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THE Σ1-PROVABILITY LOGIC OF HA∗

MOHAMMADARDESHIR ANDMOJTABAMOJTAHEDI

Abstract. For the Heyting Arithmetic HA, HA∗ is defined [14, 15] as the theory {A | HA � A�},
where A� is called the box translation of A (Definition 2.4). We characterize the Σ1-provability logic of
HA∗ as a modal theory iH∗

� (Definition 3.17).

§1. Introduction. This article is a sequel of our previous article [2], in which
we characterized the Σ1-provability logic of HA as a decidable modal theory iH�
(see Definition 3.17). Most of the materials of this article are from the article
mentioned above. Our techniques and proofs are very similar to those used there.
We use a crucial fact (Theorem 4.1 in this article) proved in [2]. For the sake of
self-containedness as much as possible, we bring here some definitions from that
article.
For an arithmetical theory T extendingHA, the following axiom schema is called
the Completeness Principle, CPT :

A→ �TA.
Recall that by the work of Gödel in [5], for each arithmetical formula A and
recursively axiomatizable theory T (like Peano Arithmetic PA), we can formalize
the statement “there exists a proof in T for A” by a sentence of the language of
arithmetic, i.e., ProvT (�A�) := ∃x ProofT (x, �A�), where �A� is the code of A.
Now, by interpreting � by ProvT (�A�), the completeness principle for theory T is
read as follows:

A→ ProvT (�A�).
Albert Visser in [14,15] introduced an extension of HA,

HA∗ := HA+ CPHA∗ .
He called HA∗ as a self-completion of HA. Moreover, he showed that HA∗ may be
defined as the theory {A | HA � A�}, where A� is called the box translation of A
(Definition 2.4).
The notion of provability logic goes back essentially to K. Gödel [6] in 1933. He
intended to provide a semantics for Heyting’s formalization of intuitionistic logic
IPC. He defined a translation, or interpretation � from the propositional language
to the modal language such that
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THE Σ1-PROVABILITY LOGIC OF HA∗ 1119

IPC � A ⇐⇒ S4 � �(A).
Now the question is whether we can find some modal propositional theory such
that the � operator captures the notion of provability in Peano Arithmetic PA.
Hence the question is to find some propositional modal theory T� such that

T� � A ⇐⇒ ∀� PA � �(A),
in which � is a mapping from the modal language to the first-order language of
arithmetic, such that

• for any atomic variable p, �(p) is an arithmetical first-order sentence, and
�(⊥) = ⊥,

• �(A ◦ B) = �(A) ◦ �(B), for ◦ ∈ {∨,∧,→},
• �(�A) := ∃x ProofPA (x, ��(A)�).
It turned out that S4 is not a right candidate for interpreting the notion of prov-
ability, since ¬�⊥ is a theorem of S4, contradicting Gödel’s second incompleteness
theorem (Peano Arthmetic PA, does not prove its own consistency).
Martin Löb in 1955 showed [10] that the Löb’s rule (�A→ A/A) is valid. Then
in 1976, Robert Solovay [12] proved that the right modal logic, in which the �
operator interprets the notion of provability in PA, is GL. This modal logic is well
known as the Gödel–Löb logic, and has the following axioms and rules:

• all tautologies of classical propositional logic,
• �(A→ B)→ (�A→ �B),
• �A→ ��A,
• Löb’s axiom (L): �(�A→ A)→ �A,
• Necessitation Rule: A/�A,
• Modus ponens: (A,A→ B)/B.
Theorem 1.1 (Solovay-Löb). For any sentence A in the language of modal logic,

GL � A if and only if for all interpretations �, PA � �(A).
Now let us restrict the map � on the atomic variables in the following sense. For
any atomic variable p, �(p) is a Σ1-sentence. This translation or interpretation is
called a Σ1-interpretation. On the other hand, let GLV = GL+CPa , where CPa is the
completeness principle restricted to atomic variables, i.e., p → �p. Albert Visser
[14] proved the following result:

Theorem 1.2 (Visser). For any sentenceA in the language ofmodal logic,GLV � A
if and only if for all Σ1-interpretations �, PA � �(A).
The question of generalizing Solovay’s result from classical theories to intuition-
istic ones, such as the intuitionistic counterpart of PA, well known as HA, proved to
be remarkably difficult and remains a major open problem since the end of 70s [3].
For a detailed history of the origins, backgrounds and motivations of provability
logic, we refer the readers to [3].
The following list contains crucial results about the provability logic of HA with
arithmetical nature:

• John Myhill 1973 and Harvey Friedman 1975. HA � �HA (A ∨ B) → (�HAA ∨
�HAB), [4, 11].

• Daniel Leivant 1975. HA � �HA (A ∨ B) → �HA (�. HAA ∨ �. HAB), in which
�. HAA is a shorthand for A ∧�HAA, [8].
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1120 MOHAMMADARDESHIR ANDMOJTABAMOJTAHEDI

• Albert Visser 1981. HA � �HA¬¬�HAA → �HA�HAA and HA �
�HA (¬¬�HAA→ �HAA)→ �HA (�HAA ∨ ¬�HAA), [14,15].

• Rosalie Iemhoff 2001 introduced a uniform axiomatization of all known axiom
schemas of the provability logic of HA in an extended language with a bimodal
operator �. In her Ph.D. dissertation [7], Iemhoff raised a conjecture that
implies directly that her axiom system, iPH, restricted to the normal modal
language, is equal to the provability logic of HA, [7].

• Albert Visser 2002 introduced a decision algorithm for HA � A, for all modal
propositions A not containing any atomic variable, i.e., A is made up of 
,⊥
via the unary modal connective �HA and propositional connectives ∨,∧,→,
[16].

• Mohammad Ardeshir and Mojtaba Mojtahedi 2014 characterized the Σ1-
provability logic of HA as a decidable modal theory [2], named there and
here as iH� . Recently, Albert Visser and Jetze Zoethout [18] proved this result
by an alternative method.

The authors of [1] found a reduction of the Solovay–Löb Theorem to the Visser
Theorem only by propositional substitutions. It is tempting to think that the method
used in [1] can be carried out in the intuitionistic case. However it seems to us that
there is no obvious way of doing such a reduction for the intuitionistic case, and it
should be more complicated than the classical case.
In this article, we introduce an axiomatization of a decidable modal theory iH∗

�

(see Definition 3.17) and prove that it is the Σ1-provability logic of HA∗. This
arithmetical theory is defined [14, 15] as the theory {A | HA � A�}, where A�

is called the box translation of A (Definition 2.4). It is worth mentioning that our
proof of the Σ1-provability logic of HA∗ is in some sense, a reduction to the proof of
the Σ1-provability logic of HA, only by propositional modal logic.

