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Notation

The symbol H denotes the set of the quaternions q = x0+x1i+x2j+x3k = Re(q)+Im(q),
with Re(q) = x0 and Im(q) = x1i + x2j + x3k, where the xjs are real numbers and the
imaginary units i, j, k are subject to the rules ij = k, jk = i, ki = j and i2 = j2 = k2 = −1.
We identify the quaternions q whose imaginary part vanishes, Im(q) = 0, with real
numbers, Re(q) ∈ R, and, similarly, we let I = Ri + Rj + Rk be the set of the imaginary
quaternions. The norm |q| � 0 of q is

|q| =
( 3∑

l=0

x2
l

)1/2

= (qq̄)1/2,

where q̄ = x0 − x1i − x2j − x3k is the conjugate of q. The open unit ball B in H contains
the quaternions q such that |q| < 1. The boundary of B in H is denoted by ∂B. By the
symbol S we denote the unit sphere of the imaginary quaternions: q ∈ I belongs to S if
|q| = 1. For I in S, the slice LI = L−I in H contains all quaternions having the form
q = x + yI, with x, y in R.

1. Introduction

Let H be the skew-field of the quaternions. The quaternionic Hardy space H2(B) consists
of the formal power series of the quaternionic variable q, |q| < 1,

f(q) =
∞∑

n=0

qnan, (1.1)
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such that the sequence of quaternions {an} satisfies

‖f‖H2(B) := ‖{an}‖�2(N,H) =
( ∞∑

n=0

|an|2
)1/2

< ∞. (1.2)

Such functions are regular in B in the sense of Gentili and Struppa [10]. For functions in
H2(B), the quaternion-valued inner product is

〈 ∑
qnan,

∑
qnbn

〉
H2(B)

:=
∞∑

n=0

bnan.

We might think of a = {an} as a discrete, positive time, quaternionic-valued signal,
with finite energy, and, using standard notation, of f(q) = â(q) =

∑∞
n=0 qnan as its

generating function. Suppose that T is a linear, stable, time-invariant, realizable filter
acting on such signals. By this we mean a linear, bounded operator T on �2(N, H), such
that: (time invariance) T commutes with the shift operator, and (realizability) the output
Ta at time n depends on am with m � n only. The shift operator S is defined as

Sa(n) = a(n − 1).

We have used the functional notation a(n) = an. We adopt here the convention that in
vector spaces V on the quaternionic skew-field, in multiplication, scalar factors are on
the right: if v ∈ V and α ∈ H, then vα ∈ V . Exactly as in the complex-valued case, T is
time invariant and well defined on Kronecker functions δk (k ∈ Z) if and only if T = TK

is a convolution operator:

TKa(n) = K ∗ a(n) =
∑
k∈Z

K(n − k)a(k), (1.3)

with K = {K(n)} the sequence defined by K = Tδ0. On the other hand, realizabil-
ity is equivalent to the condition that K(n) = 0 if n < 0. Relation (1.3) justifies the
introduction of the �-product between functions of the form (1.1). If g(q) =

∑
n�0 qnbn,

then

(f � g)(q) =
∑
n�0

qn
n∑

k=0

an−kbk.

The �-product is not a pointwise product (see § 2). If φ(q) = K̂(q) =
∑

n�0 qnK(n), then
(1.3) becomes

T̂ a = φ � â := Mφa; (1.4)

Mφ is a �-multiplication operator, where â(q) =
∑

n�0 qna(n).
Let B(H) be the non-commutative algebra of the bounded operators on the quater-

nionic Hilbert space H, normed with the sup-norm. See [12] for the basic facts of func-
tional analysis of linear spaces over the quaternions. The sharp result on boundedness
for �-multiplication operators is in [1].
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Theorem A. Let φ : B → H be a function that can be written as φ(q) =
∑

n�0 qnφ̌(n),
where the sum converges absolutely in B. Then

‖Mφ‖B(H2(B)) = ‖φ‖H∞(B) := sup
q∈B

|φ(q)|.

As a consequence, if φ̌ denotes the sequence of coefficients of φ, φ̌ = {φ̌(n)}n, then
‖Tφ̌‖B(�2(N,H)) = ‖φ‖H∞(B).

Equation (1.3), with n, k � 0, might be interpreted as multiplication times an infinite
matrix Aα = [α(n, k)]n,k�0 = [K(n − k)]n,k�0 with constant diagonals. In applications,
it is important to consider the case of an infinite matrix with constant anti-diagonals,
that is, of Hankel operators. See [14] for a detailed excursion into the theory of such
operators.

Let α : N → H be a quaternion-valued sequence. Form the infinite matrix Aα =
[α(j + k)]+∞

j,k=0, and let Γα act on H-valued sequences v = (vj)+∞
j=0 by matrix multi-

plication:

(Γαv)(j) =
∞∑

k=0

α(j + k)v(k).

Nehari’s problem. Under which conditions on α is the operator Γα bounded on
�2(N, H)?

Exactly as in the complex-valued case, the problem can be reformulated in terms of
regular functions; one has only to be careful in keeping account of the non-commutativity
of the product in H. For two positive real numbers r, s we will write r ≈ s if r/C � s � Cr

for a positive constant C and we will write r � s if there exists C > 0 such that r � Cs.
Our first main result is the following.

Theorem 1.1. Let the sequence α and the regular function b(q) =
∑∞

n=0 qnb̌(n) be
related via

α(n) = b̌(n) for n � 0. (1.5)

Set Λb(h) := 〈h, b〉H2(B) when h is regular in B.
The following conditions are equivalent.

(a) ‖Γα‖B(�2(N,H)) < ∞.

(b) sup
f,g �=0

|〈f � g, b〉H2(B)|
‖f‖H2(B) · ‖g‖H2(B)

< ∞.

(c) ‖b‖BMO(B) := supI∈S ‖b‖BMO(BI) < ∞, where ‖b‖BMO(BI) is the BMO-norm of the
restriction of b to the slice BI .

(d) The measure dμb(q) = |∂cb(q)|2(1 − |q|2) dVolB(q) on B is a Carleson measure for
H2(B): the inequality

∫
B

|f |2 dμb � c(μb)‖f‖2
H2(B) holds whenever f is in H2(B).

