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In this article we study comparison theorems for stochastic functionals like
V(0;C) = sup=t {M(t) — C(t)} or V(T;C) = sup=t=7 {M(t) — C(t)}, where
{M(t)} and{C(t)} are two independent nondecreasing processes with stationary
incrementsWe will tacitly assume that the considered stochastic functionals are
proper random variabledVe prove thatV(T;C’) =i« V(T;C) =i« V(T;C"),
whereC’(dt) = E[C(1) — C(0)] dtandC”(dt) = c(0) dt, provideddC(t) is abso-

lute continuous with densityc(t). Similarly, we show thatV(oo;C’') =i
V(o0;C) =icx V(c0;C"). For proofs we develop the theory of theq., ordering
defined by increasing directionally concave functiok¢e apply the theory to
M/G/1 priority queues an®1/G/1 queues with positive and negative customers

1. INTRODUCTION

In this note we study comparison theorems for stochastic functionalsdike; C) =

sup=; {M(t) — C(t)} or V(T;C) = sup==r {M(t) — C(t)}, where{M(t)} and
{C(t)} are two independent nondecreasing processes with stationary increments
We will tacitly assume that the considered stochastic functionals are proper random
variables Typically, M(t) is a cumulative service time up to For examplein
[1,4,6-1113], M(t) = EjN:(tl) S, where{N(t)} is a counting Cox process affl } is

a sequence of independent random varighledependent of the proce$hl(t)},

C(t) = t, and the comparisons are made with respect to different Cox processes
The seminal problem was a question by Rids3 about the optimality of the con-
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stant arrival rate in the class of arrival rates with the same asymptotiowvhieh
was solved i10]. The worst case among all of the stationary arrival rates with the
same asymptotic intensity was detectefllig)]. In this article the use of the so-called
increasing directionally convefxdcx) functions was proposed to derive the result
In his article Rosq 13] posed a problem on the monotonicity®)¥ (M,) with respect
to a class{M,} parameterized bw. This problem has been considered in many
articles and the direct question of Ross for two-state background continuous time
Markov chains(CTMCs) was solved if4]. The case of more states of the back-
ground CTMC was addressed[ih]. Recently quite a general result in terms of a
concept based ofy,-0ordering was given if8]. Bonald Borst and Proutierg2]
addressed how to find insensitive bounds in some wireless data network by the use
of =jy-ordering

The study ofs;y.,-0rdering was motivated by two problems from the theory of
queuesposed to the author by Borst and Boxnfeor these problemsve keep
{M(t)} fixed and study comparison theorems with respe¢€d)}. Whereas in the
former studies the orderingss,, and <4., were of importancehere we use the
dual ordering=iq4., to the ordering=4., defined by the class of increasing direc-
tionally concave functionsThese are multivariate extensions of icx and icv order-
ings of univariate random variabled/e also define the notiors,q.-regularity a
dual one to=i4,-regularity studied if8]. We apply the theory tM/G/1 with
varying instantaneous service speed—in particydaiority queues andM/G/1
queues with positive and negative customers

2. ORDERINGS

We give definitions of needed integral orderings and classes of functions defining
these orderingdt is standard to denote by cx and cv respectively the class of con-
vex and concave functiorfs R — R. For multivariable functionsve have the fol-
lowing fundamental notion

DEFINITION 2.1: A function f RX — R is said to besupermodulatsm) if for any x
and ye R,

f(x)+f(y) =f(xOy) +f(xOy),

where the operatoré] and [0 denote respectively coordinatewise minimum and
maximum.

Asuitable extensions of cx and cv classes for the multivariate case are as follows

DerFINITION 2.2: A function £ R* — R is said to bedirectionally convex(dcx)
(directionally concave or [dcv]) if for any % x,, and yE€ R* such that for x = x,
and y= 0,

f(xg+y) —f(x) = ()X +y) — F(Xp).
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We write “i” before “sm” “dcx,” or “dcv” for restrictions to increasing func-
tions Note also that the directional convexity is not the same as ordinary conyvexity
Important properties of dcx and dcv functions are as follaW§is dex (dev) and
twice differentiablethend?f (x)/ox; dx; = (=) O for alli andj. Note that for smwe
have onlyd2f (x)/0x; 0x; = (=) O for alli # j. More on sm and dcx functions can be
found in Muller and Stoyaf9]. Functions dcv and idcv appeared in the doctoral
thesis of Meestdi6]. It was pointed out there that the compositford(y) of an icv
functionf with idcv functiond onRX is also an idcv function of [6, Lemma 22.6].

