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A family A of sets is said to be intersecting if A ∩ B �= ∅ for all A, B ∈ A. It is a well-known

and simple fact that an intersecting family of subsets of [n] = {1, 2, . . . , n} can contain at

most 2n−1 sets. Katona, Katona and Katona ask the following question. Suppose instead

A ⊂ P[n] satisfies |A| = 2n−1 + i for some fixed i > 0. Create a new family Ap by choosing

each member of A independently with some fixed probability p. How do we choose A to

maximize the probability that Ap is intersecting? They conjecture that there is a nested

sequence of optimal families for i = 1, 2, . . . , 2n−1. In this paper, we show that the families

[n](�r) = {A ⊂ [n] : |A| � r} are optimal for the appropriate values of i, thereby proving

the conjecture for this sequence of values. Moreover, we show that for intermediate values

of i there exist optimal families lying between those we have found. It turns out that the

optimal families we find simultaneously maximize the number of intersecting subfamilies

of each possible order.

Standard compression techniques appear inadequate to solve the problem as they do not

preserve intersection properties of subfamilies. Instead, our main tool is a novel compression

method, together with a way of ‘compressing subfamilies’, which may be of independent

interest.

1. Introduction

Many problems of extremal combinatorics concern intersecting families of finite sets. A

family A is said to be intersecting if A ∩ B �= ∅ for all A, B ∈ A. How large an intersecting

family can we find in the discrete cube Qn = P[n] = P{1, 2, . . . , n}? It is easy to achieve

|A| = 2n−1, for example by taking A = {A ⊂ Qn : 1 ∈ A}. And it is easy to see that we

can do no better than this: an intersecting family cannot contain both a set and its

complement.

A more interesting question arises if we require our intersecting family to be uniform.

Given a set S and a positive integer r, write S (r) for the collection {A ⊂ S : |A| = r} of all

subsets of S of size r. How large an intersecting family A ⊂ [n](r) can we find?
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As in the non-uniform case, it seems natural to try taking A = {A ∈ [n](r) : 1 ∈ A}, here

achieving |A| =
(
n−1
r−1

)
. And indeed, in their significant paper of 1964, Erdős, Ko and Rado

[4] show that if r � n/2 we can do no better than this. (We remark in passing that the

problem is of no interest if r > n/2, as then the entirety of [n](r) is itself intersecting.)

In this paper we shall be concerned with two related probabilistic questions posed by

Katona, Katona and Katona [8]. We begin with the non-uniform case.

Recall from above that if A ⊂ P[n] is intersecting then |A| � 2n−1. Suppose that we are

instead required to choose a somewhat larger family A and then randomly discard some

of the sets in A to form a subfamily B. How can we maximize the probability that B is

intersecting? A precise statement of the problem is as follows.

Problem 1 ([8]). Let n and i be positive integers with i � 2n−1 and let p ∈ (0, 1). Given

A ⊂ P[n], write Ap for the (random) subfamily of A obtained by choosing each set in

A independently with probability p. How should we choose A with |A| = 2n−1 + i to

maximize P(Ap is intersecting)?

Katona, Katona and Katona [8] solve the first cases of this problem, that is, for

i �
(

n−1
�(n−3)/2	

)
. They construct their optimal families by taking ‘large’ sets in the cube.

More precisely, for n odd take all sets of size at least (n + 1)/2 together with any i sets of

size (n − 1)/2 that contain the element 1. Similarly, for n even take all sets of size n/2 + 1,

all sets of size n/2 that contain the element 1, and any other i sets of size n/2. They

conjecture that a continuation of this construction gives an optimal family A for each i,

leading to a nested sequence A1 ⊂ A2 ⊂ · · ·A2n−1 of optimal families for i = 1, 2, . . . , 2n−1.

In this paper, we show that the families [n](�r) = {A ⊂ P[n] : |A| � r} are optimal for

the appropriate values of i, thereby proving the conjecture for this sequence of values.

Moreover, we show that for intermediate values of i there exist optimal families lying

between those we have found. Our main result is as follows.

Theorem 1.1. Let n be a positive integer and let p ∈ (0, 1). Let r be a positive integer with

r � n/2. Then, over all A ⊂ P[n] with |A| =
∑n

j=r

(
n
j

)
, the probability P(Ap is intersecting)

is maximized by A = [n](�r).

Moreover, suppose i is any positive integer with i � 2n−1 and let r be such that
∑n

j=r+1

(
n
j

)
�

2n−1 + i �
∑n

j=r

(
n
j

)
. Then, over all A ⊂ P[n] with |A| = 2n−1 + i, the probability

P(Ap is intersecting) is maximized by some A with [n](�r+1) ⊂ A ⊂ [n](�r).

