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Nonsteroidal anti-inflammatory drugs (NSAIDs) are widely used in the treatment
of arthritis and pain. However, their long-term use is limited by gastrointestinal
(GI) side effects such as gastric ulcers. NSAIDs act by inhibiting an enzyme
called cyclooxygenase. Cyclooxygenase (COX) catalyses the generation of
prostaglandins from arachidonic acid. Two isoforms of the enzyme exist –
COX-1 and COX-2 – both of which are targets for NSAIDs. Although they are
associated with GI toxicity, NSAIDs have important antithrombotic and anti-
inflammatory effects. The GI injury has been attributed to COX-1 inhibition and
the anti-inflammatory effects to COX-2 inhibition. As COX-2 is traditionally
viewed as an inducible enzyme, selective inhibition of COX-2 by ‘coxibs’
(selective COX-2 inhibitors) has been employed to achieve anti-inflammatory
and analgesic effects without GI side effects. However, recently there have been
suggestions that chronic administration of coxibs might increase the risk of
cardiovascular events, such as atherosclerosis, compared with traditional
NSAIDs. In vascular disease, there is increased expression of both COX-1 and
COX-2, resulting in enhanced prostaglandin generation. The specific role of
COX-1 and COX-2 in vascular regulation is still unknown but such knowledge
is essential for the effective use of coxibs. Although more evidence is pointing
to selective COX-1 inhibition as a therapeutic measure in inflammatory
atherosclerosis, there are some studies that suggest that inhibition of COX-2
might have a potential benefit on atherosclerosis.

Atherosclerosis, manifested by heart disease,
stroke and peripheral vascular disease, has been
described as an inflammatory disease (Ref. 1)
characterised by mononuclear infiltration and

smooth muscle cell proliferation (Ref. 2). As at
other sites of inflammation, eicosanoid generation
is enhanced in atherosclerosis (Ref. 3). The
products include thromboxane A2 (TXA2), which
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is a potent platelet aggregator, vasoconstrictor,
smooth muscle cell mitogen (Ref. 4) and regulator
of angiogenesis (Ref. 5), and prostacyclin (PGI2),
which is a platelet inhibitor, vasodilator (Ref. 6)
and inflammatory mediator (Ref. 7). Prostaglandins
and thromboxane are derived from arachidonic
acid by the enzyme prostaglandin synthase, or
cyclooxygenase (COX) (Fig. 1). Two isoforms of
COX have been identified – COX-1 and COX-2 –
which catalyse identical reactions. Both isoforms
are targets of nonsteroidal anti-inflammatory
drugs (NSAIDs) (Ref. 8). NSAIDs including
aspirin have proven anti-inflammatory, analgesic
and antithrombotic properties but are associated
with gastrointestinal (GI) toxicity. The GI injury
has been attributed to COX-1 inhibition and the
anti-inflammatory effects to COX-2 inhibition
(Ref. 9), although recent evidence suggests that
inhibition of both isoforms is necessary for the
gastric damage to occur (Ref. 10). As COX-2 is
traditionally viewed as an inducible enzyme,
selective inhibition of COX-2 (by selective COX-2
inhibitors called coxibs) has been employed to
achieve anti-inflammatory and analgesic effects
without GI side effects (Ref. 11). However,
compared with traditional NSAIDs, chronic
administration of coxibs might increase the risk
of cardiovascular events such as myocardial
infarction and atherosclerosis (Refs 12, 13, 14).
This review focuses on the differential role of
COX-1 and COX-2 in the vascular system and
addresses the potential risks of coxibs in
vascular disease.

Overview of COX-1 and COX-2
Membrane phospholipids are enriched with
arachidonic acid, which is liberated from cell
membranes by the action of phospholipases such
as phospholipase A2 (PLA2), PLC and PLD in
response to stimuli such as histamine (Ref. 15),
platelet-derived growth factor (PDGF) (Ref. 16)
and interleukin 1 (IL-1) (Ref. 17). The membrane-
associated COX enzymes then catalyse the rate-
limiting generation of prostaglandins and
thromboxane from arachidonic acid. COX-1 is
constitutively expressed under physiological
conditions (Ref. 18), although there is also
evidence that it might be induced particularly
at sites of inflammation (Ref. 19). COX-2 is
constitutively expressed in some tissues, such as
brain (Ref. 20) and kidney (Ref. 21), under normal
conditions. However, its expression is induced in
response to cytokines (Ref. 22), growth factors

(Ref. 23), hypoxia (Ref. 24) and free radicals
(Ref. 25) – all of which are factors implicated in
the development of atherosclerosis (Ref. 1).
COX-1 and COX-2 both catalyse the same two
reactions: a cyclooxygenase reaction, in which
arachidonic acid is converted to prostaglandin G2
(PGG2); and a peroxidase reaction, where PGG2
undergoes a two-electron reduction to PGH2
(Ref. 26) (Fig. 1). PGH2 serves as a substrate for
cell-specific isomerases and synthases to
produce the prostaglandins and thromboxane
(Fig. 1). Although COX-1 and COX-2 catalysis are
indistinguishable, the differences in gene and
promoter structure, in protein sequence and in
subcellular localisation explain the differential
regulation of COX-1 and COX-2 in tissues, as
described below.