§2. Definitions, conventions and basic facts. The propositional nonmodal lan-
guage contains atomic variables, ∨,∧,→,⊥ and the propositional modal language
is the propositional non-modal language plus �. We use �A as a shorthand for
A∧�A. The notationA[p1|B1, . . . , pn|Bn] stands for the simultaneous substitution
of B1, . . . , Bn for the atomic variables p1, . . . , pn in B, respectively. For simplicity,
in this article, we write the propositional language instead of propositional modal
language. IPC [13] is the intuitionistic propositional nonmodal logic over usual
propositional nonmodal language. IPC� is the same theory IPC in the extended
language of propositional modal language, i.e., its language is propositional modal
language and its axioms and rules are the same as the one in IPC. Since we have
no axioms for � in IPC�, it is obvious that for each A, �A behaves exactly like
an atomic variable inside IPC�. The first-order intuitionistic theory is denoted with
IQC and CQC is its classical closure, i.e., IQC plus the principle of excluded middle.
We have the usual first-order language of arithmetic which has a primitive recursive
function symbol for each primitive recursive function. We use the same notations
and definitions for Heyting’s arithmetic HA as in [13], and Peano Arithmetic PA is
HA plus the principle of excluded middle. For a set of sentences and rules Γ ∪ {A}
in propositional non-modal, propositional modal or first-order language, Γ � A
means that A is derivable from Γ in the system IPC, IPC�, IQC, respectively.
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Definition 2.1. Suppose T is an r.e arithmetical theory and � is a function from
atomic variables to arithmetical sentences. We extend � to all modal propositions
A, inductively:

• �T (A) := �(A) for atomic A,
• �T distributes over ∧,∨,→,
• �T (�A) := ProvT (��T (A)�), in which ProvT (x) is the Σ1-predicate that
formalizes provability of a sentence with Gödel number x, in the theory T .

We call � a Σ1-substitution, if for every atomic A, �(A) is a Σ1-formula.

Definition 2.2. The provability logic of a sufficiently strong theory T is defined
to be a modal propositional theory PL(T ) such that PL(T ) � A iff for arbitrary
arithmetical substitutions �T , T � �T (A). If we restrict the substitutions to Σ1-
substitutions, then the new modal theory is PLΣ(T ).
Lemma 2.3. Let A be a nonmodal proposition and pi �= pj , for all 0 < i < j ≤ n,
are atomic variables. Then for every modal propositions B1, . . . , Bn , we have:

IPC � A iff IPC� � A[p1|�B1, . . . , pn|�Bn].
Proof. By simple inductions on the complexity of proofs in IPC and IPC�. �
The following definition, the Beeson–Visser box-translation, is essentially from
[15, Definition 4.1]. This translation is needed to define the theory HA∗.

Definition 2.4. For every proposition A in the modal propositional language,
we associate a proposition A�, called the box-translation of A, defined inductively
as follows:

• A� := A ∧�A, for atomic A, and ⊥� = ⊥,
• (A ◦ B)� := A� ◦ B�, for ◦ ∈ {∨,∧},
• (A→ B)� := (A� → B�) ∧�(A� → B�),
• (�A)� := �(A�).

For a first-order theory T and a first-order arithmetical formula A, the Beeson–
Visser translation AT is defined as follows:

• AT := A for atomic A,
• (.)T commutes with ∧,∨ and ∃,
• (A→ B)T := (AT → B�T ) ∧�T (AT → BT )
• (∀xA)T := �T (∀xAT ) ∧ ∀xAT .
Define NOI (No Outside Implication) as set of modal propositions A, that any
occurrence of → is in the scope of some �. To be able to state an extension of
Leivant’s Principle (that is adequate to axiomatize the Σ1-provability logic of HA)
we need a translation on the modal language which we name Leivant’s translation.
We define it recursively as follows:

• Al := A for atomic A, boxed A or A = ⊥,
• (A ∧ B)l := Al ∧ Bl ,
• (A ∨ B)l := �Al ∨�Bl ,
• (A → B)l is defined by cases: If A ∈ NOI, define (A → B)l := A → Bl , else
define (A→ B)l := A→ B.
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2.1. Definition of the modal theories. Minimal provability logic iGL, is the same
as Gödel-Löb provability logic GL, without the principle of excluded middle, i.e., it
has the following axioms and rules:

• all theorems of IPC�,
• �(A→ B)→ (�A→ �B),
• �A→ ��A,
• Löb’s axiom (L): �(�A→ A)→ �A,
• Necessitation Rule: A/�A,
• Modus ponens: (A,A→ B)/B.

iK4 is iGL without Löb’s axiom. Note that we can get rid of the necessitation rule
by adding �A to the axioms, for each axiom A in the above list. We will use this
fact later in this article. We list the following axiom schemae:

• The Completeness Principle: CP := A→ �A.
• Restricted Completeness Principle to atomic formulae: CPa := p → �p, for
atomic p.

• Leivant’s Principle: Le := �(B ∨ C )→ �(�. B ∨ �. C ). [9]
• Extended Leivant’s Principle: Le+ := �A→ �Al .
• Trace Principle: TP := �(A→ B)→ (A ∨ (A→ B)). [15]
We define theories iGLC := iGL+ CP and H := iGLC+ TP, LLe := iGL+ Le. Note
that in the presence of CP and modus ponens, the necessitation rule is superfluous.

Lemma 2.5. For any modal proposition A, iK4+ CP � A↔ A�.

Proof. Use induction on the complexity of A. �
2.2. HA∗ and PA∗. HA∗ and PA∗ were first introduced in [15]. These theories are
defined as

HA∗ := {A | HA � AHA} and PA∗ := {A | PA � APA}.
Visser in [15] showed that the provability logic of PA∗ is H, i.e., H � A iff for all
arithmetical substitution �, PA∗ � �PA∗ (A). That means that

PL(PA∗) = PLΣ (PA∗) = H.