We remark that the result of Theorem 1.1 is independent of the value of p. In

fact, for 2n−1 + i =
∑n

j=r

(
n
j

)
, the family [n](�r) simultaneously maximizes the number of

intersecting subfamilies of each possible order. This result may be of independent interest.

We also consider the uniform version of the problem.

Problem 2 ([8]). Let n, r and i be positive integers with r � n/2 and i �
(
n−1
r

)
, and let

p ∈ (0, 1). How should we choose A ⊂ [n](r) with |A| =
(
n−1
r−1

)
+ i to maximize P(Ap is

intersecting)?
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Results on this problem seem rather harder to come by: Katona, Katona and Katona [8]

solve only the first case i = 1. Using methods similar to those used to prove Theorem 1.1,

we show that, for each i, there is an optimal family that is left-compressed (as explained

below). Unfortunately, our methods are not sufficient to determine which amongst the

left-compressed families of given order is best.

Theorem 1.2. Let n, r and i be positive integers with r � n/2 and i �
(
n−1
r

)
, and let p ∈

(0, 1). Then there exists a left-compressed family A ⊂ [n](r) with |A| =
(
n−1
r−1

)
+ i that max-

imizes P(Ap is intersecting) over all subfamilies of [n](r) of order
(
n−1
r−1

)
+ i.

Many fruitful approaches to intersection problems involve the use of compression

techniques, first introduced by Erdős Ko and Rado [4] in the proof of their uniform

intersection theorem mentioned above. The idea behind such techniques is that, starting

from an intersecting family A, one ‘moves’ certain sets in A to make A ‘nicer’ in some

way whilst A retains the property of being intersecting. The proof of the Erdős–Ko–Rado

theorem applies ij-compressions, defined as follows.

Let i, j ∈ [n] with i < j. If A ∈ [n](r) then the ij-compression of A is

CijA =

{
(A ∪ {i}) − {j} if j ∈ A, i �∈ A,

A otherwise.

If A ⊂ [n](r), the ij-compression of A is

CijA = {CijA : A ∈ A} ∪ {A ∈ A : CijA ∈ A}.

Informally, we replace j by i whenever we can. We may be prevented from replacing

j ∈ A by i either because i is already in A or because CijA is already in A. When we

replace j ∈ A by i, we say that A moves; that is, A moves if j ∈ A, i �∈ A and CijA �∈ A.

We say that A is blocked from moving by CijA if A �= CijA and CijA ∈ A. A family A is

ij-compressed if A = CijA. It is left-compressed if it is ij-compressed whenever i < j.

Erdős, Ko and Rado show that if A ⊂ [n](r) is intersecting then so is CijA. They also

check that any A ⊂ [n](r) can be transformed to a left-compressed family by repeated

ij-compressions. It hence suffices for them to consider only left-compressed families in

their proof.

It seems at first that a similar approach to Problems 1 and 2 of Katona, Katona and

Katona cannot possibly succeed. We know from [4] that compressing an intersecting family

yields an intersecting family. Unfortunately, if we compress a non-intersecting family A
then there may exist an intersecting subfamily of A which moves to a non-intersecting

subfamily of CijA.

Here is a simple example which illustrates the main obstacle. Consider applying a

12-compression to the family A = {13, 23, 24}. Only 24 moves, giving C12A = {13, 23, 14}.
But now B = {23, 24} ⊂ A is intersecting and moves to {23, 14} which is not. (What has

gone wrong? The set 23 was blocked from moving by the set 13 which is in A but not

in B.)

Nevertheless, we are able to show that the family CijA has at least as many intersecting

subfamilies of each given order as does the family A. In fact, there is a fairly natural
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injection φ from the collection A of intersecting subfamilies of A to the collection C

of intersecting subfamilies of CijA. Starting from an intersecting family B ∈ A, we form

the family φ(B) by replacing appropriately chosen B ∈ B by CijB. We must obviously

choose to replace those B ∈ B that move when A is compressed to CijA, as in this case

B �∈ CijA. But we also choose to replace certain B ∈ B that were blocked from moving by

CijB ∈ A but for which CijB �∈ B. The choice of which such B to replace depends both

on the family A and the subfamily B. In Section 2 we give the details of our construction

and prove that the resulting families φ(B) are indeed intersecting as required. This will

establish Theorem 1.2.

Our launching-pad for Theorem 1.2 was the use of ij-compressions to prove the Erdős–

Ko–Rado theorem. Can we find something to play a similar role for Theorem 1.1? The

right place to start turns out to be from a more general compression operator first

introduced by Daykin [3] in his beautiful proof of the Kruskal–Katona theorem [9, 7].