(e) Λb belongs to [H2(B) 
� H2(B)]∗, the space dual to the weak �-product of two copies
of H2(B), with respect to the inner product in H2(B).
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Moreover,

‖Γα‖B(�2(N,H)) = sup
f,g �=0

|〈f � g, b〉H2(B)|
‖f‖H2(B) · ‖g‖H2(B)

≈ ‖Λb ‖(H2(B)��H2(B))*

≈ ‖b‖BMO(B)

≈ C(μb)1/2.

In (d), ∂cb(q) =
∑∞

n=1 nb̌(n)qn−1 is the Cullen derivative of b. See § 2 for basic termi-
nology and facts regarding regular functions.

The statement summarizes a circle of ideas which, in the complex-valued case, are due
to Nehari [13], Fefferman [9], and Coifman et al . [6]. The weak �-product H2(B) 
� H2(B)
is defined as the space of the functions ϕ that are regular in B, and such that

‖ϕ ‖H2(B)��H2(B) := inf
{ ∞∑

j=1

‖fj‖H2(B) · ‖gj‖H2(B) : ϕ =
∞∑

j=1

fj � gj

}
< ∞. (1.6)

The proof of Theorem 1.1 partly makes direct use of the corresponding results in one
complex variable, and partly adapts their proofs to the quaternionic setting, but some
new ideas are required. On the one hand there is no available inner–outer factorization
for H2 functions in the quaternionic sense. On the other hand, the geometric properties
of H2’s reproducing kernel are not as clear as in the one complex variable case.

In § 5 we discuss several equivalent definitions of BMOA in the quaternionic context.
There we show in a rather indirect way the curious fact that in (1.6) the infimum might
be taken over decompositions with two summands only, ϕ =

∑2
j=1 fj � gj . Having just

one summand would imply a good factorization for regular functions in H1(B), but we
do not have a result of this strength.

In order to make more concrete the definition of Carleson measures, we also provide
a geometric characterization of them, which might have some independent interest. For
q = reJθ ∈ B, with r � 0, θ ∈ R, and J ∈ S, let

S(q) = {�eIα ∈ B : |α − θ| � 1 − r, 0 < 1 − � � 2(1 − r), I ∈ S}

be the symmetric box in B, indexed by q, which is independent of the particular J .

Theorem 1.2. A measure μ on B is a Carleson measure for the Hardy space H2(B)
if and only if for any q ∈ B the measure of the symmetric box S(q) satisfies

μ(S(q)) � 1 − |q|.

The theorem corresponds to Carleson’s characterization of the corresponding measures
on the complex unit disc; see [5]. The ‘only if’ part of the proof requires some care. The
fact that it suffices to test the measure over symmetric boxes only reflects the fact that
regular functions are affine with respect to the imaginary unit, or, more geometrically,
the fact that the ‘invariant metric’ for functions regular on B is bounded on copies of S

inside B (see [3]).
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The paper is structured as follows. In § 2 we provide some background material on
regular functions of a quaternionic variable. Section 3, with the proof of Theorem 1.2, and
§ 4, with the characterization of the symbols of bounded Hankel operators, are essentially
independent of each other. In § 5 we discuss some properties of the quaternionic version
of analytic BMO. Some questions we could not answer are summarized in § 6.

2. Preliminaries

In this section we recall the definition of slice regular functions over the quaternions H

(in what follows, simply ‘regular’ functions), together with some basic properties. We
will restrict our attention to functions defined on the quaternionic unit ball B = {q ∈ H :
|q| < 1}. We refer the reader to [11] for all details and proofs.

Let S denote the two-dimensional sphere of imaginary units of H, S = {q ∈ H |
q2 = −1}. One can ‘slice’ the space H in copies of the complex plane that intersect
along the real axis,

H =
⋃
I∈S

(R + RI), R =
⋂
I∈S

(R + RI),

where LI := R + RI ∼= C, for any I ∈ S. Each element q ∈ H can be expressed as
q = x + yIq, where x, y are real (if q ∈ R, then y = 0) and Iq is an imaginary unit. To
have a unique decomposition (outside the real axis) we choose y � 0.

A function f : B → H is called (slice) regular if for any I ∈ S the restriction fI of f to
BI = B ∩ LI is holomorphic, i.e. it has continuous partial derivatives and it is such that

∂IfI(x + yI) =
1
2

(
∂

∂x
+ I

∂

∂y

)
fI(x + yI) = 0

for all x + yI ∈ BI .
A wide class of examples of regular functions is given by power series with quaternionic

coefficients of the form
∑∞

n=0 qnan that converge in open balls centred at the origin.
In fact, a function f is regular on B if and only if f has a power series expansion
f(q) =

∑∞
n=0 qnan converging in B.

The slice (or Cullen) derivative of a function f that is regular on B is the regular
function defined as

∂cf(x + yI) =
1
2

(
∂

∂x
− I

∂

∂y

)
fI(x + yI).

Slice regular functions defined on B present a peculiar property.

Theorem 2.1 (representation and extension formula). Let f : B → H be a
regular function and let x + yS ⊂ B. Then, for any I, J ∈ S,

f(x + yJ) = 1
2 [f(x + yI) + f(x − yI)] + 1

2JI[f(x − yI) − f(x + yI)].

Moreover, the previous formula allows one to uniquely extend any holomorphic function
gI : BI → H to a slice regular function on B, denoted by ext(gI).
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A basic result that establishes a relation between regular functions and holomorphic
functions of one complex variable is the following.

Lemma 2.2 (splitting lemma). Let f be a regular function on B. Then for any I ∈ S

and for any J ∈ S, J ⊥ I, there exist two holomorphic functions F, G : BI = B∩LI → LI

such that
f(x + yI) = F (x + yI) + G(x + yI)J

for any x + yI ∈ BI .

Since the pointwise product of functions does not preserve slice regularity, a new mul-
tiplication operation for regular functions is defined. In the special case of power series,
the regular product (or �-product) of f(q) =

∑∞
n=0 qnan and g(q) =

∑∞
n=0 qnbn is

f � g(q) =
∑
n�0

qn
n∑

k=0

akbn−k.