Lemma 2.6. 1. For any arithmetical Σ1-formula A, HA � A↔ AHA.
2. HA is closed under the Beeson–Visser translation, i.e., for any arithmetical
formula A, HA � A implies HA � AHA, so HA ⊆ HA∗.

Proof. 1. See [15](4.6.iii).
2. See [15](4.14.i). �

Lemma 2.7. For any Σ1-substitution � and each propositional modal sentence A,
we have HA � �HA (A�)↔ (�HA∗ (A))HA and hence

HA � �HA (A�) iff HA∗ � �HA∗ (A)
Proof. Use induction on the complexity of A. All the steps are straightforward.
For the atomic case and the boxed case, useLemma 2.6.1.Moreover, whenA = �B,
we can use the verifiability of the definition of HA∗ in HA. �
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Remark 2.8. This lemma can be combined with the characterization of the Σ1-
provability logic of HA to derive directly a characterization of the Σ1-provability
logic of HA∗:

A belongs to the Σ1-provability logic of HA∗ iff
A� belongs to the Σ1-provability logic of HA.

This means that we have a decision algorithm for the Σ1-provability logic of HA∗.
The rest of this article is devoted to axiomatize the Σ1-provability logic of HA∗.

§3. Propositional modal logics.
3.1. NNIL formulae and the related topics. The class of No Nested Implications
in the Left, NNIL formulae in a propositional language was introduced in [17], and
more explored in [16]. The crucial result of [16] is providing an algorithm that as
input, gets a non-modal proposition A and returns its best NNIL approximationA∗

from below, i.e., IPC � A∗ → A and for allNNIL formulaB such that IPC � B → A,
we have IPC � B → A∗. In the following, we explain this algorithm and explain
how to extend it to the modal propositions.
Intuitively, the class of NNIL formulae contains those formulae which no →
occurs in the left hand side of any→. For a formal definition of the class of NNIL
propositions, let us first define a complexity measure � on nonmodal propositions
as follows:

• �p = �⊥ = �
 = 0, where p is an atomic proposition,
• �(A ∧ B) = �(A ∨ B) = max(�A, �B),
• �(A→ B) = max(�A+ 1, �B),

Then NNIL = {A | �A ≤ 1}.
In the following definition, we define some complexity measure o over modal
propositions. We need this measure only for showing that the TNNIL-algorithm
terminates.

Definition 3.1. We define a measure complexity for modal propositions D as
follows:

• C→(D) := {E ∈ Sub(D) | E is an implication that is not in the scope of a �}.
In other words, C→(A) is the set of outer occurrences of→,

• c→(D) := max{|C(E)| | E ∈ C(D)}, where |X | is the number of elements of
X . In other words, c→(A) is the maximum number of outer occurrences of→
that appear in some outer implication,

• c0D := the number of occurrences of logical connectives which is not in the
scope of a �,

• c�D := the maximum number of nested boxes. To be more precise,
– c�D := 0 for atomic D,
– c�D := max{c�D1, c�D2}, where D = D1 ◦D2 and ◦ ∈ {∧,∨,→},
– c��D := 1 + c�D,

• cD := (c�D, c→D, c0D).

The measure cD is ordered lexicographically, i.e., (d, i, c) < (d ′, i ′, c′) iff d < d ′ or
d = d ′, i < i ′ or d = d ′, i = i ′, c < c′.
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Definition 3.2. For any two nonmodal propositions A and B, we define [A]B
and [A]′B, by induction on the complexity of B:

• [A]p = [A]′p = p, for atomic p, 
 and⊥,
• [A](B1 ◦ B2) = [A](B1) ◦ [A](B2), [A]′(B1 ◦ B2) = [A]′(B1) ◦ [A]′(B2) for
◦ ∈ {∨,∧},

• [A](B1 → B2) = A→ (B1 → B2), [A]′(B1 → B2) = (A′ ∧ B1)→ B2, in which
A′ is the result of replacing every occurrence of B1 → B2 in A by B2.

3.1.1. NNIL-algorithm. For each propositionA, A∗ is produced, by induction on
the complexity measure cA, as follows. For details see [16].

1. A is atomic, take A∗ := A,
2. A = B ∧ C , take A∗ := B∗ ∧ C ∗,
3. A = B ∨ C , take A∗ := B∗ ∨ C ∗,
4. A = B → C , we have several sub-cases. In the following, an occurrence of E
inD is called an outer occurrence, if E is not in the scope of an implication.
4.a. C contains an outer occurrence of a conjunction. Let C1 and C2 be the

result of replacing that particular occurrence of conjunction by its left
and right conjunct in C , respectively. Then define A1 := B → C1 and
A2 := B → C2 and let A∗ := A∗

1 ∧ A∗
2 .

4.b. B contains an outer occurrence of a disjunction. Let B1 and B2 be the
result of replacing that particular occurrence of disjunction by its left
and right disjunct in B, respectively. Then define A1 := B1 → C and
A2 := B2 → C and let A∗ := A∗

1 ∧ A∗
2 .

4.c. B =
∧
X and C =

∨
Y and X,Y are sets of implications or atoms. We

have several subcases:
4.c.i. X contains atomic p. Set D :=

∧
(X \ {p}) and take A∗ := p →

(D → C )∗.
4.c.ii. X contains
.DefineD := ∧(X \{
}) and takeA∗ := (D → C )∗.
4.c.iii. X contains ⊥. Take A∗ := 
.
4.c.iv. X contains only implications. For any D = E → F ∈ X , let

B ↓ D :=
∧
((X \ {D}) ∪ {F }).

Let Z := {E | E → F ∈ X} ∪ {C} and A0 := [B]Z :=
∨{[B]E |

E ∈ Z}. Now if cA0 < cA, we take

A∗ :=
∧

{((B ↓ D)→ C )∗|D ∈ X} ∧ A∗
0 ,

otherwise, first set A1 := [B]′Z and then take

A∗ :=
∧

{((B ↓ D)→ C )∗|D ∈ X} ∧ A∗
1 .

Note that the clause involving A1 is only needed to ensure that the algorithm
terminates. It is also worth mentioning that A0 and A1 are IPC-equivalent.
We can extend � to all modal language with �(�A) := 0. The class of NNIL
propositions may be defined for propositional modal language as well, i.e., we call
a modal proposition A to be NNIL�, if �(A) ≤ 1 (for extended �). We also define
two other classes of propositions:
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Definition 3.3. TNNIL (Thoroughly NNIL) is the smallest class of propositions
such that

• TNNIL contains all atomic propositions,
• if A,B ∈ TNNIL, then A ∨ B,A ∧ B,�A ∈ TNNIL,
• if all → occurring in A are contained in the scope of a � (or equivalently
A ∈ NOI) and A,B ∈ TNNIL, then A→ B ∈ TNNIL.

