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Abstract

Background. Problems in learning that sights, sounds, or situations that were once associated
with danger have become safe (extinction learning) may explain why some individuals suffer
prolonged psychological distress following traumatic experiences. Although simple learning
models have been unable to provide a convincing account of why this learning fails, it has
recently been proposed that this may be explained by individual differences in beliefs about
the causal structure of the environment.
Methods. Here, we tested two competing hypotheses as to how differences in causal inference
might be related to trauma-related psychopathology, using extinction learning data collected
from clinically well-characterised individuals with varying degrees of post-traumatic stress
(N = 56). Model parameters describing individual differences in causal inference were related
to multiple post-traumatic stress disorder (PTSD) and depression symptom dimensions via
network analysis.
Results. Individuals with more severe PTSD were more likely to assign observations from con-
ditioning and extinction stages to a single underlying cause. Specifically, greater re-experien-
cing symptom severity was associated with a lower likelihood of inferring that multiple causes
were active in the environment.
Conclusions. We interpret these results as providing evidence of a primary deficit in discrim-
inative learning in participants with more severe PTSD. Specifically, a tendency to attribute a
greater diversity of stimulus configurations to the same underlying cause resulted in greater
uncertainty about stimulus-outcome associations, impeding learning both that certain stimuli
were safe, and that certain stimuli were no longer dangerous. In the future, better understand-
ing of the role of causal inference in trauma-related psychopathology may help refine cogni-
tive therapies for these disorders.

Introduction

Post-traumatic stress disorder (PTSD) can be thought of as a disorder of inappropriate fear,
driven by a failure to update expectations when objects or contexts that were once associated
with danger become safe (Lissek & van Meurs, 2015). However, simple associative accounts of
learning are unable to convincingly account for why such fear persists – particularly in the face
of prolonged exposure (extinction) training, or when considering relapse (spontaneous return
of fear) (Dunsmoor, Niv, Daw, & Phelps, 2015; Levy & Schiller, 2021). Recently, a novel com-
putational account of extinction learning – latent cause modelling – has been proposed by
Gershman, Niv, and colleagues (Gershman & Niv, 2010, 2012; Gershman, Blei, & Niv,
2010). This account posits that during learning, individuals do not simply learn to associate
different stimuli or contexts with outcomes, but rather that they attempt to draw inferences
about the underlying environmental causes that are responsible for groups of observations
(i.e. stimuli, context, and outcomes together). For example, an experimental animal may
learn to infer that on different days, or when a different experimenter is present, painful stim-
uli are unlikely to be presented – rather than having to gradually update their
stimulus-outcome associations during every new conditioning or extinction learning session.
Individual differences in this inference process regulate whether an individual decides that
the same cause is responsible for their current observations (and therefore that the original
fear memory should be updated), or whether a new underlying cause is responsible (and there-
fore the original memory is left intact) (Gershman, Monfils, Norman, & Niv, 2017). According
to this account, the inappropriate fear responses observed in post-traumatic stress syndromes
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could result from two different underlying mechanisms: (1) fail-
ure to retrieve a successfully formed extinction memory, as a
result of inferring that a different cause is operating in the envir-
onment, and (2) failure to successfully form an extinction mem-
ory in the first place.

Computationally, the first case can be formalised as a heigh-
tened tendency to segment ongoing experience into different cau-
sal clusters during extinction learning. Simulation evidence
suggests that this would be reflected in faster learning during ini-
tial extinction training (due to lower conflict between condition-
ing and extinction trials), but greater vulnerability to relapse or
spontaneous return of fear (e.g., if contextual cue changes mean
that the old fear memory is retrieved, rather than the new extinc-
tion memory) (Gershman et al., 2010; Gershman & Niv, 2012;
Gershman, Norman, & Niv, 2015). Indeed, a tendency to infer
more causes are active across conditioning and extinction epi-
sodes has been previously been shown to predict stronger return
of physiological fear responses during next-day recall testing in
healthy humans (Gershman & Hartley, 2015).

However, a body of evidence also suggests that individuals
with PTSD and other anxiety disorders show deficits in aversive
processing that may be prerequisites for successful extinction
learning: in particular in the ability to discriminate between safe
and danger-associated stimuli, in the context of potential aversive
outcomes (pain or monetary loss). For example, both higher
arousal to non-pain/loss-associated stimuli during initial learning
and greater physiological and self-reported aversion responses to
all stimuli during extinction training are reliably observed in
groups of individuals with anxiety disorders, compared to healthy
controls (Duits et al., 2015; Marin, Hammoud, Klumpp, Simon, &
Milad, 2020). Further, heightened transfer of negative expecta-
tions to stimuli that are perceptually similar to fear-associated
shapes or sounds has been observed in individuals with post-
traumatic stress and anxiety (Kaczkurkin et al., 2016; Lissek &
van Meurs, 2015; Norbury, Robbins, & Seymour, 2018).
Intuitively, reduced ability to distinguish between (or poorer
internal representation of) which stimuli were associated with
which outcomes might result in a tendency to assign all observa-
tions to a single underlying cause. Importantly, a single under-
lying cause with a poor distinction between different sets of
observations could be reflected in both negative expectations for
all stimuli (even those never associated with danger), and
impeded extinction learning (due to greater uncertainty about
stimulus-outcome configurations associated with that cause)
(Gershman & Niv, 2012). Therefore, it is possible that the
inappropriate negative expectations associated with PTSD are
the result of either heightened or reduced tendency to believe
that different causes are responsible for observations during
exposure to extinction.

