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Abstract

In this paper, the authors have presented a paraxial theory for propagation of (1) Gaussian (2) dark hollow Gaussian high
power laser beams in the atmosphere, considering the nonlinearity arising from the temperature variation along the wave-
front. Specifically, the focusing parameter for both beams has been evaluated as a function of distance and initial beam
power and width (corresponding to radiation of wavelengths 1.045 μ, 1.625 μ, and 2.141 μ in the water absorption
window) for the maritime, desert, rural, and urban environments as modeled at NRL; the results have been presented in
the dimensionless form. It is seen that in all four environments a dark hollow beam defocuses less than the
corresponding Gaussian beam of same radius and power. It is suggested that this conclusion based on the paraxial
theory be verified by numerical simulation.
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INTRODUCTION

Many directed energy systems are based on long distance
propagation of high power laser beams through the atmos-
phere in a variety of environments like maritime, desert,
rural, and urban. The efficiency of propagation, i.e., the ratio
of the power of the laser beam incident on a target to the initial
power of the beam is significantly affected by the phenomenon
of thermal blooming; it is of interest to consider the basics of
this phenomenon. When a Gaussian beam with maximum ir-
radiance on the axis of the beam propagates through an ab-
sorbing medium, the temperature are maximum on the axis
and falls off radially. Such a temperature profile corresponds
to radially increasing refractive index in air and consequent de-
focusing, known as thermal blooming (Akhmanov et al.,
1968a; 1968b; Brown & Smith, 1975; Schmitt, 2003).
The scattering and absorption of laser radiation in the

water vapor absorption windows, specifically corresponding
to the wavelengths 1.045 μ, 1.625 μ, and 2.141 μ has been
reviewed at length by Sprangle et al. (2005); the gross
scattering and absorption coefficients, evaluated by these
authors, which are in agreement (Dos Hammel et al., 2004;

Bodhaine, 1995) with in situ observations have been used
in computations, reported in this paper.

A steady-state paraxial theory of thermal blooming was
given by Akhmanov et al. (1968a; 1968b) and seen to be
in agreement with experiments on laser propagation in
water and acetone. Brown and Smith (1975) pointed out
that aerosol absorption is mainly responsible for thermal
blooming in air and that the steady-state gets established in
a time on the order of a millisecond. Kaushik et al. (1975)
evaluated thermal distortion of the beam due to wind.
Weiss and Me Innis (1980) concluded from computer simu-
lations that contrary to the suggestion by Fried (1974), a
round beam in all cases of interest suffers less thermal bloom-
ing than a square beam. Armstrong (1984) has studied the dy-
namics of laser aerosol interaction including vaporization,
breakdown, etc. Sprangle et al. (2002) and Penano et al.
(2004) have studied the propagation of a very high energy
laser pulse in air, causing a host of nonlinear phenomena
on a time scale, much shorter than that for the onset of ther-
mal blooming. On the basis of numerical simulation, Schmitt
(2003) has concluded that thermal blooming can be mitigated
by the use of short pulses of very intense laser beams with
associated nonlinear effects (causing self-focusing).

Possibly the most advanced tool for the study of high
energy laser propagation in the atmosphere viz HELCAP
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was developed at NRL (Sprangle et al., 2003). The model
incorporates (1) aerosol and molecular absorption and scat-
tering, (2) aerosol heating and vaporization, (3) thermal
blooming, (4) atmospheric turbulence, and (5) laser beam
quality. However, all these studies to date are confined to
Gaussian beams and little if any attention has been given
to other types of beams.
In this paper, the authors have investigated the thermal

blooming of laser beams with central shadow, usually
called dark hollow beams (DHB) for possible applications;
such beams have found attractive applications in modern
optics, atomic optics, and plasmas (Soding et al., 1995;
Kuga et al., 1997; Ovchinnikov et al., 1997; Yin et al.,
2003; Song et al., 1999; Xu et al., 2002; Cai et al., 2003;
York et al., 2008). A number of experimental methods
have been developed for production of hollow Gaussian
beams (Herman & Wiggins, 1991; Wang & Littman, 1993;
Lee et al., 1994). The focusing of such beams in plasmas
has been extensively studied (Sodha et al., 2009a; 2009b;
Misra & Mishra, 2009).
In central portion of the dark hollow beam 0< r< rm, the

temperature increases radially, while in the peripheral region
r> rm the temperature falls radially (the maximum of irradi-
ance occurs at r= rm) Hence, the refractive index is maxi-
mum on the axis and it decrease radially in the central
region; for r= rm, the refractive index increases radially.
Hence, the central portion tends to focus while the peripheral
one defocuses. As a result, such a beam defocuses less than
that experienced by a corresponding Gaussian beam.
In this paper, the authors have analyzed the thermal

