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words of length n over a finite alphabet that avoid a given factor.
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1. Introduction

1.1. Definitions and open questions

The theory of pattern avoiding permutations has seen tremendous progress during the

past two decades. The key definition is the following. Let k � n, let p = p1p2 · · · pn be a

permutation of length n, and let q = q1q2 · · · qk be a permutation of length k. We say

that p avoids q if there are no k indices i1 < i2 < · · · < ik such that, for all a and b,

the inequality pia < pib holds if and only if the inequality qa < qb holds. For instance,

p = 2537164 avoids q = 1234 because p does not contain an increasing subsequence of

length four. See [4] for an overview of the main results on pattern avoiding permutations.

The shortest pattern for which even some of the most basic questions are open is

q = 1324, a pattern that has been studied for at least 17 years. For instance, there is no

known exact formula for the number Sn(1324) of permutations of length n (or, in what

follows, n-permutations) avoiding 1324. Even the value of L(1324) = limn→∞
n

√
Sn(1324)

is unknown, though the limit is known to exist. Indeed, a spectacular result of Adam

Marcus and Gábor Tardos [7] shows that for all patterns q, there exists a constant cq
such that Sn(q) � cnq for all n, and a short argument [2] then shows that this implies

the existence of L(q) = limn→∞
n

√
Sn(q). It is also known that no pattern of length four is

easier to avoid than the pattern 1324, that is, for any pattern q of length 4, the inequality
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Sn(q) � Sn(1324) holds. The inequality is sharp unless q = 4231. See Chapter 4 of [4] for

a treatment of the series of results leading to these inequalities.

The best known upper bound for the numbers Sn(1324) was given in 2011 by Claesson,

Jelinek and Steingrı́msson [5], who proved that for all positive integers n, the inequality

Sn(1324) < 16n holds. The best known lower bound, Sn(1324) � 9.47n, was given by five

authors in [1] in 2005.

In this paper, we prove the inequality Sn(1324) < (7 + 4
√

3)n. The proof introduces a

refined version of a decomposition of 1324-avoiding permutations given in [5], encodes

such permutations by two words over a 4-element alphabet, and then enumerates those

words. As far as we know, this is the first time the combinatorics of words has been used

to find a good upper bound for the number of permutations avoiding a single pattern.

1.2. Preliminaries

In this section, we present a few simple facts that are well known among researchers

working in the area, and that will be necessary in order to understand some of our proofs

in the subsequent sections. Readers familiar with the area may skip this section. Proofs

that are not given here can be found in [4].

Theorem 1.1. Let q be any pattern of length three. Then

Sn(q) = Cn =

(
2n

n

)
/(n + 1),

the nth Catalan number. In particular, Sn(q) < 4n.

An entry of a permutation is called a left-to-right minimum if it is smaller than all entries

on its left. Right-to-left maxima are defined analogously. For instance, in p = 351624, the

left-to-right minima are 3 and 1, while the right-to-left maxima are 6 and 4. The following

proposition was first proved by Rodica Simion and Frank Schmidt in [8].

Proposition 1.2. A 132-avoiding permutation is completely determined by the set of its left-

to-right minima, and the set of indices that belong to entries that are left-to-right minima.

Proof. By definition, left-to-right minima are always in decreasing order. Furthermore,

once the set and position of the left-to-right minima are given, the order of elements that

are not left-to-right minima is uniquely determined. To see this, fill the positions that

belong to entries that are not left-to-right minima one by one, going left to right. In each

step, the smallest remaining entry that is larger than the closest left-to-right minimum m

on the left of the position at hand must be placed. If we do not follow this procedure and

place the entry y instead of the smaller entry x, then the 132-pattern myx is formed.

Example 1.3. In order to find the unique 132-avoiding permutation of length 6 whose

left-to-right minima are the entries 1, 3, and 4, and that has left-to-right minima in the

first, second and fifth positions, write the left-to-right minima in the specified positions in

decreasing order, to get 43 ∗ ∗1∗, where the ∗ denote positions that are still empty. Then

https://doi.org/10.1017/S0963548314000091 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548314000091


A New Upper Bound for 1324-Avoiding Permutations 719

fill the empty slots with the remaining entries, always placing the smallest entry that is

larger than the closest left-to-right minimum on the left. In this case, that means first

placing 5, then 6, then 2, to get 435612.

