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Abstract

We present a complete characterisation of the radial asymptotics of degree-one Mahler functions as z
approaches roots of unity of degree kn, where k is the base of the Mahler function, as well as some
applications concerning transcendence and algebraic independence. For example, we show that the
generating function of the Thue–Morse sequence and any Mahler function (to the same base) which
has a nonzero Mahler eigenvalue are algebraically independent over C(z). Finally, we discuss asymptotic
bounds towards generic points on the unit circle.
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Keywords and phrases: transcendence, algebraic independence, radial asymptotics, automatic sequences,
Mahler functions.

1. Introduction

A power series F(z) ∈ C[[z]] is a Mahler function (or a k-Mahler function, when k
needs to be specified) provided there exist an integer k > 2, an integer d > 1 and
polynomials a0(z), . . . , ad(z) ∈ C[z] with a0(z)ad(z) , 0 such that F(z) satisfies the
functional equation

a0(z)F(z) + a1(z)F(zk) + · · · + ad(z)F(zkd
) = 0. (1.1)

We call the integer k the base of the Mahler function; the minimal integer d for which
such an equation exists is called the degree of F(z).

Mahler functions were studied in some generality by Mahler in the late 1920s and
early 1930s; those results are contained in some of his earliest papers [16–19] and
his remembrance of them is highlighted in his famous expository work, ‘Fifty Years
as a Mathematician’ [21]. There he recalls, when he was just 23 years old, ill and
bedridden, that he attempted to prove that the series

f (z) :=
∑
n>0

z2n
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takes irrational values at rational numbers ζ with 0 < |ζ | < 1. As Mahler remembers, he
‘succeeded and ended by proving that f (ζ) is transcendental for all algebraic numbers
ζ satisfying this inequality’. We note that f (z) is a degree-two Mahler function.

Since that time, Mahler functions have been objects of varying interest, with a
boost in the 1960s and 1970s following the discovery that the generating functions
of automatic sequences are Mahler functions (see [9, 15]). This relationship to
important objects of theoretical computer science has seen outcomes on both sides,
with mathematics benefiting with transcendence results via the so-called Mahler’s
method and computer science with results related to complexity. For details and
results concerning automatic sequences from the computer science perspective, see
the comprehensive monograph by Allouche and Shallit [2].

In this investigation we concern ourselves solely with the case d = 1, that is, with
power series F(z) which have an infinite product representation

F(z) =
∏
j>0

r(zk j
),

where r(z) ∈ C(z). In terms of the polynomial coefficients in (1.1), r(z) = −a1(z)/a0(z).
Due to this product representation, degree-one Mahler functions have been widely
studied (see [5–8, 14] for some recent work). Some of the strongest results in this
area concern this class of functions: degree-one Mahler functions are either rational
or hypertranscendental, that is, they do not satisfy algebraic differential equations with
polynomial coefficients [4]. (See also the very recent preprint containing the general
result by Adamczewski et al. [1].)

In this paper we present complete results on the radial asymptotics of degree-one
Mahler functions as z approaches roots of unity of degree kn, where k is the base of the
Mahler function, as well as some applications concerning transcendence and algebraic
independence. Finally, we present a discussion of further behaviours and possibilities.
Before moving on to more general results, we discuss the Thue–Morse sequence as an
extended example; this sequence is special in many respects and sets itself apart by its
extremal asymptotics, which will be useful in later sections.

2. Thue–Morse: a ubiquitous and extremal example

Let {t(n)}n>0 be the Thue–Morse sequence defined on the alphabet {1,−1} by t(0) = 1
and for n > 1 by the recurrences t(2n) = t(n) and t(2n + 1) = −t(n). This sequence,
which starts

{t(n)}n>0 = {1,−1,−1, 1,−1, 1, 1,−1,−1, 1, 1,−1, 1,−1,−1, 1, . . .},

is one of the most ubiquitous integer sequences and one of central importance in
various areas within number theory, combinatorics, theoretical computer science and
dynamical systems theory. Within theoretical computer science one views the Thue–
Morse sequence as the output of a deterministic finite automaton (see Figure 1), where
one inputs the binary expansion of n and reads off the value t(n) from the final state.
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Figure 1. The 2-automaton producing the Thue–Morse sequence {t(n)}n>0.