Gene and promoter structure
The genes encoding human COX-1 and COX-2 are
located on chromosomes 9 and 11, respectively
(Ref. 27). The intron–exon structure of the genes
are very similar except that exon 1 and 2 of
COX-1, which contains the transcription start site
and signal peptide, respectively, are condensed
into a single exon in COX-2. The introns of
COX-2 are smaller than those of COX-1, and
hence the gene encoding COX-2 is 8 kb and yields
a 4.1 kb mRNA (Ref. 27) compared with 22 kb
yielding a 2.8 kb mRNA for COX-1 (Refs 28, 29).

COX-1 gene expression is regulated by two
promoter regions, located in distal and proximal
regions (Ref. 30). It is not clear how the two
promoter activities drive the expression of
COX-1 under physiological and pathological
conditions but it is known that the gene structure
of COX-1 facilitates continuous transcription of a
stable message. COX-1 has no TATA  box – rather
it has multiple transcription start sites, as is the
case for other ‘housekeeping’ genes (Ref. 26). The
human COX-2 promoter is 1.7 kb in length and
has a TATA box that is 31 bp upstream from the
transcriptional start site (Ref. 27). Several putative
response elements have been identified in the
COX-2 promoter. These include sites for Sp1 and
the nuclear factor NF-κB, the cAMP response
element (CRE), cGMP response element (GRE),
and sites for PEA-3, AP-2 and CAAT-enhancer
binding protein (C/EPBβ – also known as NF-IL6)
(Ref. 31). The principal response elements
proposed to be involved in regulation of COX-2
gene expression are the NF-κB-binding site and
CRE.
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Figure 1. The three major pathways involved in arachidonic acid metabolism. Arachidonic acid is derived
directly from linolenic acid or is ingested as a dietary constituent. Arachidonic acid is stored in the cell membrane
of virtually all cells and is released in response to stimluli such as histamine and platelet-derived growth factor.
Arachidonic acid can be released by three pathways (not shown): (1) conversion of phosphatidyl ethanolamine
or phosphatidyl choline to phosphatidic acid in a reaction catalysed by phospholipase D (PLD), followed by
formation of diglyceride and monoglyceride and the release of arachidonic acid; (2) degradation of
phosphatidylinositol via a sequence of reactions beginning with PLC cleavage of the phosphodiester bond of
membrane lipids to yield diacylglycerol, followed by the action of dilglyceride lipase and monoglyceride
lipase to release arachidonic acid and glycerol; and (3) direct action of PLA2 on a phospholipid. (a) The
cyclooxygenase (COX) pathway results in the formation of prostaglandin G2 (PGG2) from arachidonic acid by
a cyclooxygenase reaction. In a subsequent peroxidase reaction, PGG2 undergoes a two-electron reduction to
PGH2. Both of these reactions are catalysed by COX (prostaglandin synthase H). PGG2 serves as a substrate
for cell-specific isomerases and synthases, producing other eicosanoids such as prostacyclin (PGI2) and
thromboxane A2 (TXA2). (b) The lipoxygenase pathway forms hydroperoxyeicosatetraenoic acids (HPETEs)
and dihydroxyeicosatetraenoic acid (DEA) by lipoxygenase and subsequently converts these to (1)
hydroxyeicosatetraenoic acids (HETEs) by peroxidases, (2) leukotrienes (e.g. LTC4) by hydrase and glutathione
S-transferase (GST), and (3) lipoxins by lipoxygenases. (c) The epoxygenase pathway forms epoxyeicosatrienoic
acid (EET) and dihydroxyacids by cytochrome p450 epoxygenase (fig001dfd).

The gene structure of COX-2 is similar to
immediate early genes such as intercellular cell
adhesion molecule 1 (ICAM-1) and its expression
is rapidly upregulated during inflammation

and other pathological processes, including
cancer. Furthermore, an AU-rich element (ARE)-
containing 3'-untranslated region of COX-2
mRNA appears to be important in the normal
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Figure 2. Comparison of the protein structures
of the cyclooxygenase isoforms COX-1 and
COX-2. The diagram illustrates the conserved
regions between the two proteins: the signal peptide,
epidermal growth factor (EGF) domain, membrane-
binding domain and membrane-targeting sequence.
The glycosylation sites are also shown; note the
additional glycosylation site in the COX-2 protein.
COX-1 and COX-2 are 60% homologous at the amino
acid level, and the major differences occur at the
N-terminal region, where COX-2 has a shorter signal
peptide than COX-1, and in the membrane-binding
C-terminal region, where COX-2 has an 18 amino
acid insert. For further information on the protein
structures of COX-1 and COX-2, see Refs 33, 34
and 35 (fig002dfd).

regulation of rapid mRNA decay, thereby
keeping COX-2 expression tightly regulated
(Ref. 32). In colon cancer cells overexpressing
COX-2, COX-2 mRNA was found to be turned
over more slowly than normal as a consequence
of defective recognition of AREs within the
COX-2 mRNA. This stabilisation of COX-2 mRNA
appears to be a major mechanism for constitutive
overexpression of COX-2 in colon cancer (Ref. 32).

