normalized self-similar solutions
f (s)/fmax and g(s)/gmax should also depend on Q. As an example, we show the
dependence of the three magnitudes on Q when φ = 0.37 in figure 18(a), and the
normalized self-similar shape under different Q in figure 18(b). The result indicates
that in the late times, i.e. T � 1, the magnitudes are higher and the normalized
current shape is fatter for higher injection rate Q, i.e. H(X, T), L(X, T) and XF(T)
all increase with Q.

Appendix E. Numerical scheme

In this section, we describe a cell-centred finite-difference numerical method capable
of handling the coupled PDEs (3.11a–c) for α 6= 3 in § 3 and (C 1a–c) for α= 3 with
boundary conditions given by (3.14a,b) and initial conditions given by either equations
(3.7) or (3.8). We use

J(X, T)=H3 ∂H
∂X

(E 1)
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to represent the flux. The global volume conservation equation (3.11c) is equivalent
to a boundary condition at X = 0,

J(0, T)=
{
−αTα−1, α > 0,
0, α = 0.

(E 2)

In order to avoid the singularity on the right-hand sides of (3.11a,b) for small L,
we define new variables

Σ(X, T)≡H(X, T)+ φL(X, T), (E 3a)
Λ(X, T)≡ L(X, T)2, (E 3b)

which are subject to the governing equations

∂Σ

∂T
− ∂

∂X

(
H3 ∂H
∂X

)
= 0, (E 4a)

∂Λ

∂T
= 2
φ
(H +H∗ + L). (E 4b)

Now, we introduce grid size 1x = Lx/M, where Lx is the size of the simulation
domain, M is the number of the grids and the time step 1t= Tg/N, where Tg is the
simulation target time and N is number of the time steps. Then, we can introduce the
grid functions Hn

i =H(xi, tn), Ln
i = L(xi, tn), Σn

i =Σ(xi, tn), Λn
i =Λ(xi, tn) and Xn

F on
the grid xi = (i− 1/2)1x, and tn = n1t, where i= 1, 2, 3, . . . , and n= 0, 1, 2, . . . .
The flux is defined at the boundaries between two cells, described by the grid function
Jn

i−1/2 = J(xi−1/2, tn). Then, for α 6= 3 we can write the numerical scheme as

Jn
i−1/2 =





−α (n1t)α−1 , i= 1 and α > 0,

0, i= 1 and α = 0
(

Hn
i +Hn

i−1

2

)3 (Hn
i −Hn

i−1

1x

)
, i > 2,

, (E 5a)

Σn+1
i =Σn

i +
1t
1x
(Jn

i+1/2 − Jn
i−1/2), (E 5b)

Λn+1
i =Λn

i + 21t/φ
(
Hn

i + Ln
i +H∗

)
, (E 5c)

Ln+1
i =

√
Λn+1

i , (E 5d)

Hn+1
i =Σn+1

i − φLn+1
i . (E 5e)

We determine the front location XF as where H = ε � 1. In our code, we choose
ε = 10−7. With the initial conditions H0

i = L0
i =Σ0

i =Λ0
i = X0

F = 0 for α > 0, or H0
i =

Σ0
i = 1/X0

F, L0
i =Λ0

i = 0 for α = 0, and the numerical scheme given by (E 5a–e), we
can obtain numerical solutions for H(X, T), L(X, T) and XF(T). The value of 1t is
adjusted according to 1x, so that the numerical solutions are stable. We decrease the
values of 1x and 1t, so that the solutions converge.

For α= 3, the only two differences in numerical scheme are the first line in (E 5a)
and (E 5c), which are given by

Jn
1
2
=−Qα (n1t)α−1 , (E 6)
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Λn+1
i =Λn

i +
21t
φ

(
Hn

i + Ln
i + 1

)
. (E 7)

The following steps are the same as the case for α 6= 3.
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