In symbolic dynamics, the Thue–Morse sequence is viewed as the infinite fixed
point of the binary substitution %TM defined on the two letter alphabet Σ2 := {a, b} by

%TM :

a 7→ ab,
b 7→ ba.

The first version of {t(n)}n>0 is obtained by setting (a, b) = (1, −1) and realising
that {t(n)}n>0 = limn→∞ %

n
TM(1), where the nth power denotes repeated function

composition.
We focus here on properties important to analysis, number theory and

combinatorics. In particular, note that the generating function T2(z) =
∑

n>0 t(n)zn of
the Thue–Morse sequence can be written as the infinite product

T2(z) =
∏
j>0

(1 − z2 j
).

The inverse of the Thue–Morse function

T
2(z) :=

1
T2(z)

=
∑
n>0

t(n)zn

plays an important role in number theory and combinatorics. Indeed, both t(n) and
t(n) have combinatorial interpretations: t(n) encodes the parity of the number of ones
in the binary expansion of n (1 for even, −1 for odd), and t(n) is the number of ways
to write n as a sum of (not necessarily distinct) powers of 2. Both T2(z) and

T
2(z) are

members of the class of Mahler functions to the base 2.
The functions T2(z) and

T
2(z) are degree-one Mahler functions, satisfying

T2(z) − (1 − z)T2(z2) = 0 and (1 − z)
T

2(z) −
T

2(z2) = 0,

respectively. Both of these functions exhibit extremal asymptotic behaviour as z→ 1−,
as do their generalisations

Tk(z) :=
∏
j>0

(1 − zk j
) and

T
k(z) :=

1
Tk(z)

.

This behaviour was determined by de Bruijn in 1948. (De Bruijn mentions in his paper
that he found this formula in 1944, but was told after the war by Mahler that Siegel
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communicated this formula to him in about 1923.) De Bruijn [12, Equation (2.15)],
showed that

T
k(z) = Ck(z) · (1 − z)−1/2 · klog2

k (1−z)/2 · (1 + o(1)) as z→ 1−,

where logk denotes the principal value of the base-k logarithm and Ck(z) is a positive
oscillatory term, which in (0, 1) is bounded away from 0 and infinity, is real-analytic
and satisfies Ck(z) = Ck(zk).

De Bruijn’s result can be used to classify the asymptotic behaviour of both
T

k(z)
and Tk(z) as z radially approaches any primitive knth root of unity. In the next section
we provide this extension and combine it with a recent result to provide a large class
of asymptotics for degree-one Mahler functions.

3. Radial asymptotics of degree-one Mahler functions

In this section we provide the complete asymptotics of degree-one Mahler functions
with base k as they radially approach knth roots of unity for any n > 0. This is done by
combining de Bruijn’s asymptotics above with a recent result of Bell and Coons [3].
In particular, de Bruijn’s asymptotics imply the following result.

Proposition 3.1. Let k > 2 and n > 0 be integers and ξ be a primitive knth root of unity.
Then as z→ 1−,

Tk(ξz) = ck,n(ξ) Ck(z) k(n−n2)/2(1 − z)1/2−n−logk(1−z)/2(1 + o(1)),

where ck,n(ξ) :=
∏n−1

j=0(1 − ξk j
) and Ck(z) is the oscillatory term described above.

Proof. This follows from de Bruijn’s asymptotics for
T

k(z), noting that

Tk(z) = Tk(zkn
)

n−1∏
j=0

(1 − zk j
)

and, as z→ 1−,
1 − zkn

= kn(1 − z)(1 + o(1)).