These ‘UV -compressions’ were independently discovered by Frankl and Füredi [5] in

their proof of Harper’s theorem. They also turn out to be a special case of a compression

operator later developed by Bollobás and Leader [2], who use them to prove intersection

theorems such as the Erdős–Ko–Rado theorem and Katona’s t-intersecting theorem [10].

This proof of the t-intersecting theorem was also found independently by Ahlswede and

Khachatrian [1].

When attempting to apply these methods to Problem 1, the same obstacle arises as in

the proof of Theorem 1.2 and is overcome in the same way. However, further difficulties

arise in this case. To preserve intersection properties in the proof of the t-intersecting

theorem, it is necessary to carry out the UV -compressions in a carefully chosen order. But

even when this is done, we are unable to show that the number of intersecting subfamilies

of each order increases whenever an individual UV -compression is applied. Instead, it

appears that we must apply a sequence of several UV -compressions together, after which

there are at least as many intersecting subfamilies of each order as before. We shall explain

this further in Section 3, where we prove Theorem 1.1.

Finally, in Section 4, we make some concluding remarks and mention some open

problems.

Our notation is mostly standard. We draw the reader’s attention to certain points.

We write [n] for the set {1, 2, . . . , n} and [m, n] for the set {m,m + 1, . . . , n}. For any set

S , we write S (r) for the set {A ⊂ S : |A| = r} of all subsets of S of order r, and S (�r)

for the set {A ⊂ S : |A| � r} of all subsets of S of order at least r. If X and Y are

sets we write X − Y for the set {x ∈ X : x �∈ Y }. For ease of reading, we often omit

set brackets and union symbols. Thus, for example, 123 denotes the set {1, 2, 3}, 12XY

denotes the set {1, 2} ∪ X ∪ Y , and 1X ∩ Y denotes the set ({1} ∪ X) ∩ Y . If A is a family

of sets, we write I(A) for the collection of all intersecting subfamilies of A; that is,

I(A) = {B ⊂ A : B is intersecting}.

2. Left-compression

Our aim in this section is to prove Theorem 1.2.
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Let i, j ∈ [n] with i < j. Recall from Section 1 the definition of the ij-compression. If

A ∈ [n](r) then the ij-compression of A is

CijA =

{
(A ∪ {i}) − {j} if j ∈ A, i �∈ A,

A otherwise.

If A ⊂ [n](r), the ij-compression of A is

CijA = {CijA : A ∈ A} ∪ {A ∈ A : CijA ∈ A}.

It is easy to see that for any A ⊂ [n](r) we may obtain a left-compressed family

by applying an appropriate sequence of ij-compressions. (For example, the quantity∑
A∈A

∑
a∈A a decreases whenever we apply a non-trivial ij-compression.) So it suffices to

prove that if C = CijA then P(Cp is intersecting) � P(Ap is intersecting). This will follow

immediately from the following lemma which is the heart of the proof.

Lemma 2.1. Let A ⊂ [n](r), let i, j ∈ [n] and let C = CijA. Then there exists an injection

φ : I(A) → I(C) such that |φ(B)| = |B| for all B ∈ I(A).

Proof. Assume without loss of generality that i = 1 and j = 2. Write A = I(A) and

C = I(C). Let

A1 = {X ⊂ [3, n] : 1X ∈ A, 2X �∈ A},
A2 = {X ⊂ [3, n] : 1X �∈ A, 2X ∈ A},
A12 = {X ⊂ [3, n] : 1X, 2X ∈ A},
A0 = {X ∈ A : 1, 2 ∈ X or 1, 2 �∈ X}.

Observe that A may be written as the disjoint union

A = {1X : X ∈ A1 ∪ A12} ∪ {2X : X ∈ A2 ∪ A12} ∪ A0.

We make similar definitions and a similar observation for the family C. We have C1 =

A1 ∪ A2, C2 = ∅, C12 = A12 and C0 = A0.

For each B ∈ A, we shall form φ(B) ∈ C by replacing certain B ∈ B by C12B. If we

replace B ∈ B by C12B �= B then we shall say that we move B ∈ B.

It is clear that we cannot move B of the form 1X (X ∈ A1 ∪ A12) or X (X ∈ A0) as

then C12B = B. It is equally clear that we must move B of the form 2X (X ∈ A2) as then

B �∈ C. Thus we need only consider B of the form 2X (X ∈ A12). Moreover, if B = 2X ∈ B
(X ∈ A12) then C12B = 1X so it is only possible to move B if 1X �∈ B. Thus to completely

define φ, it suffices to find a suitable answer to the following question: Given X ∈ A12

and B ∈ A with 2X ∈ B but 1X �∈ B, do we move 2X ∈ B? Recall that it is necessary

both that the resulting family φ(B) be intersecting and that different families in A yield

different families in C. It turns out that this is indeed possible. We shall choose to move

2X ∈ B for certain such B and not for others, as we now explain.

