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In this article, we study comparison theorems for stochastic functionals like
V~`;C! 5 sup0#t $M~t ! 2 C~t !% or V~T;C! 5 sup0#t#T $M~t ! 2 C~t !% , where
$M~t !% and $C~t !% are two independent nondecreasing processes with stationary
increments+ We will tacitly assume that the considered stochastic functionals are
proper random variables+ We prove thatV~T;C '! #icx V~T;C! #icx V~T;C ''!,
whereC '~dt! 5 E@C~1! 2 C~0!# dt andC ''~dt! 5 c~0! dt, provideddC~t ! is abso-
lute continuous with densityc~t !+ Similarly, we show thatV~`;C ' ! #icx

V~`;C! #icx V~`;C ''!+ For proofs, we develop the theory of the#idcv ordering
defined by increasing directionally concave functions+ We apply the theory to
M0G01 priority queues andM0G01 queues with positive and negative customers+

1. INTRODUCTION

In this note,we study comparison theorems for stochastic functionals likeV~`;C! 5
sup0#t $M~t ! 2 C~t !% or V~T;C! 5 sup0#t#T $M~t ! 2 C~t !% , where$M~t !% and
$C~t !% are two independent nondecreasing processes with stationary increments+
We will tacitly assume that the considered stochastic functionals are proper random
variables+ Typically, M~t ! is a cumulative service time up tot+ For example, in
@1,4,6–11,13# ,M~t ! 5 ( j51

N~t ! Sj , where$N~t !% is a counting Cox process and$Sj % is
a sequence of independent random variables, independent of the process$N~t !%,
C~t ! 5 t, and the comparisons are made with respect to different Cox processes+
The seminal problem was a question by Ross@13# about the optimality of the con-

Probability in the Engineering and Informational Sciences, 19, 2005, 33–43+ Printed in the U+S+A+

© 2005 Cambridge University Press 0269-9648005 $16+00 33

https://doi.org/10.1017/S0269964805050035 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964805050035


stant arrival rate in the class of arrival rates with the same asymptotic rate, which
was solved in@10# + The worst case among all of the stationary arrival rates with the
same asymptotic intensity was detected in@12# + In this article the use of the so-called
increasing directionally convex~idcx! functions was proposed to derive the result+
In his article,Ross@13# posed a problem on the monotonicity ofEV~Ma! with respect
to a class$Ma% parameterized bya+ This problem has been considered in many
articles, and the direct question of Ross for two-state background continuous time
Markov chains~CTMCs! was solved in@4# + The case of more states of the back-
ground CTMC was addressed in@1# + Recently, quite a general result in terms of a
concept based on#idcx-ordering was given in@8# + Bonald, Borst, and Proutière@2#
addressed how to find insensitive bounds in some wireless data network by the use
of #idcx-ordering+

The study of#idcv-ordering was motivated by two problems from the theory of
queues, posed to the author by Borst and Boxma+ For these problems, we keep
$M~t !% fixed and study comparison theorems with respect to$C~t !% +Whereas in the
former studies the orderings#sm and#idcx were of importance, here we use the
dual ordering#idcv to the ordering#idcx defined by the class of increasing direc-
tionally concave functions+ These are multivariate extensions of icx and icv order-
ings of univariate random variables+ We also define the notion#idcv-regularity, a
dual one to#idcx-regularity studied in@8# + We apply the theory toM0G01 with
varying instantaneous service speed—in particular, priority queues andM0G01
queues with positive and negative customers+

2. ORDERINGS

We give definitions of needed integral orderings and classes of functions defining
these orderings+ It is standard to denote by cx and cv respectively the class of con-
vex and concave functionsf :R r R+ For multivariable functions, we have the fol-
lowing fundamental notion+

Definition 2.1: A function f:Rk r R is said to besupermodular~sm! if for any x
and y[ Rk,

f ~x! 1 f ~ y! # f ~x ∧ y! 1 f ~x ∨ y!,

where the operators∧ and ∨ denote respectively coordinatewise minimum and
maximum.

