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The rotational motion of a prolate spheroidal particle suspended in shear flow is
studied by a lattice Boltzmann method with external boundary forcing (LB-EBF).
It has previously been shown that the case of a single neutrally buoyant particle
is a surprisingly rich dynamical system that exhibits several bifurcations between
rotational states due to inertial effects. It was observed that the rotational states were
associated with either fluid inertia effects or particle inertia effects, which are always
in competition. The effects of fluid inertia are characterized by the particle Reynolds
number Rep = 4Ga2/ν, where G is the shear rate, a is the length of the particle
major semi-axis and ν is the kinematic viscosity. Particle inertia is associated with
the Stokes number St = α Rep, where α is the solid-to-fluid density ratio. Previously,
the neutrally buoyant case (St = Rep) was studied extensively. However, little is
known about how these results are affected when St 6= Rep, and how the aspect
ratio rp (major axis/minor axis) influences the competition between fluid and particle
inertia in the absence of gravity. This work gives a full description of how prolate
spheroidal particles in the range 2 6 rp 6 6 behave depending on the chosen St and
Rep. Furthermore, consequences for the rheology of a dilute suspension containing
such particles are discussed. Finally, grid resolution close to the particle is shown
to affect the quantitative results considerably. It is suggested that this resolution is a
major cause of quantitative discrepancies between different studies. Thus, the results
of this work and previous direct numerical simulations of this problem should be
regarded as qualitative descriptions of the physics involved, and more refined methods
must be used to quantitatively pinpoint the transitions between rotational states.

Key words: bifurcation, complex fluids, multiphase and particle-laden flows

1. Introduction
Understanding the flow of particle suspensions is of great importance in many

industrial, biological and geophysical applications. Such dispersed particle flows

† Email address for correspondence: fredrik@mech.kth.se
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have certain properties that are of interest. For the quality of coatings (Li, Zhu &
Zhang 2005), the capture rate of plankton (Pésceli, Trulsen & Fiksen 2012) and
the formation of cloud droplets (Balkovsky, Falkovich & Fouxon 2001), the spatial
distribution of particles within the suspending fluid is of great importance. Particle
suspensions usually also have a shear-dependent effective viscosity. In many cases,
such as in determining the texture and pumping requirements of food (Bayod &
Willers 2002), understanding the rheology of the suspensions is necessary for design
and optimization.

A common way of modelling such properties in suspensions involves assuming
that the particles are perfectly spherical, due to the accessibility of models for
particle–fluid interactions (Crowe et al. 2012). However, assuming the particles
to be spherical is insufficient for numerous applications, such as in predicting
particle motion of fibres in paper pulp (Lundell, Söderberg & Alfredsson 2011) and
composite moulds (Le et al. 2008), the motion of asbestos fibres in the respiratory
system (Miserocchi et al. 2008) or the motion and growth of snow crystals in the
atmosphere (Gavze, Pinsky & Khain 2012). Having a suspension of non-spherical
particles presents an additional challenge, as properties become dependent not only
on the spatial distribution of particles but also on the orientation distribution; in order
to understand the physics of the collective orientation distribution of non-spherical
particles, one needs to know how a single particle rotates due to local velocity
gradients in the flow, and how this affects the rheology.

In the present work, we consider a single prolate spheroidal particle in a simple
shear flow, which is ideally created through the induced flow of two parallel, opposite
moving walls (figure 1). The flow will affect the particle through forces on the particle
surface and give rise to a torque on the particle. This in turn yields a rotational
motion. In the absence of fluid and particle inertia, analytical expressions for this
rotational motion were derived by Jeffery (1922). The particle was found to move
periodically in one of an infinite number of closed kayaking orbits around the vorticity
axis (figure 2c; the kayaking state can be described as a precession and nutation
around the vorticity axis). It was later seen in experiments (Taylor 1923; Binder 1939;
Karnis, Goldsmith & Mason 1963) that upon including fluid inertia, the particle has
a preferred orbit of tumbling (rotation around the minor axis, which is aligned with
the vorticity axis; see figure 2a) or log-rolling (rotation around the major axis, which
is aligned with the vorticity axis; see figure 2b), depending on the aspect ratio rp and
the particle Reynolds number Rep.

Theoretical studies have shown that the leading effect of fluid inertia is a drift
towards log-rolling for nearly spherical particles (Saffman 1956; Subramanian & Koch
2006), whereas slender fibers drift towards tumbling (Subramanian & Koch 2005).
Numerical results have also shown that there exists a critical Reynolds number Rep=
Rec, above which a motionless (steady) state exists (figure 2f ), such that the particle
major axis is perpendicular to the vorticity axis and makes a small angle φc to the
flow direction (Aidun, Lu & Ding 1998; Ding & Aidun 2000; Zettner & Yoda 2001;
Subramanian & Koch 2005; Huang, Wu & Lu 2012a; Huang et al. 2012b; Rosén,
Lundell & Aidun 2014).

Particle inertia, associated with the Stokes number St, leads to a drift towards
tumbling (Subramanian & Koch 2006; Lundell & Carlsson 2010) if fluid inertia
is negligible. Furthermore, very heavy particles have been observed to undergo a
transition from tumbling (where angular velocity is dependent on orientation) to
rotating (where angular velocity is constant) (Lundell & Carlsson 2010; Nilsen &
Andersson 2013). Computer simulations that include fluid and particle dynamics have
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FIGURE 1. (Colour online) A spheroidal particle is placed in a linear shear flow generated
by two parallel, opposite moving walls; the orientation of the particle is described by the
angles φ and θ ; the angle ψ is of less interest for spheroids due to the rotational symmetry
of the particle.

proven to be a very useful tool for studying the full three-dimensional rotational
behaviour of particles. Qi & Luo (2002, 2003) found that a neutrally buoyant
spheroid (with the particle having the same density as the fluid) of aspect ratio
(major axis/minor axis) rp = 2 was tumbling at low Rep but log-rolling at high Rep.
However, their study considered only two initial orientations, and from this they
claimed that the final rotational state was independent of initial orientation. Recent
numerical work has shown that there exist several other equilibrium rotational states
when Rep is increased, including inclined rolling, inclined kayaking and kayaking (Yu,
Phan-Thien & Tanner 2007; Huang et al. 2012b; Rosén et al. 2014). These rotational
states are illustrated in figure 2(c–e). It was also observed that these states always
coexist with a stable tumbling solution, and that the final state depends on the initial
orientation. Even though previous numerical works (Qi & Luo 2002, 2003; Yu et al.
2007; Huang et al. 2012b; Rosén et al. 2014) agree qualitatively, the quantitative
critical values of Rep characterizing the transitions differ between the studies. The
reasons for these discrepancies are believed to be differences in spatial resolution
and the fact that determination of these parameters is very sensitive to how well
the boundary layer around the particle is resolved. This issue will be investigated
thoroughly in the present work. What is also missing from most numerical studies
is discussion of the fact that Rep and St are dependent on one another through the
relation St= αRep, where α is the solid-to-fluid density ratio. This relationship means
that even a neutrally buoyant particle will experience particle inertial effects for
Rep > 0, since St= Rep in that case.

Each rotational state mentioned here is associated with fluid and/or particle inertial
effects being dominant, and can be seen as a combination of two dynamical states
for the fluid and the particle. The dominant inertial effects for the different states are
summarized in table 1. Generally, particle inertia is the dominant effect if the final
rotational state is a time-periodic state for both particle and fluid, whereas fluid inertia
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FIGURE 2. (Colour online) Rotational states of the prolate spheroid in a linear shear flow:
(a) tumbling (φ̇= f (φ)) or rotating (φ̇= const.); (b) log-rolling; (c) kayaking; (d) inclined
rolling; (e) inclined kayaking; (f ) steady state (where the particle symmetry axis is located
in the flow-gradient plane, making an angle φc with the flow (i.e. x) direction); (a, f ) are
planar rotational states (θ =π/2), while (b–e) are non-planar (06 θ <π/2); the rotational
states can also be viewed in a movie clip provided in the supplementary data.

dominates if the final rotational state is a steady-state solution for the fluid. All the
rotational states discussed in this work are illustrated in a movie clip, available as
supplementary data at http://dx.doi.org/10.1017/jfm.2015.127.

Just as in previous work, a distinction will be made between planar rotational states
and non-planar rotational states. In planar states, including the tumbling, rotating and
steady states, the particle symmetry axis is located in the flow-gradient plane (θ =
π/2); in the non-planar states, i.e. log-rolling, inclined rolling, inclined kayaking and
kayaking, the particle symmetry axis is located at 0 6 θ <π/2.

The previous results indicate that the final rotational state is dependent not only on
Rep but also on St, since these parameters control the competition between fluid inertia
and particle inertia. This competition determines most of the transitions between the
rotational states in table 1, and examining the state space in the Rep–St plane is
necessary to understanding the physical mechanisms. At this point, it is appropriate
to comment on the effect of gravity, since St 6= Rep means that the solid-to-fluid
density ratio is not equal to 1. Obviously, sedimentation in itself affects particle
rotation at non-zero Reynolds numbers. When combined with shear, a huge parameter
space opens up (both the direction and the strength of gravity must be considered),
but this is beyond the scope of the present study. For the case of small Rep and
St and nearly spherical particles, a perturbation analysis including sedimentation
was done by Subramanian & Koch (2006), but for wider ranges of Rep, St and rp
complete parameter sweeps are unfeasible. Nevertheless, the identification of critical
transitions in the Rep–St plane will help to reduce the complexity of future studies.
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Dynamics of prolate spheroids in shear flow due to inertia 119

Rotational state Rot. state Dynamical state Dynamical state Dominant inertial effects
(descriptive) (abbrev.) (fluid) (particle) P= particle inertia

F= fluid inertia

Tumbling T Time-periodic Time-periodic P
Rotating R Time-periodic Time-periodic P
Log-rolling LR Steady state Time-periodic F
Kayaking K Time-periodic Quasi-periodic P and F
Inclined rolling IR Steady state Time-periodic F
Inclined kayaking IK Time-periodic Quasi-periodic P and F
Steady state S Steady state Steady state F

TABLE 1. Description of the rotational states of the particle, together with their
abbreviations, and the corresponding states in terms of fluid and particle dynamics.

Similar arguments can be made when it comes to other aspects that affect rotation,
such as Brownian diffusion.

Still, previous studies have almost solely been concerned with neutrally buoyant
(α= 1) spheroidal particles of fixed aspect ratio. Here, we extend the work of Rosén
et al. (2014) to cover all the rotational states of a prolate spheroidal particle in a
Rep–St parameter space and also look closely at the transitions as functions of the
particle aspect ratio rp. The aim of this work is to predict the rotational behaviour
of a prolate spheroidal particle with any density and aspect ratio in the absence of
gravity. We will also discuss the implications this has for the rheological behaviour
of dilute suspensions of such particles.

The outline of the paper is as follows. Section 2 will cover the flow problem and
the range of parameters used in this numerical study. Section 3 will explain in detail
the important knowledge gained from the works of Lundell & Carlsson (2010) (only
particle inertial effects) and Rosén et al. (2014) (only neutrally buoyant particles of
rp = 4) and show that a general description of the flow problem has not yet been
obtained. In § 4, we first discuss the difficulties in obtaining quantitative results due
to the sensitivity to grid resolution; secondly, the qualitative rotational dynamics in the
entire Rep–St parameter space will be described for a particle of aspect ratio rp = 4
(the same aspect ratio as in Rosén et al. (2014)). Finally, in § 5 we discuss how the
dynamics changes with the aspect ratio rp.

2. Method
The method used in the present work is the lattice Boltzmann method with external

boundary forcing (LB-EBF). A description of the computational method can be found
in appendix A, and further details are provided in the work by Wu & Aidun (2010).
For the case of a spheroidal particle in a shear flow, the method was also validated
and verified by Rosén et al. (2014) and so will not be repeated here. Only the case of
α> 1 (i.e. the particle has density equal to or higher than the surrounding fluid) will
be simulated in this study, but the explanation of the physical processes will allow us
to predict the behaviour of light particles (with α < 1) as well.