Note thatf (x) is idcx if and only if —f(—x) is idcv. We will use the fact that idcx
functions form a conéseg e.g., [9]).

To each class of the above-considered functions we relate the stochastic order-
ing, which in the terminology of Muller and Stoyd#] are integral orderingd et
F be a class of functions like ¢icx, cv, icv, sm ism, dcx, idcx, dcv, and idcv We
say that two random vecto(® the case of cxcx, cv, and icv random variable
andY are< r-ordered ifE[ f(X)] = E[ f(Y)] for any functionf € F, such that the
expectations are finitén this way we define orderingsicy, <ism, <idex» =icv, and
=iqcv USed in this noteFor ordering of stochastic processe® have the following
definition.

DEFINITION 2.3:

1. For two R-valued stochastic processéX(t)}icr and {Y(t)}cr, we say
that {X(t)};er is smaller than{Y(t)};cr in the F-ordering and write
{X(t)} er =4 if for any positive integer k and anyoo < t; =---=t, <
+o0, (X(t1),..., X(t) =z (Y(t),...,Y(t)).

2. Let{C(t)}er, and{C'(t)} be two increasing stochastic processes defining
random measures d€) and dC (t), respectively. Itis said that & - C’, or
dC(t) <zdC'(t),ifforanykandd=s, =t =s,=t, =...= 5 =,

(C(Sl7 t1]7""c(5k, tk]) <}_ (C’(S_I.v tl]"",C,(S(?tk])’

where we denote @&, b] = C(b) — C(a).

3. We say that a stationary stochastic proc€%g:ct, Where T= Z or R
IS =igev-regular (=igex-regular) if for each k and all idcv functions: f
T**1 5 R, function¢, defined by

¢(tl7 LRRE] tk) = Ef (YO9Yt17Yt1+t2’ tee ’Yt1+~-»+tk)7
is increasing (decreasing) in,t,,...,t, € T.

We first recall that from the Lorenz inequalitgee e.g., [9]), we have the
following lemma

LEMMA 2.4: If ZO st Zl st T st va then(ZO, cees Zk) =sm (Zo, cees Zo) .

The notion of=y,-regularity also called monotonicity in lggvas studied in
Miyoshi and Rolsk{8]. For later usgwe need the following quite obvious lemma
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LemmMma 2.5: If a stationary proces§(t) is <iqc,-regular, then for a monotone func-
tion f, the process(&(t)) is <iqcv-regular.

3. GENERAL FRAMEWORK

Let M(t) and{C(t)} be two increasing processes with stationary increments such
thatM(0) = 0 andC(0) = 0 and letEC(0,1] = . Our aim is to study bounds and
comparison theorems for

V = V(c0;C) = sup{M(t) — C(t)} (3.1)
or
Vi = V(T;C) = sup {M(t) — C(t)}. (3.2)

We have the following representations fér
i
V= lim SUD{E (M(li ) = C(liW), ] =0,...,i2 }, (3.3)
i—oo k=1

wherel; , = (k—1)/2, k/2']fork=1,...,i2 and=._, - = 0 conventionallyWe
have

Vr = lim (X + M(T) — C(T))

i
DmaX{E(M(I,Tk)—C(I,Tk)), J :1,...,2i}, (34)
k=]

where I, = ((k — 1)(T/2"),k(T/2")] for k = 1,...,2", and X, M, and C are
independent

Letf:R, — R be icx which is also assumed to be continuous on the whole
R, . Similarly to Lemma 1 of 12], we have from the monotone convergence theo-
rem and the continuity of

E[ f(V(0;C))]