We begin by partitioning A and C into carefully chosen ‘strata’ AX and CX (X ∈ X

for some index set X) in such a way that for each stratum AX of A, the corresponding

stratum CX of C contains all possible choices of φ(B) for each B ∈ AX . For each X ∈ A12,
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the decision of whether or not to move 2X ∈ B will depend only on the stratum of A in

which B lies.

So how do we define these strata? The key point is that all B within a single stratum of

A agree on every set in A except perhaps those of the form 1X or 2X (X ∈ A12); while

for X ∈ A12, all B in the stratum contain the same number of the sets 1X and 2X (i.e.,

both, precisely one, or neither).

We now proceed to the details of the construction. Suppose

X = (X1,X2,X12,(0),X12,(1),X12,(2),X0),

where X1 ⊂ A1, X2 ⊂ A2, X0 ⊂ A0 and X12,(0), X12,(1), X12,(2) form a disjoint partition of

A12. Let AX ⊂ A be the collection of intersecting families B ⊂ A satisfying the following

conditions.

(i) For X ∈ A1, 1X ∈ B ⇐⇒ X ∈ X1.

(ii) For X ∈ A2, 2X ∈ B ⇐⇒ X ∈ X2.

(iii) For X ∈ A0, X ∈ B ⇐⇒ X ∈ X0.

(iv) For X ∈ A12:

• if X ∈ X12,(0) then 1X, 2X �∈ B,

• if X ∈ X12,(1) then 1X ∈ B or 2X ∈ B but not both,

• if X ∈ X12,(2) then 1X, 2X ∈ B.

Let CX ⊂ C be the collection of intersecting families B ⊂ C satisfying conditions (i), (iii)

and (iv), and the additional condition:

(ii)′ For X ∈ A2, 1X ∈ B ⇐⇒ X ∈ X2.

Observe that A and C can be written as disjoint unions A =
⋃

X AX and C =
⋃

X CX ,

the union in each case ranging over all permissible values of X . Moreover, for each X
there is a positive integer m such that |B| = m for every B ∈ AX ∪ CX . Hence it suffices

to construct, for each X , an injection φX : AX → CX .

So fix X . Let

Y = {X ∈ X12,(1) : 2X ∈ B for all B ∈ AX }.

Define φX : AX → CX by

φX (B) =
(
B ∪ {1X : X ∈ X2 ∪ Y}

)
− {2X : X ∈ X2 ∪ Y}.

In order to check that φX is well-defined, we must check that φX (B) is intersecting for

each B ∈ AX . It will then be clear that φX is an injection from AX to CX .

Assume for a contradiction that B ∈ AX but that D = φX (B) is not intersecting. So

there are sets A, B ∈ D with A ∩ B = ∅. As B is intersecting, we cannot have both A, B ∈ B,

so assume without loss of generality that A �∈ B. Then A = 1X for some X ∈ X2 ∪ Y and

2X ∈ B. Now we must have B ∈ B (as otherwise we would have 1 ∈ B). So B ∩ 2X �= ∅
but B ∩ 1X = ∅. Hence B = 2Y for some Y ⊂ [3, n] with X ∩ Y = ∅. We cannot have

1Y ∈ B (as 1Y ∩ 2X = ∅), so Y ∈ X2 ∪ X12,(1). But, as 2Y ∈ D, we have Y �∈ X2 ∪ Y .

So Y ∈ X12,(1) − Y; that is, there is some E ∈ AX with 1Y ∈ E . But X ∈ X2 ∪ Y and so

2X ∈ E . But 1Y ∩ 2X = ∅, a contradiction (as E is intersecting).
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Thus φX is an injection from AX to CX for each X . Putting together all of the φX , we

obtain the required injection φ : I(A) → I(C).

We immediately obtain the main result of this section.

Theorem 2.2. Let n, r and i be positive integers with r � n/2 and i �
(
n−1
r

)
, and let p ∈

(0, 1). Then there exists a left-compressed family A ⊂ [n](r) with |A| =
(
n−1
r−1

)
+ i that max-

imizes P(Ap is intersecting) over all subfamilies of [n](r) of order
(
n−1
r−1

)
+ i.

Proof. Let A ⊂ [n](r) be a family of order k maximizing P(Ap is intersecting) over all

families of order k. Carry out a sequence of ij-compressions Ci1j1 , Ci2j2 , . . . , Cimjm to obtain

families A1 = Ci1j1A, A2 = Ci2j2A1, . . . , Am = CimjmAm−1, with Am left-compressed.