2.1. The flow problem
The problem is set up by simulating the flow between two parallel moving walls
located at y = 0 and y = N moving with velocities U and −U, respectively, in the
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x direction. The boundaries at x= 0, x=N, z= 0 and z=N are treated with periodic
boundary conditions. The linear shear flow has a shear rate of G= 2U/N, which is
also the relevant inverse time scale for the flow problem. The prolate particle, placed
in the middle of the domain, is described by the equation

x′2

a2
+ y′2

b2
+ z′2

b2
= 1 (2.1)

where (x′, y′, z′) denotes a body-fixed coordinate system. The length of the prolate
particle symmetry axis a is greater than the equatorial radius b, and we define an
aspect ratio rp= a/b. The orientation and rotation of the particle are defined according
to figure 1 with the Euler angles (φ, θ, ψ), and a corresponding rotational velocity
vector is defined as ω = (φ̇, θ̇ , ψ̇). The important dimensionless numbers in this
problem are the aspect ratio rp, the particle Reynolds number Rep (associated with
fluid inertia) and the Stokes number St (associated with particle inertia). The latter
two quantities are defined as

Rep = 4 Ga2

ν
, (2.2)

St= α Rep, (2.3)

where ν is the kinematic viscosity of the fluid and α is the solid-to-fluid density ratio.
The aim of the present work is to determine the rotational motion of a spheroidal

particle solely due to shear, while all forces giving a translational motion (e.g. gravity)
are neglected.

The domain is chosen to be cubic with confinement κ = 2a/N = 0.2 to ensure
results independent of domain size, as demonstrated by Rosén et al. (2014). A
too-high confinement can influence the dynamics since streamlines close to the walls
are forced to be in the horizontal direction. To get good resolution of the surface
forces on the particle, the minor semi-axis was limited to b > 3 and the major
semi-axis restricted to a > 12, where the length unit is the side of the cubic lattice.
The lower limits were set by considering the smallest particle that still undergoes the
same sequence of transitions as a larger particle. In particular, a neutrally buoyant
particle of a = 24 and b = 6 was simulated with N = 240 and G = 1/1200 and
was observed to undergo the same transitions with increasing Rep (not presented
in detail here) as a particle with a = 12 and b = 3. We also mention here that
the correct Reynolds number for describing the flow around the minor axis should
be equal to Rep/r2

p. This means that the flow is much less complex around the
minor dimension compared with that around the major dimension, and therefore
the fluid–solid interaction is better captured when particle is in a non-planar motion
(Do-Quang et al. 2014). Consequently, mesh convergence is ensured for the dynamics
and any influence of a low mesh number can be ruled out. To simulate a spheroidal
particle of aspect ratio rp > 4 (i.e. a> 12), the domain size was increased to ensure
that κ = 0.2, but with the shape remaining cubic. To simulate such low confinement,
the range of Rep is constrained since the flow becomes unstable at a too-high channel
Reynolds number ReH = κ−2 Rep. In the range of Rep = 10–300, the particle could
reach its final rotational state before the flow becomes unsteady and non-periodic;
hence this is considered a valid range for the problem. The lower limit on Rep was
set to ensure a low value of the lattice Boltzmann viscosity ν, which is connected
to the Knudsen number through Kn = √3ν/(2a), and thus to ensure the absence of
slipping effects at constant shear rate G (Rosén et al. 2014).
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Dynamics of prolate spheroids in shear flow due to inertia 121

In general, throughout this study, all transitional Reynolds numbers are determined
with an accuracy of 1Rep = 1, meaning that if a transition is found at Rep and not
at Rep + 1Rep, a transition is said to have occurred at Rep + 1Rep/2. The same
determination is used for critical Stokes numbers, with 1St= 10.

3. Summary of previous knowledge
3.1. Heavy particle in creeping shear flow

Jeffery (1922) derived analytical expressions for the torque on an ellipsoidal particle
in a linear Stokes flow (Rep = 0) for any angular velocity vector. By coupling this
torque to the equation of motion for the particle, a differential equation could be
obtained and integrated, which was done numerically by Lundell & Carlsson (2010).
This differential equation in non-dimensional form has a dependency on the Stokes
number St= α Rep, which determines the effect of particle inertia relative to viscous
forces. Even though the torque was derived for Rep = 0, a solution could be found
for finite St. The Stokes flow solution can, however, be considered valid even in a
low-Rep regime. As mentioned in the introduction, Lundell & Carlsson (2010) and
Nilsen & Andersson (2013) reported a transition for elongated heavy spheroids in
linear shear flow from tumbling to rotating, due to particle inertial forces dominating
viscous damping forces. The period is found to be a decreasing function of the Stokes
number, with the period GTJ = 2π(r−1

p + rp) obtained at St= 0 and the period GTH =
4π as St→∞. The transition is characterized by St0.5, which is defined as the Stokes
number at which the spheroid rotates with a period of (GTJ +GTH)/2. For a particle
of rp= 4, this number is St0.5= 307, and was observed by Lundell & Carlsson (2010)
to be an increasing function of rp. It should be mentioned that for a particle with this
quite low value of rp, the transition from tumbling to rotating will be rather smooth
since GTJ = 8.5π, which is not much larger than GTH = 4π. For a more slender
particle the transition is sharper, as was also observed by Lundell & Carlsson (2010)
and Nilsen & Andersson (2013).

The transition is illustrated in figure 3, where the angular velocity in the final
rotational state is plotted against the angle at different St values. In the figure, a
comparison is also made with the present LB-EBF model, where a prolate spheroid
with rp = 4 (a = 12, b = 3) is simulated for Rep = 0.5 (with shear rate lowered to
G= 1/34 560 to ensure low Kn) in a computational domain of N = 120. The density
ratio was chosen to be α = 2× 100, 2× 101, . . . , 2× 105, leading to the same range
of Stokes numbers as in the analytical case. The simulated results are compared with
the analytical results at the same Stokes number. The simulated results agree well
with the analytical ones, with some small discrepancies which can be explained by
the slight non-zero Rep in the simulations.

3.2. Neutrally buoyant particle (α = 1, rp = 4) at Rep > 0
Rosén et al. (2014) investigated a prolate spheroid with rp = 4 and reported that the
particle inertia and fluid inertia are always in competition, even for a neutrally buoyant
particle. As fluid inertia, associated with Rep, increases, particle inertia also increases
since it is associated with the Stokes number St= 1 ·Rep. Therefore, if the particle is
released at an orientation where the symmetry axis gains enough angular momentum,
centrifugal forces will take it to a planar tumbling motion. Otherwise, fluid inertia
effects will dominate, leading to non-planar motion (i.e. log-rolling, inclined rolling,
inclined kayaking or kayaking). At Rep > Rec, fluid inertia can be strong enough
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FIGURE 3. Phase diagrams showing the motion of a spheroid with rp = 4 in a flow
with negligible fluid inertia: our numerical model at Rep = 0.5 (circles) is compared with
analytical results from Lundell & Carlsson (2010) (solid lines) for: (a) St= 1; (b) St= 10;
(c) St = 100; (d) St = 1000; (e) St = 10 000; (f ) St = 100 000. Panels (a)–(f ) show the
transitions from tumbling to rotating; in each panel the dashed line indicates the location
of φ̇min during a period.

to completely stop the motion, and the particle will end up in a steady state. The
transitions for a neutrally buoyant particle with rp=4, as found by Rosén et al. (2014),
are summarized in table 2, and the dynamical behaviour at Rep=60 (T/LR), 70 (T/IR),
74 (T/IK) and 80 (T) is shown in figure 4.

In the subcritical Hopf bifurcation at ReLR, the log-rolling solution is stabilized, and
there are two coexisting stable rotational states, one of which is associated with fluid
inertial effects (log-rolling) and the other with particle inertial effects (tumbling). An
unstable limit cycle (sketched as a dashed curve in figure 4b,c) is created in this
transition. This limit cycle is located between the two solutions and distinguishes the
initial orientations that lead to each rotational state. To illustrate this, a particle is
simulated at Rep = 60, 70, 74 and 80 with five different initial orientations according
to

(φ0, θ0)1 = (0, 0),

(φ0, θ0)2–5 =
(πn

2
,
πm
8

)
, n= 0, 1 and m= 1, 2.

 (3.1)

In figure 4(a) the projection (px, py) = (sin θ cos φ, sin θ sin φ) of a simulated
particle trajectory is displayed, and figure 4(b) shows the projection of the five initial
orientations from (3.1). Figure 4(c) shows that at Rep = 60, the initial orientations 1,
2 and 4 are inside the unstable limit cycle and lead to log-rolling, whereas the initial
orientations 3 and 5 are outside the limit cycle and end up in the tumbling state. The
size of the limit cycle thus determines how probable it is that a random orientational
configuration of particles, initialized at rest, will end up in the log-rolling state. After
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(1) (2)

(3)

(4)

(5)
(a) (b) (c)

(d) (e) ( f )

FIGURE 4. (Colour online) Trajectories of a neutrally buoyant particle with rp = 4
initialized at rest from five different initial orientations: (a) particle motion projected onto
the xy-plane by (px, py)= (sin θ cosφ, sin θ sinφ); (b) the five initial orientations according
to (3.1) projected onto the xy-plane, where the grey circles indicate the initial conditions,
which due to symmetry in the flow problem are equivalent to the initial orientations 2–5,
and the large circle represents orientations in the flow-gradient plane (when the particle
is in planar rotation at θ = π/2); projected trajectories from simulations at (c) Rep = 60,
(d) Rep = 70, (e) Rep = 74 and (f ) Rep = 80, where the empty circles represent the initial
orientations and the filled circles the orientations at G · t= 1000.

the supercritical pitchfork bifurcation at RePF, the unstable limit cycle shrinks and
reshapes, as can be seen in figure 4(d,e); finally, the limit cycle is annihilated in a
saddle-node bifurcation of limit cycles at ReT , as seen in figure 4(f ).

The transition at Rep = Rec, for a particle of rp = 4, is through an infinite-period
saddle-node bifurcation with a diverging tumbling period close to Rep = Rec (Ding
& Aidun 2000; Rosén et al. 2014). The bifurcation gives rise to two equilibrium
orientations, where there is zero torque on the particle: one stable orientation φc and
one unstable orientation φus; see figure 5. This means that for a small deviation φc±
δφ or φus + δφ, the particle will go to φc, but a small negative deviation φus − δφ
will make the particle rotate around the vorticity direction until it is almost aligned
with the flow again at φc −π. The transition at Rec is based on the balance between
the torque on the particle from the primary flow and the opposing torque from the
secondary flow, as explained in Ding & Aidun (2000). The magnitude of the torque
from the secondary flow increases with the Reynolds number, and at the critical value
it balances the torque from the primary flow. The quantitative value of Rec predicted
numerically depends on the exact point of balance reached. This makes the value of
Rec strongly dependent on precise prediction of the flow around the particle. This is
true also for determination of the exact values of RePF, ReHopf and ReT .

3.3. Bifurcation diagram
In practical applications, the solid-to-fluid density ratio of the particle and fluid rarely
varies; instead, it is of greater significance what the rotational states of the particles
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FIGURE 5. (Colour online) Illustration of equilibrium angles at Rep > Rec: (a) stable
equilibrium angle at φc; (b) unstable equilibrium angle at φus.

are with constant α and varying Rep. This is best illustrated with a bifurcation diagram,
shown in figure 6, following Rosén et al. (2014).

To draw bifurcation diagrams, a norm is needed to distinguish between the different
rotational states. Rosén et al. (2014) used the measure NC =Cnorm(1+ |ω/G|), where
Cnorm is an orbit parameter defined as

Cnorm = C
C+ 1

,

C= r−1
p tan θ(r2

p sin2 φ + cos2 φ)1/2.

 (3.2)

This yields:

(i) NC = const.

(a) NC = 0, log-rolling;

(b) 0<NC < 1, inclined rolling;

(c) NC = 1, steady state;

(ii) NC = f (t)

(a) NC,mean > 0.5, tumbling/rotating;

(b) NC,mean < 0.5, inclined kayaking, kayaking.

The definition above also makes it easy to distinguish planar rotational states
(NC > 1) from non-planar rotational states (NC < 1). The oscillating states for which
NC = f (t) are shown by plotting NC,max and NC,min during a period, represented by the
grey area in figure 6. The dashed lines illustrate the approximate location of unstable
fixed points, while the open circles illustrate the approximate location of NC,max of the
unstable cycles. The bifurcation diagram reveals the following hysteresis behaviour:
if one starts on the non-planar branch (where NC < 1) and increases or decreases Rep,
the particle will eventually end up in a tumbling motion for Rep >ReT or Rep <ReLR;
however, since the tumbling solution is also available at ReLR < Rep < ReT , if Rep is
now varied the particle will always stay in this planar motion.
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FIGURE 6. (Colour online) Bifurcation diagram for a spheroid with rp= 4; the zoomed-in
region with Rep between 60 and 100 is displayed on the right. The stable rotational states
have either a fixed orientation (solid lines) or an oscillating orientation (grey area), where
in the latter case the norm is plotted using NC,max and NC,min during an oscillation period;
the unstable fixed points are schematically drawn with dashed lines, and the approximate
location of NC,max for the unstable limit cycle is indicated by the open circles.