Finally we define TNNIL� as the set of all the propositions like A(�B1, . . . ,�Bn),
such that A(p1, . . . , pn) is an arbitrary non-modal proposition and B1, . . . , Bn ∈
TNNIL.

We can use the same algorithm with slight modifications treating propositions
inside � as well. First we extend Definition 3.2 to capture the modal language.

Definition 3.4. For any twomodal propositionsA,B, we define [A]B and [A]′B
by induction on the complexity of B. We extend Definition 3.2 by the following
items:

• [A]�B1 = [A]′�B1 := �B1.
Moreover, we adapt the definition for→ as follows:
• [A](B1 → B2) = A→ (B1 → B2), [A]′(B1 → B2) = (A′ ∧ B1)→ B2, in which
A′ is the result of replacing every outer occurrence of B1 → B2 (i.e., those
which are not in the scope of �) in A by B2.

For a set Γ of propositions, we define

[A]Γ :=
∨
B∈Γ
[A](B) and [A]′Γ :=

∨
B∈Γ
[A]′(B).

It is clear that we are treating a boxed formula as an atomic variable.

3.1.2. NNIL�-algorithm. We use NNIL-algorithm with the following changes to
produce a similar NNIL-algorithm for a modal language.

1. A is atomic or boxed, take A∗ = A.
4. An occurrence of E in D is called an outer occurrence, if E is neither in
the scope of an implication nor in the scope of a boxed formula.

4. c(i). X contains atomic or boxed formula p. We set D :=
∧
(X \ {p}) and

take A∗ := p∗ → (D → C )∗.
Remark 3.5. In fact, we have two ways to find out NNIL� approximation of a
modal proposition.
First: simply apply NNIL�-algorithm to a modal propositionA and computeA∗.
Second: let B1, . . . , Bn be all boxed sub-formulae of A which are not in
the scope of any other boxes. Let A′(p1, . . . , pn) be unique nonmodal propo-
sition such that {pi}1≤i≤n are fresh atomic variables not occurred in A and
A = A′[p1|B1, . . . , pn|Bn]. Let �(A) := (A′)∗[p1|B1, . . . , pn|Bn]. Then it is easy
to observe that IPC� � �(A)↔ A∗.

The above-defined algorithm is not deterministic, however by the following
Theorem, we know that A∗ is unique up to IPC� equivalence.
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Theorem 3.6. For each modal proposition A, the NNIL� algorithm with input A
terminates and the output formula A∗ is an NNIL� proposition such that IPC� �
A∗ → A.
Proof. See [2, Theorem 4.5]. �
3.1.3. TNNIL-algorithm. Here we define A+ as TNNIL-formula approximating
A. Informally speaking, to find A+, we first compute A∗ and then replace all outer
boxed formula �B in A by �B+. To be more accurate, we define A+ by induction
on c�A. Suppose that for all B with c�B < c�A, we have defined B+. Suppose
that A′(p1, . . . , pn) and �B1, . . . ,�Bn such that A = A′[p1|�B1, . . . , pn|�Bn],
where A′ is a nonmodal proposition and p1, . . . , pn are fresh atomic variables
(not occurred in A). It is clear that c�Bi < c�A and then we can define A+ :=
(A′)∗[p1|�B+1 , . . . , pn|�B+n ].
Lemma 3.7. For any modal proposition A,

1. for all Σ1-substitution � we have HA � ��HA (A) ↔ ��HA (A+) and hence
HA � �HA (A) iff HA � �HA (A+).

2. iGL � A1 → A2 implies iGL � A+1 → A+2 , and iK4 � A1 → A2 implies
iK4 � A+1 → A+2 .

Proof. See [2, Corollary 4.8]. �
3.1.4. TNNIL�-algorithm.

Corollary 3.8. There exists an algorithm, which we call TNNIL�-algorithm, such
that for any modal proposition A, it halts and produces a proposition A− ∈ TNNIL�

such that IPC� � A+ → A−.

Proof. Let A := B(�C1, . . . ,�Cn) where B(p1, . . . , pn) is nonmodal. Clearly,
suchB exists. Then defineA− := B(�C+1 , . . . ,�C+n ). Now definition ofA+ implies
A+ = (A−)∗ and hence Theorem 3.6 implies that A− has desired property. �
Lemma 3.9. For each modal proposition A and Σ1-substitution �, HA � �HAA ↔
�HAA−.

Proof. Use definition of (.)− and Lemma 3.7.1. �
Remark 3.10. Note that iGLC � A ↔ B does not imply iGLC � A+ ↔ B+. A
counter-example is A := ¬¬p and B := ¬ � (¬p). We have A+ = A∗ = p and
iGLC � B+ ↔ (�¬p → p). Now one can use Kripke models [2, Section 4.5] to
show iGLC � ¬¬p → (�¬p → p).
Remark 3.11. In the NNIL�-algorithm, if we replace the operation (·)∗ by (·)†,
and change the step 1 to
1. A† := A, if A is atomic, and (�B)† := �B†,
then the new algorithm also halts, and for any modal proposition A, we have
iK4 � A† ↔ A+.
3.2. The box translation and propositional theories.

Definition 3.12. Amodal theoryT is called to be closed under the box-translation
if for every proposition A, T � A implies T � A�.
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Proposition 3.13. For an arbitrary subset X of {CP,CPa , L}, iK4 + X is closed
under the box-translation.
Proof. Let iK4+X � A. We show that iK4+X � A�. The proof can be carried
out by induction on the complexity of the derivation of A from iK4+ X .

1. For any instance of an axiom A of IPC, we clearly have iK4 � A�.
2. For the modal axioms of iK4, we have

(�A→ ��A)� = �(�A� → ��A�)

and also

iK4 � [(�(A→ B) ∧�A)→ �B]� ↔ �[(�(A� → B�) ∧�A�)→ �B�].

3. For any axiom A ∈ X , we observe that iK4+ X � A�.
4. Now assume that the last step of the derivation iK4 + X � A uses modus
ponens. Then iK4+X � B → A and iK4+X � B, with lower complexity and
hence induction hypothesis implies that iK4+X � B� and iK4+X � B� →
A�. Then iK4+ X � A�.