In an analogous way, each 213-avoiding permutation is determined by the set of its

right-to-left maxima, and the set of indices that belong to right-to-left maxima. This is

easy to see if we observe that the permutation p = p1p2 · · · pn is 213-avoiding if and only if

its reverse complement, that is, the permutation (n + 1 − pn) (n + 1 − pn−1) · · · (n + 1 − p1)

is 132-avoiding.

As preparation for proving our main results, we state the facts discussed in

Proposition 1.2 and its dual, which is discussed in the paragraph after Example 1.3

in a slightly different form.

Proposition 1.4. Let p = p1p2 · · · pn be a permutation of length n that avoids 132. Let the

ordered pairs of words (u(p), v(p)) of length n be defined as follows. The ith letter of u(p)

is A if pi is a left-to-right minimum in p, and B otherwise. The ith letter of v(p) is A if the

entry of value i is a left-to-right minimum in p, and B otherwise.

Then the map r(p) = (u(p), v(p)) is injective.

Example 1.5. If p = 43512, then u(p) = AABAB and v(p) = ABAAB.

Proposition 1.4 is clearly equivalent to Proposition 1.2 since they both state that a

132-avoiding permutation is completely determined by its set of left-to-right minima, and

the positions of those left-to-right minima in the permutation.

We announce the corresponding statement for 213-avoiding permutations, for future

reference.

Proposition 1.6. Let p = p1p2 · · · pn be a permutation of length n that avoids 213. Let the

ordered pairs of words (x(p), y(p)) of length n be defined as follows. The ith letter of x(p)

is C if pi is not a right-to-left maximum in p, and D otherwise. The ith letter of y(p) is C

if the entry of value i is not a right-to-left maximum in p, and D otherwise.

Then the map s(p) = (x(p), y(p)) is injective.

Example 1.7. If p = 35412, then x(p) = CDDCD, and y(p) = CDCDD.

2. Colouring entries

The starting point of our proof is the following decomposition of 1324-avoiding permuta-

tions, given in [5].

Let p = p1p2 · · · pn be a 1324-avoiding permutation, and let us colour each entry of p

red or blue as we move from left to right, according to the following rules:

(1) if colouring pi red would create a 132-pattern with all red entries, then colour pi blue,

and
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(2) if there already is a blue entry smaller than pi, then colour pi blue;

(3) otherwise colour pi red.

It is then proved in [5] that the red entries form a 132-avoiding permutation and the

blue entries form a 213-avoiding permutation. From this, it is not difficult to prove that

the number of 1324-avoiding n-permutations is less than 16n. Indeed, there are at most

2n possibilities for the set of the red entries (the blue entries being the remaining entries),

and there are at most 2n possibilities for the positions in which red entries are placed (the

blue entries must then be placed in the remaining positions). Once the set and positions

of the k red entries are known, there are Ck < 4k possibilities for their permutation, just

as there are Cn−k < 4n−k possibilities for the permutation of the blue entries, completing

the proof of the inequality Sn(1324) < 16n.

Remark 2.1. In [5], the colouring introduced above is used in a more general context.

However, in this paper we only study 1324-avoiding permutations. It is worth pointing

out that in this situation, rule (2) is actually extraneous. That is, dropping rule (2) and

keeping rules (1) and (3) leads to the very same colouring as rules (1), (2), and (3) do. In

order to see this, let p be a 1324-avoiding permutation. Let us start colouring the entries

of p from left to right as the rules (1), (2) and (3) specify. Let us assume that there is at

least one entry that gets coloured blue only because of rule (2). In that case, there is a

leftmost entry with that property; let that entry be denoted by x. Then, by the definition

of x, there exists an entry y such that y < x, the entry y is on the left of x, and y is

blue. Furthermore, because x is the leftmost entry that got coloured blue only because

of rule (2), the entry y got coloured blue because of rule (1). That means that there is a

132-pattern acy in which a and c are red. Note that c < x is impossible, since that would

mean that acyx is a 1324-pattern. So y < x < c, and therefore, acx is a 132-pattern with

its first two entries red. That means that x is coloured blue by rule (1), a contradiction.