Here, we sought to test these competing hypotheses by inves-
tigating latent cause inference during extinction learning in a
group of clinically well-characterised trauma-exposed individuals
with a range of experience of post-traumatic stress symptoms
(N = 56). Specifically, we investigated whether trauma-exposed
individuals with more severe PTSD symptoms would show a
pattern of behaviour best explained by a greater or lower tendency
to infer novel environmental causes, compared to trauma-exposed
individuals with less severe or no post-traumatic stress. We were
particularly interested in whether differences in inference across
aversive conditioning and extinction learning were related to indi-
vidual difference in avoidance symptoms, as inappropriate avoid-
ance behaviour is thought to be a core mechanism maintaining

resistance to extinction in anxiety disorders (Arnaudova, Kindt,
Fanselow, & Beckers, 2017; Pittig, Wong, Glück, & Boschet,
2020), and there is some evidence that avoidance-related traits
predict poorer response to cognitive therapy for PTSD (Badour,
Blonigen, Boden, Feldner, & Bonn-Miller, 2012; Békés,
Beaulieu-Prévost, Guay, Belleville, & Marchand, 2019).
Following recent theoretical developments that favour modelling
psychological disorders including post-traumatic stress as consist-
ing of complex associations of interacting symptoms and other
psychosocial factors (Borsboom, 2017), individual differences in
latent cause inference were also related to multiple PTSD and
depression symptom dimensions concurrently in an exploratory
network analysis (see Armour, Fried, Deserno, Tsai, & Pietrzak,
2017; de Haan et al., 2020; Fritz, Fried, Goodyer, Wilkinson, &
van Harmelen, 2018; Greene, Gelkopf, Epskamp, & Fried, 2018).

The findings presented here represent the first evidence that
individual differences in latent cause inference detected using a
simple remotely administered extinction learning paradigm are
related to current psychological symptom severity. Ultimately, a
better understanding of how individual differences in causal
inference contribute to maladaptive learning in anxiety and
post-traumatic stress may have relevance for the refinement of
cognitive and learning-based therapies for these disorders
(Moutoussis, Shahar, Hauser, & Dolan, 2018).

Methods

Participants

Participants were World Trade Center (WTC) disaster survivors
and rescue/recovery workers, recruited from two ongoing studies
at the Trauma and Resilience Program at the Icahn School of
Medicine at Mount Sinai. All participants had DSM-5 Category
A trauma exposure (defined as ‘actual or threatened death or ser-
ious injury’, American Psychiatric Association, 2013) during the
WTC disaster, as determined by clinical interview. Participants
from both studies included individuals who currently met diag-
nostic criteria for full or subthreshold PTSD (for full inclusion/
exclusion criteria see online Supplementary Material), with one
study also including trauma-exposed individuals who were
assessed as never having met criteria for PTSD. Both studies
received ethical approval from the Institutional Review Board at
the Icahn School of Medicine at Mount Sinai and all participants
provided informed written consent.

Clinical and sociodemographic measures

All participants completed an in-depth clinical interview with an
experienced Trauma and Resilience Program team member. For
N = 25 participants this consisted of the Structured Clinical
Interview for DSM-5 and Clinician-Administered PTSD Scale for
DSM-5 (Weathers et al., 2013a; Williams, Karg, & Spitzer, 2015),
and for N = 31 participants this was the Mini-International
Neuropsychiatric Interview for DSM-5 (Sheehan et al., 1998).
Additionally, participants completed the PTSD checklist for
DSM-5 (PCL-5) and The Beck Depression Inventory version II
(BDI-II) self-report measures of PTSD and depression symptoms
(Beck, Steer, & Brown, 1996; Weathers et al., 2013b). PTSD symp-
toms were parsed into seven dimensions (re-experiencing, avoid-
ance, negative affect, externalizing behaviour, anxious arousal,
and dysphoric arousal symptoms clusters) which have been previ-
ously been demonstrated to provide the best account of symptoms
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data across multiple samples of trauma-exposed individuals
(Armour et al., 2015, 2016). Depression symptoms as measured
on the BDI-II were divided into ‘cognitive’ and ‘physical/affective’
subdimensions on the basis of results of a previous longitudinal
analysis of diverse samples of depressed individuals (Bringmann,
Lemmens, Huibers, Borsboom, & Tuerlinckx, 2015). Information
about lifetime trauma history and perceived levels of social support
was also available (see online Supplementary Material). A subset of
individuals (N = 24) completed the Cogstate battery, a set of com-
puterised tests probing general executive function that have been
shown to be sensitive to mild cognitive impairment (Maruff
et al., 2009).

Extinction learning task

Participants completed an extinction learning task, analogous in
structure to that employed in a previous analysis of latent cause
inference during extinction in healthy individuals (Gershman &
Hartley, 2015). This task consisted of three phases: an initial
aversive conditioning phase (in context A), extinction learning
phase (in context A), and further extinction learning (in novel
context B) (Fig. 1a). Importantly, the conditioned stimulus (CS)
associated with the aversive loss outcome (US) – the CS+ – was
only partially reinforced (P(US|CS+) = 1/3), and the transition
to extinction (P(US|CS+) = 0) was unsignalled. This design max-
imises uncertainty about whether extinction phase CS+ trials
should be grouped with unreinforced conditioning phase CS+
trials, implying a common cause is responsible for both kinds
of observations, or instead that the change in contingencies indi-
cates it is likely that a new cause is active in the environment. In
order to test the feasibility for future remote work, the extinction
learning task was administered online (see online Supplementary
Material).

Analysis

Statistical analyses were carried out in R version 3.6.1 (R Core
Team, 2019) and MATLAB R2019a (MathWorks Inc., 2019).
Analysis code and version information for R packages is available
at https://github.com/agnesnorbury/latent-cause-PTSD.

Extinction task data
Effects of within-task manipulations (effects of CS type and task
stage) on loss expectancy ratings and response input times were
explored using repeated-measures analysis of variance (ANOVA;
see online Supplementary Material). Extinction resistance was
defined as mean loss expectancy rating for the aversively condi-
tioned CS (CS+) under extinction, measured at the end of both
the initial extinction (context A) and further extinction learning
(context B) task stages. Absolute values were used for CS+
ratings, as opposed to the difference in values between CS+ and
non-aversively conditioned (CS−) stimuli, as – in contrast to
other types of data such as global signal regression or BOLD sig-
nals – expectancy ratings have an absolute meaning. Further,
experimental evidence suggests that individuals with PTSD may
over-generalise negative information from conditioned to uncon-
ditioned stimuli (see Introduction) – which might result in
inappropriately low difference-based values for these quantities
(e.g., in the case where loss expectancy ratings are high for
both CS+ and CS− stimuli). Since, across the group as a whole,
(1) we observed maintained differential responding to CS+ and
CS− stimuli at the end of initial extinction training (indicating

incomplete learning), and (2) there were no obvious effects of
the change-in-context manipulation on learning traces (Fig. 1b),
we did not investigate potential ‘recall’ effects (such as spontan-
eous recovery) between extinction trials at the end of context A
and start of context B. Such an analysis may also be of limited val-
idity here, as, in contrast to previous investigations (e.g.
Gershman and Hartley, 2015), there was no significant temporal
delay between the two extinction training phases.