It follows from Lemma 2.1 that, for any family B and any i, j, we have

P((CijB)p is intersecting) � P(Bp is intersecting).

Hence, by induction,

P((Am)p is intersecting) � P(Ap is intersecting).

But the family A was chosen to maximize this probability, so in fact we have that

P((Am)p is intersecting) = P(Ap is intersecting)

and Am is our required left-compressed family.

3. Main result

We now turn to the proof of our main result, Theorem 1.1. As we remarked in Section 1,

we begin from the proof of Katona’s t-intersecting theorem using UV -compressions. In

Section 3.1 we define UV -compressions, briefly outline this proof of the t-intersecting

theorem, and explain where the difficulties lie in translating these methods to solve

Problem 1. In Section 3.2 we define our new compression operators. Finally, in Section 3.3

we prove Theorem 1.1.

3.1. Background

Let n be a positive integer and let U, V ⊂ [n] be disjoint. If A ⊂ [n] then the UV -

compression of A is

CUVA =

{
(A ∪ U) − V if V ⊂ A,U ∩ A = ∅,
A otherwise.

If A ⊂ P[n], the UV -compression of A is

CUVA = {CUVA : A ∈ A} ∪ {A ∈ A : CUVA ∈ A}.

As with ij-compressions, it is generally helpful to think of the compression ‘moving’

certain sets by replacing V with U where possible. Indeed, ij-compressions are simply the

special case of UV -compressions where U and V are both singleton sets.
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Again as with ij-compressions, a typical application aims to compress an initial

family to make it ‘nicer’ in some way whilst preserving some property of the family.

However, one must often take great care over the order in which the compressions are

applied.

A well-known example is the t-intersecting theorem. A family A ⊂ P[n] is said to be

t-intersecting if |A ∩ B| � t for all A, B ∈ A. How large can such a family be?

Assume for simplicity that n + t is even. One obvious example is to take A = [n](�
n+t
2 ).

Katona [6] showed that this was best possible. We sketch a later proof based on UV -

compressions.

The proof begins with a t-intersecting family A and aims to transform it into a family

B with [n](�r+1) ⊂ B ⊂ [n](�r). This can be done by a sequence of UV -compressions with

|V | < |U| in each case. (In fact, we need only use UV compressions with |U| = |V | + 1.)

If the resulting family B is t-intersecting then the theorem is proved.

Unfortunately, this need not always be the case: the family A = {45, 46} is 1-intersecting

but C123,45A = {123, 46} is not. However, this problem can be resolved by carrying out

the simplest available compression at each stage: here A is not (12, 4)-compressed, and

C12,4A = {125, 126} is 1-intersecting. (To be precise, it is now easy to check that if A
is t-intersecting and U ′V ′-compressed for all U ′ ⊂ U and V ′ ⊂ V with |U ′| > |V ′| and

(U ′, V ′) �= (U,V ), then CUVA is t-intersecting.) This suffices to prove the t-intersecting

theorem.

We now consider how this can be applied to Problem 1. We begin with a family A ⊂ P[n]

which we aim to compress to a family A′ with [n](�r+1) ⊂ A′ ⊂ [n](�r) by means of UV -

compressions with |U| = |V | + 1. Our initial hope might be that if these compressions are

applied in an appropriate order then, as with ij-compressions in Section 2, the number of

intersecting subfamilies of each possible order increases after each compression.

We may clearly apply a UV -compression with |V | = 0; each intersecting subfamily of

A moves to an intersecting subfamily of CUVA.

If |V | = 1 then, as with ij-compressions, it is possible for an intersecting subfamily of

A to move to a non-intersecting subfamily of CUVA. But this problem can be resolved

precisely as it was for ij-compressions in the proof of Lemma 2.1.

The real problem first arises when |V | = 2. Now we are unable to show that CUVA
contains more intersecting subfamilies of each order than does A, even if we assume

that we have already performed all simpler compressions (although we do not have a

counterexample).

Why does the proof of Lemma 2.1 not carry over? Suppose, say, we perform the

compression C123,45 on A, and B ⊂ A is intersecting. Perhaps when forming φ(B) we

replace 45 ∈ B with 123. Now, if also 4 ∈ B then 4 does not move but 4 ∩ 123 = ∅.

However, we know that A is (12, 4)-compressed so maybe we can replace 4 with 12. But

what if, say, 34 ∈ B? Now 34 does not intersect 12 . . .

At some point in the proof, it appears that we need to perform an illegal replacement,

say 34 → 125. And we cannot assume that A is (125, 34)-compressed as then we do not

obtain a well-founded order in which to carry out our compressions.