3. Refining the colouring

In this section, we improve the upper bound on Sn(1324) by using a more refined

decomposition of 1324-avoiding permutations, which enables us to carry out a more

careful counting argument. Let us colour each entry of the 1324-avoiding permutation

p = p1p2 · · · pn red or blue as in Section 2. Furthermore, let us mark each entry of p with

one of the letters A, B, C , or D as follows:

(1) mark each red entry that is a left-to-right minimum in the partial permutation of red

entries by A,

(2) mark each red entry that is not a left-to-right minimum in the partial permutation of

red entries by B,

(3) mark each blue entry that is not a right-to-left maximum in the partial permutation

of blue entries by C , and

(4) mark each blue entry that is a right-to-left maximum in the partial permutation of

blue entries by D.

Call entries marked by the letter X entries of type X. Let w(p) be the n-letter word over

the alphabet {A,B, C, D} defined above. In other words, the ith letter of w(p) is the type
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of pi in p. Let z(p) be the n-letter word over the alphabet {A,B, C, D} whose ith letter is

the type of the entry of value i in p.

Remark 3.1. Note that the function f(p) = (w(p), z(p)) in fact applies the map r of

Proposition 1.4 to the string pred of red entries of p, and the map s of Proposition 1.6

to the string pblue of blue entries of p. So given f(p) = (w(p), z(p)), we can immediately

recover r(pred) and s(pblue). Indeed, r(pred) is the pair of subwords of w(p) and z(p) that

consist of letters A and B, whereas s(pblue) is the pair of subwords of w(p) and z(p) that

consist of letters C and D.

Conversely, if we are given r(pred) = (u(pred), v(pred)) and s(pblue) = (x(pblue), y(pblue)), and

we know in which positions of p the red entries are, and entries of which value of p are

red, we can recover f(p) as follows. Shuffle the words u(pred) and x(pblue) so that letters A

and B are in positions that belong to red entries in p, and shuffle the words v(pred) and

y(pblue) so that letters A and B are in positions j for which the entry of value j is red in p.

Example 3.2. Let p = 3612745. Then the subsequence of red entries of p is 36127, the

subsequence of blue entries of p is 45, so w(p) = ABABBCD, while z(p) = ABACDBB.

The following lemma shows a property of w(p) that will enable us to improve the upper

bound on Sn(1324). Let us say that a word w has a CB-factor if somewhere in w, a letter

C is immediately followed by a letter B.

Lemma 3.3. If p is 1324-avoiding, then w(p) has no CB-factor.

Proof. Let us assume that in p = p1p2 · · · pn, the entry pi is of type C , while the entry

pi+1 is of type B. That means that pi > pi+1, otherwise the fact that pi is blue would force

pi+1 to be blue. Furthermore, since pi is not a right-to-left maximum, there is an entry d

on the right of pi (and on the right of pi+1) such that pi < d. Similarly, since pi+1 is not

a left-to-right minimum, there is an entry a on its left such that a < pi+1. However, then

apipi+1d is a 1324-pattern, which is a contradiction.

Lemma 3.4. If p is 1324-avoiding, then there is no entry i in p such that i is of type C and

i + 1 is of type B.

Proof. Analogous to the proof of Lemma 3.3. If such a pair existed, i would have

to be on the right of i + 1, since i is blue and i + 1 is red. As i is not a right-to-

left maximum, there would be a larger entry d on its right. As i + 1 is not a left-to-right

minimum, there would be a smaller entry a on its left. However, then a(i + 1)id would be a

1324-pattern.

Lemma 3.5. Let hn be the number of words of length n that consist of letters A, B, C and

D that have no CB-factors. Then we have

H(x) =
∑
n�0

hnx
n =

1

1 − 4x + x2
.
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This implies

hn =
3 + 2

√
3

6
·
(
2 +

√
3
)n

+
3 − 2

√
3

6
·
(
2 −

√
3
)n
. (3.1)

Proof of Lemma 3.5. Let Hn denote the set of all words of length n over the alphabet

{A,B, C, D} that contain no CB-factors. Using the notation from the book Analytic

Combinatorics by Philippe Flajolet and Robert Sedgewick [6], we claim that if n � 2, then

Hn−1 ∗ {A,B, C, D} = Hn + Hn−2 ∗ CB. (3.2)

Indeed, let us take a word that is an element of Hn−1, and append a letter A, B, C or D

to its end. The result is a word that is in Hn, except when the addition of the new letter

creates a CB-factor. In that case, that CB-factor at the end of the word is preceded by a

word that belongs to Hn−2.