Latent cause modelling of extinction task data
Latent cause modelling of loss expectancy ratings data was carried
out using code associated with Gershman and Niv (2012) (https://
github.com/sjgershm/LCM). Following Gershman and Hartley
(2015), latent cause modelling was applied to conditioning and
initial extinction training data only. The last block of initial
extinction learning trials was also held out, so that model output
would be unbiased by trials used to calculate extinction resistance
both at the end of this stage (context A), and following further
extinction learning (in context B).

Briefly, the model assumes that the participant learns to asso-
ciate groups of stimuli they observe with different underlying
states or causes. On each trial, participants compute the posterior
probability that a given cause c generated the observed configur-
ation of stimuli (here, a 3D binary vector representing presence/
absence of the CS+, CS−, and US), using Bayes’ rule:

P(cause = c | stimuli) / P (stimuli | cause = c) × P (cause = c)

The inferred probability of an existing cause c being active on a
given trial, given the observation of the trial stimuli, is propor-
tional to the likelihood of that cause (consistency between current
stimuli and prototypical stimulus configuration associated with
cause c), multiplied by a prior term that indexes an individual’s
preference for simpler or more complex causal structures
(Fig. 2a). This prior biases the model to assign trials to a given
cause in proportion to the number of trials previously assigned
to that cause, and to a new cause with a probability proportional
to the value of the free parameter α (i.e., the distribution over
states is modelled using a Chinese Restaurant Process with con-
centration parameter α – see Gershman & Niv, 2012;
Gershman et al. 2015). Smaller values of α bias individuals
towards simpler clusterings, where observations tend to be
assigned to the same cause, and larger values towards more com-
plex clusterings, where observations are assigned to different
causes. As the learner has some uncertainty about the stimulus
configuration associated with each cause, the output on each
trial is a posterior probability distribution across potential under-
lying causes (each learner starts with an internal representation
consisting of a single cause, and more causes are added as
required by the model, up to a maximum limit). The model
was fit to task data under a generative framework, by comparing
how well models with a range of different α values could account
for participants’ task performance (see online Supplementary
Material).

The key output submitted to further analysis was the likelihood
(for each participant) of a model where α was allowed to be >0
(i.e., with multiple inferred causes), compared to a model where
α = 0 (single underlying cause), computed as a log Bayes factor
(logBF). A logBF⩾ 1 is generally interpreted as representing
strong evidence in favour of the comparator hypothesis (here,
in favour of a multi-cause model) (Kass & Raftery, 1995).
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In order to assess goodness of fit, actual v. predicted ratings
generated by the model on each trial were compared for each par-
ticipant using Pearson correlations. Permutation difference testing
with 10 000 random assignments was used to compare the good-
ness of fit (r) values derived from the actual data to N = 1000 ran-
domly shuffled dummy datasets. The ability of the model to
reliably recover α and logBF estimates from task data was assessed
using simulation and recovery analysis (see online Supplementary

Material). Trial-by-trial associations between response times
(RTs) and internal model quantities were examined using linear
mixed models, using the R package lmerTest.

Bivariate relationships between latent cause inference and
behavioural/clinical data
In order to account for individual differences in uncertainty about
posterior estimates of the key internal model parameter (α), logBF