3.4. Motivation for the present work
The knowledge from previous work can be summarized in Rep–St parameter space, as
is done in figure 7 for a prolate spheroid with rp= 4. The entire regime of St> 0 and
Rep= 0 is well understood from the work of Lundell & Carlsson (2010), and the line
where St = Rep, i.e. α = 1, is well understood from the work of Rosén et al. (2014)
and others.

The region where St > Rep is not well documented. The critical Reynolds number
Rec is defined for a stationary particle and hence is dependent only on the geometry
of the problem; this number therefore cannot depend on St. The dependence of the
other critical Reynolds numbers (ReLR, RePF, ReHopf and ReT) on the Stokes number
was not known prior to this work. Furthermore, the dependence of St0.5 on Rep and
how all these transitions depend on the aspect ratio rp are also not clear. All of these
questions will be addressed in this work, where a complete picture of the dynamics of
a single prolate spheroid will be provided. The results help to explain contradictions
in the literature and provide a complete framework for analysing rotational motion of
a particle in shear flow.

4. Results: dynamics of a spheroid with rp = 4

4.1. Comments about the sensitivity of Rec to the flow field near the particle
The transition at Rec is very sensitive to small changes in the fluid field around the
particle, as it is caused by a very delicate balance of torques on the particle. At
Rep = Rec, the negative torque T− from the primary flow is exactly equal to the
positive torque T+ from the secondary flow (illustrated in figure 8). Therefore, a small
error of ±1 % in determining T+ or T− can lead to a large error in the value of Rec.
This stringent requirement of accuracy in determining the torque results in difficulty
pinpointing the critical Reynolds number using any numerical method without extreme
grid refinement around the particle.
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FIGURE 7. Dynamical transitions of a prolate spheroidal particle with rp = 4 in the Rep–
St parameter space, as known from previous work by Lundell & Carlsson (2010) and
Rosén et al. (2014). As in table 1, T = tumbling, R = rotating, LR = log-rolling, IR =
inclined rolling, IK= inclined kayaking, K= kayaking and S= steady state.

1

1

2 2Particle

FIGURE 8. (Colour online) Qualitative flow field close to steady state at Rep ≈ Rec; the
primary flow (1) gives a negative torque (clockwise direction in left panel) on the particle,
and the secondary flow (2) gives a positive torque (anticlockwise direction in left panel)
on the particle (Ding & Aidun 2000).

The aim of the present work is to describe dynamical states of the particle in
shear flow, and a moving grid is therefore crucial. The qualitative changes in the
fluid field as Rep changes are not sensitive to resolution, so the order in which
the dynamical states occur and the particle behaviour in each dynamical region are
resolution-independent. This is probably why the sensitivity described above has
not been reported before. For example, the present model matches the transitional
Reynolds numbers of Huang et al. (2012b) when the same resolution is used (Rosén
et al. 2014). The critical Reynolds number Rec was estimated by Huang et al. (2012b)
to be Rec = 445± 5 for the case of rp = 2 and κ = 0.5.
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FIGURE 9. (Colour online) Resolution dependence of the critical Reynolds number Rec
for a prolate spheroid with rp = 4 (a = N/10) and κ = 0.2: (a) Rec versus the spatial
resolution N with constant shear rate G = 1/2400 or G = 1/1800; (b) Mamax and Knmax
versus the spatial resolution N.

Special consideration must be given to two parameters in lattice Boltzmann methods,
due to the kinetic basis of the approach. One consideration is that the maximum
Knudsen number Knmax must be small enough in order to correctly describe a
continuum fluid. This number is defined close to Rec as Knmax = 2

√
3 a Grp/Rec, and

can be seen in figure 9(b) to be small (approximately O(10−3)) and decreasing with
N. These effects are therefore considered negligible. The second consideration is
that the maximum lattice Boltzmann Mach number in the simulation, Mamax, should
be small in order to eliminate any compressible effects in the fluid. This number
is linearly increasing with N via the relation Mamax =

√
3GN/2. Therefore, to keep

Mamax small, as N increases G must become smaller to keep GN small. The smaller
the value of G, the larger the number of time steps required to reach the equilibrium
state. To pinpoint the quantitative value of Rec requires very large N, very small G
and very long computational time. However, in order to capture the dynamics of the
particle motion and the equilibrium states, it is not necessary to pinpoint the value
of Rec.

To investigate the desired range of Rep, the shear rate was set to G = 1/600,
which was seen by Rosén et al. (2014) to give correct behaviour of particle motion.
However, the physical transitional Rep values, for example Rec, could differ from
the values presented here, since G is not small enough (and N not large enough)
for the solution to have converged to the precise value of Rec (Rosén et al. 2014).
Figure 9 shows that the value of Rep converges to the accurate Rec as the resolution
N increases (with particle size determined by a= N/10). It is found that, due to the
slow convergence with respect to the spatial resolution, getting a converged value of
Rec will be extremely computationally expensive; the values obtained are in the range
of 69–132.

Consequently, to obtain a converged solution of Rec not only requires high spatial
resolution through a high value of N but also a low value of the shear rate G in order
to be able to neglect compressible effects. Because the lattice Boltzmann equation is
explicit in time integration, the shear rate G is simultaneously connected to the time

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

12
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2015.127


Dynamics of prolate spheroids in shear flow due to inertia 129

resolution of the particle rotation, and more time steps are required for lower values of
G. Furthermore, as Rep approaches the critical point, i.e. Rec, the period of oscillation
increases to infinity asymptotically. In essence, the computational cost of achieving a
simulation that is fully converged in space with a low Mamax is huge.

However, a ‘steady state’ approach can be employed to accurately pinpoint Rec,
as shown by Ding & Aidun (2000). Determining the value of Rec does not require
performing a transient simulation, since it is defined as the minimum Rep at which
a stationary particle with a certain orientation φ (θ = π/2) is experiencing zero
torque. Therefore, one can fix the orientation of the particle, compute steady-state
flow around the particle, and then change the orientation until the torque is balanced
at the minimum value of Rep, which would be Rec. This approach was demonstrated
by Ding & Aidun (2000) with the lattice Boltzmann method. However, because
in this case the flow is steady state, one can solve the steady-state Navier–Stokes
equation to pinpoint the value of Rec without any need for time integration. This
was done by setting up the problem in Comsol Multiphysics 4.3a. The same flow
problem was considered, using a fixed particle and evaluating the torque for different
particle orientations φ and Rep. The minimum Rep at which a zero torque exists is
found to be Rec = 131± 5, and the corresponding orientation is φ = 6.6◦ ± 0.5◦. This
value seems reasonable, considering the LB-EBF data in figure 9. Using the same
Comsol Multiphysics model, an estimate of Rec = 476± 10 is obtained for the case
of rp = 2 and κ = 0.5, as opposed to the lattice Boltzmann simulations which gave
Rec = 445± 5.

To conclude this section, we observe that the same sequence of transitions between
dynamical states as Rep and St are changed is found regardless of the resolution
(as long as the particle is large enough, as discussed in § 2.1). By fixing the spatial
resolution and shear rate to constant values, as is done here, the resolution-dependence
can be neglected and the transitional Rep can be compared between the simulations.
However, in order to pinpoint the physical transitional Reynolds numbers, other
methods must be employed. At present this is feasible in cases where the particle is
steady (such as Rec), but not for transitions from one moving state to another.

4.2. Prediction of Stc

In the Rep = 0 case, the spheroid in the tumbling motion has a minimum angular
velocity φ̇min, which increases with St as can be deduced from figure 3. On the other
hand, for a neutrally buoyant particle, φ̇min decreases as Rep increases from 10 to 50
(figure 10) and is the source of the infinite-period saddle-node bifurcation, which
occurs at Rep = Rec ≈ 89, as φ̇min becomes zero somewhere on the orbit. When St
is increased to 1000 at Rep = 100, an orbit with φ̇min > 0 can again be found. Since
the steady state must still exist, as it is dependent only on geometry, two solutions
(tumbling and steady state) will exist above some critical Stokes number Stc. Hence, a
heavy particle can maintain a tumbling motion due to particle inertia given sufficient
initial angular momentum. If the particle is not initialized with enough angular
momentum, the fluid inertia will dominate and take the particle to a steady state.

4.3. Rotational states
The results from the present numerical study for a prolate spheroid of rp = 4 can be
summarized in a single state plot as shown in figure 11. The figure shows the different
rotational states that can be present for a certain pair of Rep and St values. At every
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FIGURE 10. Phase diagrams of a tumbling particle with rp= 4, for: (a) St= 10; (b) St=
50; (c) St = 100; (d) St = 1000. In each panel the dashed line indicates the location of
φ̇min, which does not exist in panel (c) (where Rep = St = 100), since there is no stable
tumbling solution; the steady state and the tumbling solution can coexist at Rep = 100 if
the Stokes number is increased to St= 1000, as in panel (d).

Rep, there is a periodic solution at sufficiently high St where the particle rotates with
axis of symmetry in the flow-gradient plane. This solution is tumbling in the moderate
St regime, but at high St there is a transition to rotating motion. Since this solution
is associated with high particle inertia, it will most likely be the preferred rotational
state if the particle is initialized with sufficient angular momentum. Figure 11 shows
thirteen distinct regimes depending on Rep, which are listed below (an impressive
number indeed for such a seemingly simple case). The details on how the transitions
are determined will be given in the next subsection.

Regime Ia (Rep < ReLR and St< St0.5)
All initial conditions lead to tumbling.

Regime Ib (Rep < ReLR and St> St0.5)
All initial conditions lead to rotating.
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FIGURE 11. (Colour online) State plot showing the different rotational states for a
spheroid with rp = 4, depending on the values of Rep and St (T = tumbling, R =
rotating, LR = log–rolling, IR = inclined rolling, IK = inclined kayaking, K = kayaking,
S= steady state); the error bar under the Rep-axis indicates the range in which Rec has
been found due to a dependence on resolution, and the black cross indicates the value of
Rec obtained from Comsol (see § 4.1).

Regime IIa (ReLR < Rep < RePF and St< St0.5)
Tumbling and log-rolling are stable solutions; the final state depends on the initial

conditions.

Regime IIb (ReLR < Rep < RePF and St> St0.5)
Rotating and log-rolling are stable solutions; the final state depends on the initial

conditions.

Regime IIIa (RePF < Rep < ReHopf and St< St0.5)
Tumbling and inclined rolling are stable solutions; the final state depends on the

initial conditions.

Regime IIIb (RePF < Rep < ReHopf and St> St0.5)
Rotating and inclined rolling are stable solutions; the final state depends on the

initial conditions.

Regime IVa (ReHopf < Rep < ReT and St< St0.5)
Tumbling and inclined kayaking (and kayaking when the inclined kayaking

solutions merge) are stable solutions; the final state depends on the initial conditions.

Regime IVb (ReHopf < Rep < ReT and St> St0.5)
Rotating and inclined kayaking (and kayaking when the inclined kayaking solutions

merge) are stable solutions; the final state depends on the initial conditions.
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Regime Va (ReT < Rep < Rec and St< St0.5)
All initial conditions lead to tumbling.

Regime Vb (ReT < Rep < Rec and St> St0.5)
All initial conditions lead to rotating.

Regime VIa (Rep > Rec and St< Stc)
All initial conditions lead to steady state.

Regime VIb (Rep > Rec and Stc < St< St0.5)
Tumbling and steady state are stable solutions; the final state depends on the initial

conditions.

Regime VIc (Rep > Rec and Stc < St< St0.5)
Rotating and steady state are stable solutions; the final state depends on the initial

conditions.
The methods used to determine the curves in figure 11 will now be described in

detail.

4.4. Determining Stc as function of Rep

4.4.1. Definition of Stc

As already shown, the saddle-node bifurcation at Rep = Rec gives rise to two
equilibrium orientations, at which there is zero torque on the particle: one stable
orientation, φc, and one unstable orientation, φus (see figure 5). This means that for a
small deviation φc ± δφ or φus + δφ, the particle will go to φc, but a small negative
deviation φus − δφ will make the particle rotate around the vorticity direction until it
is almost aligned with the flow again at φc − π. If the particle has enough particle
inertia, it will gain enough angular momentum during the rotation that the region of
positive torque will be insufficient to stop the rotation. The particle will thus reach
the symmetric (and dynamically identical) configuration φus − π with a non-zero
angular velocity and consequently enter a periodic tumbling motion. This leads to a
natural definition of a critical Stokes number Stc: when initializing the particle at rest
at an angle φus − δφ, a particle with St < Stc will end up in steady state whereas a
particle with St> Stc will end up in a tumbling motion.