The �-product is related to the standard pointwise product by the following formula.

Proposition 2.3. Let f , g be regular functions on B. Then

f � g(q) =

{
0 if f(q) = 0,

f(q)g(f(q)−1qf(q)) if f(q) �= 0.

The reproducing kernel for the quaternionic Hardy space H2(B) is expressed as

kw(q) =
∞∑

n=0

qnw̄n = (1 − qw̄)−�,

where the power −� denotes the reciprocal in the slice regular sense [11]. See [1] for this
and other basic facts concerning H2(B).

3. Carleson measures on B

A non-negative Borel measure μ on B is called a Carleson measure for the Hardy space
H2(B) if it satisfies the embedding inequality∫

B

|f(q)|2 dμ(q) � c(μ)‖f‖2
H2(B)

for any f ∈ H2(B), with a constant c(μ) depending on μ alone.
We can always decompose a measure μ on the unit ball as μ = μ1 + μ2, where μ1(B ∩

R) = 0 and supp(μ2) ⊆ B ∩ R. Moreover, μ is a Carleson measure if and only if the
measures μ1 and μ2 are Carleson as well.

Thanks to the disintegration theorem (see [2, Theorem 2.28]), any finite measure μ on
B, such that μ(B ∩ R) = 0, can be uniquely decomposed as

dμ(x + yI) = dμ+
I (x + yI) dν(I), (3.1)
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where ν is the measure on the sphere S defined by

ν(E) = μ({x + yI ∈ B | y > 0 and I ∈ E})

and μ+
I is a (probability) measure on B

+
I = {x + yI ∈ BI : y � 0}. Hence we can write∫

B

ϕ(x + yI) dμ(x + yI) =
∫

S

∫
B
+
I

ϕ(x + yI) dμ+
I (x + yI) dν(I)

for any ϕ : B → H. If in general μ is a finite measure on B, we can decompose μ = μR + μ̃,
where μ̃(B ∩ R) = 0 and suppμR ⊆ B ∩ R, so that∫

B

ϕ(x+yI) dμ(x+yI) =
∫

B∩R

ϕ(x) dμR(x)+
∫

S

∫
B
+
I

ϕ(x+yI) dμ̃+
I (x+yI) dν(I), (3.2)

where μ̃+
I is obtained from μ̃ using the disintegration theorem.

A stronger property for a measure defined on the unit ball B is to be a Carleson
measure on each slice BI . For any I ∈ S let μI = μR + μ̃+

I + μ̃+
−I be the ‘restriction’ of μ

to the slice BI .
A finite Borel measure μ is called slice Carleson for H2(B) if there exists a constant

c(μ) such that∫
BI

|f(x + yI)|2 dμI(x + yI) =
∫

B∩R

|f(x)|2 dμR(x) +
∫

B
+
I

|f(x + yI)|2 dμ̃+
I (x + yI)

+
∫

B
+
−I

|f(x + y(−I))|2 dμ̃+
−I(x + y(−I))

� c(μ)‖f‖2
H2(B) (3.3)

for any f ∈ H2(B) and I in S.
For any I ∈ S, the norm ‖f‖2

H2(B) can be interpreted as the complex H2-norm of the
restriction fI(x + yI) =

∑∞
n=0(x + yI)nan of f to BI :

‖f‖2
H2(BI) =

∞∑
n=0

|an|2 = ‖f‖2
H2(B).

Proposition 3.1. Let μ be a finite Borel measure. If μ is slice Carleson for the Hardy
space H2(B), then it is also Carleson.

Proof. Using the same notation as in (3.2), since μ(B) = ν(S) < +∞ we can apply
the disintegration theorem to write∫

B

|f(q)|2 dμ(q) =
∫

B∩R

|f(x)|2 dμR(x) +
∫

S

dν(I)
∫

B
+
I

|f(z)|2 dμ̃+
I (z)

� ‖f‖2
H2(B) + ν(S)‖f‖2

H2(B)

� ‖f‖2
H2(B)

for any f ∈ H2(B). �
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It is not difficult to find examples of infinite measures μ on B such that μI is a Carleson
measure on each slice BI .

As in the classical complex setting (see, for example, [8]), it is possible to give a
characterization of Carleson measures in terms of ‘boxes’. For q = reJθ ∈ B, denote by
AI(q) the arc of ∂BI defined as

AI(q) = {eIα ∈ ∂BI : |α − θ| � 1 − r},

and let SI(q) be the ‘box’ in BI defined by

SI(q) = {�eIα ∈ BI : eIα ∈ AI(q), 0 < 1 − � � 2(1 − r)}.

Definition 3.2. Let q ∈ B. The symmetric subset of B obtained as

S(q) =
⋃
I∈S

SI(q)

is called a symmetric box.

For slice Carleson measures the characterization follows quite easily from the classical
case.

Proposition 3.3. A finite Borel measure μ on B is slice Carleson for H2(B) if and
only if, for any I ∈ S and z ∈ BI , μI(SI(z)) � |AI(z)|, where |AI(z)| denotes the length
of the arc AI(z).

The main ingredients of the proof are the classical Carleson theorem (see, for example,
[8, Theorem 9.3]) and the splitting lemma (Lemma 2.2).

The characterization theorem for general Carleson measures requires the following
technical result.

Lemma 3.4. Let w ∈ D and let s(w) = {z ∈ D : 1−|z| � 2(1−|w|), |arg(z)−arg(w)| �
1 − |w|}. Then there exists a constant c > 0 such that

1
c

�
∣∣∣∣1 − z(w + w̄)/2

1 − zw

∣∣∣∣ � c

for any z ∈ s(w).

Proof. We can suppose that Re w > 0, since the statement is invariant by mul-
tiplication by −1, and Imw � 0, since s(w) = s(w̄). We will write a + ib ≈ α + iβ if
|α|/c � |a| � c|α| and |β|/c � |b| � c|β| for some positive constant c. Hence a+ib ≈ α+iβ
implies |a + ib| ≈ |α + iβ|.