Fig. 1. Data from the online extinction learning task demonstrated that participants learned to discriminate between conditioned and unconditioned stimuli, and
to decrease loss expectancy ratings for conditioned stimuli following the transition to extinction. (a) Depiction of trials from the online extinction learning task.
Participants were told that they were travelling through different zones of a spaceship, and needed to escape with enough space coins to power their journey
home. Unfortunately, the coins needed to be carried by helper robots, some of whom were unreliable. On each trial, participants encountered a robot and
rated how likely they thought that robot would be to lose one of their coins using a sliding bar (participants were informed that their ratings would not change
the outcome they observed, but that their predictions should be as accurate as possible in order to aid future space travellers). P(lose a coin|CS+) was 1/3 during
initial conditioning and reduced to 0 during extinction training stages, [P(lose a coin|CS−) was always 0]. The transition between conditioning and initial extinction
learning stages was unsignalled, but the final stage of the task (further extinction training in a novel context B) occurred following the transition to a different ‘zone’
of the ship (signalled by a change of background image). (b) Mean loss expectancy ratings across participants, by CS type and task stage (each three blocks with
ten trials per block). (c) Median RTs to input ratings, by CS type and task stage. Error bars represent the standard error of the mean. CS+, aversively conditioned
(loss-associated) stimulus; CS−, non-loss-associated stimulus.
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Fig. 2. Latent cause modelling of extinction task data revealed that trauma-exposed individuals whose extinction task data were better explained by a single cause
model discriminated less between conditioned and unconditioned stimuli during initial learning, and showed greater resistance to extinction. (a) The model posits
that during learning, an individual attempts to infer which latent cause is responsible for their observations, based on their previous experience of the task and
prior beliefs about the causal structure of the environment. On each trial, individuals may infer that a previous cause is responsible for their observations, or that
something in the underlying task structure has changed, and observations should be assigned to a new cause. The probability of assigning an observation to a new
cause is proportional to the dissimilarity between the current stimuli and those predicted for the current cause, and individual preference towards simpler or more
complex causal structures (governed by a single parameter, α). According to one account, individuals with fear-learning disorders may be more likely to assign
extinction trial observations to a new underlying cause, rendering them susceptible to extinction relapse (spontaneous return of fear) if, for some reason, they
infer that the original cause is active again (e.g., when times passes or contextual cues change). (b) Under an alternative account, individuals with fear-learning
disorders may have a fundamental deficit in distinguishing trials involving aversively conditioned (CS+) and unconditioned (CS−) stimuli (e.g., due to overgener-
alisation of aversive information, or hampering of safety learning by hyperarousal). Disparate configurations of stimuli and outcomes (CS+, CS−, US, and US omis-
sion) may be clustered together in the inferred causal structure of the environment, leading to greater uncertainty about the pattern of stimuli and outcomes
associated with a given cause, and therefore slower learning of expected values during both initial conditioning and later extinction stages. (c) The marginal prob-
ability distribution of latent causes averaged across all participants indicated that most participants inferred that one or two causes were responsible for their
observations across conditioning and extinction stages (other causes had relatively low posterior probabilities). (d) The likelihood that an individual’s internal
model of the task contained more than one cause can be quantified as the log Bayes’ factor (logBF) for a model where α > 0, compared to a single cause
model (where α = 0). For illustration, behavioural data are displayed separately for individuals for whom model comparison favoured a model with more than
one cause (logBF⩾ 1, dotted lines, N = 20), and individuals for whom model comparison found no strong evidence for a multi-cause model (logBF < 1, solid
lines, N = 36). The latter group tended to learn more slowly across the task (flatter curves) and showed less discrimination in loss expectancy ratings between
CS+ and CS− stimuli. Error bars represent the standard error of the mean. (e) Lower logBF values (calculated from conditioning and extinction stage data
only) were associated with higher resistance to extinction scores (residual CS+ loss expectancy ratings) at the end of the task. The regression line and p-value
represent linear model fit, weighted by posterior certainty in α parameter estimates (αPmax; higher certainty = larger dot size). Panels (a) and (b) are adapted
from Gershman et al. (2015).
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estimates were bivariately related to behavioural and clinical mea-
sures using weighted least squares regression, with regression
weights set equal to the peak of the posterior probability distribu-
tion over α values. As probability distributions sum to 1, this peak
value is inversely proportional to the width of the spread of the
probability density, which represents uncertainty about the pos-
terior estimate (or how informative task data were in updating
the uniform density prior). This ensures that greater weight in
the analysis was allocated to estimates from participants for
whom this quantity was more confidently derived (online
Supplementary Fig. S1b).

Network analysis of latent cause inference, clinical, and
sociodemographic data
Network analysis was used to explore relationships between indi-
vidual differences in latent cause inference and severity of mul-
tiple PTSD and depression symptom dimensions, whilst taking
into account other relevant clinical and demographic factors.
Specifically, networks were constructed using regularised
Gaussian graphical estimation implemented in the R package
qgraph, version 1.6.5 (Epskamp, Cramer, Waldorp,
Schmittmann, & Borsboom, 2012). Under this approach, nodes
represent observed variables, and connections between nodes
(edges) represent unique pairwise associations (partial correlation
coefficients), after conditioning on all other variables in the data-
set. The application of regularisation during estimation is
intended to remove spurious connections from the network,
such that any retained edges can be thought of as contributing
meaningfully to the overall variance (according to simulation
studies, at low ratios of a number of observations to a number
of potential connections, edges discovered by this method are
likely to represent edges in the true network, but some true
edges may be missing; Epskamp, 2018; Epskamp & Fried, 2018;
Williams, Rhemtulla, Wysocki, & Rast, 2019). The stability of par-
ameter estimation and power-related properties of the network
analysis were assessed via non-parametric bootstrap and simula-
tion analyses, using functions from bootnet, version 1.4.3
(Epskamp, Borsboom, & Fried, 2018). For full methodology
(per Burger et al., 2020), see online Supplementary Material.
Extinction resistance (mean CS+ loss expectancy rating at the
task) and safety learning failure (mean loss expectancy for the
CS− at the end of the task), were included in the networks as
well as logBF values in order to ascertain if the latent cause
model parameter was more closely related to symptoms than
these simple behavioural performance indices (i.e., had greater
explanatory power than behavioural differences alone). As per
Armour et al. (2017), two nested networks were estimated: one
consisting of PTSD/depression symptoms scores and behavioural
task variables alone, and one with additional clinically-relevant
covariates (age, education level, perceived level of social support,
and additional lifetime trauma history).

Results

Participants

Demographic and clinical data for study participants are sum-
marised in Table 1. N = 42 (75%) participants currently met
DSM-5 criteria for full or subthreshold WTC-related PTSD
(mean PCL-5 total score 40.4 ± 11.0), and N = 14 (25%) partici-
pants were resilient to WTC trauma (no current or lifetime diag-
nosis of PTSD or other DSM-5 Axis-1 disorder; mean PCL-5 total

score 1.6 ± 1.7). Participants with full or subthreshold PTSD also
reported moderate levels of depression symptoms (PTSD group,
mean BDI-II total score 14.5 ± 9.6; resilient group, mean BDI-II
total score 0.43 ± 1.1). However, PTSD is known to be highly het-
erogeneous (Armour et al., 2015; Contractor, Roley-Roberts,
Lagdon, & Armour, 2017), and previous analyses in WTC respon-
ders and other populations have revealed reliable differences in
patterns of covariance across symptom clusters (Horn et al.,
2016; Pietrzak et al., 2014). In our sample, PTSD subscores
exhibited continuous variation across participants (online

Table 1. Summary of demographic and clinical variables for study participants
(N = 56)

Age 53 (6.9)

Gender (N female) 19 (34%)

Race (N )

Black or African American 6 (11%)

Asian 4 (7%)

Native American 1 (2%)

White or Caucasian 37 (66%)

Other 2 (4%)

Ethnicity (N )

Hispanic/Latinx 12 (21%)

Education level (N )

Graduated high school (or equivalent) 5 (9%)

Part college 17 (30%)

Graduated 2-year college 5 (9%)

Graduated 4-year college 14 (25%)

Graduate or professional school 15 (27%)

Profession on 11/09/2001 (N )

Traditional emergency services responder 23 (41%)