Protein sequence
At the amino acid level, COX-1 and COX-2 are
60% homologous and are composed of three main
domains: a membrane-binding domain, an
epidermal growth factor (EGF)-like domain and
an enzymatic domain (Ref. 33). There are major
differences in the N-terminal region, where
COX-2 has a shorter signal peptide than COX-1,
and in the membrane-binding C-terminal
region, where COX-2 has an 18 amino acid insert
(Ref. 33). The amino acid residues required for the
catalytic activity are conserved between COX-1
and COX-2. Both enzymes are glycosylated,
with three conserved N-glycosylation sites. An
additional glycosylation site is located in the
C-terminal end of COX-2. Both enzymes have
similar (although not identical) Km and Vmax values
for arachidonic acid and have similar reaction
mechanisms (Ref. 34). There are subtle differences
in the substrate pocket, which have been exploited
to generate isoform-specific inhibitors. Thus, a
valine to isoleucine substitution at position 509
in COX-1 renders the enzyme sensitive to COX-2
inhibitors (Ref. 35), by providing access to a side-
channel not normally available in COX-1. The
domains of the COX-1 and COX-2 proteins are
summarised in Figure 2.

Subcellular localisation
Despite their biochemical similarities, the COX-1
and COX-2 enzymes represent two independent
prostaglandin biosynthetic systems and might
couple to distinct pools of arachidonic acid. Both
COX-1 and COX-2 are found on the luminal
surface of the endoplasmic reticulum (ER) and
nuclear membrane (Ref. 36). However,
immunocytofluorescence studies show that
COX-2 is more concentrated in the nuclear
envelope than in the ER, whereas COX-1 is equally
distributed in both. This difference in subcellular
localisation could serve to separate the activities
of COX-1 and COX-2 within cells. Consequently,
COX-2, especially the subset localised to the

nuclear envelope, might be a major source of
prostaglandins involved in a peroxisome
proliferator activated receptor (PPAR)-mediated
nuclear signalling system (Ref. 37), which could
explain the relationship between expression of
COX-2 and cell differentiation and replication.
There is also evidence that COX-2 might localise
to specific regions of the cell membrane, as it has
been reported to complex with caveolin (a cell
membrane protein) following induction in human
foreskin fibroblasts (Ref. 38).

Comparison of the protein structures
of the cyclooxygenase isoforms
COX-1 and COX-2
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Prostaglandin generation in vascular
disease

TXA2 promotes platelet activation
TXA2 is the main metabolite of arachidonic acid
in platelets in normal subjects (Ref. 4), but can
also be formed by nucleated cells such as
monocytes (Table 1). Initial studies showed
enhanced TXA2 biosynthesis in platelets during
the development of atherosclerosis in rabbits
(Ref. 39). Later, it was shown that TXA2 synthesis,
as reflected by plasma TXB2 concentration in
the coronary sinus, is increased in unstable
angina (Ref. 40). Furthermore, increased
urinary 11-dehydro-TXB2 and 2,3-dinor-TXB2 is
increased in patients with unstable angina and
atherosclerosis (Refs 41, 42).

TXA2 synthesis occurs as a result of platelet
activation and hyperactivity, and is associated
with increased plasma low-density lipoprotein
(LDL) cholesterol in vascular disease (Refs 43, 44).
Activated platelets release mitogenic factors
such as PDGF and EGF, which promote the
development of atherosclerosis by stimulating the
proliferation and migration of vascular smooth
muscle cells (VSMCs), leading to atherosclerotic
plaque formation. The degree to which TXA2
participates in this process is unclear. However,
it is known that TXA2 promotes platelet activation
and has a direct effect on VSMCs, promoting
mitogenesis through a distinct TXA2/PGH2
receptor (Refs 45, 46). Furthermore, TXA2 induces
phospholipase C activation, leading to the
production of inositol trisphosphate (IP3), which
results in the mobilisation of intracellular Ca2+

in VSMCs. This leads to the induction and

proliferation of VSMCs and hence contributes
to plaque development. Antagonism of the
TXA2/PGH2 receptor has been shown to retard
plaque formation in hypercholesterolaemic
rabbits (Ref. 47), prevent arterial thrombosis in
rats (Ref. 48) and decrease atherosclerosis in
the apoE−/− mouse, which lacks a functional
gene encoding apolipoprotein E and has
elevated levels of plasma LDL cholesterol
(hypercholesterolaemia) (Ref. 49).

Previous studies with low-dose aspirin
pointed to platelet COX-1 as the major source of
the increased TXA2 biosynthesis in atherosclerosis
(Ref. 50). Aspirin inhibits platelet-mediated
thrombosis at sites of vascular injury, suggesting
that TXA2 plays a role in platelet activation in vivo.
However, aspirin does not reduce narrowing of a
coronary artery (restenosis) following the
reduction of a previous narrowing by angioplasty
(Ref. 51) or removal by carotid endarterectomy
(Ref. 52), and there is no evidence that aspirin
influences the development and progression of
atherosclerosis. Despite the suppression of
platelet COX-1, incomplete suppression of TXA2
metabolite excretion has been detected in some
patients with unstable angina (Refs 42, 53). Karim
and colleagues have demonstrated metabolism of
endothelial-derived endoperoxides by platelet
thromboxane synthase, providing a mechanism
for the continued generation of thromboxane in
patients with unstable angina treated with aspirin
(Ref. 54). In one study, the persistent TXA2
formation in patients with unstable angina
treated with aspirin was abolished by the addition
of a nonselective COX inhibitor, which together