First consider the case in which w is near the real axis. Let w = (1 − ε)eiδ and
z = (1 − ε′)ei(δ′+δ), where 0 < ε � ε0 for a fixed ε0 > 0, 0 � δ � δ0 and |δ′|, ε′ � ε. For
ε0 and δ0 small enough we have ε + ε′ + εε′ ≈ ε + ε′ and (2δ + δ′)2 + |2δ + δ′| ≈ |2δ + δ′|
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so that

1 − zw = 1 − (1 − ε)eiδ(1 − ε′)ei(δ+δ′)

= 1 − (1 − ε)(1 − ε′) + (1 − ε)(1 − ε′)(1 − ei(2δ+δ′))

≈ ε + ε′ + 1 − cos(2δ + δ′) − i sin(2δ + δ′)

≈ ε + ε′ + (2δ + δ′)2 − i(2δ + δ′).

With regard to the norm, we have

|1 − zw| ≈ ε + ε′ + (2δ + δ′)2 + |2δ + δ′| ≈ ε + |2δ + δ′|.

We also have

1 − z
w + w̄

2
= 1 − (1 − ε)(1 − ε′)ei(δ+δ′) cos δ

= 1 − (1 − ε)(1 − ε′) + (1 − ε)(1 − ε′)(1 − cos δ)

+ (1 − ε)(1 − ε′) cos δ(1 − ei(δ+δ′))

≈ ε + ε′ + δ2 + 1 − cos(δ + δ′) − i sin(δ + δ′),

which, in terms of norm, implies that∣∣∣∣1 − z
w + w̄

2

∣∣∣∣ ≈ ε + ε′ + δ2 + (δ + δ′)2 + |δ + δ′| ≈ ε + δ2 + |δ + δ′|.

Moreover, if |2δ + δ′| � 5ε, since |δ′| � ε, we necessarily get δ � 2ε. Therefore,

|δ + δ′| ≈ |2δ + δ′| ≈ δ � δ2,

i.e.

|1 − zw| ≈
∣∣∣∣1 − z

w + w̄

2

∣∣∣∣ ≈ ε + δ.

If |2δ + δ′| � 5ε, then |δ| � 5ε/2 and

|1 − zw| ≈
∣∣∣∣1 − z

w + w̄

2

∣∣∣∣ ≈ ε ≈ ε + δ.

Consider now the case in which w is far away from the real axis. Let ϕ : Ĉ → Ĉ be the
fractional linear transformation defined by

z �→ 1 − z(w + w̄)/2
1 − zw

.

The real axis is mapped by ϕ to the circle C passing through

ϕ(0) = 1, ϕ(1) =
1 − (w + w̄)/2

1 − w
and ϕ

(
2

w + w̄

)
= 0;
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the upper half-space is mapped inside the disc bounded by C (since, for instance,
ϕ(1/w̄) = 1/2). This directly implies that for any z ∈ s(w), if w = (1 − ε)eiδ with
0 � ε � ε0 and δ � ε0, we have |ϕ(z)| � c for some constant c.

Hence, we are left to show that when z ∈ s(w), |ϕ(z)| is bounded away from 0. Consider∣∣∣∣ϕ(z) − 1
2

∣∣∣∣ =
∣∣∣∣1 − z(w + w̄)/2

1 − zw
− 1

2

∣∣∣∣ =
1
2

∣∣∣∣1 − zw̄

1 − zw

∣∣∣∣.
Let ε0 be sufficiently small and let π/2 � δ � δ0. For any w = (1 − ε)eiδ and for any
z ∈ s(w) we have that |z − 1/w̄| � 1

2 |z − 1/w|, which implies |ϕ(z) − 1
2 | � 1

4 , and hence
|ϕ(z)| � 1/4.

The last case to consider is when |w| � 1 − ε0. We have the estimates

1 − |w|
1 + |w| �

∣∣∣∣1 − z(w + w̄)/2
1 − zw

∣∣∣∣ � 1 + |w|
1 − |w| ,

which, setting r0 = 1 − ε0, lead to

1 − r0

1 + r0
� |ϕ(z)| � 1 + r0

1 − r0
,

thus concluding the proof. �

The announced characterization result can then be stated as follows.

Theorem 3.5. A measure μ on B is a Carleson measure for the Hardy space H2(B)
if and only if for any q = reJθ ∈ B the measure of the symmetric box S(q) satisfies

μ(S(q)) � |AI(q)|,

where I is any imaginary unit and |AI(q)| denotes the length of the arc AI(q).

Proof. Consider first the case in which suppμ ⊆ (B ∩ R). In this case μ is a Carleson
measure if and only if it is slice Carleson: since B ∩ R is contained in each slice BI we
have ∫

BI

|f(z)|2 dμ(z) =
∫

B

|f(q)|2 dμ(q) � ‖f‖2
H2(B)

for any I ∈ S. Therefore, the statement follows by Proposition 3.3.
Now let μ(B∩R) = 0. Suppose first that μ is Carleson for H2(B) and let w = u+vIw ∈

B. Consider the function

K(q) :=
1

A(S)

∫
S

ku+vI(q) dAS(I),

where ku+vIw(q) = kw(q) = (1 − qw̄)−∗ is the reproducing kernel of H2(B) and dAS

denotes the usual area element on the sphere S. Then, using the fact that kw(q) = kq(w)
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for any w, q ∈ B and the representation formula, we can write

K(q) =
1

A(S)

∫
S

ku+vI(q) dAS(I) =
1

A(S)

∫
S

kq(u + vI) dAS(I)

=
1

A(S)

∫
S

(
1 − IJ

2
kq(u + vJ) +

1 + IJ

2
kq(u − vJ)

)
dAS(I)

=
1

A(S)

( ∫
S

kq(u + vJ)
1 − JI

2
dAS(I) +

∫
S

kq(u − vJ)
1 + JI

2
dAS(I)

)
= 1

2 (ku+vJ(q) + ku−vJ(q)), (3.4)

where J is any imaginary unit. The function K(q) ∈ H2(B) since it is the superposition
of functions in H2 and, for any J ∈ S,

‖K‖H2(B) � 1
2 (‖ku+vJ‖H2(B) + ‖ku−vJ‖H2(B)) = ‖ku+vJ‖H2(B).