5. Assume that the last step of the derivation iK4 + X � A uses necessitation.
Then A = �B and iK4+ X � B, with lower complexity and hence induction
hypothesis implies that iK4+ X � B�. Then iK4+ X � A�. �

The following two lemmas will be used in the proof of Theorem 3.19.

Lemma 3.14. For anymodal propositionsA,A′ andB, and any propositionalmodal
theory T containing the axioms and the inference rule of IPC�,
1. iK4+�A� � ([A]B)� ↔ ([A�]B�).
2. T � A↔ A′ implies T � [A]B ↔ [A′]B.
Proof. Both parts can be proved by induction on the complexity of B. We give
the argument for the first item and leave the second one to the reader.
The only nontrivial case is when B is an implication. Let B := C → D. By
Definitions 3.4 and 2.4,

([A](C → D))� = �(A� → ((C� → D�) ∧�(C� → D�)))

and also

[A�](C → D)� = (A� → (C� → D�)) ∧�(C� → D�).

Now it is easy to observe that

iK4+�A� � ([A](C → D))� ↔ ([A�](C → D)�). �

Notation 3.15. In the rest of the article, we use A ≡ B as a shorthand for
iK4 � A↔ B.
Lemma 3.16. Let A = B → C be a modal proposition such that B = ∧X and
C =

∨
Y , where X is a set of implications and Y is a set of atomic, boxed or

implicative propositions. Then

(A�)+ ≡ �
( ∧
E→F∈X

�
(
(E → F )�

)+ →
(∧{(

(B ↓ D → C )�
)+ | D ∈ X

}
∧
(
([B ]Z)�

)+))

where Z = {E|E → F ∈ X} ∪ {C}.
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Proof. To simplify notations, Let us indicate

• the sets of all atomic and boxed propositions by At and Bo, respectively,
• X ′ := {E� → F� | E → F ∈ X},
• Z′ := Z� = {E� | E → F ∈ X} ∪ {C�},
• B ′ :=

∧
X ′,

• for any I ⊆ Y , CI :=
∨
E→F∈I �(E� → F�) ∨ ∨

E∈I∩At �E ∨∨
E→F∈Y\I (E

� → F�)

∨∨E∈(Y\I )∩At E ∨∨E∈Bo∩Y E
�,

• and ZI := {E� | E → F ∈ X} ∪ {CI }.
By repeated application of distributivity of conjunction over disjunction, which is
valid in IPC , we have

C� ≡
∧
I⊆Y
C I and

(∨
Z
)�

≡
∧
I⊆Y

(∨
ZI
)
. (1)

Note that A� = (B� → C�) ∧�(B� → C�), and then by definition of (·)+,
(A�)+ = (B� → C�)+ ∧�(B� → C�)+.

Now we compute the left conjunct:(
B� → C�

)+
=
∧
I⊆Y

(
B� → C I

)+
(2)

≡
∧
I⊆Y

( ∧
E→F∈X

�
(
E� → F�

)+ →
(( ∧

E→F∈X

(
E� → F�

))
→ C I

)+)
(3)

≡
∧

E→F∈X
�
(
(E → F )�

)+ →
∧
I⊆Y

(
B ′ → C I

)+
(4)

≡
∧

E→F∈X
�
(
(E → F )�

)+ →
∧
I⊆Y

(∧{(
B ′ ↓ D′ → C I

)+ | D′ ∈ X ′
}
∧
(
[B ′]ZI

)+)
(5)

≡
∧

E→F∈X
�
(
(E → F )�

)+ →
(∧{(

B ′ ↓ D′ → C�
)+ | D′ ∈ X ′

}
∧ ([B ′]Z′)+) (6)

and hence(
A�

)+ ≡ �
( ∧
E→F∈X

�
(
(E → F )�

)+ →
(∧{(

(B ↓ D → C )�
)+ | D ∈ X

}
∧ ([B ′]Z′)+)) .

(7)

Note that 2 and 3 hold byNNIL�-algorithm, 4 holds by properties of iK4, 5 holds
by TNNIL-algorithm, 6 holds by TNNIL-algorithm and equation 1, and finally
equation 7 is derived from 6 by deduction in iK4 and TNNIL-algorithm. Now it is
enough to show that the last formula is equivalent to the following one in iK4:

�
( ∧
E→F∈X

�
(
(E → F )�

)+ →
(∧{(

(B ↓ D → C )�
)+ | D ∈ X

}
∧
(
([B ]Z)�

)+))
. (8)

To show this, it is enough to show

iK4 �
∧

E→F∈X
�
(
(E → F )�

)+
→
((
([B]Z)�

)+
↔ ([B ′]Z′)+

)
.
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Then by Lemma 3.7.2, it is enough to show iK4 � ∧
E→F∈X �(E → F )� →

(([B]Z)� ↔ [B ′]Z′). Since
∧
E→F∈X �(E → F )� ≡ �B�, then it is enough to

show iK4 + �B� � ([B]Z)� ↔ [B ′]Z′. Now, by Lemma 3.14.1, we have iK4 +
�B� � ([B]Z)� ↔ [B�]Z�. Hence we should show iK4 + �B� � [B�]Z� ↔
[B ′]Z′. We have Z′ = Z� and iK4 + �B� � B� ↔ B ′. Then by Lemma 3.14.2,
iK4+�B� � [B�]Z� ↔ [B ′]Z′. �
3.3. Axiomatizing TNNIL-algorithm. In this section, we introduce the axiom set
X such that iK4 + X � (A�)− ↔ A�. Note that we may simply choose X :=
{(A�)− ↔ A� | A is arbitrary proposition}. However, we want to reduce X to
some smaller efficient set of formulae.
We use some modal variant of Visser’s �� in [16]. It is exactly the same as the
relation � in [2] (Section 4.3) except for item B2, which is a little bit different:
• B2′. Let X be a set of implications, B := ∧X and A := B → C . Also assume
that Z := {E|E → F ∈ X} ∪ {C}. Then A � [B]Z,

The relation �∗ is defined to be the smallest relation on modal propositional
sentences satisfying:

• A1. If iK4 � A→ B, then A �∗ B.
• A2. If A �∗ B and B �∗ C , then A �∗ C .
• A3. If C �∗ A and C �∗ B, then C �∗ A ∧ B.
• A4. If A �∗ B, then �A �∗ �B.
• B1. If A �∗ C and B �∗ C , then A ∨ B �∗ C .
• B2. Let X be a set of implications, B := ∧X and A := B → C . Also assume
that Z := {E|E → F ∈ X} ∪ {C}. Then A ∧�B �∗ [B]Z.