With this last simple relationship, as z radially approaches any knth root of unity,

Tk(zkn
) = Ck(z) (1 − zkn

)1/2−logk(1−zkn
)/2(1 + o(1))

= Ck(z) kn/2(1 − z)1/2−logk(kn(1−z))/2(1 + o(1))

= Ck(z) k(n−n2)/2(1 − z)1/2−n−logk(1−z)/2(1 + o(1)).

If ξ is a primitive knth root of unity, as z→ 1−, this gives

Tk(ξz) = Tk(zkn
)

n−1∏
j=0

(1 − (ξz)k j
)

= ck,n(ξ) Ck(z) k(n−n2)/2(1 − z)1/2−n−logk(1−z)/2(1 + o(1)),

which is the desired result. �
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Note that ck,n(ξ) is nonzero since ξ is a primitive knth root of unity. Proposition 3.1
shows that the function Tk(z) is extremely flat as z radially approaches primitive knth
roots of unity—a dense set of points on the unit circle. In fact, at those points, it is
flatter than any algebraic function. It may surprise some readers that, by an old result
of Duffin and Schaeffer [13], the function Tk(z) is unbounded in any sector of the unit
disc. So even though the function Tk(z) is extremely flat as z radially approaches a
dense set on the unit circle, Tk(z) is also unbounded as z radially approaches a dense
set on the unit circle. The function Tk(z) has the unit circle as a natural boundary.
These highly variable asymptotical properties highlight the fact that integer power
series having the unit circle as a natural boundary can behave quite strangely.

As stated above, we require the following result of Bell and Coons [3, Theorem 1],
here specialised for the case of degree-one Mahler functions that can be written as an
infinite product F(z) =

∏
j>0 p(zk j

), where p(z) is a polynomial.

Theorem 3.2 (Bell and Coons [3]). Let k > 2 be an integer, p(z) ∈ C[z] be a polynomial
with p(0) = 1 and p(1) , 0, and F(z) =

∏
j>0 p(zk j

). Then as z→ 1−,

F(z) = Cp(z) (1 − z)− logk p(1)(1 + o(1)),

where Cp(z) is a real-analytic nonzero oscillatory term, which is bounded away from
0 and∞ on the interval (0, 1) and satisfies Cp(z) = Cp(zk).

Theorem 3.2 implies the following proposition, the proof of which follows mutatis
mutandis the proof of Proposition 3.1, thus we omit it. See [10] for related results.

Proposition 3.3. Let k > 2 be an integer, p(z) ∈ C[z] be a polynomial with p(0) = 1 and
p(1) , 0, and F(z) =

∏
j>0 p(zk j

). If ξ is a primitive knth root of unity, then as z→ 1−,

F(ξz) = cp,k,n(ξ) Cp(z) (1 − z)− logk p(1)+Np,n(ξ)(1 + o(1)),

where Cp(z) is the oscillatory term from Theorem 3.2 and both cp,k,n(ξ) and Np,n(ξ) are
determined by the asymptotic

n−1∏
j=0

p((ξz)k j
) = cp,k,n(ξ) (1 − z)Np,n(ξ)(1 + o(1)),

valid as z→ 1−.

We note here that cp,k,n(ξ) , 0 since p(z) is not identically zero and that Np,n(ξ) is
an integer, which is zero in the case where p(ξk j

) , 0 for j ∈ {0, 1, . . . , n − 1}.
The above results can be put together to give the following general result on

asymptotics of degree-one Mahler functions. Within the statement of this result, we
use the fact that any rational function r(z) ∈ C with r(0) = 1 can be written in the form
(1 − z)τp(z)/q(z) for some integer τ and with the added condition that p(0) = q(0) = 1
and p(1), q(1) , 0.
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Theorem 3.4. Let k > 2 be an integer, r(z) = (1 − z)τp(z)/q(z) ∈ C(z) be a rational
function with τ ∈ Z, p(0) = q(0) = 1 and p(1), q(1) , 0, and F(z) =