Table 1. Summary of the biological effects of PGI2 and TXA2 (tab001dfd)

Eicosanoid Sourcea Effects

PGI2 Endothelial cells Antithrombotic and anti-inflammatory
Vascular smooth muscle cells Induces vasodilation

Inhibits platelet aggregation
Inhibits platelet mitogen release
Suppresses smooth muscle cell proliferation
Inhibits leukocyte adhesion

TXA2 Platelets Platelet activator
Monocytes Induces vasoconstriction

Promotes mitogenesis
Stimulates smooth muscle cell proliferation

a PGI2 is mainly derived from the action of COX-2; TXA2 is mainly derived from the action of COX-1.
Abbreviations: COX, cyclooxygenase; PGI2, prostacyclin; TXA2, thromboxane A2.
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with other studies suggests an extra-platelet
source for the increased TXA2 (Refs 53, 55). This
suggests that inhibition of COX-1 in platelets is
insufficient to suppress the TXA2 generated in
atherosclerosis – possibly as other sources of TXA2
are responsible for the enhanced TXA2 formation
seen in this disease. Current clinical studies with
the TXA2 receptor antagonist S18886 (Ref. 49) will
go some way towards defining the role of TXA2
in atherosclerosis.

PGI2 is antithrombotic and
anti-inflammatory
PGI2 is generated by large-vessel endothelium and
VSMCs (Table 1). Although some reports show a
deficiency of PGI2 in atherosclerosis (Ref. 56), most
evidence shows that PGI2 is increased in vascular
disease (Refs 57, 58, 59). PGI2 inhibits the release
of mitogens such as PDGF and EGF from platelets,
endothelial cells and macrophages and thus, when
synthesised by endothelial cells, will suppress
VSMC proliferation in plaques (Ref. 60). It also
prevents the accumulation of cholesterol esters in
macrophages and therefore suppresses foam cell
formation (Ref. 61). PGI2 inhibits leukocyte
adhesion and activation, platelet aggregation and
VSMC migration.

PGI2 and stable analogues of the prostaglandin
reduce DNA synthesis in cultured rabbit aortic
smooth muscle cells and inhibit proliferation
of smooth muscle cells from atherosclerotic
plaque (Ref. 62). Overexpression of COX-1 by
virus-mediated gene transfer increases the
synthesis of PGI2 and protects against thrombus
formation (Ref. 63). Moreover, disruption of the
PGI2 receptor in mice has demonstrated an
antithrombotic as well as anti-inflammatory
role for PGI2 (Ref. 64). However, COX-1 is not
the major source of PGI2 in healthy individuals.
By contrast, recent studies measuring 2,3-dinor-
6-keto-PGF1α during administration of a selective
COX-2 inhibitor suggest that COX-2 is the major
source of PGI2 in normal subjects (Refs 65, 66).
An important question that concerns COX-2
inhibitors is whether the selective reduction of
PGI2 increases the risk of thrombosis in the face
of unopposed TXA2 generation. However, it is
interesting to note that no further increase in TXA2
generation (a marker of platelet activity) occurred
in patients with vascular disease who had been
administered the selective COX-2 inhibitor
nimesulide, despite marked suppression of PGI2
generation (Ref. 67).

COX expression in normal vasculature
and in vascular disease

COX-1
Both endothelial cells and VSMCs express COX
(Table 2), although endothelial cells contain
up to 20-times more COX than do VSMCs. In
large vessels, PGI2 is formed predominantly in
the endothelial layer by COX-1 (Ref. 65) and
COX-2, whereas the underlying VSMCs generate
considerably less prostaglandins. In small vessels,
the principal product is PGE2. Although COX-1
has traditionally been considered a constitutively
expressed isoform it can also be induced in
vascular cells. For example, shear stress induces
COX-1 in human umbilical vein endothelial cells
(HUVECs) (Ref. 68). Furthermore, vascular
endothelial growth factor (VEGF) induces
COX-1 expression in both bovine endothelial cells
and HUVECs (Ref. 69). The induction of COX-1
is not limited to endothelial cells, as induction of
this isoform in a promonocytic cell line has also
been reported (Ref. 70).

In addition to COX-1 being expressed in
endothelial cells and VSMCs in normal tissue,
it is also expressed in atherosclerotic plaques
(Table 2), predominantly  in VSMCs underlying
the plaque as well as in adjacent sections with
normal morphology (Ref. 71). In a model of
vascular injury characterised by VSMC
proliferation without macrophage infiltration,
there is increased COX-1 in VSMCs of the
neointima (the layer of proliferating VSMCs
that develops following disruption of the
endothelium). This suggests that expression of
COX-1 might be induced in vascular cells in vivo
(Ref. 55).