A suitable extensions of cx and cv classes for the multivariate case are as follows+

Definition 2.2: A function f:Rk r R is said to bedirectionally convex~dcx!
(directionally concave or [dcv] ) if for any x1, x2, and y[ Rk such that for x1 # x2

and y$ 0,

f ~x1 1 y! 2 f ~x1! # ~$! f ~x2 1 y! 2 f ~x2!+
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We write “i” before “sm,” “dcx ,” or “dcv” for restrictions to increasing func-
tions+ Note also that the directional convexity is not the same as ordinary convexity+
Important properties of dcx and dcv functions are as follows+ If f is dcx ~dcv! and
twice differentiable, then]2f ~x!0]xi ]xj $ ~#! 0 for all i andj+ Note that for sm, we
have only]2f ~x!0]xi ]xj $ ~#! 0 for all i Þ j+More on sm and dcx functions can be
found in Müller and Stoyan@9# + Functions dcv and idcv appeared in the doctoral
thesis of Meester@6# + It was pointed out there that the compositionf + d~ y! of an icv
functionf with idcv functiond onRk is also an idcv function ofy @6, Lemma 2+2+6# +
Note thatf ~x! is idcx if and only if2f ~2x! is idcv+We will use the fact that idcx
functions form a cone~see, e+g+, @9# !+

To each class of the above-considered functions we relate the stochastic order-
ing, which in the terminology of Müller and Stoyan@9# are integral orderings+ Let
F be a class of functions like cx, icx, cv, icv, sm, ism, dcx, idcx, dcv, and idcv+We
say that two random vectors~in the case of cx, icx, cv, and icv random variables! X
andY areaF-ordered ifE@ f ~X !# # E@ f ~Y!# for any functionf [ F, such that the
expectations are finite+ In this way, we define orderings#icx,#ism,#idcx,#icv, and
#idcv used in this note+ For ordering of stochastic processes, we have the following
definition+

Definition 2.3:

1. For two R-valued stochastic processes$X~t !%t[R and $Y~t !%t[R, we say
that $X~t !% t[R is smaller than$Y~t !% t[R in the F-ordering and write
$X~t !%t[R #F, if for any positive integer k and any2` , t1 #{{{# tk ,
1`, ~X~t1!, + + + ,X~tk!! #F ~Y~t1!, + + + ,Y~tk!!.

2. Let$C~t !%t[R1
and$C '~t !% be two increasing stochastic processes defining

random measures dC~t ! and dC'~t !, respectively. It is said that CaF C ', or
dC~t ! aF dC'~t !, if for any k and0 # s1 # t1 # s2 # t2 # + + +# sk # tk,

~C~s1, t1# , + + + ,C~sk, tk# ! aF ~C '~s1, t1# , + + + ,C '~sk, tk# !,

where we denote C~a,b# 5 C~b! 2 C~a!.
3. We say that a stationary stochastic process$Yt %t[T, where T5 Z or R

is #idcv-regular (#idcx-regular) if for each k and all idcv functions f:
T k11 r R, functionf, defined by

f~t1, + + + , tk! 5 E f ~Y0,Yt1,Yt11t2, + + + ,Yt11{{{1tk!,

is increasing (decreasing) in t1, t2, + + + , tk [ T.

We first recall that from the Lorenz inequality~see, e+g+, @9# !, we have the
following lemma+

Lemma 2.4: If Z0 5st Z1 5st{{{5st Zn, then~Z0, + + + ,Zk! #sm ~Z0, + + + ,Z0!.

The notion of#idcx-regularity, also called monotonicity in lag, was studied in
Miyoshi and Rolski@8# + For later use, we need the following quite obvious lemma+
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Lemma 2.5: If a stationary processj~t ! is #idcv-regular, then for a monotone func-
tion f, the process f~j~t !! is #idcv-regular.