I|m E|:f (max{}ll M(Ii,k) - 2]: C(Ii,k)’ ] = O,...,i2i }>:| (35)
k=1

I—00 k=1

lim E[f o gi2i(M(li 1) — C(li1),...,M(l; i21) — C(l; i2))], (3.6)

whereg(x) = max{0, Xy,..., X, + -+ + X} for x=(Xq,..., X) € RX. Similarly, we
can represerft(Vr) by the use of functions — max{0,y + Xy + -+ + X, Xp +--- +
Xg, ..., X1}. The above functions are idcx

As in Lemma 2 of{12], gi(x) is idcx (and moreoverit is a convex function
too). Furthermored,(y) = —f o g(x — y) is an idcv function ofy. This can be
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justified as follows The compositiorf o g, (x + y) of an icx functionf with an idcx
functiong, on R¥ is also an idcx function of € R* [6, Lemma 22.6]. Therefore
—f o g(x — y) is idcv. Hence we have the following lemma

LeEmma 3.1: Let f be icx. Then
(Y1, Y) = —E[ fe (M (1) = ya,...,M(L) — yi)] (3.7)
is idcv and, hencer i (yi,..., Vi) is a decreasing sm function.

Further to a given procesgC(t)}, we now associate two increasing processes
{C’'(t)} and{C" (1)} defined as follows

e C'(dt) = ydt.

e C”(dt) = c(0) dt, provideddC(t) is absolute continuous armt) is a sta-
tionary nonnegative processalled an intensity procesg/e always assume
that intensity processes have Riemann integrable sample. paths

For further referencewe state the following lemma without praof

LeEmMa 3.2: If ¢ is sm of k variables, then the functidn R': X --- X R'x — R of
I, X---X | variables

I Ik
D(Xagsves Xpyeees Xicts e v X)) = d’(E Cyj le,---,E ijxkj>
-1 -1

is sm, provided all g are positive numbers.

LeEmmMmA 3.3: We have for an sm functiap,
E[¢(C(l1),...,C(L)] = E[¢(C"(14),...,C"(1))],
where |,..., |, are finite intervals. Hence, for an idcv functiah

E[#(C(l1),...,C))] = E[¢(C"(l1),...,C"(1))].

Proor: For the proof we have to use the following facts,-order is generated by
continuous nonnegative sm functidrés Thm. 3.9.13]; hence for a continuous sm
function ¢, we have the convergence in distribution of

q§< > c(imm,..., D c(j/n)/n) —>d¢<f c(s)ds...,fc(s)ds).
j:j/mel, j:j/mel, I Ie

By Lemma 32, ¢(2;.nei, C(j/M)/N,..., 2. inei, €(j/n)/n) can be considered an
sm function of variables( j/n). From the Lorentz inequality

E¢< S climm..., S c<j/n)/n>,

jti/mely jri/nel

5E¢< S com,..., S C(O)/n>.

jrj/mely jri/mel
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E(ﬁ(J; c(s)ds...,fI c(s)ds>

im E¢< S c(imm..., S c(j/n)/n)

|
N—o j:j/nely j:j/nel,

Hence

I

lim ]Eqb( > cO/m,..., > c(O)/n)
n—co IBYASN jri/mEl

= E¢(c(0)[14],...,c(0)|Ix]). u

Hence we can say that-f(V(co0;C)) and —f (V(T;C)) are idcvrepresentablg
that is their expectations are limits of functignss in Lemma 3.
In the next propositionwe consider three stochastic functional§T;C) as

defined in(3.1),
V(co;C") = sup{M(t) —ftc(t) dt}
t=0 0

V(oo;C') = sup{M(t) — yt}.
t=0

and

Similarly, we defineV(T;C), V(T;C’), andV(T;C").

In point(iv) of Proposition 34, we assume that (dt) = c(t) dtadmits an inten-
sity procesx(t) and consider a family of random variabl€$T;C,) defined by
random measureS,(dt) = c,(t) dt, wherea > 0, admitting an intensity process
Ca(t) respectively defined by, (t) = c(at), where{c(t)} is the intensity process of
some random measu@ Similarly to[9], we can prove the following a monotonic-
ity of V(T;C,) with respect taa > 0. In Proposition 34, T is finite or infinite and
it is tacitly assumed that all stochastic functiondlare proper random variables

ProposiTION 3.4:
(i)
V(T;C’) =iex V(T;C).
(i) If Cis absolute continuous with intensitytg, then
V(T;C) =iex V(T;C").