blooming for a Gaussian and a dark hollow beam in the
atmosphere, characterized by specific absorption and scatter-
ing coefficients in the paraxial and near paraxial approxi-
mation as outlined by Akhmanov et al. (1968a; 1968b) and
Sodha et al. (2009a). The theory has been used to study
the beam width parameter for DHB and Gaussian beam in
the four environments, characterized by Sprangle (2005).
In a preliminary study like the present one, the use of para-

xial approximation indicates the relative merits of the Gaus-
sian and DHB beams. However, it is indicated that in all
environments the DHB defocuses less than a corresponding
Gaussian beam; it is suggested that this conclusion be
verified by a more rigorous numerical simulation (like
HELCAP).

PROPAGATION OF ELECTROMAGNETIC BEAM

The Dielectric Function

Following Sodha et al. (1976), the variation of the dielectric
function of air due to thermal self-action at a temperature T
may be expressed as,

ε(r,z) = εr(T0)+ T(r,z)− T0[ ]dεr
dT

∣∣∣∣
T=0

− iεi, (1a)

where εr is the real part of the dielectric function, T0 is the
maximum temperature on the wave-front of the beam, and
εi is the imaginary part of the dielectric function and is
practically independent of temperature; for air dεr/dT is
negative. Since T is a function of r and z, Eq. (1a) may be
written as

ε(r,z) = εR(r, z)− iεi, (1b)

where R= g, n for Gaussian and Hollow Gaussian beam,
respectively, in this analysis.

Propagation

Consider the propagation of a linearly polarized radially sym-
metric electromagnetic beam with its electric vector polar-
ized along the y-axis, propagating in air along the z-axis.
The amplitude of the electric field vector E satisfies the
scalar wave equation for such a beam, which may be ex-
pressed in a cylindrical coordinate system with azimuthal
symmetry as

∂2E
∂z2

+ ∂2

∂r2
+ 1

r

∂
∂r

( )
E + ω2

c2
ε(r,z) E = 0, (2)

where c is the speed of light in vacuum. Eq. (2) can be solved
in the paraxial approximation by following the analysis
of Akhmanov et al. (1968a; 1968b) and its extension by
Sodha et al. (1974; 1976) for Gaussian beam and the work
of Sodha et al. (2009a; 2009b) and Misra and Mishra
(2009) on nonlinear propagation of hollow Gaussian beams
in plasmas.
The starting point is a solution of the form

E(r,z) = A(r,z) exp −i ∫
z
0 k(z)dz

( )
, (3)

where A(r,z) is the complex amplitude of the electric field,
k(z) = ω/c

������
εR0(z)

√
, εR0 (z) is the dielectric function, corre-

sponding to the maximum electric field on the wave-front
of the electromagnetic beam. Substituting for E(r,z) from
Eq. (3) in Eq. (2) and neglecting ∂2A/∂z2 (in the Jeffreys-
Wentzel-Kramers-Brillouin approximation) one obtains

2ik
∂A
∂z

+ iA
∂k
∂z

+ k2A = ∂2A
∂r2

+ 1
r

∂A
∂r

( )
+ ω2

c2
ε(r,z)A. (4)

For a nearly spherical wave front (a valid assumption in the
paraxial approximation), the complex amplitude A(r,z) may
be expressed as,

A(r,z) = A0(r,z) exp −ik(z)S(r,z)( ), (5)

where S(r,z) is the eikonal associated with the electromag-
netic beam and A0(r,z) is the real amplitude of the electro-
magnetic beam. The propagation of the Gaussian beam and
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various orders HGBs in air has been analyzed separately as
follows.

The Gaussian Beam

The electric field distribution for the Gaussian beam may be
expressed as

(E0g)z=0 = E00g exp − r2

2r20g

( )
, (6)

where r0g is the initial beam width of the Gaussian beam.
Following the paraxial approach the relevant parameters

(i.e., dielectric function ε(r,z), eikonal and irradiance) may
be expanded around the maximum of the Gaussian electro-
magnetic beam, i.e., around r= 0. Thus, one can express
the dielectric function εg(r,z) as

εg(r,z) = ε0g(z)− (r2/r20g)ε2g(z)− iεi, (7)

where ε0g(z) and ε2g(z) are the coefficients associated with r
0

and r2 in the expansion of εg(r,z) around r= 0. The
expressions for these coefficients (all real) have been derived
later.
Substitution for A(r,z) from Eq. (5) and ε(r,z) from

Eqs. (1b) and (7) in Eq. (4) and equating the real and
imaginary parts on both sides of the resulting equation one
obtains