Below Stc, all initial conditions will lead to the steady state, since the particle can
never gain more angular momentum during a rotational period. So even if the particle
is initialized with high angular velocity, it will eventually slow down until it reaches
a steady state. Above Stc, the final solution can be either tumbling motion or steady
state, depending on the initial condition. As will be shown in § 5, the transition from
tumbling to steady state at St = Stc is through a homoclinic bifurcation. The critical
Stokes number is determined by finding the critical density ratio αc = Stc/Rep as a
function of Rep.

4.4.2. Equilibrium angles
In order to find the critical density ratio αc, the equilibrium angle φus must be

found. Both φus and φc are found by using the fact that there should be zero torque
on the particle, which means that φ̇ ≈ 0 should be achieved shortly after the particle
is initialized in an equilibrium angle. This fact is used to systematically find the
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FIGURE 12. (Colour online) Equilibrium angles φc (circles) and φus (crosses) plotted as
functions of Rep for a spheroid with rp= 4; the data are fitted with a polynomial function
(solid line), for which the minimum is found at Rep = Rec = 90.

equilibrium angles for a given Rep with a half-interval search (the exact algorithm is
described in appendix B).

In figure 12, φc and φus are plotted as functions of Rep. It can be seen that φus

and φc are decreasing and increasing functions of Rep, respectively. A seventh-order
polynomial is fitted to the computed data points, and using the polynomial function
the bifurcation is found to occur at Rec ≈ 90, which is slightly higher than the
previously obtained value of Rec ≈ 89.

4.4.3. Critical density ratio as a function of Rep

The critical density ratio, αc, is obtained as described in § 4.4.1, with δφ chosen
sufficiently large so that the particle is definitely moving with φ̇ < 0. In this study,
δφ was chosen to be 1◦. The critical density ratio αc is found by using the fact that
the particle with α= αc initialized at rest from φ0=φus− δφ should reach φ=φ0−π

with φ̇= 0. The critical density ratio is found by using half-interval search (the exact
algorithm is provided in appendix C).

Figure 13 shows αc as a function of Rep, where the data points are fitted with
a rational function of the form αc = P(Rep)/Q(Rep), with P and Q being fifth- and
fourth-degree polynomials, respectively. The error bars indicate the minimum intervals
1St = 10 used in the half-interval algorithm. The maximum critical density ratio of
αc,max ≈ 2.3 is found close to Rep ≈ 125, while at higher Rep particle inertia plays
a greater role and α does not need to be much larger than unity in order to find
a periodic state. It can also be seen from the figure that αc > 1 as Rep = Rec. This
codimension-two point αcd2=αc(Rec)≈1.6, where two bifurcations coexist (the saddle-
node bifurcaction at Rec and the homoclinic bifurcation at αc), is found by evaluating
the fitted rational function at Rec. A more detailed discussion of this bifurcation will
be given in § 5. The line of Stc in figure 11 is drawn by the relation Stc = αc Rep,
which connects to the codimension-two point at Stcd2 = αcd2Rec.
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FIGURE 13. (Colour online) The critical density ratio αc plotted as a function of Rep for
a spheroid with rp = 4 (solid blue line), fitted with a rational function (solid black line).
The critical Reynolds number Rec = 90 (dashed line) is found through polynomial fitting
of equilibrium angles, and the codimension-two point, where αc connects to the Rec line,
is found at α=αcd2≈ 1.6. Black crosses indicate α= 2, 2.5 and 3 at Rep= 150, for which
the phase diagrams in figure 14 are drawn. Only planar rotational states, namely tumbling
(T) and steady state (S), are shown in the figure.

4.5. Determining St0.5 as function of Rep

As already discussed, it was observed by Lundell & Carlsson (2010) and Nilsen &
Andersson (2013) that the period of the tumbling motion is a steadily decreasing
function of St in the absence of fluid inertia (Rep = 0). At St = 0, the particle is
tumbling with period GTJ = 2π(r−1

p + rp); as St→∞, the particle rotates at a constant
angular velocity with period GTH = 4π. The transition between the two regimes is
characterized by St0.5, which is defined as the Stokes number at which the spheroid
rotates with a period of (GTJ +GTH)/2. However, St0.5 was defined only for Rep= 0,
since it refers to the period without any fluid or particle inertia. For finite Rep > 0,
the period is also seen to decrease as St increases; therefore in this work we use
the same definition of St0.5, i.e. the Stokes number at which the period is GT =
(GTJ +GTH)/2=π(r−1

p + rp+ 2). The value of St0.5 is found by using a half-interval
search (see appendix D for the exact algorithm). Since the value at Rep = 0 can
be analytically found to be St0.5 = 307, the line with the simulated values has been
connected to this analytical value in figure 11.

4.6. Determining ReLR, RePF, ReHopf and ReT as functions of St
4.6.1. ReLR

The definition of ReLR is as the value at which the log-rolling solution goes from
being unstable, with outward-spiralling trajectories, to stable, with nearby trajectories
spiralling inwards. In the work by Rosén et al. (2014), this value was determined by
initializing a particle in the log-rolling solution and observing whether it was still there
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after a certain length of time or if it had started to spiral outwards. In this work,
for better comparison with the heavier particle, we make use of the fact that the log-
rolling solution should become attracting at ReLR. Therefore, a particle is initialized at
rest from a nearby location at (φ, θ)= (0◦, 1◦), and the Rep value at which this initial
condition leads to log-rolling instead of tumbling is taken to be ReLR. This is done
for both a neutrally buoyant particle and a particle with α = 20.

The value of ReLR increases to ReLR≈ 33.5 from ReLR≈ 23.5 as α is increased from
1 to 20 (note that, with this definition, the value of ReLR for the neutrally buoyant
case is slightly higher than the value reported by Rosén et al. (2014)). With high α,
small disturbances of the particle orientation will lead to a more considerable gain in
angular momentum and an increased influence of particle inertia effects. Therefore, the
transition that stabilizes the log-rolling solution is delayed in Rep as α is increased.

4.6.2. RePF

The transition at RePF is associated with the fact that the log-rolling solution
destabilizes and the particle ends up in inclined rolling with θ > 0. The value of RePF
is determined by finding the Rep value at which a particle initialized close to the
log-rolling solution at (φ, θ)= (0◦, 1◦) ends up with an angle θ > 1◦ after Gt = 400.
This is done both for a neutrally buoyant particle and for a particle with α = 13.

For the neutrally buoyant particle, the transition was found to occur at RePF = 62.5,
and the heavy particle had a transition at RePF = 61.5. The transition point appears
not to change for higher α, and the reason for the small variation in RePF is that the
heavier particle assumes the final rotational state more quickly than the lighter one.
The alignment to the new inclined rolling state is very slow, and so particle inertia
is concluded to be negligible for this transition. This can be understood by recalling
that both the log-rolling and inclined rolling solutions correspond to steady states of
the fluid field.

4.6.3. ReHopf

The transition at ReHopf is associated with a final rotational state where θ goes
from being a constant to an oscillating function of time. To determine ReHopf , we use
the fact that a particle with an initial orientation of (φ, θ) = (0, π/8) will quickly
enter the final rotational state close to ReHopf (this can be seen in figure 4e for initial
orientation 2). The Rep value at which the oscillations of this particle become larger
than 1θ = 1◦ after Gt= 1000 is taken to be ReHopf . This is simulated for both α = 1
and α = 13.

For the transition at ReHopf , particle inertia plays a role, but small disturbances do
not affect the particle that much. Most likely because of this, ReHopf increases slightly
from ReHopf ≈ 71.5 to ReHopf ≈ 73.5 as α is increased from 1 to 13.

4.6.4. ReT

The transition at ReT is associated with a final rotational state that is tumbling
regardless of the initial orientation. Here ReT is defined as the Rep value at which
a particle initialized at (φ, θ)= (0, 0) spirals outward towards a tumbling motion after
Gt = 400. This is investigated both for a light particle (α = 1) and a heavy particle
(α = 13).

A bigger difference is seen for this transition than for the previous ones. The
oscillations of the heavier particle in the inclined kayaking state have smaller
amplitude due to lower angular acceleration. This leads to a delayed transition
to the pure tumbling region from ReT ≈ 75.5 for α = 1 to ReT ≈ 83.5 for α = 13.
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In figure 11, the dependence of ReLR, ReHopf and ReT on the solid-to-fluid density
ratio α is estimated by linearly interpolating the two results at low α and at high
α given above. The curves therefore take on a slightly parabolic shape, as they are
drawn according to the relation St= α Rep for ReLR, RePF, ReHopf and ReT .

The Stokes number is seen to have a small or no effect on the transitions at ReLR,
RePF, ReHopf and ReT , and we conclude that particle inertia has little effect due to the
slow non-planar motions. These transitions are thus mainly controlled by fluid inertia.

5. Results: bifurcation analysis (rp = 4)

In this section we discuss the results on the spheroid in a shear flow using general
theory about nonlinear dynamical systems and bifurcations. The concepts discussed
can be found in the books by Hale & Koçak (1991) and Strogatz (1994).

5.1. Bifurcation at α = αc (St= Stc)

From figure 13 it can be seen that for a particle of α >αc,max, fluid inertia will never
be enough to fully stop a tumbling motion, and there will be no diverging period
when Rep increases or decreases (a steady state will still always coexist at Rep >Rec).
However, by fixing Rep > Rec and decreasing α, the period diverges at α = αc. This
transition is not the infinite-period saddle-node bifurcation seen at Rep = Rec, since
no new fixed points are created. To understand this process, phase diagrams of the
motion are drawn in figure 14(b–d), where a particle is initialized at rest from eight
different initial orientations, (φ, θ)1–8= (πn/8,π/2) for n=0,1, . . . ,7 (see figure 14a),
at Rep= 150 and three different density ratios α= 2, 2.5 and 3 (crosses in figure 13).
As shown in figure 12, the equilibrium angles at Rep= 150 are φus≈ 0◦ and φc≈ 15.5◦.

Starting with the case where α = 3 in figure 14(b), the point at (φ̇, φ) = (0, φus)
is a saddle (open circle, with stable dynamics in one eigendirection and unstable
dynamics in another eigendirection) while (φ̇, φ)= (0, φc) is a sink (filled circle, with
stable dynamics, i.e. nearby trajectories go to this point). The trajectory of the initial
condition φ1 almost coincides with the saddle (i.e. φ1 = φus) and can be considered
a branch of the unstable manifold of the saddle. This manifold asymptotically
approaches the stable limit cycle, i.e. a tumbling motion. At some trajectory between
the trajectories of initial conditions φ6 and φ7, there is a branch of the stable manifold
of the saddle; this means that initial conditions above it (e.g. initial conditions 2–6)
lead to the sink, i.e. steady state. As α is decreased close to αc, the stable limit cycle
goes very near the saddle, as seen in figure 14(c). At α = αc ≈ 2.2, the stable limit
cycle is destroyed as the limit cycle merges with the unstable manifold of the saddle.
The manifold becomes a homoclinic orbit which connects with itself at the saddle.
At α < αc, even the unstable manifold of the saddle leads to the sink and therefore
the steady state is the only solution (figure 14d).

The behaviour is very similar to that of a damped pendulum driven by a constant
torque (Strogatz 1994), which undergoes a homoclinic bifurcation when the driving
torque is varied under low damping conditions. The period of the limit cycle is
divergent, but unlike the case of an infinite-period saddle-node bifurcation, where the
period scales as GT ∝ |β − βc|−0.5, the period close to the homoclinic bifurcation
scales as GT ∝ ln |β − βc|, where β is any parameter leading to the transition at βc.
In figure 15(a,b), the period is plotted as a function of α− αc and is compared with
the two types of scaling at Rep = 150. It is clear that the logarithmic scaling gives a
much better fit, and the existence of a homoclinic bifurcation at α= αc is confirmed.
The reason that the power law fails to describe the diverging period in this case is
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FIGURE 14. (Colour online) Phase diagrams showing homoclinic bifurcation for a
spheroid with rp = 4 at Rep = 150, initialized at rest in the flow-gradient plane (θ = 90◦)
from eight different initial orientations, shown in (a), and with three different density
ratios: (b) α = 3; (c) α = 2.5; (d) α = 2. A limit cycle (tumbling) is seen to collapse
with the saddle φus (open circle) at α = αc = 2.2; at α < αc, all initial conditions lead to
the sink φc (solid circle) and thus stay in steady state.

that the angular velocity becomes a non-differentiable function of the angle close to
the saddle (seen also in figure 13b), which is an important criterion for this scaling
(Strogatz 1994; Rosén et al. 2014). The shape of φ̇(φ) close to φus is determined by
the two eigendirections of the saddle when α & αc and therefore has a non-parabolic
shape.