Non-traditional responder or survivor 33 (59%)

PCL-5 total score 30.7 (19.4)

BDI-II total score 10.9 (10.3)

Psychoactive medication (N )

SSRI/SNRI (stable dose) 3 (6%)

NDRI (stable dose) 3 (6%)

sedative (night-time use only) 3 (6%)

Additional lifetime trauma history

N trauma categories endorsed (0–13) 4.9 (2.5)

Childhood physical abuse (N ) 16 (29%)

Childhood sexual abuse (N ) 14 (25%)

Adulthood sexual trauma (N ) 7 (13%)

Values represent mean (S.D.) unless otherwise specified. Race/ethnicity and medication
status categories are non-mutually-exclusive; N = 8 (14%) individual participants were
currently taking a stable dose (>3 months) of a psychoactive medication. PCL-5, PTSD
checklist for DSM-5; BDI-II, Beck Depression Inventory version II; SSRI, selective serotonin
reuptake inhibitor; SNRI, serotonin/noradrenaline reuptake inhibitor; NDRI, noradrenaline/
dopamine reuptake inhibitor. For further information on PTSD and depression subscore
ranges and distributions, see online Supplementary Table S1. All study participants had
DSM-5 category A trauma exposure to the WTC disaster in 2001. For details about additional
lifetime trauma categories, and how these were defined, see online Supplementary
Table S2.
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Supplementary Table S1), with only moderate correlations
observed between subscores (mean r = 0.67 ± 0.16; online
Supplementary Fig. S1) – justifying the use of a multidimensional
approach to PTSD symptomatology in our analysis.

Extinction learning task

Manipulation check
In order to check if participants performed as expected on the
task, loss expectancy ratings and RTs were analysed by repeated-
measures ANOVA. Overall, participants entered greater loss
expectancy ratings for the aversively conditioned (CS+) compared
to non-aversively conditioned (CS−) stimuli, and decreased their
ratings of CS+, but not CS−, stimuli over the course of the task
(i.e. when these stimuli began to be presented in extinction)
(online Supplementary Results; Fig. 1b). Participants responded
more quickly at later stages in the task, but median RTs remained
>3000 ms, indicating preservation of relatively considered
responding (Fig. 1c).

Latent cause modelling of extinction task data

Model fit and validation
In order to assess howwell themodel accounted forour data, observed
loss expectancy ratings on each trial were plotted against model-
predicted output for each participant (online Supplementary
Fig. S2). Across participants, the mean correlation between actual
and predicted loss expectancy ratings was 0.459 (S.D. 0.25).
Permutation difference testing revealed that the mean r value for
actual v. predicted loss ratings in our sample was significantly greater
than that generated by fitting the same model to randomly shuffled
data (mean r for shuffled data = 0.118; difference = 0.312, p < 0.001;
online Supplementary Fig. S3). Goodness-of-fit (r) values did not
differ between PTSD and resilient individuals (PTSD group, mean
r = 0.477; resilient group,mean r = 0.405; p > 0.4,Welch’s two-sample
t test), and were not related to logBF values ( p > 0.8, Spearman’s rank
correlation test).

Simulation and recovery analysis revealed good parameter esti-
mate stability and identifiability for task data (correlation between
simulated and recovered α values = 0.838, p < 0.001; correlation
with recovered β values = 0.053, p > 0.4) (online Supplementary
Fig. S4a). Comparison of recovered logBF estimates for datasets
simulated with α = 0 v. α > 0 revealed significantly different likeli-
hood estimates [t273 = −111, 95% confidence interval (CI) −3.70
to −3.84, p < 0.001; Welch’s two-sample t test]; with datasets
simulated with α = 0 favouring a single cause model (mean
logBF = −1.03 ± 0.01), and datasets simulated with α>0 favouring
a multi-cause model (mean logBF = 2.74 ± 0.17) (online
Supplementary Fig. S4b).

Looking inside the model
Inspection of the posterior distribution over latent causes for all
subjects indicated that participants mainly assigned observations
to one or two latent causes (Fig. 2c; across participants, the mar-
ginal probability of a third cause was 0.117). In order to visualise
differences in behaviour associated with model output, partici-
pants were divided into two groups, defined according to whether
their behaviour provided strong evidence in favour of a multi-
(v. single) cause model (logBF⩾ 1 v. logBF < 1). Similar to
Gershman and Hartley (2015), individuals whose responses pro-
vided no strong evidence in support of a multi-cause account
appeared to learn more slowly across both conditioning and

extinction stages (shallower curves for participants with logBF <
1, Fig. 2d). Formal comparison by fitting a simple linear slope
to CS+ loss expectancy ratings over the course of the modelled
period revealed significantly shallower gradients in the lower
logBF group (logBF < 1, mean gradient =−2.67 ± 8.5; logBF ⩾ 1
mean gradient = −7.21 ± 7.1; p = 0.034, Wilcoxon signed-rank
test).

Notably, the lower logBF group also appeared to discriminate
less between conditioned (loss-associated) and unconditioned
(non-loss-associated) stimuli. Over the course of the modelled
period, individuals with lower logBF values distinguished less
between CS+ and CS− stimuli in terms of their loss expectancy
ratings (logBF < 1, mean difference in rating = 18.2 ± 24.7; logBF
⩾ 1 mean difference in rating = 43.4 ± 27.0; p < 0.001, Wilcoxon
signed-rank test). This difference was driven by both lower loss
expectancy ratings for loss-conditioned (CS+) stimuli, and higher
expectancy ratings for non-loss-associated (CS−) stimuli, in the
lower logBF group (logBF < 1: mean CS+ rating = 46.2 ± 14.3,
mean CS− rating = 28.0 ± 23.6; logBF⩾ 1: mean CS+ rating =
58.3 ± 13.0, mean CS− rating = 15.0 ± 21.5; p = 0.002, p = 0.035,
respectively; Wilcoxon signed-rank tests). This suggests that the
slower extinction learning in individuals with low evidence of a
multi-cause model might be a result of more similar observation
representations across different trial types [CS+ (reinforced), CS+
(unreinforced), and CS− trials) in these individuals (Fig. 2b).