COX-2
COX-2 is the predominant source of PGI2 in
humans, based on studies of metabolite excretion
(Ref. 65), but the source of the COX-2 is unknown.
Ex vivo studies show no evidence that COX-2 is
expressed in normal blood vessels (Ref. 67). By
contrast, COX-2 is expressed in atherosclerotic
plaque ex vivo, which is not surprising given the
role of cytokines and growth factors in its
pathogenesis. The increase in COX-2 expression
is evident in endothelial cells, VSMCs and
macrophages (Refs 71, 72, 73, 74, 75) (Table 2).
COX-2 is also expressed in VSMCs of the
neointima following balloon angioplasty (Ref. 55).
The increased COX-2 expression in monocytes
and the subsequent generation of PGE2 results in
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induction of matrix metalloproteinases (MMPs)
2 and 9, and therefore might be involved both in
the development of lesions and in plaque rupture
(Ref. 75). However, PGI2, the main product in
vascular cells, inhibits MMPs, suggesting that
there might be a negative-feedback pathway
(Ref. 76). It is worth noting that morphologically
stable plaques express less COX-1, COX-2 and
MMPs in comparison with unstable lesions,
perhaps reflecting the greater abundance of
macrophages in the latter.

COX-2 expression in macrophages and VSMCs
generates eicosanoids that might be expected to
have proinflammatory effects such as increased
vascular permeability, chemotaxis and cell
proliferation (Ref. 77). COX-2 limits cell death (a
feature of atherosclerotic plaques) in several
tissues, including cardiomyocytes (Ref. 25) and
epithelial cancers (Ref. 78) and so indirectly could
promote VSMC growth. Prostaglandins might
also induce mitogenesis directly. TXA2, PGF2α and
the isoprostane 8-iso-PGF2α (a free-radical-derived
product of arachidonic acid) induce proliferation
of VSMCs (Refs 79, 80, 81, 82). COX-2-derived
prostaglandins mediate these processes through
activation of G-protein-coupled transmembrane
receptors and therefore might contribute to lesion
development. Alternatively, prostaglandins might
limit lesion development. Overexpression of
COX-2 or prostacyclin synthase suppresses the
development of vascular lesions and the growth
of VSMCs (Refs 83, 84). These effects might be
mediated through PPARs (Refs 85, 86), which are
a series of nuclear membrane receptors that
heterodimerise with other transcription factors.
Activation of PPAR-γ in macrophages and foam

cells inhibits the expression of activated genes
such as inducible nitric oxide synthase, MMP-9
and scavenger receptor A. PPAR-γ might also
affect monocyte recruitment in atherosclerotic
lesions through the regulation of vascular cell
adhesion molecule 1 (VCAM-1) and ICAM-1 in
vascular endothelial cells. Furthermore, a partial
PPAR-γ agonist has been shown to reduce
atherosclerosis in LDLR−/− mice (Ref. 87). As
COX-2 preferentially localises in the perinuclear
region, its products could have more access to
nuclear receptors. Indeed, PPAR-γ, which is
expressed in macrophage-derived foam cells
(Ref. 88), has been reported to regulate COX-2
through a negative-feedback loop (Ref. 89). The
natural ligand for PPAR-γ in this setting is
unknown. However, the COX products PGJ2 and
its metabolite 15-deoxy-PGJ2 are PPAR-γ agonists
and have been shown to regulate the expression
of genes in VSMCs, including those involved in
cell growth and/or apoptosis (Ref. 90).

COX and the cardiovascular system
Selective COX-2 inhibitors
NSAIDs are widely used to treat arthritis,
dental pain and other inflammatory conditions.
However, their long term use has been limited by
GI side effects and renal problems. NSAIDs inhibit
both COX-1 and COX-2. The inhibition of COX-2
has been implicated in treating inflammation
whereas the inhibition of COX-1 has been related
to the adverse effects.

Three classes of cyclooxygenase inhibtiors
exist. Aspirin is the only NSAID that covalently
modifies COX. Aspirin inhibits both COX-1 and
COX-2 by acetylation of Ser530 and Ser516,

Table 2. Summary of COX-1 and COX-2 expression in cell types in normal and
diseased vasculature (tab002dfd)

Constitutive Expression induced
COX expression in atherosclerosis Comments

COX-1 Circulating platelets Macrophage-derived foam cells Constitutive COX-1 expression in
Endothelial cells Vascular smooth muscle cells platelets generates TXA2;

Arterial thrombus increased COX-1 expression
and TXA2 production in advancing
atherosclerosis promotes thrombosis

COX-2 – Endothelial cells Increased COX-2 expression in
Macrophages atherosclerosis increases
Vascular smooth muscle cells PGI2 generation

Abbreviations: COX, cyclooxygenase; PGI2, prostacyclin; TXA2, thromboxane A2.
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respectively, in the substrate-binding site. This
excludes the access of arachidonic acid to Tyr385
by steric hindrance (Ref. 91). However, aspirin is
10–100-times more potent against COX-1 than
COX-2 as the acetyl-serine side chain can rotate
in the slightly larger site of COX-2, allowing
limited access of substrate to the active site (Ref.
92). Various experimental models have been used
to test the selectivity of NSAIDs in vitro, including
purified enzymes, intact cell systems and cells
transfected with recombinant enzymes. The
selectivity of the compound is evaluated by
calculating a ratio of the IC50 values for COX-2
and COX-1. However, depending on the model
used, the absolute IC50 value and values for the
IC50 ratio of COX-2:COX-1 vary, although the
order of selectivity stays constant from one
model to another. Naproxen and diclofenac are
equipotent in inhibiting COX-1 and COX-2,
whereas indomethacin, piroxicam, sulindac and
tolmetin are more active against COX-1 than
COX-2 (Ref. 93). Development of coxibs, the
selective COX-2 inhibitors, is a response to the
poor therapeutic profile of traditional NSAIDs.
While the important residues for catalysis are
conserved between COX-1 and COX-2, the
substitution of a valine at position 509 in the
cyclooxygenase site of COX-2 for an isoleucine in
COX-1 has allowed for the generation of COX-2
selective inhibitors. It has been shown by site-
directed mutagenesis that V509I COX-2 behaves
like COX-1, being unresponsive to inhibition by
COX-2 selective inhibitors (Ref. 94).