The solution is to perform four compressions together: instead of comparing A with

C123,45A, we compare it with C = C123,45C125,34C134,25C145,23A. It is now possible to arrange
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that all of the necessary replacements are legal, yielding a proof that C contains at least

as many intersecting subfamilies of each possible order as does A.

3.2. (U, v, f)-compressions

It is convenient to define a new compression operator which carries out all of the necessary

compressions simultaneously. In fact, it moves sets in such a way that we no longer need

to worry about carrying out simpler compressions first.

Let X be a set. A pairing function on X is a function f : X → X such that f ◦ f is the

identity and f has no fixed point. We may think of f as ‘pairing’ the elements of X. Note

that if X is finite then it must have even order.

Let U ⊂ [n] be of even order, let v ∈ [n] − U and let f : U → U be a pairing function.

We define the (U, v, f)-compression on P[n] by

CU,v,f(A) =

{
A if v ∈ A,

f(A ∩ U) ∪ {v} ∪ (A − U) if v �∈ A

for A ∈ P[n], and

CU,v,f(A) = {CU,v,f(A) : A ∈ A} ∪ {A ∈ A : CU,v,f(A) ∈ A}

for A ⊂ P[n].

We remark that in the case where A is already U ′V ′-compressed for all disjoint

pairs (U ′, V ′) with V ′ ⊂ U, U ′ ⊂ U ∪ {v}, |V ′| < |U|/2, |U ′| � |U|/2 + 1 and |U ′| > |V ′|,
then CU,v,f can be written as a composition of UV compressions. Indeed, in this case

CU,v,f = CU1V1
CU2V2

· · ·CUkVk
, where V1, V2, . . . , Vk are the subsets of U of order |U|/2 and

Ui = (U − Vi) ∪ {v}.
As an illustration, we prove that (U, v, f)-compressions preserve the property of a family

being intersecting.

Proposition 3.1. Let A ⊂ P[n] be intersecting, let U ⊂ [n] be of even order, let v ∈ [n] − U

and let f : U → U be a pairing function. Then CU,v,fA is intersecting.

Proof. Write C = CU,v,fA. Suppose that C is not intersecting. Choose A, B ∈ C with

A ∩ B = ∅. As A is intersecting, we cannot have both A, B ∈ A, so assume without loss

of generality that A �∈ A. Then A = vf(W )X for some W ⊂ U and X ⊂ [n] − (U ∪ {v})
with WX ∈ A. As A ∩ B = ∅, we must have v �∈ B and thus B ∈ A and B = TY for

some T ⊂ U and Y ⊂ [n] − (U ∪ {v}). Moreover, T ∩ f(W ) = ∅ and X ∩ Y = ∅. Now, as

v �∈ B and B ∈ C we must have vf(T )Y ∈ A. Now consider WX, vf(T )Y ∈ A. We have

W ∩ f(T ) = f(f(W ) ∩ T ) = ∅ and X ∩ Y = ∅, and so WX ∩ vf(T )Y = ∅. But this is a

contradiction, as A is intersecting.

Note that, unlike with standard UV -compressions, there is no restriction here on the

order in which these compressions may be applied. However, we remark in passing

that the order would be important if we wanted to retain the property of A being 2-

intersecting; in this case we would again have to apply compressions with smaller U first.
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For example, taking A = {23, 1236}, U = {2345}, v = 1, f(2, 3, 4, 5) = (4, 5, 2, 3), we have

A 2-intersecting but CU,v,fA = {145, 1236} not 2-intersecting.

3.3. Proof of main result

The heart of the proof is the following lemma. The proof of the lemma mirrors the proof

of Lemma 2.1, but using our (U, v, f)-compressions in place of ij-compressions.

Lemma 3.2. Let A ⊂ P[n], let U, v and f be as above and let C = CU,v,f(A). Then there

exists an injection φ : I(A) → I(C) such that |φ(B)| = |B| for all B ∈ I(A).

Proof. Write A = I(A), C = I(C) and S = [n] − (U ∪ {v}). For each W ⊂ U, let

AW
1 = {X ⊂ S : WX �∈ A, vf(W )X ∈ A},

AW
2 = {X ⊂ S : WX ∈ A, vf(W )X �∈ A},

AW
12 = {X ⊂ S : WX, vf(W )X ∈ A}.

Observe that A may be written as the disjoint union

A =
⋃

W⊂U

(
{vf(W )X : X ∈ AW

1 ∪ AW
12 } ∪ {WX : X ∈ AW

2 ∪ AW
12 }

)
.

We make similar definitions and a similar observation for the family C. For each W ⊂ U

we have CW
1 = AW

1 ∪ AW
2 , CW

2 = ∅ and CW
12 = AW

12 .