• B3. If A �∗ B, then p → A �∗ p → B, in which p is atomic or boxed.
A ��∗ B means A �∗ B and B �∗ A.

Definition 3.17. We define

iH∗
� := iGL+ CP+ {�A→ �B|A �∗ B}.

Note that the Σ1-provability logic of HA is proved in [2] to be

iH� := iGL+ CPa + Le+ + {�A→ �B|A � B},
in which CPa is the Completeness Principle restricted to atomic propositions.

Lemma 3.18. For any propositional modal sentencesA,B, A �∗ B implies A� �∗

B�.
Proof. It is clear thatA �∗ B iff there exists a Hilbert-type sequence of relations

{Ai �∗ Bi}0≤i≤n such that An = A,Bn = B and for each i ≤ n, Ai �∗ Bi is
an instance of axioms A1 or B2, or it is derived by making use of some previous
members of sequence and some of the rules A2–A4 or B1 or B3. Hence we are
authorized to use induction on the length of such sequence for A �∗ B to show
A� �∗ B�. The only nontrivial steps are axioms A1, B2 and the rule B3.

• Suppose that A �∗ B is an instance of A1, i.e., iK4 � A → B. Then by
Proposition 3.13, we have iK4 � A� → B� and hence again byA1,A� �∗ B�,
as desired.

• For treating B2, suppose thatA := B → C ,B = ∧X ,X is a set of implications
and Z := {E|E → F ∈ X} ∪ {C}. We must show (A ∧ �B)� �∗ ([B]Z)�.
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Define X ′ := {E� → F�|E → F ∈ X}, B ′ :=
∧
X ′. Hence by B2, B ′ →

C� ∧�B ′ �∗ [B ′]Z�. Note that we have �B ′ ≡ �B� and also iK4+�B ′ �
B ′ ↔ B�.
Now by using properties of�∗ (A1–A3) and Lemma 3.14(2), we can deduce
(B� → C�)∧�B� �∗ [B�]Z�. Then Lemma 3.14(1) implies (B� → C�)∧
�B� �∗ ([B]Z)�. Then by A1 and A2, we can deduce ((B → C )∧�B)� �∗

([B]Z)�, as desired.
• For the rule B3, assume that A = p → A′, B = p → B ′, A′ �∗ B ′ and p is
atomic or boxed. By induction hypothesis, we get A′� �∗ B ′�. We have two
subcases.
• Let p be atomic. By B3, we have p → A′� �∗ p → B ′� and hence �p →
(p → A′�) �∗ �p → (p → B ′�). Then by A1 and A2, we have (p∧�p)→
A′� �∗ (p ∧�p)→ B ′�. Then A4 implies �[(p ∧�p)→ A′�] �∗ �[(p ∧
�p)→ B ′�]. Finally A1,A2 andA3 implies that (p → A′)� �∗ (p → B ′)�,
as desired.

• Let p = �C . From A′� �∗ B ′� and B3, we have p� → A′� �∗ p� → B ′�.
Then A4 implies �[p� → A′�] �∗ �[p� → B ′�]. Finally A1, A2 and A3
implies that (p → A′)� �∗ (p → B ′)�, as desired. �

The following theorem is analogous to the Theorem 4.18 in [2]:

Theorem 3.19. For any modal proposition A, A� ��∗ (A�)+.

Before proving this theorem, we state a corollary.

Corollary 3.20. iH∗
� � A� ↔ (A�)−.

Proof. Let A� = B(�C1,�C2, . . . ,�Cn) where B(p1, . . . , pn) is a nonmodal
proposition and for each 1 ≤ j ≤ n, Cj is of the form D�

j . Hence for
each 1 ≤ j ≤ n, iK4 � �Cj ↔ �C�

j . By definition of (A
�)−, we have

(A�)− = B(�C+1 , . . . ,�C+n ). Now by Lemma 3.7, we can deduce that iK4 �
B(�C+1 , . . . ,�C+n )↔ B(�(C�

1 )
+, . . . ,�(C�

n )
+). Then Theorem 3.19 implies that

iH∗
� � �(C�

i )
+ ↔ �C�

i . Hence iH
∗
� � (A�)− ↔ A�. �

Proof (Theorem 3.19). We prove by induction on c(A�). Suppose that we have
the desired result for each proposition B with c(B�) < c(A�). We treat A by the
following cases.

1. (A1)A is atomic. Then (A�)+ = A�, by definition, and result holds trivially.
2,3. (A1–A4, B1) A = �B,A = B ∧ C,A = B ∨ C . All these cases hold by

induction hypothesis. In boxed case, we use of induction hypothesis and A4.
In conjunction case, we use of A1–A3 and in disjunction case, we use A1,A2
and B1.

4. A = B → C . There are several sub-cases. Similar to the definition of NNIL-
algorithm, an occurrence of a sub-formula B of A is said to be an outer
occurrence in A, if it is neither in the scope of a � nor in the scope of→.
4.a.(A1–A3) C contains an outer occurrence of a conjunction. We can
treat this case using the induction hypothesis and TNNIL-algorithm.
4.b.(A1–A3)B contains an outer occurrence of a disjunction.We can treat
this case by induction hypothesis and TNNIL-algorithm.
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4.c. B =
∧
X and C =

∨
Y , where X,Y are sets of implications, atoms

and boxed formulae. We have several subcases.
4.c.i.(A1–A4,B3)X contains atomic variables. Letp be an atomic variable
in X . Set D :=

∧
(X \ {p}). Then

(A�)+ ≡ �[(p ∧�p)→ (D� → C�)+]

≡ �[(p ∧�p)→ ((D → C )�)+].
On the other hand, we have by induction hypothesis and A1,A2, and B3,
that

[(p ∧�p)→ ((D → C )�)+] ��∗ (p ∧�p)→ ((D → C )�)
which by use of A4 implies:

�[(p ∧�p)→ ((D → C )�)+] ��∗ �[(p ∧�p)→ ((D → C )�)].
And by use of A1–A3 we have

�[(p ∧�p)→ ((D → C )�)+] ��∗ �[(p ∧�p)→ ((D → C )�)].
Finally by A1 and A2 we have: (A�)+ ��∗ A�.
4.c.i′.(A1–A4, B3) X contains boxed formula. Similar to the previous
case.
4.c.ii,iii.(A1, A2) X contains 
 or ⊥. Trivial.
4.c.iv.(A1–A4, B2, B3) X contains only implications. This case needs the
axiom B2 and it seems to be an interesting case.
By Lemma 3.16,

(A�)+ ≡ �
( ∧
E→F∈X

�
(
(E → F )�

)+ →
(∧{(

(B ↓ D → C )�
)+ | D ∈ X

}
∧
(
([B]Z)�

)+))
.