(iii) If C1 <igev Cay then MT;Cy) =ik V(T;Cy).
(iv) Suppose that &dt) = c,(t) dt(a > 0) is a family of random measures. If
{c(t)} is =qcv-regular, then (T;C,) is =i-decreasing for a 0.
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PRrROOF:

(i) AssumeT infinite. Use(3.6) and the conditional Jensen inequality to obtain
E[ f(V(0;C))] = lm E[Gi2 (M(li,1) — C(li),...,M(lii21) — C(l; i21))]

= I'E:go E[gi2(M(li.1) = y[lial,.., M(Li i) = ylliia D]

= E[ f(V(0;C"))].

(i) Use Lemma 3 and(3.6).
(iii) In view of (3.6) and Lemma 3,

E¢(Cy,...,C1) = Ei(Cs,...,Cy),
wherey, was defined in3.7). SinceC; =j4c, Co, we have
E¢i(Ci(11),...,Ci(lk) = Eh(Co(ly), ..., Co(ly)),
which yields
E[ foguM(ly) — Ci(ly),...,M(l) — Cy(1))]

= E[fogM(l1) = Co(ly),...,M(l) = Co(L))].

(iv) Inview of (3.6) and Lemma 3., it suffices to demonstrate that for an idcv
functiony, E¢r(C,(l4,...,C4s(ly))) is decreasing im > 0. Without loss of
generalitywe can assume that intervalare of formd, = [a;, b;), where
a, = 0 andb, = a;. 1. Then for eachn = 1,2,..., we define the function

#(c(0),c(1/n),...,c((J —1)/n))
=ﬂ«:w< S oc(imm..., S c(j/n)/n),

j:i/nely jzi/mely

whereJ =1, X-.-- X | andl; is the numbej such thaj/n € I;. Now, note
that

#(ca(0),c(1/n),...,c((I—1)/n)
= 4(c(0),c(a/n), c((a/n) + (a/n)), ...,
X c((a/n) +---+ c((a/n) +---+ (a/n)))).

Hence ]Elﬁ(ca(O),ca(l/n),...,ca(g\] — 1)/n) is increasing il > 0 because&(t) is
assumed to be idcv-regular agds idcv. u
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4. EXAMPLES

In this sectionwe show two applications of the theory to single-server queues with
Poisson arrivals

4.1. M/G/1 Queue with Varying Instantaneous Service Speed

Let {N(t)} be the Poisson process with rate> 0, {S} a sequence of nonnegative
independent and identically distributéd.d.) random variablegr.v.’s). We denote
by
N(t)
M(stl= > §
j=N(s)
the cumulative service requirement arriving within inter¢glt].
Suppose now that the service rate is given by a procg$s), where
0 = c¢*(t) = 1 for all t. We assume that*(t) is stationary(and ergodi¢ and that
{N(1)}, {S}, and{c*(t)} are independent
Let V(t) = V(t;C*) be a stochastic process defined by

dv(t) = [gM(t) —c*(t) forV(t—) > 0ordM(t) —c*(t)=0 “.1)

otherwise

The solution of(4.1) is

V(t) = (V(O—) + M(t) —fc*(v) dv) O sup {M(s,t] —fc*(u) dv},

O=s=t
t=0.