Combining this knowledge with what was found regarding the coexistence of the
tumbling solution and a steady state (figure 13), the following conclusions can be
drawn for a prolate spheroid of aspect ratio rp = 4 with increasing Rep.

(i) If α < αcd2 ≈ 1.6, the transition from tumbling to steady state will be through
an infinite-period saddle-node bifurcation at Rep = Rec, with a diverging period
scaling as GT ∝ |Rep − Rec|−0.5.
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FIGURE 15. (Colour online) Scaling of the diverging period at Rep = 150 for a spheroid
with rp = 4: (a) data fitted using the assumption of a homoclinic bifurcation with
GT ∝ ln |β − βc|; (b) data fitted using the assumption of an infinite-period saddle-node
bifurcation with GT ∝ |β − βc|−0.5.

(ii) If αcd2<α<αc,max (i.e. 1.6.α. 2.3), the transition will be through a homoclinic
bifurcation at Rep=Rec1, where Rec1 is defined as the Rep value at which α=αc.
The tumbling period will diverge according to GT ∝ ln |Rep − Rec1|.

(iii) If α = αcd2 ≈ 1.6, a transition from tumbling to steady state will occur at Rep =
Rec, but no distinction can be made between the types of bifurcations and both
types of scalings will apply.

(iv) If α > αc,max ≈ 2.3, there is no diverging period at any Rep, and a tumbling
solution will always exist.

5.2. Bifurcation diagrams
The bifurcation diagrams for α = 2 and 3 are shown in figure 16(a,b) in the same
way as in § 3.3. Looking at figure 16(a), for α = 2, which lies in the interval
αcd2 < α < αc,max, there are two critical particle Reynolds numbers which correspond
to intersections of the αc line (see figure 13). Due to higher particle inertia, the fluid
inertia is not sufficient to stop the tumbling motion at Rep = Rec (note that Rec is
dependent only on geometry and fluid properties and is not changed due to high
particle inertia). The tumbling period instead diverges to infinity at Rep = Rec1 > Rec
through a homoclinic bifurcation. Similar behaviour is seen when Rep is decreased
from high values, with the tumbling period diverging to infinity at Rec2. In the region
Rec1<Rep<Rec2, the steady state is thus the only solution, while a tumbling solution
coexists in the regions Rec < Rep < Rec1 and Rep > Rec2. For the particle with α = 3
(figure 16b), the density ratio is higher than αc,max, and hence there is no diverging
period and a tumbling solution will always coexist with the steady state at Rep >Rec.
The bifurcation diagrams indicate the following hysteresis behaviour as Rep varies.

(i) For a particle with αcd2 <α<αc,max (figure 16a) in a tumbling state at Rep <Rec,
increasing Rep will lead to a diverging period and a transition to steady state at
Rep = Rec1. However, to reach a tumbling state again, Rep must be decreased to
Rep = Rec, since the steady-state solution (bold line at NC = 1) exists also for
Rec < Rep < Rec1.
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FIGURE 16. (Colour online) Bifurcation diagrams for a spheroid of rp= 4 with: (a) α= 2;
(b) α= 3. In each panel, the zoomed-in region for Rep between 60 and 100 is displayed
on the right; the stable rotational states have either a fixed orientation (solid lines) or
an oscillating orientation (grey areas), where in the latter case the norm is plotted using
NC,max and NC,min during an oscillation period. The unstable fixed points are schematically
drawn with dashed lines, and the approximate location of Nmax for the unstable limit cycle
is indicated by open circles.

(ii) For a particle with α < αc,max (figure 16a) in a tumbling state at Rep > Rec2,
decreasing Rep will lead to a diverging period and a transition to steady state
at Rep = Rec2. Upon increasing Rep > Rec2, the particle will stay in steady state.

(iii) For a particle with α > αc,max (figure 16b) in a steady state, decreasing Rep past
Rec will make the particle enter a tumbling motion. If Rep is increased again, the
particle will stay in a tumbling rotational state.

6. Results: transient behaviour and orbit drift (rp = 4)
Although we saw in § 4.6 that the transitions at ReLR, RePF, ReHopf and ReT are not

affected much by α, a significant difference emerges when one studies the rate at
which the particle assumes an equilibrium solution. Figure 17(a,b) show the projected
trajectories of a particle with α = 13 at Rep = 60 and Rep = 70, respectively, for the
initial orientations given by (3.1). Compared with the neutrally buoyant particle in
figure 4(b,c), the unstable orbit appears unchanged, leading to a similar probability
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FIGURE 17. (Colour online) Projected trajectories of a heavy particle with rp = 4 and
α= 13 at: (a) Rep= 60 (T/LR); (b) Rep= 70 (T/IR). The bottom panels show the evolution
of the particle orientation (with just the θ angle plotted) for the heavy particle (solid line)
compared with that of a neutrally buoyant particle (dashed line); the projected trajectories
are as presented earlier in figure 4.

that a randomly oriented particle initialized at rest will end up in each rotational state.
However, the oscillations of the particle orientation are almost completely damped out
by particle inertia. The evolution of the θ angle for the heavy particle is shown in
figures 17(c) and 4(d) for Rep = 60 and 70, respectively. It is obvious that, although
the final rotational state remains unchanged when the density ratio is altered, the rate
of approach to the final state is strongly affected. In the range of St studied here,
the heavier particle always reaches the final rotational state more rapidly than does a
lighter particle. However, as observed by Lundell & Carlsson (2010) for Rep = 0, at
higher Rep there is probably also an optimal Stokes number, above which the rate of
reaching the final state increases instead, due to a slow initial transient.

7. Results: consequences for suspension rheology
One of the key consequences of the preferred rotational states due to inertia is the

effect on the rheological properties of the particle suspension. Einstein (1906, 1911)
already found that the shear viscosity of a dilute suspension νsusp of spherical particles
is modified through a relation νsusp= ν(1+ ηΦ), where ν is the kinematic viscosity of
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FIGURE 18. (Colour online) Intrinsic viscosity of one-particle suspension (rp = 4) as a
function of Rep for α= 1 (thick lines in main plot) and α= 2, 2.2, 2.5, 3, 4, 5 (thin lines
in main plot); the dashed line connects the analytical value of η of the tumbling motion
derived at Rep = 0 by Jeffery (1922) to the first simulated value at Rep = 10, since it is
known that this is the only stable rotational state in the low-Rep regime. The inset shows
the corresponding parameter sweep in the Rep–St plane. Here T = tumbling (black lines
in main plot), S= steady state (yellow), LR= log-rolling (red) and IR= inclined rolling
(cyan); for simplicity, the rotational states of inclined kayaking and kayaking are included
in the inclined rolling regime.

the suspending fluid, Φ is the particle volume fraction and η is the intrinsic viscosity.
For a suspension of spherical particles, the intrinsic viscosity was found to be η =
2.5. Jeffery (1922) extended this work to account for spheroids, and found that η
depends on the rotational orbit. For an inertia-less prolate spheroid with rp = 4, the
intrinsic viscosity averaged over a full period has a value ranging from ηJeffery ≈ 2.05
(in the log-rolling orbit) to ηJeffery≈ 3.36 (in the tumbling orbit). In the work by Huang
et al. (2012a,b) using a lattice Boltzmann method, η was found by evaluating the
shear stress σ at the fluid nodes closest to the wall. The same method is employed
here for each final rotational state at different values of Rep and α (the method is
described in detail in appendix E). The results are shown in figure 18. If we consider
a constant fluid viscosity and constant particle size, the Rep-axis can be interpreted as
the shear rate. Both shear-thinning (dη/dRep < 0) and shear-thickening (dη/dRep > 0)
can thus be directly deduced from the diagram. The thick lines correspond to the
neutrally buoyant case and show a shear-thickening behaviour everywhere except in
a small region just below Rep = Rec, where the diverging period, due to the infinite-
period saddle-node bifurcation, causes shear-thinning. In the ReLR <Rep <ReT regime,
two values of η are allowed, since we have coexisting rotational states corresponding
to planar and non-planar motions. When α > αc,max, the diverging period disappears
and so does the small shear-thinning region, and the suspension has shear-thickening
behaviour everywhere. We remark that it is only the tumbling branch that is strongly
affected by the density ratio α, and this is due to the modified period as St increases.
The reason the non-planar branch is not affected is that the rotation rate around the
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FIGURE 19. (Colour online) Fitted polynomials of the equilibrium angles φc (red
solid line) and φus (blue dashed line) as functions of Rep for spheroids with rp =
3.0, 3.1, . . . , 3.9, 4.0, 5.0 and 6.0; the arrows indicate the effects of increasing rp.

particle axis is constant, since it corresponds to a steady-state solution of the fluid at
a given Rep. The same is of course true for the steady-state branch, where the thick
curve at α = 1 coincides with the thinner lines for all α.

8. Results: extension to rp 6= 4

To study the effect of aspect ratio on the behaviour described in the previous
sections, the same simulations were done for particles with aspect ratios in the range
of rp= 2–6. As mentioned in § 2.1, the higher-aspect-ratio particles were simulated in
a larger domain to ensure that κ=0.2 and b>3. As an example, for the spheroid with
rp = 6, a particle of a= 18 and b= 3 was simulated in the domain (180, 180, 180),
while still keeping G= 1/600.

8.1. Dependence of aspect ratio on fluid inertial transitions
In § 4.6, it was seen that the transitions at RePF and Rec are independent of the density
ratio and are caused only by fluid inertia. Therefore the rp-dependence is analysed for
these transitions using a neutrally buoyant particle (α = 1).

In order to find RePF, the same procedure as described in § 4.6.2 was performed
for aspect ratios rp = 2, 2.1, 2.2, 2.3, 2.4, 2.6, 2.8, 3, 4, 5 and 6. The critical Reynolds
number Rec was found by first finding the equilibrium angles, using the procedure
described in § 4.4.2, and then fitting a polynomial function to the data. The fitted
polynomials are shown in figure 19. The value of Rec is found by seeking the
minimum of the polynomial function. Apart from the aspect ratios used for RePF,
aspect ratios of rp = 3.1, 3.2, . . . , 3.9 were also investigated. When rp is increased,
the difference between φus and φc decreases, and at the same time Rec decreases.

Figure 20 illustrates how RePF and Rec vary as functions of rp. The transitional
Reynolds numbers are found to be decreasing functions of rp, and since the transitions
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FIGURE 20. Plots of Rec and RePF as functions of rp.

at RePF and Rec depend only on fluid inertia (i.e. the emerging solutions correspond
to steady states of the fluid field), the two critical numbers decay in a similar manner
as rp is increased. However, due to the resolution issues discussed in § 4.1, it may not
be easy to compare the values because the spatial resolution cannot be held exactly
constant when the geometry of the particle is changed. Therefore, in figure 20 the
trend of Rec is analysed at higher resolution (N=240) and by using Comsol, following
the procedure described in § 4.1. It is clear that the critical Reynolds numbers are
indeed decreasing with increasing rp. The sensitivity of these transitions indicates that
the force balance which causes the transitions at RePF and Rec becomes even more
sensitive to the resolution as rp gets larger.

8.2. Dependence of aspect ratio on particle inertial transitions
To study the effect of aspect ratio on αc, the simulation procedure from § 4.4 was
performed for rp = 3–6. The critical density ratio αc is plotted as a function of Rep

and rp in figure 21. From this figure it is observed that both αc,max and αcd2 increase
rapidly with increasing rp. These dependencies are better illustrated in figure 22, and
it seems that αc,max and αcd2 are linearly dependent on rp. It can also be seen that
below a certain aspect ratio, rp= rp,c1≈ 3.2, a critical density ratio of αc > 1 does not
exist. This means that neutrally buoyant particles with low rp will never experience
a diverging period in the tumbling motion, a fact that could also be seen from the
results of Huang et al. (2012a,b). In a range rp,c1 < rp < rp,c2 (3.2 . rp . 3.7), it is
found that αc,max > 1 but αcd2 < 1. Thus, in this range of aspect ratios, the transition
to steady state is through a homoclinic bifurcation at Rep = Stc for neutrally buoyant
particles.
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FIGURE 21. The critical density ratio αc plotted as a function of Rep (solid curve) and
Rec (dashed line) for a spheroid with rp = 3.5, 4, 5 and 6; the arrows show the effect of
increasing rp.