Importantly, simulated datasets where α was constrained to be
close to or >0 were able to replicate this behavioural pattern: with
the α∼ 0 group (favouring a single latent cause model) showing
both shallower gradients in CS+ loss expectancy ratings and the
lower difference in ratings between CS+ and CS− stimuli than
the α > 0 group (favouring a multi-cause model), over the same
task period (both p < 0.001, Wilcoxon signed-rank tests) (online
Supplementary Fig. S5). This pattern was also robust to the choice
of logBF threshold used to define groups (online Supplementary
Material; Fig. S6).

Relationship to extinction resistance and safety learning
LogBF values were not related to extinction resistance (mean
residual CS+ loss expectancy rating) at the end of the modelled
period, or end of the initial extinction learning stage (block 5,
β = −4.2, p = 0.267; block 6, β =−6.7, p = 0.132; linear regressions
weighted by certainty in posterior α estimate), but were signifi-
cantly related to extinction resistance at the end of the task
(block 9, β = −11.9, p = 0.017; Fig. 2e, online Supplementary
Fig. S7a). This suggests that latent cause inference during initial
learning might predict future resistance to extinction training –
with a higher likelihood of inferring a single cause during initial
learning associated with persistence of loss expectancy for CS+
stimuli many trials into extinction. Interestingly, logBF values
were also significantly negatively associated with CS− ratings at
these three task stages (β =−11.5, −9.9, −9.2 for blocks 5, 6,
and 9, respectively; all p < 0.020), although these associations
appear substantially non-linear (online Supplementary
Fig. S7b). This suggests that latent cause inference may also relate
to either heightened generalisation of aversive consequences from
CS+ to CS− stimuli, or failure of discriminative safety learning for
CS− stimuli, over the course of the task.

An alternative explanation is that these relationships are due to
a common non-specific effect, such as poorer working memory
function, lower attentional performance, or more perseverative
response style in individuals with lower logBF estimates. In
order to test this hypothesis, we used data from the Cogstate
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neurocognitive test battery that were available for a subset of par-
ticipants. Although this test is likely underpowered (N = 24), we
found no evidence of a relationship between Cogstate composite
scores and logBF estimates (β = 0.010, p = 0.338). Values of the
scaling parameter β, which may reflect individual differences in
the use of the response scale, were unrelated to extinction resist-
ance or failure of safety learning at the end of the modelled per-
iod, end of the initial extinction learning stage, or end of the task
(p > 0.11, Spearman’s rank correlation tests).

Relationship to RTs
In order to further test whether lower logBF scores might reflect a
tendency towards a stimulus-independent or inattentive response
style, we also examined whether median RTs during each stage of
the task were related to logBF estimates. Interestingly, there was
marginal evidence of a negative relationship between logBF and
median RTs during conditioning and initial extinction learning
stages (β =−552, p = 0.054; β =−469, p = 0.055) – with longer
median RTs associated with lower logBF scores (during further
extinction in novel context B: β = −341, p = 0.214; online
Supplementary Fig. S7c). This may indicate greater uncertainty
about predicted values in lower logBF individuals during initial
learning and extinction training (Hyman, 1953).

To examine this relationship more precisely, we analysed
trial-by-trial variance in RT as a function of uncertainty over
underlying latent causes and logBF estimates, in linear mixed
models controlling for time-on-task (trial number) and expected
value (predicted probability of loss) (cf. Brown et al., 2018).
Uncertainty about active causes was approximated by taking the
maximum over the posterior probability distribution across causes
on each trial, which is directly proportional to the certainty that
the most likely cause was responsible for trial observations. We
found that RTs were slower for individuals with lower logBF esti-
mates [β =−1395 (S.E. 370) ms, p < 0.001], and on trials with a
greater likelihood of a single particular cause [β = 9457 (S.E. 456)
ms, p < 0.001]. Results were unchanged if the time-on-task effect
was modelled as an exponential decay function, as suggested by
Fig. 1c (see online Supplementary Material). This finding is con-
sistent with slower RTs reflecting greater uncertainty about the
configuration of observations associated with a particular cause
(greater variance in prototypical stimulus and outcome vectors
associated with that cause), rather than greater uncertainty
about which cause was active on a given trial – in particular for
individuals with greater tendency to group all observations as
being the results of a single cause.

Relationship between latent cause inference and PTSD
symptoms

Relationship with avoidance symptoms
In individual linear regression models weighted by posterior cer-
tainty in α parameter estimates, logBF values were significantly
negatively related to PCL-5 avoidance symptoms (β =−0.89, p =
0.045), and non-significantly related to PCL-5 total symptom
severity score (β = −5.6, p = 0.069), Fig. 3a. Specifically, indivi-
duals with lower logBF values, indicating a greater likelihood of
a single cause model across conditioning and extinction learning,
reported greater levels of avoidance symptoms. In order to test for
evidence of a non-specific relationship between psychological
symptom levels and parameter estimates, logBF values were also
compared to BDI-II total depression symptom scores (β =−1.9,
p = 0.234). β scaling parameter values were not related to PCL-5

avoidance symptoms, PCL-5 total score, or BDI-II total score
(p > 0.3, Spearman’s rank correlation tests).

Network analysis of extinction task parameters, PTSD, and
depression symptoms
Whilst accounting for individual differences in extinction resist-
ance and safety learning failure at the end of the task, greater
severity of PTSD re-experiencing symptoms was associated with
lower logBF values (regularised edge weight −0.089, bootstrapped
95% CI for edge value =−0.224–0, Fig. 3b). As re-experiencing
symptoms were positively connected to avoidance symptoms (reg-
ularised edge weight 0.262, bootstrapped 95% CI 0.053–0.414),
this suggests that the relationship between logBF and avoidance
behaviour may be mediated by more intense re-experiencing
symptoms (intrusive thoughts, nightmares, flashbacks, and emo-
tional and physiological reactivity to trauma-related cues).
There was also a negative connection between logBF and dys-
phoric arousal PTSD symptoms (difficulty concentrating and
sleep disturbance; regularised edge weight −0.026, bootstrapped
95% CI −0.153 to 0; for sample weights and bootstrapped 95%
CIs for all network edges see online Supplementary Fig. S8).
Simulation-based power analysis revealed acceptable network
recovery properties at N = 56. Across 1000 simulations, the
median correlation between true and recovered networks at this
sample size was 0.765 [interquartile range (IQR) 0.13]. Median
sensitivity (accurate discovery of present edges) was 0.694 (IQR
0.14), and specificity (accurate discovery of absent edges) was
0.767 (IQR 0.17).