∏
j>0 r(zk j

). If ξ
is a primitive knth root of unity, then as z→ 1−,

F(ξz) = cr,k,n(ξ) Cr(z) (1 − z)αk−τ log2
k (1−z)/2(1 + o(1)),

where cr,k,n(ξ) is a nonzero constant,

α = logk(q(1)/p(1)) + Nr,1(ξ) + τ/2 − τn

with the number Nr,1(ξ) determined, analogously to Proposition 3.3, by the asymptotic

r(ξz) = cr,k,1(ξ) (1 − z)Nr,1(ξ)(1 + o(1))

valid as z → 1−, and Cr(z) is a real-analytic nonzero oscillatory term, which is
bounded away from 0 and∞ on the interval (0, 1) and satisfies Cr(z) = Cr(zk).

Proof. This follows immediately from Propositions 3.1 and 3.3 on setting

cr,k,n(ξ) =
(k(n−n2)/2ck,n(ξ))τcp,k,n(ξ)

cq,k,n(ξ)

and Cr(z) = Ck(z)τCp(z)/Cq(z). �

4. Applications to algebraic independence

It is well known that asymptotic properties can be used to determine algebraic
independence properties of functions. An illustrative example is that of the exponential
function, which is transcendental over C(z). To see this, suppose that ez is algebraic
over C(z), so that there are a positive integer n and polynomials a0(z), . . . , an(z) with
a0(z)an(z) , 0 such that

an(z)enz + an−1(z)e(n−1)z + · · · + a1(z)ez + a0(z) = 0.

Now, as z→∞, of the functions in {1, ez, e2z, . . . , enz}, the function enz goes to infinity
the fastest, that is, the function enz has maximal asymptotics from that set. So, dividing
out by the function with maximal asymptotics, enz, we have

an(z) + an−1(z)e−z + · · · + a1(z)e−(n−1)z + a0(z)e−nz = 0.

Letting z → ∞, this gives that limz→∞ an(z) = 0, a contradiction, thus ez is
transcendental over C(z).

Using the same argument, but going to a finite limit, presents some problems. In
particular, the polynomial coefficient of the function with maximal asymptotics might
have a zero at the finite limit that cancels the maximal asymptotics. There are various
ways to get around this. One is to use asymptotics towards an infinite number of limit
points so that, since a polynomial has only finitely many zeros, one of these limit
points will present maximal unbounded asymptotics that are not cancelled out by the
polynomial coefficient; for details about this approach, see our work [10] as well as
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our joint work [11] with Tachiya. In this section we will focus on results connected
to our extremal example, Tk(z), so that we will have maximal asymptotics that are
superpolynomial, like the exponential function.

Recall that two positive integers k, ` > 2 are multiplicatively independent provided
log k/ log ` is irrational.

Theorem 4.1. Let k, ` > 2 be multiplicatively independent integers. Then Tk(z) and
T`(z) are algebraically independent over C(z).

Proof. Towards a contradiction, suppose that Tk(z) and T`(z) are algebraically
dependent. This means that there exist a positive integer d, a set of distinct indices
{(mi, ni)}di=0 ⊂ Z

2
60 and nonzero complex polynomials {ai(z)}di=0 such that

d∑
i=0

ai(z)Tk(z)mi T`(z)ni = 0. (4.1)

Note that we have chosen to use exponents which are either negative or zero. This
ensures that as z→ 1−, each term has unbounded asymptotical behaviour. In particular,
as z→ 1−, the ith term in this sum satisfies

ai(z)Tk(z)mi T`(z)ni = Ci,k,`(z)(1 − z)bi−(1/2)(mi logk(1−z)+ni log`(1−z))(1 + o(1)),

where we have written the function Ci,k,`(z) := ciCk(z)C`(z) and the rational number
bi := ai + 1

2 (mi + ni) with ci ∈ C\{0} and ai ∈ Z defined by the z→ 1− behaviour

ai(z) = ci(1 − z)ai (1 + o(1)).