All the selective COX-2 inhibitors described
to date are reversible inhibitors of COX-2 and
relatively poor inhibitors of COX-1, as a result
of the one amino acid difference within the
hydrophobic cyclooxygenase channel. The coxibs
represent a new class of anti-inflammatory
drugs that are better tolerated than traditional
NSAIDs but equally efficacious. The first
selective COX-2 inhibitors to be developed were
celocoxib (Ref. 95) and rofecoxib (Ref. 96).
Subsequently, other coxibs such as valdecoxib
(Ref. 97) and etoricoxib (Ref. 98) have been
developed. To date, the efficacy of coxibs in the
treatment of arthritis, the relief of acute pain and
the lower incidence of GI side effects have been
documented in clinical studies (Refs 11, 99, 100).

The development of vascular disease
Much attention has focused on the relative
contributions of COX-1 and COX-2 to the

development of atherosclerosis in vivo. These
studies have been facilitated by the development
of coxibs (Ref. 96).

Administration of coxibs provides a means of
studying the contribution of COX-2 both to
prostaglandin formation in vascular disease and
to the development of vascular lesions. In a rat
model of balloon angioplasty of the carotid artery,
both COX-1 and COX-2 expression were found
to be increased in VSMCs of the neointima
generated (Ref. 55). This was associated with an
increase in urinary TXA2 and PGE2 generation that
was in part suppressed by the coxib SC236.
However, this coxib had no effect on neointima
formation. By contrast, administration of either
the selective COX-1 inhibitor SC-560 or the
nonselective NSAID indomethacin suppressed
the intimal hyperplasia. Thus, whereas both
isoforms were responsible for the increase in
prostaglandin generation in the animals following
vascular injury, only COX-1 appeared to play a
role in the development of restenosis. COX-1 has
also been implicated in a model of atherosclerosis
(Ref. 101).

COX-1 expressed in vascular lesions might
play a role in lesion development, have a
protective effect or regulate platelet deposition.
For example, overexpression of COX-1 in vascular
tissue using an adenoviral vector protects against
angioplasty-induced arterial thrombosis in a pig
model (Ref. 102). Alternatively, the effects of SC-
560 might be due to the suppression of platelet
and/or vascular TXA2, a potent platelet activator
and mitogen for VSMCs. This is supported by
recent findings showing that continuous
administration of aspirin retards the development
of atherosclerosis in apoE−/− mice (Ref. 103).

Other studies suggest a role for COX-2 in
atherosclerosis. Pratico and colleagues reported
a 30% reduction in atherosclerosis by nimesulide
in the apoE−/− murine model. Burleigh et al. also
demonstrated that administration of the coxib
rofecoxib reduced atherosclerosis in a mouse
model deficient in the LDL receptor (LDLR)
(Ref. 104). In this study, repopulation of the
COX-2+/+LDLR−/− mouse with monocytes
from a COX-2-knockout mouse also inhibited
atherosclerosis, implicating monocyte-expressed
COX-2 alone in the development of
atherosclerosis.

In human atherosclerosis and in experimental
mouse models, generation of both TXA2 and PGI2
is increased (Ref. 105). TXA2 is largely derived
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from COX-1, at least on the basis of inhibitor
studies. Thus, low-dose aspirin suppresses TXA2
formation whereas selective COX-2 inhibition has
little effect. By contrast, both COX-1 and COX-2
are responsible for the increase in PGI2 generation
(Ref. 67). Indeed, expression of both isoforms is
increased in human atherosclerotic lesions, with
several cell types expressing COX-2, including
VSMCs and monocytes (Refs 106, 107) (Table 2).
Whether specific inhibition of either isoform
influences the development of atherosclerosis is
unknown. There is also much evidence from
clinical trials that aspirin protects against stroke
and myocardial infarction (Ref. 108). Although
aspirin has been reported in a small subset of
individuals to retard carotid plaque progression
(Ref. 109), there is no evidence that NSAIDs
influence lesion formation (Ref. 110). Indeed,
possibly as they are reversible inhibitors of
COX-1 in contrast to aspirin, NSAIDs appear to
have no effect in vascular disease.