Then, since μ is a Carleson measure, we can write∫
B

|K(q)|2 dμ(q) � ‖K‖2
H2(B) � ‖ku+vJ‖2

H2(B) =
1

1 − (u2 + v2)

=
1

1 − |w|2 � 1
1 − |w| . (3.5)

Let us study the modulus |K(q)|, when q belongs to the symmetric box S(w). Recalling
(3.4) together with the fact that we can choose the imaginary unit J appearing in (3.4)
to be the same as the one of q, we are left to estimate the modulus of K slicewise, namely,
we need to estimate the quantity

|K(z)| = 1
2 |kw(z) + kw̄(z)| =

1
2

∣∣∣∣ 1
1 − zw̄

+
1

1 − zw

∣∣∣∣ =
∣∣∣∣1 − z(w + w̄)/2

1 − zw

∣∣∣∣ ∣∣∣∣ 1
1 − zw̄

∣∣∣∣
with z ∈ SIw

(w). Thanks to Lemma 3.4 and to classical estimates of the reproducing
kernel of the complex Hardy space (see, for example, [8, proof of Theorem 9.3]) we obtain
that for any J ∈ S

|K(x + yJ)| � 1
1 − |w|2 .

With the notation of (3.2), we get∫
B

|K(q)|2 dμ(q) =
∫

S

∫
B
+
I

|K(x + yI)|2 dμ+
I (x + yI) dν(I)

�
∫

S

∫
SI(w)

|K(x + yI)|2 dμ+
I (x + yI) dν(I)

�
∫

S

∫
SI(w)

1
(1 − |w|2)2 dμ+

I (x + yI) dν(I) =
μ(S(w))

(1 − |w|2)2 . (3.6)
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Comparing (3.5) and (3.6) we conclude that

μ(S(w)) � (1 − |w|2)2
1 − |w| � 1 − |w| ≈ |AI(w)|.

Let us now suppose that μ is a measure on B such that for any symmetric box S(q),
μ(S(q)) � |AI(q)|. With the notation of (3.2), the hypothesis on μ yields that, for any
w ∈ B,

|AI(w)| � μ(S(w)) =
∫

S(w)
dμ(q)

=
∫

S

( ∫
SI(w)

dμ+
I (z)

)
dν(I)

=
∫

S

( ∫
SJ0 (u+vJ0)

dμ+
I

proj
(x + yJ0)

)
dν(I),

where J0 is any (fixed) imaginary unit, SJ0(w) is the projection of the symmetric box
S(w) on the fixed semi-disc B

+
J0

and μ+
I

proj
is the projection of the measure μ+

I on the
same slice,

μ+
I

proj
(E) = μ+

I ({x + yI : y > 0 and x + yJ0 ∈ E}), dμ+
I

proj
(x + yJ0) = dμ+

I (x + yI)

for any E ⊆ B
+
J0

. Then the measure∫
S

dμ+
I

proj
(x + yJ0) dν(I)

is Carleson for H2(BJ0). Let f ∈ H2(B). Using the representation formula, if I denotes
the imaginary unit of q, and J0 is any imaginary unit, J0 �= ±I, we have∫

B

|f(q)|2 dμ(q) �
∫

S

∫
B
+
I

(|f(x + yJ0)|2 + |f(x − yJ0)|2) dμ+
I (x + yI) dν(I)

=
∫

B
+
J0

|f(x + yJ0)|2
∫

S

dμ+
I

proj
(x + yJ0) dν(I)

+
∫

B
+
J0

|f c(x + yJ0)|2
∫

S

dμ+
I

proj
(x + yJ0) dν(I),

where we used the fact that |f(q̄)| = |f(q̄)| = |f c(q)|. Since the regular conjugate f c(q) =∑
n�0 qnan of a function f(q) =

∑
n�0 qnan ∈ H2(B) belongs to H2(B) as well (see [7])

and has same H2-norm, thanks to Proposition 3.3 and to the fact that the H2-norm is
the same on each slice, we thus conclude that∫

B

|f(q)|2 dμ(q) � ‖f‖2
H2(BJ0 ) + ‖f c‖2

H2(BJ0 ) = 2‖f‖2
H2(B). �
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4. Hankel bilinear forms

Let b : B → H be a regular function. The Hankel operator associated with the symbol b

is the bilinear operator Tb : H2(B) × H2(B) → H defined by

Tb(f, g) = 〈f � g, b〉H2(B)

for any f, g ∈ H2(B).
As stated in the introduction, a natural problem in this setting is to find necessity

and sufficiency conditions on the symbol b so that the corresponding Tb is a bounded
operator, i.e. so that there exists a constant c(b) depending only on b such that

|Tb(f, g)| � c(b)‖f‖H2(B)‖g‖H2(B)

for any f, g ∈ H2(B).
First, let us show that the boundedness of Tb is equivalent to the boundedness of the

operator Γα with α = {b̌n}, thus proving the first equivalence of Theorem 1.1.

Proposition 4.1. Let b(q) =
∑

n�0 qnb̂n be a regular function on B and let α = {αn}n

be a quaternionic sequence such that αn = b̌n for any n. Then the operator Tb : (f, g) �→
〈f � g, b〉H2(B) is bounded on H2(B) × H2(B) if and only if the operator

Γα : {an}n �→
{ ∑

k�0

αn+kak

}
n

is bounded on �2(N, H). Moreover,

‖Γα‖B(�2(N,H)) = sup
f,g �=0

|〈f � g, b〉H2(B)|
‖f‖H2(B) · ‖g‖H2(B)

.

Proof. Let Gα be the bilinear operator associated with Γα, defined on (c = {cn}n∈N,
d = {dn}n∈N) in �2(N, H) × �2(N, H) by

Gα(c, d) := 〈d, Γαc〉�2(N,H) =
∑
n�0

∑
k�0

αn+kckdn.

It is not difficult to see that Gα is bounded if and only if Γα is, and

sup
c,d�=0

|Gα(c, d)|
‖c‖�2(N,H) · ‖d‖�2(N,H)

= ‖Γα‖B(�2(N,H)).