3. GENERAL FRAMEWORK

Let M~t ! and$C~t !% be two increasing processes with stationary increments such
thatM~0! 5 0 andC~0! 5 0 and letEC~0,1# 5 g+ Our aim is to study bounds and
comparison theorems for

V 5 V~`;C! 5 sup
0#t

$M~t ! 2 C~t !% (3.1)

or

VT 5 V~T;C! 5 sup
0#t#T

$M~t ! 2 C~t !%+ (3.2)

We have the following representations forV:

V 5 lim
ir`

supH(
k51

j

~M~Ii, k! 2 C~Ii, k!!, j 5 0, + + + , i 2i J , (3.3)

whereIi, k 5 ~~k 2 1!02i, k02i # for k 5 1, + + + , i 2i and(k51
0 { 5 0 conventionally+We

have

VT 5 lim
ir`

~X 1 M~T ! 2 C~T !!

∨ maxH(
k5j

2i

~M~Ii, k
T ! 2 C~Ii, k

T !!, j 5 1, + + + ,2i J , (3.4)

where Ii, k
T 5 ~~k 2 1!~T02i !, k~T02i !# for k 5 1, + + + ,2i , and X, M, and C are

independent+
Let f :R1 r R be icx, which is also assumed to be continuous on the whole

R1+ Similarly to Lemma 1 of@12# , we have from the monotone convergence theo-
rem and the continuity off,

E@ f ~V~`;C!!#

5 lim
ir`

EFfSmaxH(
k51

j

M~Ii, k! 2 (
k51

j

C~Ii, k!, j 5 0, + + + , i 2i JDG (3.5)

5 lim
ir`

E@ f + gi 2i ~M~Ii,1! 2 C~Ii,1!, + + + ,M~Ii, i 2i ! 2 C~Ii, i 2i !!# , (3.6)

wheregk~x! 5 max$0, x1, + + + , x11 {{{ 1 xk% for x5 ~x1, + + + , xk! [ Rk+ Similarly, we
can representf ~VT! by the use of functionsxr max$0, y1 x1 1{{{1 xk, x2 1{{{1
xk, + + + , x1% + The above functions are idcx+

As in Lemma 2 of@12# , gk~x! is idcx ~and, moreover, it is a convex function
too!+ Furthermore, dx~ y! 5 2f + gk~x 2 y! is an idcv function ofy+ This can be
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justified as follows+ The compositionf + gk~x1 y! of an icx functionf with an idcx
functiongk onRk is also an idcx function ofy [ Rk @6, Lemma 2+2+6# + Therefore,
2f + gk~x 2 y! is idcv+ Hence, we have the following lemma+

Lemma 3.1: Let f be icx. Then

ck~ y1, + + + , yk! 5 2E@ f + gk~M~I1! 2 y1, + + + ,M~Ik! 2 yk!# (3.7)

is idcv and, hence,2ck~ y1, + + + , yk! is a decreasing sm function.

Further, to a given process$C~t !% , we now associate two increasing processes
$C '~t !% and$C ''~t !% defined as follows:

• C '~dt! 5 g dt+
• C ''~dt! 5 c~0! dt, provideddC~t ! is absolute continuous andc~t ! is a sta-

tionary nonnegative process, called an intensity process+We always assume
that intensity processes have Riemann integrable sample paths+

For further reference, we state the following lemma without proof+

Lemma 3.2: If f is sm of k variables, then the functionZf :Rl1 3{{{3 Rl k r R of
l1 3{{{3 l k variables

Zf~x11, + + + , x1, l1, + + + , xk1, + + + , xklk! 5 fS(
j51

l1

c1j x1j , + + + ,(
j51

l k

ckj xkjD
is sm, provided all cij are positive numbers.