As in the proof of Lemma 2.1, we proceed by partitioning A and C into appropriate

strata and then moving certain sets within each stratum. However, there are now many

more cases of sets which might or might not move: for every subset W ⊂ U, given X ∈ AW
12

and B ∈ A with WX ∈ B but vf(W )X �∈ B, we must determine whether or not to move

WX ∈ B. Hence the definition of the strata, while analogous to that in Lemma 2.1,

appears rather more complex.

Suppose X = (XW
1 ,XW

2 ,XW
12,(0),XW

12,(1),XW
12,(2))W⊂U where, for each W ⊂ U, we have

XW
1 ⊂ AW

1 , XW
2 ⊂ AW

2 and XW
12,(0), XW

12,(1) and XW
12,(2) forming a disjoint partition of AW

12 .

Let AX ⊂ A be the collection of intersecting families B ⊂ A satisfying, for each W ⊂ U,

the following conditions.

(i) For X ∈ AW
1 , vf(W )X ∈ B ⇐⇒ X ∈ XW

1 .

(ii) For X ∈ AW
2 , WX ∈ B ⇐⇒ X ∈ XW

2 .

(iii) For X ∈ AW
12 :

• if X ∈ XW
12,(0) then WX, vf(W )X �∈ B,

• if X ∈ XW
12,(1) then WX ∈ B or vf(W )X ∈ B but not both,

• if X ∈ XW
12,(2) then WX, vf(W )X ∈ B.

Let CX be the collection of intersecting families B ⊂ C satisfying, for each W ⊂ U,

conditions (i) and (iii) and the additional condition:

(ii)′ For X ∈ AW
2 , vf(W )X ∈ B ⇐⇒ X ∈ AW

2 .

Observe that A and C can be written as disjoint unions A =
⋃

X AX and C =
⋃

X CX ,

and that, for each X , there is a positive integer m such that |B| = m for all B ∈ AX ∪ CX .

Hence, as before, it suffices to construct, for each X , an injection φX : AX → CX .
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So fix X . For each W ⊂ U let

YW = {X ∈ XW
12,(1) : WX ∈ B for all B ∈ AX }.

Define φX : AX → CX by

φX (B) = B ∪
⋃

W⊂U

{vf(W )X : X ∈ XW
2 ∪ YW } −

⋃
W⊂U

{WX : X ∈ XW
2 ∪ YW }.

Again, all that we need to check is that φX (B) is intersecting for each B ∈ AX .

Assume for a contradiction that B ∈ AX but that D = φX (B) is not intersecting. So

there are sets A, B ∈ D with A ∩ B = ∅. As B is intersecting, we cannot have both A,

B ∈ B, so assume without loss of generality A �∈ B. Then A = vf(W )X for some W ⊂ U,

X ∈ XW
2 ∪ YW and WX ∈ B. Now, we must have B ∈ B (as otherwise we would have

v ∈ B and so A ∩ B �= ∅). So B ∩ WX �= ∅ but B ∩ vf(W )X = ∅. Hence B = TY for some

T ⊂ U and Y ⊂ [n] − (U ∪ {v}) with T ∩ f(W ) = ∅ and X ∩ Y = ∅.

It is easy to check that vf(T ) ∩ W = ∅. Indeed, suppose instead that there is some

a ∈ vf(T ) ∩ W . As v �∈ W we must have a �= v and so a = f(t) for some t ∈ T . But then

t = f(a) ∈ f(W ), contradicting T ∩ f(W ) = ∅.

Now, we have vf(T ) ∩ W = ∅ and X ∩ Y = ∅, so vf(T )Y ∩ WX = ∅. But WX ∈ B so

vf(T )Y �∈ B. Now, vf(T )Y �∈ B but TY ∈ B so Y ∈ X T
2 ∪ X T

12,(1). But TY = B ∈ D so

Y �∈ X T
2 ∪ YT . Hence Y ∈ X T

12,(1) − YT ; that is, there is some E ∈ AX with vf(T )Y ∈ E .

But vf(W )X = A ∈ D and vf(W )X �∈ B so X ∈ XW
2 ∪ YW . Hence WX ∈ E . But now

vf(T )Y , WX ∈ E with vf(T )Y ∩ WX = ∅, a contradiction.

We now obtain our main result.

Theorem 3.1. Let n be a positive integer and p ∈ (0, 1). Let r be a positive integer with

r � n/2. Then, over all A ⊂ P[n] with |A| =
∑n

j=r

(
n
j

)
, the probability P(Ap is intersecting)

is maximized by A = [n](�r).