2Sg
k

∂k
∂z

+ 2
∂Sg
∂z

+ ∂Sg
∂r

( )2

= 1
k2A0g

∂2A0g

∂r2
+ 1

r

∂A0g

∂r

( )
− r2

r20g

ε2g(z)
ε0g(z)

,

(8a)

and

∂A2
0g

∂z
+ A2

0g
∂2Sg
∂r2

+ 1
r

∂Sg
∂r

( )
+ ∂A2

0g

∂r
∂Sg
∂r

+ A2
0g

1
k(z)

∂k(z)
∂z

+ k(z)
εi(z)
ε0g(z)

( )
= 0, (8b)

where εi(z) is the imaginary part of the dielectric function.
One can express the solution of Eq. (8b) (in the paraxial

approximation r/r0≪ 1) as

A2
0g =

E2
0g

f 20

ε0g(0)
ε0g(z)

( )1/2

exp − r2

r20gf
2
0

( )

× exp − ∫
z
0
εi(ω/c)dz������

ε0g(z)
√

[ ]
,

≈
E2
0g

f 20

ε0g(0)
ε0g(z)

( )1/2

exp − r2

r20gf
2
0

( )
× exp(−δz), (9a)

where

Sg(r, z) = r2

2
βg(z)+ φg(z),

βg(z) =
1
f0

df0
dz

,

ε0g(z) ≈ 1 for air,

δ = εi(ω/c) may be recognized as the irradiation

attenuation constant in the medium,

φg(z) is an arbitrary function of z,

(9b)

and

f0(z) is the beam width parameter, associated with the
Gaussian beam.

On substituting for A0g
2 and Sg from Eqs. (9a) and (9b) in

Eq. (8a) and equating the coefficient of r2 on both sides of
the resulting equation, one obtains

f0
d2f0
dz2

= 1

k2r20gf
2
0

− 1

r20g

ε2g
ε0g

. (10)

The dependence of the beam width parameter f0 on z can be
obtained by the numerical solution of Eq. (10) after putting
suitable expressions for ε0g and ε2g, with the initial boundary
conditions f0= 1, df0

dz = B−1 at z= 0, where B is the initial
radius of curvature of the beam.

The Hollow Gaussian Beam

The amplitude of the electric field associated with a hollow
Gaussian electromagnetic beam (HGB) having zero irradi-
ance along the axis r= 0 and a maximum away from the
axis, can be expressed as

(E0n)z=0 = E00n
r2

2r20n

( )n

exp − r2

2r20n

( )
, (11)

where r0n is the initial beam width of the HGB, n is the order
of the HGB and a positive integer, characterizing the shape of
the HGB and position of its maximum and |E0| is maximum
at r2= rmax

2 = 2nr0n
2 .

To proceed further one can adopt a paraxial like approach
(Sodha et al., 2009a; 2009b; Misra & Mishra, 2009), analo-
gous to the paraxial approximation. Thus, one may start by
expressing Eq. (4) in terms of variables η and z, where η is
defined as

η2 = r/r0nfn
( )2− 2n
[ ]

, (12)

r0n fn (z) is the width of the beam, and r2= 2nr0n
2 fn

2

is the position of the maximum irradiance of the
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propagating beam. It is shown later that in the paraxial
like approximation, i.e., when η2 ≪ 2n, the beam retains
its profile.
In the paraxial like approximation the relevant par-

ameters (i.e., dielectric function ε(r,z), eikonal and irradi-
ance) may be expanded around the maximum of the
HGB, i.e., around η= 0. Thus, one can express the dielec-
tric function εn(η,z) around the maximum (η= 0) of the
HGB as

εn(η, z) = ε0n(z)− η2ε2n(z)− iεi, (13)

where ε0n(z) and ε2n(z) are the coefficients (both real)
associated with η0 and η2 in the expansion of εn(η ,z)
around η= 0. The expressions for these coefficients have
been derived later.
Substitution for A(r,z) from Eq. (5) and ε(r,z) from

Eq. (1b) and εn(η,z) from Eq. (13) in Eq. (4) by using the
transformation Eq. (12) and the separation of the real
and imaginary parts on both side of the resulting equation
leads to

2Sg
k

∂k
∂z

+ 2
∂Sn
∂z

− (
���
2n

√ + η)
f

∂f
∂z

∂Sn
∂η

( )

+ 1

r20nf
2
n

2n+ η2

η2

( )
∂Sn
∂η

( )2

= 2
η
− 2n+ η2

η3

( )
∂A0n

∂η
+ 2n+ η2

η2
∂2A0n

∂η2

[ ]

− η2
ε2n(z)
ε0n(z)