Let f(q) := č(q) =
∑

n�0 qncn and g(q) := ď(q) =
∑

n�0 qndn be functions in H2(B).
Then

Gα(c, d) =
∑
n�0

∑
j�0

αjcj−ndn =
∑
j�0

αj

j∑
n=0

cj−ndn = 〈f � g, b〉H2(B) (4.1)

and

sup
c,d�=0

|Gα(c, d)|
‖c‖�2(N,H) · ‖d‖�2(N,H)

= sup
f,g �=0

|〈f � g, b〉H2(B)|
‖f‖H2(B) · ‖g‖H2(B)

,

which concludes the proof. �
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When a viable factorization theory is not available, and this is one such case, a more
general tool was developed in the important article [6]. Consider the weak �-product
space H2(B) 
� H2(B), namely, the space of all linear combinations of �-products of pairs
of functions in H2(B),

H2(B) 
� H2(B) =
{

Φ : B → H : Φ(q) =
∑

j

fj � gj(q), with fj , gj ∈ H2(B)
}

,

endowed with the norm

‖Φ ‖H2(B)��H2(B) = inf
{ ∑

j

‖fj‖H2(B)‖gj‖H2(B) : Φ =
∑

j

fj � gj , with fj , gj ∈ H2(B)
}

.

The first step in studying the boundedness of the operator Tb is the following theorem.

Theorem 4.2. Let b : B → H be a regular function and set Λb(h) := 〈h, b〉H2(B) when
h is regular in B. Then there exists a constant c(b), depending only on b, such that

|Tb(f, g)| � c(b)‖f‖H2(B)‖g‖H2(B)

for any f, g ∈ H2(B), if and only if Λb belongs to the dual space (H2(B) 
� H2(B))∗.
On the other hand, for all Λ in (H2(B) 
� H2(B))∗ there exists a unique regular b : B →

H such that Λ = Λb. Moreover,

‖Λb ‖(H2(B)��H2(B))* ≈ sup
f �=0 �=g∈H2(B)

|Tb(f, g)|
‖f‖H2(B) · ‖g‖H2(B)

.

Proof. The argument is standard. We translate it into quaternionic language for the
ease of the reader. First consider a regular b such that Λb ∈ (H2(B) 
� H2(B))∗. Then, for
any f, g ∈ H2(B),

|〈f � g, b〉H2(B)| � ‖f � g ‖H2(B)��H2(B) ‖Λb ‖(H2(B)��H2(B))*

� ‖f‖H2(B)‖g‖H2(B)‖Λb ‖(H2(B)��H2(B))* ,

where the last equality follows from the definition of the norm on H2(B) 
� H2(B). Now let
Λ be a linear functional in (H2(B) 
� H2(B))∗. Since H2(B) embeds in H2(B) 
� H2(B) con-
tinuously, as a dense subspace, Λ can be identified with a unique element of (H2(B))∗ =
H2(B). Hence, Λ = Λb for some b in H2(B), and

sup
f �=0 �=g∈H2(B)

|Tb(f, g)|
‖f‖H2(B) · ‖g‖H2(B)

� ‖Λb ‖(H2(B)��H2(B))* .

In the other direction, let Φ ∈ H2(B) 
� H2(B). Then, for any decomposition of Φ of the
form Φ =

∑
j fj � gj , if Tb is bounded, we have

|〈Φ, b〉H2(B)| �
∑

j

|〈fj � gj , b〉H2(B)| �
∑

j

‖fj‖H2(B)‖gj‖H2(B)c(b)
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for some constant c(b) depending only on the function b. Therefore, taking the infimum
on all possible decompositions of the function Φ, we get

|〈Φ, b〉H2(B)| � inf
{ ∑

j

‖fj‖H2(B)‖gj‖H2(B)c(b)
∣∣∣∣ fj , gj ∈ H2(B)

}
= c(b)‖Φ ‖H2(B)��H2(B),

thus showing that Λb ∈ (H2(B) 
� H2(B))∗ and that

sup
f �=0 �=g∈H2(B)

|Tb(f, g)|
‖f‖H2(B) · ‖g‖H2(B)

� ‖Λb ‖(H2(B)��H2(B))* . �

Another way to characterize the functions b for which the Hankel operator Tb is a
bounded operator is in terms of Carleson measures.

First we need a preliminary result (which holds in analogy with the complex case)
concerning the H2-norm. The calculations proving it are identical to those of the complex
case.

Proposition 4.3. Let dVolB denote the volume form on B defined by dVolB(x+yI) =
1
4 dAS(I) dxdy. Then, for any f ∈ H2(B),

‖f‖2
H2(B) = |f(0)|2 +

1
Vol(B)

∫
B

|∂cf(q)|2 log |q|−2 dVolB(q)

≈ |f(0)|2 +
1

Vol(B)

∫
B

|∂cf(q)|2(1 − |q|2) dVolB(q).

For a proof of the equivalence between the complex analogues of the two integral terms

1
Vol(B)

∫
B

|∂cf(q)|2 log |q|−2 dVolB(q) and
1

Vol(B)

∫
B

|∂cf(q)|2(1 − |q|2) dVolB(q),

see, for example, [15, proof of Theorem 8.1.10]. By polarization, we can use as an inner
product of H2(B) the following:

〈f, g〉H2(B) = g(0)f(0) +
1

Vol(B)

∫
B

∂cg(q)∂cf(q)(1 − |q|2) dVolB(q). (4.2)

The following result can be interpreted as an analogue of the Nehari theorem in the
quaternionic setting.