For (mi, ni) ∈ Z2
60\{(0, 0},

Ei(z) := mi logk(1 − z) + ni log`(1 − z)

goes to infinity as z→ 1−. Also, if Ei = E j, then

logk(1 − z)mi−m j = log`(1 − z)ni−n j ,

so `mi−m j = kn j−ni . Since k and ` are multiplicatively independent, (mi, ni) = (m j, n j),
so that Ei(z) = E j(z). Thus for i ∈ {0, . . . , d}, the exponents Ei(z) are all distinct.
Hence there is a unique M ∈ {0, . . . , d} with EM(z) maximal. Since EM(z) approaches
∞ as z→ 1−, the function Tk(z)mM T`(z)nM has unique maximal asymptotics that are
superpolynomial. Hence the relationship (4.1) cannot exist and so Tk(z) and T`(z) are
algebraically independent over C(z). �

Remark 4.2. For general results in the same vein as Theorem 4.1, see Nishioka [22].

For our next result, we require the full version of Theorem 3.2, and to state that
version we need the concept of a Mahler eigenvalue, a concept we introduced with
Bell [3] in order to produce a quick transcendence test for Mahler functions. To

https://doi.org/10.1017/S0004972720000040 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972720000040


406 M. Coons [8]

formalise this notion here, suppose that F(z) satisfies (1.1), set ai := ai(1) and form
the characteristic polynomial of F(z),

pF(λ) := a0λ
d + a1λ

d−1 + · · · + ad−1λ + ad.

In the above-mentioned work with Bell, we showed that if pF(λ) has d distinct roots,
then there exists an eigenvalue λF with pF(λF) = 0, which is naturally associated to
F(z). We call λF the Mahler eigenvalue of F(z).

Theorem 4.3 (Bell and Coons [3]). Let F(z) be a k-Mahler function satisfying (1.1)
whose Mahler eigenvalue λF exists and is nonzero. Then, as z→ 1−,

F(z) =
CF(z)

(1 − z)logk λF
(1 + o(1)),

where logk denotes the principal value of the base-k logarithm and CF(z) is a real-
analytic nonzero oscillatory term, which is bounded away from 0 and∞ on the interval
(0, 1) and satisfies CF(z) = CF(zk).

Extending Theorem 4.3 to asymptotics at knth roots of unity for all n > 0, in [10]
we proved the following generalisation, which we will need below.

Theorem 4.4 (Coons [10]). Let F(z) be a k-Mahler function satisfying (1.1) whose
Mahler eigenvalue λF exists and is nonzero and let ξ be a root of unity of degree kn for
some n > 0. Then there are an integer mξ and a nonzero number ΛF(ξ) such that, as
z→ 1−,

F(ξz) =
ΛF(ξ)CF(z)

(1 − z)logk λF−mξ
(1 + o(1)),

where CF(z) is the function of Theorem 4.3.

In the proof of Theorem 4.5 below, we consider a possible algebraic relation

d∑
i=0

ai(z)Tk(z)mi Fk(z)ni = 0

between Tk(z) and a k-Mahler function Fk(z) with a Mahler eigenvalue λFk such that
logk(λFk ) is irrational. As in the proof of Theorem 4.1, we choose the mi ∈ Z60, but for
our argument below to work (that is, to ensure that the function Fk(z)ni is unbounded
as z radially approaches ξ) we must choose the domain of the ni (nonnegative or
nonpositive integers) to coincide with the value logk λFk − mξ. This can easily be done
for the exponents ni by considering

ni ∈

Z>0 if logk λFk − mξ > 0,
Z60 if logk λFk − mξ < 0.

Theorem 4.5. Let k > 2 and let Fk(z) be a k-Mahler function whose Mahler eigenvalue
λFk exists. If logk(λFk ) is irrational, then Tk(z) and Fk(z) are algebraically independent
over C(z).
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Proof. Suppose that Tk(z) and Fk(z) are algebraically dependent over C(z). Then there
exist an integer d > 1 and an algebraic relation

d∑
i=0

ai(z)Tk(z)mi Fk(z)ni = 0. (4.2)

Let ξ be a primitive k jth root of unity with j large enough so that ai(ξ) , 0 for all
i ∈ {0, . . . ,d}. Without loss of generality, we will assume that logk(λFk ) −mξ > 0, where
mξ is as defined in Theorem 4.4, so that we take {(mi, ni)}di=0 ⊂ Z60 × Z>0.