Angiogenesis
Angiogenesis is an essential process in tumour
growth. Both COX isoforms appear to modulate
angiogenesis. Neovessel formation requires the
presence of COX-2, which mediates the synthesis
of angiogenic factors (Refs 111, 112). Indeed,
selective inhibition of COX-2 in neovascular
tumours that support human cancers suggests
an antitumour role for COX-2 inhibition by
inhibition of cell proliferation and angiogenesis
(Refs 113, 114, 115). Furthermore, TXA2 might
prevent and reverse angiogenesis (Ref. 5) via
endothelial apoptosis during conditions such
as myocardial infarction or myocarditis, in
which TXA2 is formed and released from
platelets or macrophages. Therefore, it is
reasonable to hypothesise that COX-2 might
contribute to the formation of new blood vessels
in the development of atherosclerosis, thereby
allowing the plaque to expand. Indeed, the COX-
2-derived production of PGE2 and PGI2 can
directly stimulate endothelial cell migration and
growth-factor-induced angiogenesis (Refs 116,
117). However, the microvascular endothelium
expresses both COX-1 and COX-2, raising the
possibility that the presence of both isoforms
contributes to the formation of new blood vessels
within the plaque. Indeed, previous work has
shown that VEGF induces COX-1-dependent
proliferation of endothelial cells (Ref. 69). In
addition, Tsujii et al. have demonstrated that

COX-1 activity in endothelial cells modulates
angiogenesis (Ref. 118). Conversely, other authors
have shown that COX-2-derived prostaglandins
regulate angiogensis in endothelial cells (Ref. 119)
and in animal models of inflammation (Ref. 120).
Therefore, it seems reasonable to suggest that both
COX isoforms are involved in the angiogenic
response.

In atherosclerosis, the development of
angiogenesis could have both beneficial and
deleterious effects. On the one hand, increased
angiogenesis might play a role in the healing of
ischaemic tissues (Ref. 121); on the other hand,
angiogenesis in an atherosclerotic lesion might
also result in plaque expansion and vulnerability
(Refs 122, 123, 124, 125). It has recently been
demonstrated in vitro that both nonselective
(indomethacin) and COX-2-selective (NS-398)
NSAIDs inhibit hypoxia-induced angiogenesis in
gastric microvascular endothelial cells (Ref. 126),
suggesting a role for COX-2 in angiogenesis in
endothelial cells .

Selective COX-2 inhibition and
cardiovascular disease
Selective inhibition of COX-2 with coxibs has been
used to treat arthritis for several years (Ref. 13).
As atherosclerosis is an inflammatory process
in which COX-2 expression is induced and
subsequent prostaglandin generation is increased,
selective inhibition of COX-2 might be expected
to influence atherosclerosis. The transformation
of macrophages to foam cells in response to
acetylated LDL is associated with decreased PGI2
and PGE2 generation (Ref. 127). PGE2, through the
EP4 receptor and cAMP elevation, regulates the
stability of COX-2 mRNA in a negative-feedback
loop. Consequently, it has been proposed that a
reduction in PGE2 generation during macrophage
and foam cell formation might downregulate
COX-2 expression and could attenuate the
inflammatory response (Ref. 128). However, based
on data from animal models and results of clinical
trials investigating GI safety of coxibs (see below),
it is unlikely that the effect of selective COX-2
inhibition on the development of atherosclerosis
will be examined in a human population.

Recently, two large trials addressing the
efficacy of coxibs and the associated risk of GI
complications have reported on the frequency of
cardiovascular events. In the VIGOR study
(Vioxx Gastrointestinal Outcomes Research
Study) (Ref. 13), the occurrence of GI toxicity with
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the coxib rofecoxib (50 mg once daily) or the
NSAID naproxen (500 mg twice daily) was
compared in 8076 patients with rheumatoid
arthritis. In this study, aspirin use was not
permitted. The incidence of GI perforation,
haemorrhage or symptomatic peptic ulcer was
significantly less in the rofecoxib group compared
with the naproxen group. The CLASS trial
(Celocoxib Long-Term Arthritis Safety Study)
(Ref. 129) compared the coxib celocoxib (400 mg
twice daily) with the NSAID diclofenac (75 mg
twice daily) and celocoxib with the NSAID
ibuprofen (800 mg three times daily). Aspirin use
was permitted in all CLASS trial patients. There
was no significant difference in the incidence of
primary endpoint of ulcer or GI bleeding in either
NSAID group.

In the VIGOR trial, the rates of nonfatal
myocardial infarction and death from any
vascular event was higher in the rofecoxib group
than in the naproxen group (0.8% versus 0.4%,
P < 0.05). It is important to note that 4% of the
patients in the VIGOR trial met the Food and Drug
Administration (FDA) criteria for the use of
aspirin therapy. Conversely, in the CLASS trial,
there were no differences in cardiovascular events
between the celocoxib, diclofenac or ibuprofen
groups. However, in this trial, 21% of the
patients received aspirin therapy during the
study. As a result, there have been suggestions that
long-term administration of coxibs might increase
the risk of cardiovascular events (Refs 14, 130).
However, there are important issues that need to
be addressed that might in part explain the
discrepancies observed between the two studies.

It has been suggested that the results of
the VIGOR study could be explained by an
antithrombotic effect of naproxen. Naproxen has
significant antiplatelet effects with a mean platelet
aggregation inhibition in the region of 90%
(Ref. 131), which is comparable with aspirin
(92%). Therefore, naproxen, but not ibuprofen
(platelet aggregation 80%) or diclofenac (platelet
aggregation of 40%) as used in the CLASS trial,
might be expected to achieve a strong inhibition
of platelet aggregation. However, this feature of
naproxen has been disputed (Ref. 132) and indeed
case–control studies in large populations suggest
that naproxen has no effect on the risk of events
in patients with coronary artery disease (Ref. 133).