Theorem 4.4. Let b : B → H be a regular function. Then the Hankel operator Tb is
bounded, i.e. there exists a constant c(b) depending only on b such that

|〈f � g, b〉H2(B)|2 � c(b)‖f‖2
H2(B)‖g‖2

H2(B) (4.3)

for any f, g ∈ H2(B) if and only if the measure on the unit ball B defined by

|∂cb(q)|2(1 − |q|2) dVolB(q) (4.4)

is a Carleson measure for H2(B).
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Proof. Suppose first that Tb is bounded. Let I ∈ S and consider any f, g ∈ H2(B)
such that f, g : BI → LI , namely, such that f, g ∈ H2(D) ⊂ H2(BI); according to the
splitting lemma, let b be decomposed as

b(z) = b1(z) + b2(z)J

with b1, b2 : BI → LI holomorphic and J ∈ S orthogonal to I. Then, recalling that the
norm and the inner product of H2(B) can be computed on any slice,

|〈f � g, b〉H2(B)|2 = |〈f � g, b〉H2(BI)|2 = |〈fg, b1 + b2J〉H2(BI)|2

= |〈fg, b1〉H2(D)|2 + |〈fg, b2〉H2(D)|2,

which, recalling (4.3), leads to

|〈fg, bk〉H2(D)|2 � c(b)‖f‖2
H2(B)‖g‖2

H2(B)

for both k = 1, 2. Thanks to the analogous result (see, for example, [15]) in the complex
case, we get that |b′

k(z)|2(1 − |z|2) dxdy is a (complex) Carleson measure for H2(D) ⊂
H2(BI) for k = 1, 2, and hence, for any f ∈ H2(BI),∫

BI

|f(z)|2|∂cb(z)|2(1 − |z|2) dxdy =
∫

BI

|f(z)|2(|b′
1(z) + b′

2(z)J |2)(1 − |z|2) dxdy

=
∫

BI

|f(z)|2|b′
1(z)|2(1 − |z|2) dxdy

+
∫

BI

|f(z)|2|b′
2(z)|2(1 − |z|2) dxdy

� ‖f‖2
H2(BI),

which, recalling (3.3), implies that the quaternionic measure |∂cb(z)|2(1 − |z|2) dxdy is
Carleson for H2(BI). The fact that I was any imaginary unit yields that the measure
|∂cb(q)|2(1 − |q|2) dVolB(q) is slice Carleson for H2(B) and therefore, thanks to Proposi-
tion 3.1, Carleson.

Let us now prove the opposite implication. Using (4.2) and the Leibniz rule for the
slice derivative, if z = x + yI ∈ BI , we can write

|〈f � g, b〉H2(B)| � |b(0)(f � g)(0)| +
∣∣∣∣ ∫

B

∂cb(q)∂c(f � g)(q)(1 − |q|2) dVolB(q)
∣∣∣∣

�
∣∣∣∣14

∫
S

dAS(I)
∫

BI

∂cb(z)∂c(f � g)(z)(1 − |z|2) dxdy

∣∣∣∣
�

∫
S

dAS(I)
∫

BI

|∂cb(z)| |∂cf(z)| |g(ẑ)|(1 − |z|2) dxdy

+
∫

S

dAS(I)
∫

BI

|∂cb(z)| |f(z)| |∂cg(z̃)|(1 − |z|2) dxdy = I1 + I2,

where ẑ and z̃ are points lying on the same two sphere as z, determined in view of the
expression of the �-product in terms of the pointwise product. (See Proposition 2.3. Here
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we are omitting the discrete subset of BI where f or ∂cf vanish.) To estimate the integral
I1 we first use the Cauchy–Schwarz inequality, and then Proposition 4.3, to get

I2
1 �

∫
S

dAS(I)
∫

BI

|∂cb(z)|2|g(ẑ)|2(1 − |z|2) dxdy

∫
S

dAS(I)
∫

BI

|∂cf(z)|2(1 − |z|2) dxdy

� ‖f‖2
H2(B)

∫
S

dAS(I)
∫

BI

|∂cb(z)|2|g(ẑ)|2(1 − |z|2) dxdy. (4.5)

The representation formula allows us to express g(ẑ) in terms of g(z) and g(z̄), so that
we get∫

S

dAS(I)
∫

BI

|∂cb(z)|2|g(ẑ)|2(1 − |z|2) dxdy

�
∫

S

dAS(I)
∫

BI

|∂cb(z)|2(|g(z)|2 + |g(z̄)|2)(1 − |z|2) dxdy. (4.6)

Now |g(z̄)| = |g(z̄)| = |gc(z)| and ‖gc‖H2(B) = ‖g‖H2(B) (see, for example, [7]); hence,
using (4.5), (4.6) and recalling that |∂cb(q)|2(1 − |q|2) dVolB(q) is a Carleson measure for
H2(B), we conclude that

I2
1 � ‖g‖2

H2(B)‖f‖2
H2(B).

With analogous arguments, we get the same estimate on the second integral I2, thus
completing the proof. �

5. Quaternionic BMOA

Definition 5.1. Let f ∈ H1(B) and, for any interval a = (α, β) of R such that
|a| := |β − α| � 2π, denote by fI,a the average value of (the radial limit of) f on the
arc (eαI , eβI) ⊆ ∂BI ,

fI,a =
1
|a|

∫
a

f(eθI) dθ.

We say that f ∈ BMOA(BI) if

‖f‖BMOA(BI) := sup
a⊂R, |a|�2π

{
1
|a|

∫
a

|f(eθI) − fI,a| dθ

}
< +∞.

We say that f ∈ BMOA(B) if

‖f‖BMOA(B) := sup
I∈S

‖f‖BMOA(BI) < +∞.

The fact that f ∈ H1(B) yields that almost everywhere at the boundary f satisfies the
representation formula (see [7]), which leads to the following statement.

Proposition 5.2. Let f ∈ H1(B). Then f ∈ BMOA(B) if and only if f ∈ BMOA(BI)
for some I ∈ S. More precisely,

‖f‖BMOA(BI) � ‖f‖BMOA(B) � 2‖f‖BMOA(BI).
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Proof. The necessity condition is trivial. Suppose then that f ∈ BMOA(BI) for I ∈ S.
Thanks to the representation formula, the average value of f on a different slice BJ , J ∈ S,
J �= ±I, can be computed as

fJ,a =
1
|a|

∫
a

f(eθJ) dθ =
1
|a|

∫
a

(
1 − JI

2
f(eθI) +

1 + JI

2
f(e−θI)

)
dθ

=
1 − JI

2
fI,a +

1 + JI

2
fI,−a,

where if a = (α, β), then −a = (−β,−α). The statement follows by simple calculations.
�

Theorem 5.3. Let f ∈ H1(B). Then f ∈ BMOA(B) if and only if the measure
|∂cf(q)|2(1 − |q|2) dVolB(q) is a Carleson measure for H2(B).