Then by induction hypothesis, A1–A4 and B3 we have:

(A�)+ ��∗ �
( ∧
E→F∈X

� (E → F )� →
(∧{

(B ↓ D → C )� | D ∈ X
}
∧ ([B ]Z)�

))

��∗
(
�B →

(∧
{B ↓ D → C | D ∈ X} ∧ [B ]Z

))�
.

We show that for each E ∈ Z,
(*) iK4 � (∧{(B ↓ D)→ C | D ∈ X} ∧ [B]E)→ A.

If E = C , we are done by IPC� � [B]C → (B → C ). So suppose some
E → F ∈ X . We reason in iK4. Assume ∧{(B ↓ D → C | D ∈ X}, [B]E
and B. We want to derive C . We have (

∧
(X \ {E → F }) ∧ F )→ C , [B]E

andB. From B and [B]E, we derive E. Also from B, we derive E → F , and
so F . Hence we have

∧
(X \ {E → F }) ∧ F , which implies C , as desired.

Now (*) implies

iK4 �
G︷ ︸︸ ︷

(
∧

{(B ↓ D → C | D ∈ X} ∧ [B]Z)→ A.
Then by Proposition 3.13, we have iK4 � (G� ∧B�)→ C�. This implies

iK4 � (B� → (G�∧B�))→ (B� → C�), andhence iK4 � (B� → G�)→
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(B� → C�). Then because B� → �B�, we have iK4 � (�(B�)→ G�)→
(B� → C�). Hence by necessitation, we derive iK4 � (�B → (

∧{(B ↓
D → C | D ∈ X} ∧ [B]Z))� → A�. Hence (A�)+ �∗ A�.
To show the other way around, i.e., A� �∗ (A�)+, by Lemma 3.18, it is
enough to show

A �∗
(
�B →

(∧
{B ↓ D → C | D ∈ X} ∧ [B]Z

))
or equivalently

A ∧�B �∗
(∧

{B ↓ D → C | D ∈ X} ∧ [B]Z
)
.

We have IPC� � A → ∧ {B ↓ D → C | D ∈ X}, and hence by A1, A ∧
�B �∗ ∧ {B ↓ D → C | D ∈ X}. On the other hand, A ∧ �B �∗ [B]Z,
which by A3, implies

A ∧�B �∗
(∧

{B ↓ D → C | D ∈ X} ∧ [B]Z
)
. �

§4. The Σ1-Provability logic of HA∗. In this section, we will show that iH∗
� is the

provability logic of HA∗ for Σ1-substitutions.
Before we continue with the soundness and completeness theorems, let us state
the main Theorem from [2] that plays a crucial role in the rest of this article.

Theorem 4.1. Let A ∈ TNNIL� be a modal proposition such that iGLC � A. Then
there exists some arithmetical Σ1-substitution � such that HA � �HA (A).

Proof. For the rather long proof of this fact, see [2], Theorems 4.26 and 5.1. �
4.1. The soundness theorem. Let us define some notions from [16]. Let T be a
first-order arithmetical theory. We say that a first-order sentence A, Σ1-preserves
B (A �T,Σ1 B), if for each Σ1-sentence C , if T � C → A, then T � C → B.
For modal propositions A and B, we define A �T,Σ1,Σ1 B iff for each arithmetical
Σ1-substitution �T , we have �T (A)�T,Σ1 �T (B). For arbitrary modal sentencesA,B,
the notation A |∼T,Σ1 B means that T � �T (A) implies T � �T (B), for arbitrary
Σ1-substitution �T . All the above relations with a superscript of HA, means “an
arithmetical formalization of that relation in HA”, for example, A�HA

HA∗,Σ1 B means
HA � “A�HA∗,Σ1 B”.

Lemma 4.2. 1. For each first-order sentences A,B, A�HA
HA∗,Σ1 B iff A

HA �HA
HA,Σ1

BHA,
2. For each propositional modal A,B, A�HA

HA∗,Σ1,Σ1 B iff A
� �HA

HA,Σ1,Σ1 B
�.

Proof. To prove part 1, use Lemma 2.6.1 and definitions of �HA
HA∗,Σ1 and �

HA
HA,Σ1 .

Toprovepart 2, note thatA�HA
HA∗,Σ1,Σ1B iff for all Σ-substitution�,�HA∗ (A)�

HA
HA∗,Σ1

�HA∗ (B) iff for all Σ-substitution �, �HA∗ (A)HA �HA
HA,Σ1 �HA∗ (B)

HA (by previous part)
iff for all Σ-substitution �, �HA (A�)�HA

HA,Σ1 �HA (B
�) iff A� �HA

HA,Σ1,Σ1 B
�. �

Lemma 4.3. �HA
HA,Σ1 is closed under B1.

Proof. See [16], 9.1. �
Corollary 4.4. �HA

HA∗,Σ1 is closed under B1.

https://doi.org/10.1017/jsl.2019.44 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2019.44


THE Σ1-PROVABILITY LOGIC OF HA∗ 1133

Proof. Immediate corollary of Lemmas 4.2 and 4.3. �
Lemma 4.5. �HA

HA,Σ1,Σ1 satisfies A1–A4, B1, B2
′, and B3.