Noting that h0 = 1 and h1 = 4, formula (3.2) leads to the functional equation

4xH(x) + 1 = H(x) + x2H(x).

Expressing H(x), we obtain

H(x) =
1

1 − 4x + x2

as claimed. In order to find the exact formula for hn, we use partial fractions. Note that

α = 2 +
√

3 and β = 2 −
√

3 are the roots of the denominator of H(x), and also note that

αβ = 1. Let us look for real numbers r and s such that

H(x) =
r

1 − αx
+

s

1 − βx

holds for all real numbers x. Multiplying both sides by 1 − 4x + x2, we get the identity

1 = r(1 − βx) + s(1 − αx). (3.3)

As (3.3) must hold for all real numbers x, it has to hold in particular for x = β = 1/α.

That substitution reduces (3.3) to 1 = r(1 − β2), yielding that

r =
1

1 − β2
=

3 + 2
√

3

6
.

In a similar manner, substituting x = α = 1/β in (3.3) yields s = (3 − 2
√

3)/6. Therefore,

H(x) =
3 + 2

√
3

6
· 1

1 − αx
+

3 − 2
√

3

6
· 1

1 − βx

=
3 + 2

√
3

6
·
∑
n�0

αnxn +
3 − 2

√
3

6
·
∑
n�0

βnxn,

and our claim is proved by equating coefficients of xn.

The following simple but crucial lemma tells us that the ordered pair (w(p), z(p))

completely determines the 1324-avoiding permutation p.
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Lemma 3.6. Let Avn(1324) be the set of all 1324-avoiding n-permutations. Then the map

f : Avn(1324) → Hn × Hn, given by f(p) = (w(p), z(p)) is injective.

Proof. Let (w, z) ∈ Hn × Hn, and let us assume that f(p) = (w, z), that is, that w(p) = w,

and z(p) = z for some p ∈ Avn(1324).

Then w tells us for which indices i the entry pi will be of type A, namely for the indices

i for which the ith letter of w is A. Similarly, w tells us the indices j for which the entry

pi is of type B, type C , or type D.

After this, we can use z to figure out which entries of p are of type A, type B, type C

or type D.

Now let wAB (resp. zAB) be the subword of w (resp. z) that consists of all the letters A

and B in w (resp. z). In other words, the pair (wAB, zAB) contains all information about

the red entries of p. It then follows from Proposition 1.4 that there exists at most one

132-avoiding permutation p′ for which r(p′) = (wAB, zAB).

Define wCD and zCD in an analogous manner. Then Proposition 1.6 shows that there

exists at most one 213-avoiding permutation p′′ for which s(p′′) = (wCD, zCD).

It is now immediate from Remark 3.1 that f is injective. Indeed, if f(p) = (w, z), then

the red entries of p must form the unique permutation p′ for which r(p′) = (wAB, zAB), and

the blue entries of p must form the unique permutation p′′ for which s(p′′) = (wCD, zCD).

Finally, as we said in the second and third paragraphs of this proof, the pair (w, z)

uniquely determines the set and positions of red entries of p, and the set and positions of

blue entries of p.

We are now ready to state and prove the main enumeration result of this paper.

Corollary 3.7. For all positive integers n, the inequality

Sn(1324) < h2
n−1 <

(
2 +

√
3
)2n

=
(
7 + 4

√
3
)n

holds.

Proof. The fact that Sn(1324) < h2
n is immediate from the injective property of f that

we have just proved in Lemma 3.6. In order to complete the proof of the first inequality,

note that the image of f consists of ordered pairs (w(p), z(p)) in which both w(p) and z(p)

start with an A, since both p1 and 1 are always red, and left-to-right minima within the

string of red entries (and even in all of p). The rest follows from formula (3.1), since in

that formula the second summand is negative, and in the first summand the coefficient

(3 + 2
√

3)/6 is smaller than the base (2 +
√

3).
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