Proof. Let I, J ∈ S with J ⊥ I, and consider the splitting of f on BI with respect
to J , f = F + GJ , where F, G : BI → LI are holomorphic functions. Notice that for any
a ⊂ R, |a| � 2π,

fI,a =
1
|a|

∫
a

f(eθI) dθ =
1
|a|

∫
a

F (eθI) + G(eθI)J dθ = Fa + GaJ,

where Fa, Ga are the average values of F and G respectively. Moreover, thanks to the
orthogonality of I and J we get

1
|a|

∫
a

|f(eθI) − fI,a| dθ =
1
|a|

∫
a

(|F (eθI) − Fa|2 + |G(eθI) − Ga|2)1/2 dθ. (5.1)

Then, if f ∈ BMOA(B), we also have that both F and G belong to the (complex) space
BMOA(D). Thanks to classical results (see, for example, [15, Theorem 8.3.5]) we then
get that both |F ′(z)|2(1 − |z|2) dxdy and |G′(z)|2(1 − |z|2) dxdy are Carleson measures
for the complex Hardy space H2(D) ⊂ H2(BI). Hence,

|∂cf(z)|2(1 − |z|2) dxdy = (|F ′(z)|2 + |G′(z)|2)(1 − |z|2) dxdy

is a Carleson measure for H2(BI). Since I was any imaginary unit, we have that
|∂cf(q)|2(1 − |q|2) dVolB(q) is slice Carleson for H2(B), and therefore it is a Carleson
measure for H2(B).

If, on the other hand, |∂cf(q)|2(1 − |q|2) dVolB(q) is a Carleson measure for H2(B),
thanks to Proposition 4.4 we get that the Hankel operator Tf associated with f ,

Tf : H2(B) × H2(B) → H, (g1, g2) �→ 〈g1 � g2, f〉H2(B),

is bounded. In particular, Tf is bounded also when restricted to H2(D) × H2(D) ⊂
H2(BI) × H2(BI). Namely, for any g1, g2 ∈ H2(B) that map BI to LI for some I ∈ S, if
the splitting of f on BI with respect to J ⊥ I is f = F + GJ , then

+∞ > |〈g1 � g2, f〉H2(B)|2 = |〈g1g2, F + GJ〉H2(BI)|2

= |〈g1g2, F 〉H2(D)|2 + |〈g1g2, G〉H2(D)|2.
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Hence, thanks to classical results (see, for example, [14]) we have that both F and G

belong to BMOA(D). Recalling (5.1), we get that f = F + GJ ∈ BMOA(BI), which, by
Proposition 5.2, leads to the conclusion. �

Combining Theorems 4.2, 4.4 and 5.3, we get the following identification.

Corollary 5.4. The two spaces (H2(B) 
� H2(B))∗ and BMOA(B) coincide.

A natural question is then whether the spaces H1(B) and H2(B) 
� H2(B) coincide or
not. A partial answer is given by the following result.

Proposition 5.5. H1(B) = H2(B) � H2(B) + H2(B) � H2(B).

Proof. On the one hand H2(B) � H2(B) + H2(B) � H2(B) ⊆ H1(B) since H2(B) �

H2(B) ⊆ H1(B), as proven in [7]. On the other hand, let f ∈ H1(B), I, J ∈ S with I ⊥ J ,
and let F, G : BI → LI be such that fI = F + GJ on BI . Then, since F, G ∈ H1(D) ⊂
H1(BI) (see [7]), thanks to the classical factorization for the complex Hardy space H1(D),
we can write F (z) = F1(z)F2(z) and G(z) = G1(z)G2(z) with F1, F2, G1, G2 ∈ H2(D) ⊂
H2(BI). Hence, on the slice BI we have

fI(z) = F1(z)F2(z) + G1(z)G2(z)J

= F1 � F2(z) + G1 � G2(z)J,

which can be (uniquely) extended on the entire B by means of the extension lemma as

f(q) = ext(F1 � F2 + G1 � G2J)(q)

= ext(F1) � ext(F2)(q) + ext(G1) � ext(G2)(q)J,

where the last equality follows from the identity principle. Since F1, F2, G1, G2 ∈ H2(BI)
we get that their regular extensions belong to H2(B), and therefore that f ∈ H2(B) �

H2(B) + H2(B) � H2(B). �

As a consequence we have that H1(B) ⊆ H2(B) 
� H2(B).

Theorem 5.6. The dual space of H1(B) is BMOA(B).

Proof. Corollary 5.4, Proposition 5.5 and a standard density argument yield that
BMOA(B) ⊆ (H1(B))∗.

To prove the opposite inclusion, let L ∈ (H1(B))∗ be a bounded linear functional on
H1(B). Then, for any I ∈ S, L ∈ (H1(BI))∗. Since, for any I ∈ S, H1(BI) is a linear
subspace of L1(∂BI) (see [7]), the Hahn–Banach theorem in the quaternionic setting
(see [4]) yields that L extends to a bounded linear functional on L1(∂BI). As in the
complex case, (L1(∂BI))∗ = L∞(∂BI), and hence there exists ϕ ∈ L∞(∂BI) such that

L(f) =
1
2π

∫ π

−π

ϕ(eθI)f(eθI) dθ

for any f ∈ L1(∂BI). The same duality relation holds, restricted to f ∈ H1(B), even if
we replace ϕ by its projection g = Pϕ onto the functions that are holomorphic on BI ,
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with values in the quaternions (here the splitting lemma is used), and it follows from one
complex-dimensional Nehari theory that g lies in BMOA(BI). Thanks to Proposition 5.2
we conclude that g ∈ BMOA(B). �

Corollary 5.7. H1(B) = H2(B) 
� H2(B).

Proof. Equality of duals implies norm equivalence in the spaces. �

6. Concluding remarks

We conclude with some problems connected with the paper’s subject that we could not
answer.

• We know that H1(B) = H2(B) 
� H2(B). It would be interesting to know if H2(B)�

H2(B) = H1(B); that is, if a good factorization theory exists in the quaternionic
setting.

• Our testing function for the Carleson measure theorem is an average of reproducing
kernels. It would be interesting to know if the ‘reproducing kernel thesis’ holds; that
is, if the inequality ∫

B

|kw|2 dμ � c(μ)‖kw‖2
H2(B),

with c(μ) independent of w, implies that μ is Carleson for H2(B).
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