Proof. Proof of closure under A1–A4 and B3 is straightforward. Closure under
B1 is by Lemma 4.3. For a proof of case B2′, see [16].9.2. Note that B′2 is named as
B2 in [16]. �
Corollary 4.6. �HA

HA∗,Σ1,Σ1 satisfies B2.
Proof. Let A,B,C,X,Z be as stated in defining B2. We must prove A ∧

�B�HA
HA∗,Σ1,Σ1 [B]Z. Hence by Lemma 4.2, it is enough to show (A∧�B)��HA

HA,Σ1,Σ1
([B]Z)�. Let X ′ := {E� → F�|E → F ∈ X}, B ′ :=

∧
X ′, C ′ := C�, Z′ :=

{E�|E → F ∈ X} ∪ {C ′}. Now Because �HA
HA,Σ1,Σ1 satisfies B2

′ (Lemma 4.5), we
have (B ′ → C ′)�HA

HA,Σ1,Σ1 [B
′]Z′.Note thatZ� = Z′ and IPC� � (B ′ ∧�B ′)↔ B�.

Hence by Lemma 3.14.2, iK4+�B ′ � [B ′]Z′ ↔ [B�]Z�. Also by Lemma 3.14.1,
iK4 + �B ′ � [B�]Z� ↔ ([B]Z)�. So iK4 + �B ′ � [B ′]Z′ ↔ ([B]Z)�. Now
because �HA

HA,Σ1,Σ1 satisfies A1, we have �B
′ �HA

HA,Σ1,Σ1 [B
′]Z′ ↔ ([B]Z)�. Now one

can easily observe that because �HA
HA,Σ1,Σ1 is closed under A1–A3, we can deduce

(B ′ → C ′) ∧ �B ′ �HA
HA,Σ1,Σ1 ([B]Z)

�. This by using A1–A3 implies ((B → C ) ∧
�B)� �HA

HA,Σ1,Σ1 ([B]Z)
�. Hence by Lemma 4.2.2, (B → C ) ∧�B �HA

HA∗,Σ1,Σ1 [B]Z,
as desired. �
Corollary 4.7. �HA

HA∗,Σ1,Σ1 is closed under B3.

Proof. Let p be atomic or boxed and assume someA,B such thatA�HA
HA∗,Σ1,Σ1 B.

Then by Lemma 4.2.2, A� �HA
HA,Σ1,Σ1 B

�. Because �HA
HA,Σ1,Σ1 satisfies A1–A3 and

B3, we get p� → A� �HA
HA,Σ1,Σ1 p

� → B�. Now by A4, �[p� → A�] �HA
HA,Σ1,Σ1

�[p� → B�], which implies (p → A)� �HA
HA,Σ1,Σ1 (p → B)�. Now by Lemma 4.2.2,

p → A�HA
HA∗,Σ1,Σ1 p → B, as desired. �

Lemma 4.8. We have the following inclusions:

�∗ ⊆ �HA
HA∗,Σ1,Σ1 ⊆ |∼HA

HA∗,Σ1.

Proof. The second inclusion is a trivial. We only prove the first inclusion. We
show that �HA

HA∗,Σ1,Σ1 is closed under A1–A4 and B1–B3. One can observe that
�HA

HA∗,Σ1,Σ1 is closed under A1–A4 and we leave this to the reader. Closure under B1,
B2, and B3 is by Corollaries 4.4,4.6 and 4.7, respectively. �
Theorem 4.9 (Soundness). iH∗

� is sound forΣ1-arithmetical interpretations inHA
∗,

i.e., iH∗
� ⊆ PLΣ(HA∗).

Proof. We show that for arbitrary Σ-substitution, �HA∗ , and for anyA, if iH∗
� � A,

then HA∗ � �HA∗ (A). This can be done by induction on the complexity of iH∗
� � A.

All inductive steps clearly holds, except for the axioms �A → �B with A �∗ B.
This case is a direct consequence of Lemma 4.8. �
4.2. The completeness theorem.
Theorem 4.10. Σ1-arithmetical interpretations in HA∗ are complete for iH∗

� , i.e.,

PLΣ(HA∗) ⊆ iH∗
�.

Proof. We prove the Completeness Theorem contra-positively. Let iH∗
� �

A(p1, . . . , pn). Lemma 2.5 implies iH
∗
� � A� and hence by Corollary 3.20, iH∗

� �
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(A�)−. This, by Theorem 3.6, implies iH∗
� � ((A

�)−)∗ and hence iH∗
� � (A

�)+, and
a fortiori, iGLC � (A�)+. Hence by Theorem 4.1, there exists some Σ1-substitution
�, such that HA � �HA ((A�)+). Hence by Lemma 3.7.1, HA � �HA (A�) and by
Lemma 2.7, HA∗

� �HA∗ (A). �
Corollary 4.11. For any modal proposition A, iH∗

� � A iff iH� � A�.

Proof. By Theorems 4.9 and 4.10 and Lemma 2.7. �
Corollary 4.12. iH∗

� is decidable.

Proof. A proof can be given either with inspections in the proof of the
Completeness Theorem (4.10) or by using the decidability of iH� [2] and Corollary
4.11. �
4.3. Open problems.

1. The statement of Corollary 4.11 is purely propositional. However, our proof
of this corollary is based on Theorem 4.10, that has arithmetical theme. A
tempting problem is to find a direct propositional proof for this corollary. Then
we can derive Theorem 4.10.

2. We conjecture that the full provability logic ofHA∗ is the logic iH∗, axiomatized
as follows

iH∗ := iGL+ CP+ {�A→ �B : A ��∗ B},
in which the relation ��∗ is defined as the smallest relation satisfying:
• A1. If iK4 � A→ B, then A ��∗ B,
• A2. If A ��∗ B and B ��∗ C , then A ��∗ C ,
• A3. If C ��∗ A and C ��∗ B, then C ��∗ A ∧ B,
• A4. If A ��∗ B, then �A ��∗ �B,
• B1. If A ��∗ C and B ��∗ C , then A ∨ B ��∗ C ,
• B2. Let X be a set of implications, B := ∧X and A := B → C . Also
assume that Z := {E|E → F ∈ X} ∪ {C}. Then A ∧�B ��∗ {B}Z,

• B3. If A ��∗ B, then �C → A ��∗ �C → B.
Thenotation {A}(B), formodal propositionsA andB, is defined inductively:
• {A}(�B) = �B and {A}(⊥) = ⊥.
• {A}(B1 ◦ B2) = {A}(B1) ◦ {A}(B2), for ◦ ∈ {∨,∧},
• {A}(B) = A→ B for all of the other cases, i.e., whenB is atomic variable
or implication.

And {A}Γ, for a set Γ of modal propositions, is defined as∨B∈Γ{A}(B).
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