At larger aspect ratios, rp > rp,c2, both αc,max and αcd2 are greater than 1 and
the transition to steady state will instead be through an infinite-period saddle-node
bifurcation at Rep = Rec for neutrally buoyant particles.

The fact that fluid inertia effects dominate over particle inertia effects when rp→
∞ is also supported by physical reasoning. Particle inertia torques scale with the
magnitude of the inertial tensor, which behaves as 1/r2

p for large rp, whereas torques
from fluid stresses on the particle probably scale with the surface area of the particle,
behaving as 1/rp for large rp.

Furthermore, the Rep value at which αc,max occurs seems to get closer to Rec,
i.e. αcd2 approaches αc,max as rp increases. At rp = rp,c3 ≈ 8.0 they coincide, and
this could mean that for more slender particles, no Rec1 will exist and a transition
from tumbling to steady state for particles with α < αcd2 will always be through an
infinite-period saddle-node bifurcation with increasing Rep. However, the increased
sensitivity of determining Rec for more slender particles will result in increased
sensitivity for the determination of αcd2 as well. This will probably decrease the slope
of αcd2 in figure 22, and thus it cannot be concluded that rp,c3 exists.

Lundell & Carlsson (2010) and Nilsen & Andersson (2013) already studied the
aspect ratio dependence on St0.5 with negligible fluid inertia and found it to be an
increasing function of rp. The same can be said of the problem with fluid inertia in
figure 23, where St0.5 is plotted as function of Rep and rp. The graphs are connected to
the analytical value at Rep= 0. From the dent in the graph at Rep= 10, it can be seen
that the error is larger at higher values of rp. This is because small numerical errors
in determining φ̇min during the slow part of the tumbling motion for slender particles
have a large influence on the error in the period, which is used for the determination
of St0.5.
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FIGURE 22. Plots of the codimension-two point αcd2 (crosses with fitted solid line) and
the maximum critical density ratio αc,max (circles with fitted dashed line) as functions of
the particle aspect ratio rp. At a certain rp= rp,c3, the fitted lines intersect and αc,max=αcd2
for rp > rp,c3.
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FIGURE 23. Plots of St0.5 as a function of Rep for a spheroid with rp = 3, 4 and 5; the
black arrow shows the effect of increasing rp.
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(a) (b)

FIGURE 24. (Colour online) Projected trajectories close to RePF, for: (a) rp= 3 and Rep=
79; (b) rp = 6 and Rep = 60. In each panel, the open circles indicate initial orientations
and the filled circles indicate final orientations at Gt= 400; the dashed line indicates the
approximate location of an unstable limit cycle, such that initial orientations inside lead
to log-rolling and initial orientations outside lead to tumbling.

8.3. Transient behaviour and orbit drift
In the region ReLR < Rep < ReT , the particle can end up in one of two final rotational
states depending on the initial conditions. This splitting of solutions is described by
a subcritical Hopf bifurcation and the emergence of an unstable limit cycle, outside
of which initial orientations go to tumbling (associated with particle inertia), while
initial orientations inside go to the coexisting solution (associated with fluid inertia).
The size of the unstable limit cycle is therefore a measure of the probability of a
randomly oriented particle initialized at rest ending up in the respective states. This
was described in § 3.2. To determine how the unstable limit cycle changes shape due
to the aspect ratio, a comparison is made of the initial orientation dependence for
rp = 3 and 6 around RePF. The simulation was initialized with the particle at rest in
five different initial orientations given by (3.1), and was run up to Gt= 400.

Figure 24(a,b) show the projected trajectories for rp = 3(Rep=79) and rp=6
(Rep = 60), respectively. It is clear that the unstable limit cycle shrinks with
increasing aspect ratio, which leads to the conclusion that as rp increases, more
initial orientations will lead to a tumbling motion. This is also supported by physical
reasoning, as the inertial tensor element for minor axis rotation, Iminor ∝ r−2

p (1+ r−2
p ),

is orders of magnitude greater than the element for major axis rotation, Imajor ∝ 2r−4
p ,

when rp→∞. It therefore seems reasonable that the tumbling state would be favoured
over log-rolling as the particle becomes more slender.

8.4. Consequences for suspension rheology
In § 7, it was discussed how the intrinsic viscosity η is modified by the rotational
states at different Rep and St. To investigate the rp-dependence of η, three neutrally
buoyant particles of aspect ratios rp = 4, 5 and 6 are simulated and compared
in figure 25. The analytical value of ηJeffery(LR) at Rep = 0 is known to go as
ηJeffery(LR)→ 2 when rp→∞, whereas ηJeffery(T)→∞ as rp→∞ (Jeffery 1922). At
the same time η(Rec) seems to decrease. This observation is also supported by the
fact that φc(Rec) gets closer to zero as rp is increased (figure 19), which would make
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FIGURE 25. (Colour online) Intrinsic viscosity of a one-particle suspension plotted as a
function of Rep with rp = 4, 5 and 6 for a neutrally buoyant particle (α = 1); the arrows
show the effect of increasing rp.

a smaller contribution to the suspension viscosity (Jeffery 1922; Mueller, Llewellin
& Mader 2009). The consequence is that the suspension goes from shear-thickening
to shear-thinning behaviour on the tumbling branch as rp increases. This is in line
with the results of Huang et al. (2012a). It should be noted that, even though the
shear-thickening behaviour of the non-planar branch still holds for high-aspect-ratio
particles, the results from the previous section show that slender particles have a
higher probability of ending up in a tumbling motion. Therefore the rheological
properties of dilute fibre suspensions will rather be determined by the shear-thinning
of the tumbling branch. The largest contribution to the suspension viscosity without
inertia occurs when the particle is aligned with φ=±45◦ (Jeffery 1922; Mueller et al.
2009). Knowing that the stable equilibrium angle φc is an increasing function of Rep
(figure 12) and that the viscosity increases as this angle comes closer to φ = 45◦,
the shear-thickening behaviour on the steady-state branch when Rep > Rec is believed
to remain as the particles become more slender. However, the trend is that dη/dRep
decreases as rp increases for Rep > Rec.

8.5. Low-aspect-ratio particles
In this section, we report our findings on the rotational behaviour of neutrally buoyant,
low-aspect-ratio particles, which deviates from the behaviour described by Rosén et al.
(2014). A spheroid with rp = 2 is typically considered in this section.

Up to Rep=RePF, the behaviour is similar to that of the higher-aspect-ratio particles.
The big difference occurs at Rep > RePF and is illustrated in figure 26 for Rep = 210
and three different initial orientations: (φ, θ)1= (0,π/8), (φ, θ)2= (0, 0) and (φ, θ)3=
(π/2,π/8).

Here a third rotational state is seen to coexist with the tumbling and inclined
rolling solutions. The unstable manifold of the log-rolling saddle is attracted by the
other unstable manifold of the same saddle. The result is a rotational state which
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(a) (b) (c)

FIGURE 26. Projected trajectories of the rp = 2 particle’s symmetry axis (px, py) =
(sin θ cos φ, sin θ sin φ) at Rep = 210, for different initial orientations that lead to:
(a) inclined rolling; (b) ‘chaotic’ kayaking; (c) tumbling. The open circles indicate the
initial orientations and the filled circles indicate the final orientations at Gt= 1000.

is seemingly chaotic. While all the other rotational states discussed previously could
be attributed to either fluid or particle inertial effects, this ‘chaotic’ kayaking state
seems to involve both effects. Fluid inertia dominates close to the log-rolling saddle,
but the angular acceleration of the particle leads to increased particle inertial effects,
bringing it close to the saddle again. The simulations were not run for long enough
(simulation time Gt = 1000) to exclude the possibility that the particle actually does
not settle to a stable limit cycle, and thus it cannot be concluded that this state is
truly chaotic.

The reason for both these effects being present can be understood by again looking
at the terms in the inertial tensor of the spheroid. Using the same reasoning as in
§ 8.3, we find that the inertial tensor element for minor axis rotation, Iminor ∝ r−2

p (1+
r−2

p ), is of the same order of magnitude as the inertial tensor element for major axis
rotation, Imajor ∝ 2r−4

p , when rp & 1. Particle inertia therefore cannot be neglected when
the particle is in non-planar motion and will play a role in any type of rotation.

Above Rep = 215, no stable fixed point was found, and due to the existence of
the ‘chaotic’ kayaking state, it is impossible to see by simple observation whether
a supercritical Hopf bifurcation has occurred or if the fixed point becomes unstable
because it has moved outside the unstable limit cycle. A value of ReHopf thus becomes
very hard to determine.

As Rep is increased further, the oscillations become so large that the particle
eventually spirals out to the stable limit cycle corresponding to tumbling.

Another difference for the rp= 2 spheroid is observed when analysing the tumbling
motion. Above Rep≈ 210, the particle in tumbling motion does not necessarily rotate
with axis of rotation parallel to the vorticity axis. Depending on the initial conditions,
it may end up in a tumbling motion for which the angle between the vorticity axis
and the axis of rotation is somewhere between 0 and π/6. For one value of Rep, the
particle can thus end up in one of an infinite number of these inclined tumbling states.
The explanation might be that the particle is interacting with its own wake, which
creates forces that counteract the centrifugal forces that want to take the particle to a
rotation in the flow-gradient plane.

It is clear that the rotational behaviour of low-aspect-ratio particles, i.e. ones
with rp 6 2, is very complex, and further investigation is needed to make a full
characterization. This is beyond the scope of the present study.
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FIGURE 27. State plot showing dependence of the different rotational states on the
parameters Rep and St for a spheroid with rp = 3.5, 4, 5 and 6, excluding the transitional
Reynolds numbers ReLR, RePF, ReHopf and ReT and excluding St0.5. The states shown are
T= tumbling, R= rotating, LR= log-rolling, IR= inclined rolling, IK= inclined kayaking,
K= kayaking and S= steady state; the planar rotational states appear in bold while the
non-planar states associated with fluid inertia are in regular font; the arrows show the
effect of increasing rp.

9. Conclusions
The work in this paper was performed numerically using the lattice Boltzmann

method with external boundary forcing (LB-EBF) in order to fully describe the inertial
effects on a prolate spheroidal particle with higher density than the fluid in shear
flow. The parameters that influence the effects of particle and fluid inertia are Rep,
St and rp. For a given rp, the results can be summarized in a state-space diagram of
the Rep–St plane; see figure 11. The influence of rp is shown in figure 27 (for the
reader’s convenience, only Rec and Stc are included in this figure).

9.1. Quantitative versus qualitative conclusions
One of the main conclusions drawn from this work is that finding the exact physical
values of the transitional Rep (e.g. Rec) is very difficult, because the spatial resolution
requirement makes it computationally unfeasible to obtain grid-independent values.
This is believed to be the reason that the values of the critical Reynolds numbers
differ between different studies (e.g. Qi & Luo 2003, Yu et al. 2007 and Huang et al.
2012b). However, to the authors’ knowledge, currently there is no method available
that can provide exact results without extreme computational effort.

Nevertheless, the qualitative features and, in particular, the bifurcation sequences
of the particle motion are not grid-dependent in the present LB-EBF method, as
long as the minor dimension is large enough (b > 3). Therefore the LB-EBF method
provides an excellent exploratory tool for elucidating the relevant physical phenomena;
other methods should, however, be used to pinpoint the exact physical values of the
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governing parameters. We can draw several conclusions based on the results of this
numerical study combined with physical and mathematical reasoning.

9.2. Rotational states and bifurcations
The conclusions regarding rotational states and bifurcations are summarised as follows.

(i) The final rotational state of the particle is determined by the parameters Rep, St
and rp. In some parameter regions, two solutions can coexist, one that is due to
fluid inertia effects and one that is due to particle inertia effects. The solution
created by particle inertia effects is a planar rotation (tumbling or rotating) in
the flow-gradient plane. Increasing St will thus increase the probability that the
particle will end up in these states.

(ii) The tumbling period is dependent on St, and the particle undergoes a transition
from having an orientation-dependent angular velocity (tumbling) to a constant
angular velocity (rotating). The transition is characterized by St0.5, which is an
increasing function of both Rep and rp.