Moreover, suppose i is any positive integer with i � 2n−1 and let r be such that
∑n

j=r+1

(
n
j

)
�

2n−1 + i �
∑n

j=r

(
n
j

)
. Then, over all A ⊂ P[n] with |A| = 2n−1 + i, the probability P(Ap is

intersecting) is maximized by some A with [n](�r+1) ⊂ A ⊂ [n](�r).

Proof. It clearly suffices to prove the second statement as the first follows immediately.

Starting from any family A, we observe that it is possible to obtain a family C with

[n](�r+1) ⊂ C ⊂ [n](�r) for some r by a sequence of (U, v, f)-compressions. Indeed, suppose

that A is not already of the required form. Then it is easy to see that there are some

disjoint sets W , V ∈ [n] with |W | = |V | + 1 and A not WV -compressed. Take v = minW ,

U = (W − {v}) ∪ V and f : U → U a pairing function with f(W − {v}) = V . Then A is

not (U, v, f)-compressed, so we may apply CU,v,f to obtain a new family. But every time

we apply a non-trivial (U, v, f)-compression the quantity
∑

A∈A |A| increases, and so this

process must terminate with some A of the required form. Hence Theorem 1.1 follows

from Lemma 3.2 precisely as Theorem 1.2 follows from Lemma 2.1.
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Examining the proof of Lemma 3.2, we note that CU,v,fA has at least as many intersecting

subfamilies of each possible order as does A. Hence our optimal families simultaneously

maximize the number of intersecting subfamilies of every possible order. This may be of

independent interest.

Corollary 3.2. Let A ⊂ P[n] with |A| =
∑n

j=r

(
n
r

)
. Then the family [n](�r) has at least as

many intersecting subfamilies of every possible order as has A.

In fact, Theorem 1.1 also solves Problem 1 in the cases where 2n−1 + i =
( ∑n

j=r

(
n
r

))
± 1.

Moreover, Lemma 2.1 holds for A ⊂ P[n] as well as for A ⊂ [n](r) with an identical

proof, allowing us to solve Problem 1 in the cases where 2n−1 + i =
( ∑n

j=r

(
n
r

))
± 2. For

completeness, we state these results explicitly.

Corollary 3.3. Let n and r be positive integers with r � n/2.

• Over all A ⊂ P[n] with |A| =
( ∑n

j=r

(
n
r

))
+ 1, the probability P(Ap is intersecting) is

maximized by

A = [n](�r) ∪ {123 . . . r − 1}.

• Over all A ⊂ P[n] with |A| =
( ∑n

j=r

(
n
r

))
− 1. the probability P(Ap is intersecting) is

maximized by

A = [n](�r) − {(n − r + 1)(n − r + 2) . . . n}.

• Over all A ⊂ P[n] with |A| =
( ∑n

j=r

(
n
r

))
+ 2, the probability P(Ap is intersecting) is

maximized by

A = [n](�r) ∪ {123 . . . r − 1, 123 . . . (r − 2)r}.

• Over all A ⊂ P[n] with |A| =
( ∑n

j=r

(
n
r

))
− 2, the probability P(Ap is intersecting) is

maximized by

A = [n](�r) − {(n − r)(n − r + 2)(n − r + 3) . . . n, (n − r + 1)(n − r + 2) . . . n}.

Moreover, in each case the optimal family simultaneously maximizes the number of intersect-

ing subfamilies of every possible order.

4. Concluding remarks

Theorem 1.1 gives us substantial information about the structure of the optimal families

solving Problem 1: they consist of the top layers of the cube together with some collection

of sets from the next layer down. However, we know little about what happens within the

layers. The analogue of Lemma 2.1 for families in P[n] gives that we may take our optimal

family to be left-compressed, but this still leaves open many possibilities. In particular,

we would be interested to know if there is indeed a nested sequence of optimal families

as conjectured by Katona, Katona and Katona [8].
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We observed in Corollaries 3.2 and 3.3 that in all the cases of Problem 1 that we

could solve, the optimal family simultaneously maximized the number of intersecting

subfamilies of every given order. We would like to know if this is always possible.

Question 1. Let N � 2n. Does there exist a family A ⊂ P[n] of order N which simultan-

eously maximizes the number of intersecting subfamilies of every possible order?

Finally, we noted in Section 3.1 that we were unable to prove that UV -compressions

(applied in appropriate order) always increased the number of intersecting subfamilies

of each order. However, we also have no counterexample. Hence we ask the following

question.

Question 2. Let A ⊂ P[n] and U, V ⊂ [n] be disjoint with |U| > |V |. Suppose A is U ′V ′-

compressed for all U ′ ⊂ U and V ′ ⊂ V with (U ′, V ′) �= (U,V ) and |U ′| > |V ′|. Must CUVA
have at least as many intersecting subfamilies of every possible order as has A?
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