An alternative explanation that is consistent
with the biology of prostaglandins in the
cardiovascular system is that COX-2 inhibitors,

by virtue of their inhibition of PGI2 without a
corresponding reduction in platelet TXA2, are
prothrombotic (Fig. 3). Cheng and colleagues, in
studies of prostacyclin-receptor-knockout (IPKO)
and thromboxane-receptor-knockout (TPKO)
mice, showed that endogenous PGI2 modulated
the cardiovascular effects of TXA2. Thus, vascular
proliferation and platelet activation in response
to injury were enhanced in IPKO but decreased
in TPKO animals. Furthermore, the augmented
response to vascular injury in the IPKO animals
was abolished when both the prostacyclin
receptor and thromboxane receptors were deleted
(Ref. 134). These findings might in part explain
the cardiovascular effects of coxibs in the VIGOR
study. In normal subjects (Ref. 65) and in
atherosclerosis (Ref. 67), a substantial proportion
of endogenous PGI2 is generated by COX-2, so
that selective COX-2 inhibitors suppress PGI2
formation by as much as 80% with little effect on
TXA2. However, it should be emphasised that
targeted gene deletion of the prostacyclin receptor
might greatly exceed the effect achieved by
COX-2 inhibitors, where there is continued
generation of PGI2. Moreover, the precise source
of the PGI2 inhibited by COX-2 inhibitors is
unknown, although the vasculature is a major
source of this prostaglandin.

A further explanation for the differences
between the two trials is differences in the
cardiovascular risk in the populations studied.
Patients with rheumatoid arthritis (Ref. 135) such
as those in the VIGOR trial are reported to have
an increased rate of cardiovascular events,
although this is disputed. This has not been
observed in patients with osetoarthritis (Ref. 136),
who constituted the majority of patients in the
CLASS trial. However, it is important to note that
the incidence of myocardial infarction was very
similar in the two populations treated with the
COX-2 inhibitors (0.8% for celocoxib; 0.74% for
rofecoxib).

Conclusions
Selective COX-2 inhibitors have been developed
as a new class of inhibitors used in the treatment
of such conditions as arthritis and cancer. Their
advantage of not causing gastric ulceration as
is observed with the other NSAIDs is widely
recognised. However, recently their long-term
use has been challenged by reports that
selective inhibition of COX-2 is associated
with increased cardiovascular events such as
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myocardial infarction. It is clear that expression
of both COX-1 and COX-2 increases in vascular
disease, resulting in enhanced prostaglandin
generation. COX-2 is expressed in the monocytes/
macrophages and proliferating VSMCs that
typify atherosclerotic lesions, in addition to
endothelium. Patients with extensive disease have
enhanced formation of TXA2, a potent platelet
activator and vasoconstrictor, largely derived
from COX-1 in platelets. Formation of PGI2, a
potent platelet inhibitor and vasodilator, is also
increased largely through COX-2. Thus, in
atherosclerosis, COX-2 inhibition preferentially
suppresses PGI2 generation and spares TXA2, as
it also does in normal individuals. Theoretically,
PGI2 might limit the extent of platelet adhesion
and activation at sites of vascular disease. Given
that PGI2 regulates the response to TXA2, and
COX-2 inhibition selectivity suppresses PGI2, it
follows that COX-2 inhibitors might enhance
platelet activity (Fig. 3). This provides a plausible
explanation for the increased risk of myocardial
infarction reported with the COX-2 inhibitor

rofecoxib. There are data demonstrating that
COX-2 expressed in monocytes/macrophages
contributes to the development of atherosclerosis
in murine models and to the expression of
proteins such as MMPs that contribute to plaque
instability. In that case, inhibition of COX-2 would
be expected to limit the extent of atherosclerosis.
However, more evidence suggests a role for
COX-1-mediated prostaglandin generation in
the development of atherosclerosis. Selective
inhibition of COX-1 reduces lesion formation,
possibly reflecting an antiplatelet effect; this is
further supported by studies showing that
nonselective COX inhibitors, such as aspirin
and indomethacin, retard the development of
atherosclerosis animal models to a greater extent
than do selective COX-2 inhibitors.

However, the specific role of COX-1 and
COX-2 in vascular regulation is still unknown
and knowledge of this is imperative to the future
use of coxibs. More information is required on
the pharmacology and clinical use of selective
COX-2 inhibitors – in particular, their combination

Figure 3. Possible mechanisms underlying the effect of selective COX-2 inhibition in atherosclerosis.
(a) In atherosclerosis, prostacyclin (PGI2) generation inhibits thromboxane A2 (TXA2)-induced platelet activation
and aggregation. (PGI2  is prduced by endothelial cells; TXA2 is produced by platelets.) (b) Administration of a
nonselective, nonsteroidal anti-inflammatory drug (NSAID) decreases generation of both TXA2 and PGI2 (dashed
lines), leading to reduced platelet aggregation. (c) Selective inhibition of COX-2 decreases PGI2 without a
concomitant inhibition of TXA2, and hence increases platelet aggregation (fig003dfd).
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with antiplatelet drugs. In the interim, it seems
reasonable to suggest that in patients with a
history of a cardiovascular event, coxibs should
be used in combination with low-dose aspirin.
Aside from potentially increasing the rate of
myocardial infarction, selective inhibition of COX-
2 might have relevance to other aspects of
cardiovascular biology such as hypertension,
atherogenesis and cardiac function.
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