The proces$V(t)} represents the workload at tihia the work-conserving single-
server queues with varying instantaneous service si8ede we wish to study the
stationary workloagwithout loss of generality we can assuiviéd—) = 0. Other-
wise, we have to assume th¥{—0) is independent ofM, C). Then

Os<ugt{M[s,t] —ftc*(v) dv}

4 sup {M[s,o] —foc*(v) dv} (4.2)

V(t)

—t=s=0

and hence the stationary workload

—oo<s=0

V(o0) =4 sup {M(S,O]—J C*(v)dv}

=4 sup{M(O, s] —fsc(v) dv} = V(o0;C), (4.3)

0=
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wherec(t) = c*(—t). The above is well defined fdE M (0,1] < Ec(0) = y. Note
thatV(eo;C’) is the workload in the standaid/G/1 systemwith arrival rateA/y
and service time distributioB. Under the condition tha€(dt) = c(t) dt admits
stationary intensity andES < c(0) a.s., we consider

N(t)
V(0;C") =sup{ > S — C(O)t}.
t=0 ( j=1

Note that the above is the workload in theG/1 systemwith arrival ratea/c(0)
and service time distributioB, of course providedES0) a.s. Unfortunatelyin
many caseshe latter assumption is a difficult requirement

ProrosiTioN 4.1: If T is finite or infinite andAEB < v, then
V(T;C’) =iex V(T;C),
and if T is finite or infinite andA\EB < c(0) a.s., then
V(T;C) =i V(T5C).
Furthermore,
A/y)ES?
l(—/(j)/\—iES)/y = EV(o0;C),
and under the assumption thakES < c(0) a.s.,
(A/c(0)ES?
1— (AES)/c(0)°

Proor: The first part follows directly from Proposition.& For the second part
we use that in the standaM/G/1 queue with arrival rata and generic service
time S, the mean workload i$AES?)/(1 — AES). |

EV(eo;C) = E

Consider now a preemptive resume priofity G/1 system with two types of
customerslow and high priority Customers of the lowhigh) priority arrive at the
system according to the Poisson process with aaté\,) and with ii.d. service
times with distributionB, (B;,). Then the workload process for low-priority cus-
tomers is the workload process in tMYG/1 system with instantaneous service
speed

1 no high priority customers at
cr(t) = .
0 otherwise

Thus c*(t) is an on—off process with on and off times being distributed as in the
busy and idle periodgespectivelyin the M/G/1 system with arrival rata, and
service time distributiom,,. Now, vy is the stationary probability of no high-priority
customersLet V' be the steady-state workload for the low-priority customers
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COROLLARY 4.2:

/\I
— E(Sl )2
Y
=EV.
1- —ES
Y
Proor: Use Eq (4.3) and Proposition 3. u

We can also ask for the monotonicity 6fT; C,) with respect ta > 0. In this
casewe must know the answer for the following question

Question: Is the stationary workload proces&t) in the M/G/1 system=yc,-
regular or=;4.,-regular? From thisve would have that(t) = 1(V(t) = 0) has the
same property

4.2. Queues with Positive and Negative Customers

Two types of customer are arriving at the systemcording to a Poisson process
with rateA™ i.i.d. customers with service tim¢§*} (so-called positive ongsand
according to a Poisson process with ratd.i.d. customers with service tim¢§ ™}
(so-called negative The system works as followAs earlier we assume a work-
conserving disciplineNegative customers require no seryibet at their arrival

a stochastic work is instantly removed from the syst&uch systems were
introduced by Gelenbg5] and subsequently studied by BoucheB®xma and
Sigman[ 3], among othersln this later systemit was demonstrated the stationary

workload is
N7*(t) N~ (1)
V=supl 3§ - 3 § -t
t=0 ( j=0 j=0
N*(t)
=supy > § - C(t)},
t=0 j=0
where

N~ (t)

Cty= > § +t (4.4)

j=0

ProrosITION 4.3:

AJr /\+ -1
EV = <— E(S+)2><l——ES+> .
1+ A ES 1+ A ES

Proor: From Proposition 3. u

https://doi.org/10.1017/50269964805050035 Published online by Cambridge University Press


https://doi.org/10.1017/S0269964805050035

idcv MONOTONICITY IN QUEUES 43

To use Proposition.&(iii ), we have to derive a criterion for an idcv compari-
son of stochastic processes liie4).

ProposiTION 4.4: If §' =i, § " and A~ = A", then dC =4, dC". Hence,
V(C') =iex V(C").

Proor: The first part is analogous to the proof of Lemma 4 from Ro[4/Z]. ®
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