(iii) The transitions between rotational states due to fluid inertia are characterized by
the critical Reynolds numbers ReLR, RePF, ReHopf , ReT and Rec, which are fairly
unaffected by St but are decreasing functions of rp.

(iv) At Rep > Rec, there exists a Stc below which the steady state is the only long-
term solution (below the solid line in figure 27); Stc is an increasing function of
Rep and rp. The transition from tumbling to steady state at St = Stc is through
a homoclinic bifurcation with a diverging period that scales as GT ∝ ln |β − βc|,
where β is any parameter leading to the transition at β=βc, such as St or rp. This
is in contrast to the infinite-period saddle-node bifurcation at Rep=Rec discussed
by Rosén et al. (2014), where the period scales as GT ∝ |β − βc|−0.5. Changing
rp can lead to both types of bifurcations, since it affects both Rec and Stc.

(v) For a given rp, the two bifurcations connect at a codimension-two point (marked
with circles in figure 27) where (Rep, St) = (Rec, Stc(Rec)) = (Rec, Stcd2). The
density ratio αcd2 = Stcd2/Rec increases linearly with rp.

(vi) The sequence of bifurcations between the non-planar rotational states (ReLR,
RePF, ReHopf , ReT) is typical for a nonlinear dynamical system with odd
symmetry around a double zero eigenvalue and further supports the existence
of such an eigenvalue proposed by Rosén et al. (2014).

(vii) The bifurcations and transitions between the planar rotational states (Rec, Stc,
St0.5) are typical for a damped rotating system with an orientation-dependent
torque, and are exactly the same as those seen for a driven damped pendulum
(Strogatz 1994).

(viii) For a neutrally buoyant particle, the effect of increasing Rep depends on rp in
the following way.
(a) If rp < rp,c1 (rp,c1 ≈ 3.2), there will be no diverging tumbling period since

αc,max < 1. This means that the Stc for rp= 3.2 (not drawn) would be below
the Re= St line in figure 27.

(b) If rp,c1 < rp < rp,c2 (rp,c2 ≈ 3.7), the tumbling period will diverge through a
homoclinic bifurcation at Rep = Stc since αcd2 < 1. This is seen for rp = 3.5
in figure 27 from the fact that the Re= St line crosses Rec before crossing
Stc.

(c) If rp > rp,c2, the period will diverge through an infinite-period saddle-node
bifurcation at Rep = Rec, as seen for rp = 4.5 and 6 in figure 27.
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9.3. Rheological consequences of the particle behaviour
In addition to direct observation of the particle motion, we obtain from the simulations
the stress distribution on the walls. The total stress on the wall makes it possible to
determine the intrinsic viscosity of the (very dilute) suspension system. In terms of
rheology, the conclusions are as follows.

(i) At Rep < Rec:
(a) the rotation of high-aspect-ratio particles is mainly dependent on particle

inertia effects, and most initial orientations lead to planar rotation,
i.e. tumbling; a dilute suspension of such particles will be shear-thinning;

(b) the rotation of low-aspect-ratio particles is dependent on both fluid and
particle inertia effects, and it is more likely for the particles to end up in
a non-planar motion, i.e. log-rolling, inclined rolling, inclined kayaking or
kayaking; a dilute suspension of such particles will be shear-thickening.

(ii) At Rep > Rec:
(a) the rotation of high-aspect-ratio particles is mainly dependent on fluid

inertia effects, and the particle is likely to end up in a steady state; a dilute
suspension of such particles will be weakly shear-thickening;

(b) the rotation of low-aspect-ratio particles is dependent on both fluid and
particle inertia effects, and it is more likely for the particle to end up in a
tumbling motion; a dilute suspension of such particles will be significantly
shear-thickening.

(iii) With increasing α of the particles, the dilute suspension containing these particles
will probably become more shear-thickening at any Rep. If Rep >Rec and α <αc,
a change in α will not have an influence on the rheology since the particles are
in steady state.

9.4. Final remarks
This work, combined with the work of Rosén et al. (2014), provides fundamental
information on the behaviour of solid prolate spheroids in a linear shear flow. The
results can also be considered fundamental to understanding the behaviour of any
elongated particles in any flow, as the rotational dynamics is mainly governed by the
local velocity gradient around the particle. The description of the behaviour of single
particles in shear flow provides the basic knowledge necessary to understanding the
behaviour of dispersed particle flows. Properties characterizing the dispersion, such as
rheology, mixing or particle–particle interactions, are highly dependent on the particle
orientation distribution, which in turn is highly affected by inertial effects as observed
in this work.

Of course, the results themselves should only be considered as fundamental research
and of limited direct practical use. In principle, the results about neutrally buoyant
particles can be used practically in a wall-bounded flow with constant flow rate and
straight streamlines. The particle will then be in an inertial frame of reference and
the translational equation of motion for the particle can be neglected upon applying
a Galilean transformation of the particle coordinate system. Local velocity gradients
around the particle, and hence the local Rep and aspect ratio rp, will determine the
rotational states and therefore also the orientation distribution and rheological features
of the flow. However, due to the difficulty in determining the exact transitional
Reynolds numbers, only a relative evaluation can be done; that is, given a flow and a
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distribution of particles and orientations, what is likely to happen if the flow rate is
increased/decreased? The results in this work enable such experimental observations
to be analysed based on physical arguments.

In many cases, the influence of gravity will cause non-neutrally buoyant particles to
sediment, and particle inertia will cause the particles to not follow curved streamlines
of the flow. Both of these examples will probably result in a relative velocity between
particles and fluid, which would give rise to additional forces and hence additional
complexity of the problem (Crowe et al. 2012).

The results of this work concern only axisymmetric particles. However, as soon
as the axisymmetry is broken (e.g. triaxial particles), the particles will exhibit more
complex dynamical behaviour, since the tumbling solution may become unstable at
low Rep (Hinch & Leal 1979; Yarin, Gottlieb & Roisman 1997; Lundell 2011).

Additionally, if the particles become smaller, i.e. comparable to the molecular scale,
Brownian diffusion will disturb the rotational motion. In such cases, the results of
this work can provide the fundamental knowledge that could be referred to when
performing other parameter variations; for example, what happens to the Rep–St–rp

rotational state space when a relative velocity is varied? These are just some of many
examples of additional studies that can be performed in the future based on the present
results.
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Appendix A. Description of the LB-EBF method

This appendix provides a summary of the simulation steps performed in the LB-EBF
method, described in detail by Wu & Aidun (2010).

A.1. Fluid grid
The fluid is defined on a cubic Eulerian grid denoted by

xe ∈Πf . (A 1)

The nodes are separated by distance 1x in each direction. The domain is bounded by
walls at y=0 and y=N with velocities U and −U in the x direction, which are treated
with non-slip conditions; periodic boundary conditions are applied at x=0, x=N, z=0
and z=N.
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A.2. Particle grid
The particle is defined using a Lagrangian grid consisting of boundary nodes denoted
by

xl
j ∈ Γs (A 2)

for the jth node. Each node is associated with an area element of size 1Aj and is
assigned a characteristic volume 1vj=1A3/2

j . The best results are obtained by keeping
1Aj ≈ (1x)2.

A.3. The discrete Dirac function
Since the fluid and particle nodes are not at the same position, the mapping of
forces and velocities between fluid and particle grids is done through a discrete Dirac
function, defined by Peskin (2002) as

D(x)=


1
641x3

((
1+ cos

( πx
21x

))(
1+ cos

( πy
21x

))(
1+ cos

( πz
21x

)))
, |x|6 21x,

0, |x|> 21x.
(A 3)

A.4. Principle of the lattice Boltzmann method
The principle of lattice Boltzmann methods is based on the motion of gas particles.
The streaming of and collisions between the particles are simulated using particle
distribution functions fi(xe, t), with 19 components (i = 0, . . . , 18 for a D3Q19
lattice) and defined in each fluid grid node xe. Each component can be viewed as the
probability of a fluid particle having an associated velocity ci = (ci,x, ci,y, ci,z), where
x + ciδt ∈ Πf (δt is the discrete time step). In the streaming step, each distribution
fi(xe, t) is translated to fi(xe + ciδt, t+ δt). Macroscopic quantities can be obtained in
each fluid node through the relations

ρ(x, t)=
18∑

i=0

fi(xe, t), (A 4)

ρuf (x, t)=
18∑

i=0

cifi(xe, t). (A 5)

In the collision step, the particle distributions fi(xe, t) are locally redistributed towards
a local equilibrium distribution f eq

i (xe, t), still preserving local density and momentum.
The equilibrium distribution is defined as

f eq
i (xe, t)=wiρ

(
1+ 3ci · uf + 9

2(ci · uf )
2 − 3

2 u2
f

)
, (A 6)

where w0 = 1/3, w1–6 = 1/18 and w7–18 = 1/36.

A.5. Simulation steps
A.5.1. Initialization
(a) The initial particle node position xl

j and velocity Up(xl
j, t0) are calculated by using

information about the particle’s initial position, orientation, velocity and angular
velocity.
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(b) The initial fluid velocity at xe is set to the linear velocity profile defined by the
wall velocity U.

(c) The density is set to ρ(xe, t0)= ρ0.
(d) The populations are set to the equilibrium distributions, fi(xe, t0)= f eq

i (xe, t0).

A.5.2. Iterative steps
(i) Streaming: the new pre-collisional populations f pre

i (xe, t) are obtained from

f pre
i (xe, t)= fi(xe − ciδt, t− δt), (A 7)

and the velocity uf (xe, t) and density ρ(xe, t) are calculated as above.
(ii) The fluid velocity on the particle boundary is calculated from

uf (xl
j, t)=

∑
xe∈Πf

uf (xe, t)D(xe − xl
j)(1x)3. (A 8)

(iii) The force acting on a particle node is calculated by

Ffsi(xl
j, t)= f fsi(xl

j, t) ·1vj = ρ0(uf (xl
j, t)−Up(xl

j, t− δt)) ·1vj/δt (A 9)

with f fsi(xl
j, t) defined as a force density.

(iv) The particle force F and torque T are determined by summation of the
contributions from the nodes:

F(t)=
∑
xl

j∈Γs

Ffsi(xl
j, t), (A 10)

T(t)=
∑
xl

j∈Γs

(xl
j − xlc)×Ffsi(xl

j, t), (A 11)

where xlc is the centre of gravity of the particle.
(v) The velocity and angular velocity of the particle at time t are determined by

integration of

dU
dt
= F

M
, (A 12)

I
dΩ
dt
+Ω × (I ·Ω)= T, (A 13)

where M is the particle mass, I the inertia tensor and Ω the particle angular
velocity. From this, the new position xl

j(t) and velocity Up(xl
j, t) of the particle

nodes can be obtained through a fourth-order-accurate Runge–Kutta integration
procedure.

(vi) The force acting on the fluid is determined by

g(xe, t)=−
∑
xl

j∈Γs

f fsi(xl
j, t)D(xe − xl

j)1vj. (A 14)
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(vii) Collision step: the post-collision distribution fi is obtained by colliding the pre-
collision distribution f pre

i with the local equilibrium distribution f eq
i , accounting for

the external boundary force g. All distribution functions relax towards equilibrium
with the same time scale governed by the relaxation parameter τ ,

fi(xe, t)= f pre
i (xe, t)+ 1

τ

[
f eq
i (xe, t)− f pre

i (xe, t)
]+ 3wig(xe, t) · ci. (A 15)

(viii) Repeat from step (i) for t= t+ δt.
The speed of sound in this model is a constant equal to cs = √1/3, to preserve

symmetries with the choice of equilibrium functions in (A 6) (Latt 2007). The
kinematic viscosity ν is related to the parameter τ in the last equation through
ν = c2

s (τ − 0.5). By keeping Ma=U/cs <O(0.1) and Kn= ν/(cs · L) <O(0.1) (where
U and L are the characteristic velocity and length scale, respectively), the lattice
Boltzmann fluid solver is equivalent to solving the incompressible Navier–Stokes
equations.

Appendix B. Determination of the equilibrium angles φc and φus

The angles are found using half-interval search in the following way for a given
value of Rep.

(i) Initialize at φn =−30◦ (θ = 90◦).
(ii) The particle is held steady for the first 3000 time steps, in order for the fluid to

be resolved around the particle.
(iii) The simulation runs for 500 time steps.

(a) If φ̇ < 0 and φn < 30◦:
(i) repeat from step (ii) with φn+1 = φn + 1◦.