Lemma 3.3: We have for an sm functionf,

E@f~C~I1!, + + + ,C~Ik!!# $ E@f~C ''~I1!, + + + ,C ''~Ik!!# ,

where I1, + + + , Ik are finite intervals. Hence, for an idcv functionf,

E@f~C~I1!, + + + ,C~Ik!!# # E@f~C ''~I1!, + + + ,C ''~Ik!!# +

Proof: For the proof we have to use the following facts:#sm-order is generated by
continuous nonnegative sm functions@9, Thm+ 3+9+13#; hence, for a continuous sm
functionf, we have the convergence in distribution of

fS (
j : j0n[I1

c~ j0n!0n, + + + , (
j : j0n[Ik

c~ j0n!0nDrd fSE
I1

c~s! ds, + + + ,E
Ik

c~s! dsD+
By Lemma 3+2, f~(j : j0n[I1 c~ j0n!0n, + + + ,(j : j0n[Ik c~ j0n!0n! can be considered an
sm function of variablesc~ j0n!+ From the Lorentz inequality

EfS (
j : j0n[I1

c~ j0n!0n, + + + , (
j : j0n[Ik

c~ j0n!0nD,
# EfS (

j : j0n[I1

c~0!0n, + + + , (
j : j0n[Ik

c~0!0nD +
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Hence,

EfSE
I1

c~s! ds, + + + ,E
Ik

c~s! dsD
5 lim

nr`
EfS (

j : j0n[I1

c~ j0n!0n, + + + , (
j : j0n[Ik

c~ j0n!0nD
# lim

nr`
EfS (

j : j0n[I1

c~0!0n, + + + , (
j : j0n[Ik

c~0!0nD
5 Ef~c~0!6 I16, + + + ,c~0!6 Ik6!+ n

Hence, we can say that2f ~V~`;C!! and2f ~V~T;C!! are idcvrepresentable;
that is, their expectations are limits of functions, as in Lemma 3+3+

In the next proposition, we consider three stochastic functionals: V~T;C! as
defined in~3+1!,

V~`;C '' ! 5 sup
t$0

HM~t ! 2E
0

t

c~t ! dtJ
and

V~`;C ' ! 5 sup
t$0

$M~t ! 2 gt %+

Similarly, we defineV~T;C!, V~T;C '!, andV~T;C ''!+
In point~iv! of Proposition 3+4,we assume thatC~dt! 5 c~t ! dt admits an inten-

sity processc~t ! and consider a family of random variablesV~T;Ca! defined by
random measuresCa~dt! 5 ca~t ! dt, wherea . 0, admitting an intensity process
ca~t ! respectively defined byca~t ! 5 c~at!, where$c~t !% is the intensity process of
some random measureC+ Similarly to @9# ,we can prove the following a monotonic-
ity of V~T;Ca! with respect toa . 0+ In Proposition 3+4, T is finite or infinite and
it is tacitly assumed that all stochastic functionalsV are proper random variables+

Proposition 3.4:

(i)

V~T;C ' ! #icx V~T;C!+

(ii) If C is absolute continuous with intensity c~t !, then

V~T;C! #icx V~T;C '' !+

(iii) If C 1 #idcv C2, then V~T;C1! $icx V~T;C2!.
(iv) Suppose that Ca~dt! 5 ca~t ! dt ~a . 0! is a family of random measures. If

$c~t !% is #idcv-regular, then V~T;Ca! is #icx-decreasing for a. 0.
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Proof:

~i! AssumeT infinite+Use~3+6! and the conditional Jensen inequality to obtain

E@ f ~V~`;C!!# 5 lim
ir`

E@gi 2i ~M~Ii,1! 2 C~Ii,1!, + + + ,M~Ii, i 2i ! 2 C~Ii, i 2i !!#

$ lim
ir`

E@gi 2i ~M~Ii,1! 2 g 6 Ii,16, + + + ,M~Ii, i 2i ! 2 g 6 Ii, i 2i 6!#

5 E@ f ~V~`;C ' !!# +

~ii ! Use Lemma 3+3 and~3+6!+
~iii ! In view of ~3+6! and Lemma 3+1,

Eck~C1, + + + ,C1! # Eck~C2, + + + ,C2!,

whereck was defined in~3+7!+ SinceC1 #idcv C2, we have

Eck~C1~I1!, + + + ,C1~Ik!! # Eck~C2~I1!, + + + ,C2~Ik!!,

which yields

E@ f + gk~M~I1! 2 C1~I1!, + + + ,M~Ik! 2 C1~Ik!!#

$ E@ f + gk~M~I1! 2 C2~I1!, + + + ,M~Ik! 2 C2~Ik!!# +

~iv! In view of ~3+6! and Lemma 3+1, it suffices to demonstrate that for an idcv
functionc, Ec~Ca~I1, + + + ,Ca~Ik!!! is decreasing ina . 0+Without loss of
generality, we can assume that intervalsI are of formsIk 5 @ai ,bi !, where
a1 5 0 andbi 5 ai11+ Then, for eachn 5 1,2, + + + , we define the function

Zc~c~0!,c~10n!, + + + ,c~~J 2 1!0n!!

5 EcS (
j : j0n[I1

c~ j0n!0n, + + + , (
j : j0n[Ik

c~ j0n!0nD,
whereJ5 l1 3{{{3 l k andl i is the numberj such thatj0n [ Ii + Now, note
that

Zc~ca~0!,c~10n!, + + + ,c~~J 2 1!0n!!

5 Zc~c~0!,c~a0n!,c~~a0n! 1 ~a0n!!, + + + ,

3 c~~a0n! 1{{{1 c~~a0n! 1{{{1 ~a0n!!!!+

Hence, E Zc~ca~0!,ca~10n!, + + + ,ca~~J 2 1!0n! is increasing ina . 0 becausec~t ! is
assumed to be idcv-regular andZf is idcv+ n
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4. EXAMPLES

In this section, we show two applications of the theory to single-server queues with
Poisson arrivals+

4.1. M/G/1 Queue with Varying Instantaneous Service Speed

Let $N~t !% be the Poisson process with ratel . 0, $Si % a sequence of nonnegative
independent and identically distributed~i+i+d+! random variables~r+v+’s!+We denote
by

M~s, t # 5 (
j5N~s!

N~t !

Sj

the cumulative service requirement arriving within interval~s, t # +
Suppose now that the service rate is given by a processc*~t !, where

0 # c*~t ! # 1 for all t+ We assume thatc*~t ! is stationary~and ergodic! and that
$N~t !%, $Si % , and $c*~t !% are independent+

Let V~t ! 5 V~t;C*! be a stochastic process defined by

dV~t2! 5 HdM~t ! 2 c*~t ! for V~t2! . 0 or dM~t ! 2 c*~t ! $ 0

0 otherwise+
(4.1)

The solution of~4+1! is

V~t ! 5 SV~02! 1 M~t ! 2E
0

t

c*~v! dvD ∨ sup
0#s#t

HM~s, t # 2E
s

t

c*~v! dvJ ,
t $ 0+

The process$V~t !% represents the workload at timet in the work-conserving single-
server queues with varying instantaneous service speed+ Since we wish to study the
stationary workload, without loss of generality we can assumeV~02! 5 0+ Other-
wise, we have to assume thatV~20! is independent of~M,C!+ Then

V~t ! 5 sup
0#s#t

HM @s, t # 2E
s

t

c*~v! dvJ
5d sup

2t#s#0
HM @s,0# 2E

s

0

c*~v! dvJ (4.2)

and, hence, the stationary workload

V~`! 5d sup
2`,s#0

HM~s,0# 2E
s

0

c*~v! dvJ
5d sup

0$s
HM~0,s# 2E

0

s

c~v! dvJ 5 V~`;C!, (4.3)
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wherec~t ! 5 c*~2t !+ The above is well defined forEM~0,1# , Ec~0! 5 g+ Note
thatV~`;C '! is the workload in the standardM0G01 system, with arrival ratel0g
and service time distributionB+ Under the condition thatC~dt! 5 c~t ! dt admits
stationary intensity andlES, c~0! a+s+, we consider

V~`;C '' ! 5 sup
t$0

H (
j51

N~t !