Combining Theorems 3.1 and 4.4, since the Mahler eigenvalue λFk exists, as z
radially approaches ξ, the asymptotics of any negative power of Tk(z) dominates that of
any nonnegative power of Fk(z). Moreover, since Fk(z) is transcendental over C(z)—
by [3, Theorem 2], since logk(λFk ) is irrational—there exists an mi < 0. Furthermore,
the maximal asymptotics of the relation (4.2), as z radially approaches ξ, are governed
by the indices i ∈ {0, . . . , d} with mi minimal (the most negative), say equal to m. For
the i ∈ {0, . . . , d} with mi = m, we are thus interested in the asymptotics, as z radially
approaches ξ, of the coefficient of Tk(z)m,

d∑
i=0

mi=m

ai(z)Fk(z)ni , (4.3)

which, since the relation (4.2) holds, must tend to zero in the limit. Note that the ni

with mi = m are distinct, so there is a single maximal ni, say equal to n. Now, we take
the limit as z radially approaches ξ in (4.3) to obtain

lim
z→1−

d∑
i=0

mi=m

ai(ξz)Fk(ξz)ni = lim
z→1−

Fk(ξz)n
d∑

i=0
mi=m

ai(ξz)Fk(ξz)ni−n = an(ξ) lim
z→1−

Fk(ξz)n =∞,

a contradiction, which proves the result. �

For a degree-one Mahler function, Theorem 4.5 gives the following corollary.

Corollary 4.6. Let k > 2 be a positive integer, let r(z) ∈ C(z) with r(0) = 1 having no
pole or zero at z = 1 and set Rk(z) :=

∏
j>0 r(zk j

). If Rk(z) < C(z), then the functions
Tk(z) and Rk(z) are algebraically independent over C(z).

5. Almost everywhere bounds and concluding remarks

In the above sections all radial asymptotics considered were approaching roots
of unity of degree kn, where k was the base of the Mahler function. Of course, an
immediate question is, what happens at other places on the unit circle?

Towards this question, consider a degree-one k-Mahler function given by the infinite
product

F(z) =
∑
n>0

f (n)zn =
∏
j>0

p(zk j
),

https://doi.org/10.1017/S0004972720000040 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972720000040


408 M. Coons [10]

where p(z) ∈ C[z] and p(0) = 1. It is not too hard to see that the coefficients f (n) are
bounded by some power of n. Thus, there are positive constants C and m such that for
all |z| < 1,

|F(z)| <
C

(1 − |z|)m . (5.1)

While (5.1) holds for all z, we can say something more effective if we consider
behaviour for almost all z. Let β be a generic complex number with | β | = 1. We can
compare the partial products of F(z), say the first N factors, with the number of factors.
In this case, note that

lim
N→∞

logk

∏
j6N

|p(e2πiβk j
)|1/N = lim

N→∞

1
N

∑
j6N

logk |p(e2πiβk j
)|

=

∫ 1

0
logk |p(e2πiβk j

)| dβ (5.2)

= logkM(p), (5.3)

where for p(z) = a0
∏deg(p(z))

j=1 (x − α j),

M(p) = |a0|

deg(p(z))∏
j=1

max(|α j|, 1)

is the Mahler measure of the polynomial p(z). Here, (5.2) follows from Birkhoff’s
ergodic theorem and (5.3) from Jensen’s formula (see Mahler [20]). Thus, for almost
all β on the unit circle, as z radially approaches β, we expect, for any ε > 0,

|F(z)| <
1

(1 − |z|)logkM(p)−ε .

We find the possible connection between Mahler functions and Mahler measures
attractive, and leave the question of establishing almost-everywhere radial asymptotics
open for further study.
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