(b) If φ̇ > 0:
(i) find φus through a half-interval search between φn and φn−1, with the

tolerance set to 1φ = 0.1◦;
(ii) find φc through a half-interval search between φn and φ= 30◦, with the

tolerance set to 1φ = 0.1◦.
(c) If φn = 30◦:

(i) there are no equilibrium angles at the given Rep (i.e. Rep < Rec).

Appendix C. Determination of the critical density ratio αc

The critical density ratio αc is found in the following way for a given value of Rep.

(i) Initialize at φ0 = φus − δφ (θ = 90◦) with αn = 1.
(ii) The particle is held steady for the first 3000 time steps, in order for the fluid to

be resolved around the particle.
(iii) The particle is released and starts rotating with φ̇ < 0.

(a) If the particle reaches φ 6 φ0 −π: there is no αc > 1 at the given Rep.

(b) If the particle stops (φ̇ > 0) at φ >φ0−π: find αc by a half-interval search
between α= 1 and α= Stmax/Rep (Stmax= 600 for the rp= 4 spheroid), with
the tolerance set to 1St= 10.
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Appendix D. Determination of St0.5
The critical Stokes number St0.5 is found in the following way for a given value of

Rep.

(i) Initialize at φ0 =−45◦ (θ = 90◦).
(ii) The particle is held steady for the first 500 time steps, in order for the fluid field

to be resolved around the particle.
(iii) Set the initial angular velocity of the particle to φ̇=−G/2, where G is the shear

rate of the flow.
(iv) St0.5 is defined as the value of St at which GT = Gtφ=−5π − Gtφ=−3π = π(r−1

p +
rp + 2), and is found by a half-interval search between St= Rep (i.e. α= 1) and
St= Stmax (Stmax=2500 for the rp=4 spheroid), with the tolerance set to 1St=10.

Appendix E. Determination of the intrinsic viscosity η

In this section we describe how to obtain the intrinsic viscosity of the one-particle
suspension from the simulations in this work. The procedure is identical to that used
by Huang et al. (2012a,b). In the lattice Boltzmann scheme employed in this study,
the local shear stress can be evaluated in each fluid node according to

σ(xe, t)=−
(

1− 1
2τ

) 18∑
i=0

(fi(xe, t)− f eq
i (xe, t))ci,xci,y. (E 1)

The total shear stress on the moving walls, σw(t), is evaluated by taking the mean
value of all nodes closest to the walls (i.e. at y=1 and y=N−1). The time-dependent
intrinsic viscosity η∗(t) is calculated from

η∗(t)= 1
Φ

(
σw(t)
ρ0νG

− 1
)
, (E 2)

where ν and ρ0 are the kinematic viscosity and density of the fluid, respectively, and
Φ is the volume fraction calculated from

Φ =
(

4πab2

3

)/
N3, (E 3)

where 4πab2/3 is the volume of a prolate spheroid with major semi-axis a and minor
semi-axis b and N3 is the volume of the simulation domain. In order to evaluate the
intrinsic viscosity for a certain rotational state at a certain Rep, the simulation
is initialized at rest in an orientation from which the particle assumes the stable
rotational state quickly, i.e. (φ, θ)1= (0, 0) for non-planar motion at ReLR<Rep<ReT ,
(φ, θ)2 = (5◦, 90◦) for the steady state at Rep > Rec and (φ, θ)3 = (−7◦, 90◦) for
tumbling at any Rep. The simulation is run up to Gt = 1000, which seemed to
be enough for the value of η∗(t) to converge at the walls for 0 < Rep < 200. The
final (time-independent) value of η was evaluated through time-averaging η∗(t) from
Gt= 667 to Gt= 1000.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

12
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2015.127


Dynamics of prolate spheroids in shear flow due to inertia 157

REFERENCES

AIDUN, C. K., LU, Y. & DING, E.-J. 1998 Direct analysis of particulate suspensions with inertia
using the discrete Boltzmann equation. J. Fluid Mech. 373, 287–311.

BALKOVSKY, E., FALKOVICH, G. & FOUXON, A. 2001 Intermittent distribution of inertial particles
in turbulent flows. Phys. Rev. Lett. 86, 2790–2793.

BAYOD, E. & WILLERS, E. P. 2002 Rheological and structural characterization of tomato paste and
its influence on the quality of ketchup. LWT-Food Sci. Technol. 41, 1289–1300.

BINDER, R. C. 1939 The motion of cylindrical particles in viscous flow. J. Appl. Phys. 10, 711–713.
CROWE, C. T., SCHWARZKOPF, J. D., SOMMERFELD, M. & TSUJI, Y. 2012 Multiphase Flows with

Droplets and Particles, 2nd edn. CRC Press.
DING, E.-J. & AIDUN, C. K. 2000 The dynamics and scaling law for particles suspended in shear

flow with inertia. J. Fluid Mech. 423, 317–344.
DO-QUANG, M., AMBERG, G., BRETHOUWER, G. & JOHANSSON, A. V. 2014 Simulation of finite-

size fibers in turbulent channel flows. Phys. Rev. E 89, 013006.
EINSTEIN, A. 1906 Eine neue Bestimmung der Moleküldimensionen. Ann. Phys. 324, 289–306.
EINSTEIN, A. 1911 Berichtigung zu meiner Arbeit: ‘Eine neue Bestimmung der Moleküldimensionen’.

Ann. Phys. 339, 591–592.
GAVZE, E., PINSKY, M. & KHAIN, A. 2012 The orientations of prolate ellipsoids in linear shear

flows. J. Fluid Mech. 690, 51–93.
HALE, J. & KOÇAK, H. 1991 Dynamics and Bifurcations, Texts in Applied Mathematics, vol. 3.

Springer.
HINCH, E. J. & LEAL, L. G. 1979 Rotation of small non-axisymmetric particles in a simple shear

flow. J. Fluid Mech. 92, 591–607.
HUANG, H., WU, Y.-F. & LU, X.-Y. 2012a Shear viscosity of dilute suspensions of ellipsoidal

particles with a lattice Boltzmann method. Phys. Rev. E 86, 046305.
HUANG, H., YANG, X., KRAFCZYK, M. & LU, X.-Y. 2012b Rotation of spheroidal particles in

Couette flows. J. Fluid Mech. 692, 369–394.
JEFFERY, G. B. 1922 The motion of ellipsoidal particles immersed in a viscous fluid. Proc. R. Soc.

Lond. A 102, 161–179.
KARNIS, A., GOLDSMITH, H. L. & MASON, S. G. 1963 Axial migration of particles in Poiseuille

flow. Nature 200, 159–160.
LATT, J. 2007 Hydrodynamic limit of lattice Boltzmann equations. PhD thesis, University of Geneva.
LE, T. H., DUMONT, P. J. J., ORGÉAS, L., FAVIER, D., SALVO, L. & BOLLER, E. 2008 X-ray phase

contrast microtomography for the analysis of the fibrous microstructure of SMC composites.
Composites A 39, 91–103.

LI, Z., ZHU, J. & ZHANG, C. 2005 Numerical simulations of ultrafine powder coating systems.
Powder Technol. 150, 155–167.

LUNDELL, F. 2011 The effect of particle inertia on triaxial ellipsoids in creeping shear: from drift
toward chaos to a single periodic solution. Phys. Fluids 23, 011704.

LUNDELL, F. & CARLSSON, A. 2010 Heavy ellipsoids in creeping shear flow: transitions of the
particle rotation rate and orbit shape. Phys. Rev. E 81, 016323.

LUNDELL, F., SÖDERBERG, L. D. & ALFREDSSON, P. H. 2011 Fluid mechanics of papermaking.
Annu. Rev. Fluid Mech. 43, 195–217.

MISEROCCHI, G., SANCINI, G., MANTEGAZZA, F. & CHIAPPINO, G. 2008 Translocation pathways
for inhaled asbestos fibres. Environ. Health 7, 4.

MUELLER, S., LLEWELLIN, E. W. & MADER, H. M. 2009 The rheology of suspensions of solid
particles. Proc. R. Soc. Lond. A 466, 1201–1228.

NILSEN, C. & ANDERSSON, H. I. 2013 Chaotic motion of inertial spheroids in oscillating shear
flow. Phys. Fluids 25, 013303.

PÉSCELI, H. L., TRULSEN, J. & FIKSEN, Ø. 2012 Predator–prey encounter and capture rates for
plankton in turbulent environments. Prog. Oceanogr. 101, 14–32.

PESKIN, C. S. 2002 The immersed boundary method. Acta Numerica 11, 479–517.
QI, D. & LUO, L.-S. 2002 Transitions in rotations of a nonspherical particle in a three-dimensional

moderate Reynolds number Couette flow. Phys. Fluids 14, 4440.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

12
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2015.127


158 T. Rosén, M. Do-Quang, C. K. Aidun and F. Lundell

QI, D. & LUO, L.-S. 2003 Rotational and orientational behaviour of three-dimensional spheroidal
particles in Couette flows. J. Fluid Mech. 477, 201–213.

ROSÉN, T., LUNDELL, F. & AIDUN, C. K. 2014 Effect of fluid inertia on the dynamics and scaling
of neutrally buoyant particles in shear flow. J. Fluid Mech. 738, 563–590.

SAFFMAN, P. G. 1956 On the motion of small spheroidal particles in a viscous liquid. J. Fluid
Mech. 1, 540–553.

STROGATZ, S. H. 1994 Nonlinear Dynamics and Chaos: with Applications to Physics, Biology,
Chemistry, and Engineering. Westview.

SUBRAMANIAN, G. & KOCH, D. L. 2005 Inertial effects on fibre motion in simple shear flow.
J. Fluid Mech. 535, 383–414.

SUBRAMANIAN, G. & KOCH, D. L. 2006 Inertial effects on the orientation of nearly spherical
particles in simple shear flow. J. Fluid Mech. 557, 257–296.

TAYLOR, G. I. 1923 The motion of ellipsoidal particles in a viscous fluid. Proc. R. Soc. Lond. A
103, 58–61.

WU, J. & AIDUN, C. K. 2010 Simulating 3d deformable particle suspensions using lattice Boltzmann
method with discrete external boundary force. Intl J. Numer. Meth. Fluids 62, 765–783.

YARIN, A. L., GOTTLIEB, O. & ROISMAN, I. V. 1997 Chaotic rotation of triaxial ellipsoids in
simple shear flow. J. Fluid Mech. 340, 83–100.

YU, Z., PHAN-THIEN, N. & TANNER, R. I. 2007 Rotation of a spheroid in a couette flow at
moderate Reynolds numbers. Phys. Rev. E 76, 026310.

ZETTNER, C. M. & YODA, M. 2001 Moderate aspect ratio elliptical cylinders in simple shear with
inertia. J. Fluid Mech. 442, 241–266.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

12
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2015.127

	The dynamical states of a prolate spheroidal particle suspended in shear flow as a consequence of particle and fluid inertia
	Introduction
	Method
	The flow problem

	Summary of previous knowledge
	Heavy particle in creeping shear flow
	Neutrally buoyant particle (α=1, rp=4) at Rep>0
	Bifurcation diagram
	Motivation for the present work

	Results: dynamics of a spheroid with rp=4
	Comments about the sensitivity of Rec to the flow field near the particle
	Prediction of Stc
	Rotational states
	Determining Stc as function of Rep
	Definition of Stc
	Equilibrium angles
	Critical density ratio as a function of Rep

	Determining St0.5 as function of Rep
	Determining ReLR, RePF, ReHopf and ReT as functions of St
	ReLR
	RePF
	ReHopf
	ReT


	Results: bifurcation analysis (rp=4)
	Bifurcation at α=αc (St=Stc)
	Bifurcation diagrams

	Results: transient behaviour and orbit drift (rp=4)
	Results: consequences for suspension rheology
	Results: extension to rp=4
	Dependence of aspect ratio on fluid inertial transitions
	Dependence of aspect ratio on particle inertial transitions
	Transient behaviour and orbit drift
	Consequences for suspension rheology
	Low-aspect-ratio particles

	Conclusions
	Quantitative versus qualitative conclusions
	Rotational states and bifurcations
	Rheological consequences of the particle behaviour
	Final remarks

	Acknowledgements
	Appendix A. Description of the LB-EBF method
	Fluid grid
	Particle grid
	The discrete Dirac function
	Principle of the lattice Boltzmann method
	Simulation steps
	Initialization
	Iterative steps


	Appendix B. Determination of the equilibrium angles φc and φus
	Appendix C. Determination of the critical density ratio αc
	Appendix D. Determination of St0.5
	Appendix E. Determination of the intrinsic viscosity η
	References