Network analysis incorporating other clinical and demographic
covariates
When additional covariates (age, education level, cumulative
trauma history, and perceived level of social support) were
added to the network, the negative connection between logBF
values and re-experiencing symptoms was retained (regularised
edge weight −0.041, bootstrapped 95% CI for edge value
−0.175 to 0, Fig. 3c). There were also negative connections
between age and lifetime trauma history and logBF scores.
Specifically, individuals who were older and participants who
reported greater cumulative lifetime trauma tended to have
lower logBF estimates (regularised edge weights −0.029, −0.020;
bootstrapped 95% CIs −0.272 to 0, −0.234 to 0; respectively;
for sample weights and bootstrapped 95% CIs for all edges see
online Supplementary Fig. S9). The overall structure of the net-
work between PTSD/depression symptoms and extinction task
variables was robust to the inclusion of the additional covariates,
as the correlation between the edge weights derived from covariate
controlled and non-covariate-controlled networks was high
(Spearman’s ρ = 0.955). However, simulation-based power ana-
lysis revealed that the structure of the full covariate-controlled
network reported here should be interpreted with caution, as it
is likely underpowered: with an N of 150 or more required for sat-
isfactory sensitivity and specificity in true network recovery.

Discussion

Here, we provide preliminary evidence that individual differences
in latent cause inference, as measured during a simple behavioural
extinction learning paradigm, may be related to the experience of
psychological symptoms following trauma. Specifically, we found
that trauma-exposed individuals whose patterns of behavioural
responses were associated with greater likelihood of a generative
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Fig. 3. Trauma-exposed individuals with greater tendency to infer that a single cause was responsible for observations across conditioning and extinction stages
reported more severe PTSD, but not depression, symptoms. (a) Bivariate relationships between latent cause inference and avoidance, total PTSD, and total depres-
sion symptoms. logBF represents log Bayes’ factor for a model with more than one cause (α > 0), compared to a single cause model (α = 0). PCL-5, PTSD checklist
for DSM-5; BDI-II, Beck depression inventory, version II. p values represent the results of linear regression models, weighted by posterior certainty in the value of α
(αPmax; higher certainty = larger dot size). (b) Regularised network model incorporating clinical symptom dimensions (seven PCL-5 PTSD and two BDI-II depression
symptom dimensions) and extinction task performance measures (extinction resistance, or mean residual CS+ loss expectancy at the end of the task; safety learn-
ing failure, or mean CS− loss expectancy at the end of the task; and logBF, indexing latent cause inference across initial conditioning and extinction learning trials).
(c) Regularised network model incorporating PTSD and depression symptoms, extinction task performance measures, and clinically relevant covariates: specifically
age, self-reported education level, perceived social support (Medical Outcomes Study Social Support Survey total score), and additional lifetime trauma history.
For both networks, connections between nodes (edges) represent partial correlation coefficients retained following least absolute shrinkage and selection operator
(LASSO) regularisation, a conservative approach that favours a sparse network structure and removes spurious edges. Blue edges represent positive connections
and red edges negative connections. Greater line width and stronger colour intensity represent greater edge strength, with edge weights plotted using the same
scale in order to be comparable across networks (max value = 0.4).
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model with a single underlying cause exhibited greater resistance
to extinction training in future trials, poorer safety learning, and
higher levels of avoidance symptoms. In line with previous
observations that, during the same measurement occasion,
within-subjects deviations in internal avoidance symptoms are
significantly associated with within-subjects deviations in the
occurrence of flashbacks (Greene et al., 2018; Hoffart, Langkaas,
Øktedalen, & Johnson, 2019), our exploratory cross-sectional
network analysis incorporating multiple PTSD and depression
symptom clusters indicated that the bivariate association between
latent cause inference and avoidance may be mediated via greater
severity of PTSD re-experiencing symptoms (intrusive thoughts,
nightmares, flashbacks, and emotional/physiological reactivity to
reminders). Importantly, this multivariate analysis also controlled
for individual differences in task performance (extinction resist-
ance and safety learning failure), indicating that the model-based
index had additional explanatory power over raw behavioural
scores with respect to prototypical post-traumatic symptoms.

Strengths of the data presented here include a clinically
well-characterised sample: all participants completed an in-depth
clinical interview, as well as providing self-reported measures of cur-
rent symptom levels, additional lifetime trauma exposure, and other
relevant sociodemographic information. All participants also had
exposure to the same primary (index) trauma (the WTC disaster
in 2001). Participants reported a range of current PTSD symptom
levels, from minimal symptoms (resilient) to severe cases (mean
PCL-5 total score 31 ± 19) – however, it should be noted that due
to the length of time passed since the index trauma, this represented
a chronic disease course for all symptomatic individuals. Although
N = 56 is a relatively modest sample size for a behavioural study,
simulation-based power analysis for the symptoms and task net-
work model revealed satisfactory specificity for a discovery analysis
(0.77) – minimising the chance of identifying false positive connec-
tions (estimated sensitivity of our analysis, or rate of discovery of
true positives was slightly lower at 0.69: therefore, some true connec-
tions may be missing from the identified network structure).