Si 2 c~0!tJ +
Note that the above is the workload in theM0G01 system, with arrival ratel0c~0!
and service time distributionB, of course providedlESc~0! a+s+ Unfortunately, in
many cases, the latter assumption is a difficult requirement+

Proposition 4.1: If T is finite or infinite andlEB , g, then

V~T;C ' ! #icx V~T;C!,

and if T is finite or infinite andlEB , c~0! a.s., then

V~T;C! #icx V~T;C '' !+

Furthermore,

~l0g!ES2

12 ~lES!0g
# EV~`;C!,

and under the assumption thatlES, c~0! a.s.,

EV~`;C! # E
~l0c~0!!ES2

12 ~lES!0c~0!
+

Proof: The first part follows directly from Proposition 3+4+ For the second part,
we use that in the standardM0G01 queue with arrival ratel and generic service
time S, the mean workload is~lES2!0~12 lES!+ n

Consider now a preemptive resume priorityM0G01 system with two types of
customers: low and high priority+ Customers of the low~high! priority arrive at the
system according to the Poisson process with ratel l ~lh! and with i+i+d+ service
times with distributionBl ~Bh!+ Then, the workload process for low-priority cus-
tomers is the workload process in theM0G01 system with instantaneous service
speed

c*~t ! 5 H1 no high priority customers att

0 otherwise+

Thus, c*~t ! is an on–off process with on and off times being distributed as in the
busy and idle periods, respectively, in the M0G01 system with arrival ratelh and
service time distributionBh+ Now, g is the stationary probability of no high-priority
customers+ Let V l be the steady-state workload for the low-priority customers+
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Corollary 4.2:

ll

g
E~Sl !2

12
l

g
ESl

# EV l+

Proof: Use Eq+ ~4+3! and Proposition 3+4+ n

We can also ask for the monotonicity ofV~T;Ca! with respect toa . 0+ In this
case, we must know the answer for the following question+

Question: Is the stationary workload processV~t ! in the M0G01 system#idcx-
regular or#idcv-regular? From this, we would have thatc~t ! 5 1l ~V~t ! 5 0! has the
same property+

4.2. Queues with Positive and Negative Customers

Two types of customer are arriving at the system: according to a Poisson process
with ratel1 i+i+d+ customers with service times$Si

1% ~so-called positive ones!, and
according to a Poisson process with ratel2 i+i+d+ customers with service times$Si

2%
~so-called negative!+ The system works as follows+ As earlier, we assume a work-
conserving discipline+ Negative customers require no service, but at their arrival,
a stochastic work is instantly removed from the system+ Such systems were
introduced by Gelenbe@5# and subsequently studied by Boucherie, Boxma, and
Sigman@3# , among others+ In this later system, it was demonstrated the stationary
workload is

V 5 sup
t$0

H (
j50

N1~t !

Sj
1 2 (

j50

N2~t !

Sj
2 2 tJ

5 sup
t$0

H (
j50

N1~t !

Sj
1 2 C~t !J ,

where

C~t ! 5 (
j50

N2~t !

Sj
2 1 t+ (4.4)

Proposition 4.3:

EV $ S l1

11 l2ES2
E~S1!2DS12

l1

11 l2ES2
ES1D21

+

Proof: From Proposition 3+4+ n
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To use Proposition 3+4~iii !, we have to derive a criterion for an idcv compari-
son of stochastic processes like~4+4!+

Proposition 4.4: If Sj
2' #icv Sj

2'' and l2' # l2'' , then dC' #idcv dC''. Hence,
V~C '! $icx V~C ''!.

Proof: The first part is analogous to the proof of Lemma 4 from Rolski@12# + n
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