Considering model parsimony (only two free parameters) and
the continuous nature of the response variable, the latent cause
model generally provided a good account of participants’ loss
expectancy data – however the extent to which this was truly
varied across subjects (online Supplementary Fig. S2). Bivariate
associations between model output and behavioural and clinical
measures were therefore weighted by how informed estimates of
the model parameter governing causal clustering were by task
data (i.e., peakiness of the posterior probability density function
for α values). In weighted models, the likelihood of a multi-cause
model [logBF(α > 0)] was negatively associated with extinction resist-
ance (residual CS+ loss expectancy ratings) at the end of the task
(Fig. 2). LogBF values were also strikingly negatively related to the
failure of safety learning (loss expectancy ratings for CS− stimuli,
in the absence of any association with the loss outcome) at all stages
of the task (online Supplementary Fig. S7). Individuals with lower
logBF values were also slower to enter ratings across the modelled
period – which may indicate greater uncertainty about expected
values (Hyman, 1953; McDougle & Collins, 2021).

We interpret these results as suggesting that failures of extinc-
tion learning in PTSD may relate to a primary deficit in extinction
memory formation (associated with a tendency towards causal
‘overgeneralisation’), rather than a failure to retrieve a successfully
formed extinction memory (associated with a tendency towards
causal hyper-segmentation). Specifically, in individuals with
trauma-related psychopathology, reduced discrimination between

CS+ and CS− during initial learning may result in a tendency to
classify multiple different potential combinations of observations
(CS+, CS−, US and US omission) as being produced by the same
underlying cause (Fig. 2b). This results in greater uncertainty
about the likelihood of specific stimulus-outcome associations
within the overarching causal structure: hampering both initial
learning of correct CS–US associations (successful discriminative
learning during conditioning), and subsequent learning that these
associations have changed (during extinction). This explanation is
consistent with the behavioural pattern observed in individuals
whose behaviour supported lower likelihood of a multi-cause
model: who showed both slower learning and less differentiated
responses to CS+ v. CS− stimuli (Fig. 2d).

Intriguingly, two recent computational studies have identified
greater weighting of previous error signals during value updating
for aversively conditioned stimuli in PTSD, associated with greater
volatility in stimulus value estimates (Brown et al., 2018; Homan
et al., 2019). This over-correction in the face of errors in prediction
might be expected if individuals with PTSD have less confidence or
certainty in their internal model of the environment. Here, we pro-
pose that this results not from greater uncertainty about which
causes are active in their environment, but from greater uncertainty
about specific stimulus-value associations within their internal
representation of that cause, exacerbated by – or reflected in – a ten-
dency to group all observations as resulting from a single under-
lying cause (a greater diversity of observations attributed to the
same latent cause results in the greater estimated variance of the
observation prototype associated with that cause, and therefore
greater likelihood that further disparate observations will be
assigned to that cause; Gershman and Niv, 2012).

An alternative explanation for our findings is that logBF values
and current symptoms levels may both be related to some other
relevant individual difference, such as poorer working memory –
which might predict less discriminative task performance – or a
more habitual or perseverative response style – which might predict
continuing to enter high loss expectancy values under extinction.
Although we did not find any evidence that logBF values were asso-
ciated with performance scores on a battery of neurocognitive tests
probing general executive function, these data were only available in
a subset of individuals (N = 24), and should be considered in the
context of evidence of executive dysfunction in PTSD (Scott
et al., 2015). Further, although ratings can be considered a relatively
‘pure’measure of values or beliefs, they typically exhibit more exag-
gerated response functions than implicit measures (such as physio-
logical recordings) during experimental tests of fear-conditioning
(Holt et al., 2014), and may be more susceptible to certain forms
of response bias. For example, it is possible that the loss expectancy
data collected here are sensitive to demand characteristics (partici-
pants entering responses they believe are desired by the experi-
menter), and that perception of these characteristics may differ
between patient and healthy samples (Orne, 1962). Future work
should therefore include both attentional checks (catch trials) dur-
ing task performance, and explicit questions probing beliefs about
stimulus value and task structure.

It is also important to stress that, in order to facilitate remote
administration, the ‘aversive’ outcome used in this task is highly
unlikely to evoke ‘fear’ in the same way as stimuli used in previous
work (e.g., painful electric shock). Although previous experimen-
tal tasks have successfully used monetary or game points loss in
place of more primary aversive outcomes to discover differences
in learning related to self-reported anxiety and PTSD symptoms
(e.g. Brown et al., 2018; Norbury et al., 2018; Wise & Dolan,
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2020), more evidence is needed that the outcome employed here
is engaging the kind of cognitive processes relevant to the process-
ing of traumatic experience. Future studies using this framework
will therefore explicitly probe the aversiveness of the loss outcome
to study participants, and further, attempt to increase emotional
engagement with the task by using more immersive graphics
and taking a more gamified approach to task presentation (see
Nord et al., 2017; Wise & Dolan, 2020, for successful examples
of this approach). Another important difference between the
data presented here and that from some previous investigations
is that there was no significant temporal delay between the two
extinction training sessions, such that we are unlikely to be prob-
ing ‘recall’ of associations from longer-term memory. It is there-
fore possible the effects described here are specific to mechanisms
subserving rapid extinction learning, which may be at least par-
tially distinct from those supporting longer-term learning
(Orederu & Schiller, 2018).

Finally, effect sizes reported here are modest – with our
measure of latent cause inference explaining around 7–8% of
the variance in self-reported PTSD symptoms. However, these
associations persisted under a conservative (regularised) analysis
approach, which tends to shrink connection weights (Epskamp
et al., 2018), and after controlling for multiple other psycho-
logical symptom dimensions and clinically relevant covariates.
It was striking that logBF values were also associated with cumu-
lative trauma history (independently from age), as previous work
suggests that lifetime trauma load is an important predictor of
vulnerability for PTSD (Feder et al., 2016; Karam et al., 2014).
It will be necessary to test if these relationships persist in repli-
cation samples and if sensitivity can be increased by the various
improvements to task design discussed above. A further import-
ant step will be to undertake longitudinal assessments, in order
to investigate both reliability of model-based causal inference
metrics and directionality of relationships with evolving symp-
tom dynamics. If these challenges can be overcome, this may
further our understanding of the role of high-level dysfunctional
beliefs in the development and maintenance of post-traumatic
stress, and perhaps even give insight into how such beliefs
might be better targeted by psychological therapies
(Moutoussis et al., 2018).

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/S0033291721000647.
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