, (14a)

and

∂A2
0n

∂z
− (

���
2n

√ + η)
f

∂f
∂z

∂A2
0n

∂η

( )
+ A2

0n

r20nf
2
n

×
∂2Sn
∂η2

+ 1
η

∂Sn
∂η

( )
+ 2n

η2
∂2Sn
∂η2

− 1
η

∂Sn
∂η

( )[ ]

+ 1

r20nf
2
n

(2n+ η2)
η2

∂A2
0n

∂η
∂Sn
∂η

+ A2
0n

1
k(z)

∂k(z)
∂z

+ k(z)
εi0(z)
ε0n(z)

( )
= 0. (14b)

One can express the solution of Eq. (14b) (in the paraxial like
approximation η2 ≪ 2n) as

A2
0n =

E2
0n

22nf 2n

ε0n(0)
ε0n(z)

( )1/2

2n+ η2
( )2n

× exp − 2n+ η2
( )( )

× exp (− δz), (15a)

where

Sn(η, z) = η2

2
βn(z)+ φn(z) is the eikonal term

corresponding to HGB,

βn(z) = r20nfn
dfn
dz

,

φn(z) is an arbitrary function of z, (15b)

and

fn(z) is the beam width parameter for the HGB.

On substituting for A0n
2 and Sn from Eqs. (15a) and (15b) in

Eq. (14a) and equating the coefficients of η2 on both sides of
the resulting equation, one obtains

ε0nfn
d2fn
dz2

= (12n2 − 2n− 13/4)

k2r20nf
2
n

− ε2n
r20n

. (16)

The variation of the beam width parameter fn with z can be
obtained by the numerical integration of Eq. (16) after
putting suitable expressions for ε0n and ε2n, with appropriate

initial boundary conditions viz. fn= 1,
dfn
dz

= B−1 at z= 0.

The Nonlinear Term

Consider a cylindrical shell of thickness dr (with radius r),
whose axis is coincident with the beam. Neglecting convection
effects the steady state thermal balance may be expressed as

χ
∂
∂r

r
∂T
∂r

( )
= r

dI(r, z)
dz

, (17a)

where

I(r, z) = (c/4π)A2
0(r, z),

A2
0 is given by Eqs. (9a) and (15a) with ε0r ≈ 1, (17b)

and

χ is the thermal conductivity of the medium.

The attenuation coefficient δ is the sum of the absorption (αa)
and scattering (αs) coefficients, i.e.,

δ = αa + αs. (17c)

Gaussian Beam

In the paraxial approximation (r/r0 ≪ 1), one can expand
T(r,z) around the maximum viz. r= 0, as
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T(r, z) = T0g − (r2/r20)T2g. (18)

Substituting for T(r,z) from Eq. (18) in Eq. (1) and compar-
ing the coefficient of r0 and r2 in the resulting equation with
Eq. (7) one obtains,

ε0g = ε0 + T0g − T0
[ ] dε

dT
, (18a)

and

ε2g = T2g
dε

dT
. (18b)

On substituting for T(r,z) from Eq. (18) in Eq. (17a) and com-
paring the r independent terms on both side of the resulting
equation one obtains,

T2g =
αacr20g
16πχ

E2
0g

f 20
exp −(αa + αs)z( ) (19)

Substituting for T2g from Eq. (19) in Eq. (7)

ε2g =
αacr20g
16πχ

E2
0g

f 20
exp −(αa + αs)z( ) dε

dT

or

ε2g = αa
4πχ

P0g

f 20
exp −(αa + αs)z( ) dε

dT
, (20a)

where

P0g = cr20E
2
0g/4 is the initial power of the Gaussian

electromagnetic beam. (20b)

On substituting for ε2g from Eq. (20a) in Eq. (10) and re-
membering that ε0g ≈1 one obtains,

f0
d2f0
dz2

= 1

r40gk
2f 20

− αa
r20g4πχ

P0g exp −(αa + αs)z( ) dε
dT

,

or

f0
d2f0
dξ2

= 1

f 20 ρ
2
0g

+ Π0g exp −βξ
( )

, (10a)

whereΠ0g = Λ = − αaP0g/4πχdε/dT
( )

is proportional to the
product of the initial power of the Gaussian electromagnetic
beam and the absorption coefficient, ρ0g= (r0gω/c) is the
dimensionless beam width, β= r0g (αa+ αs) and ξ= z/r0.

Hollow Gaussian Beam

Following the paraxial like approach (i.e., η2≪ 2n), the
radial dependence of the electron temperature T(η,z), can
be expanded around the maximum of the irradiance of the
beam; thus,

T(η, z) = T0n − η2T2n. (21)

Substituting for T(η,z) from Eq. (21) in Eq. (1) and compar-
ing the coefficient of r0 and r2 in the resulting equation with
Eq. (13) one obtains,

ε0n = ε0 + T0n − T0[ ] dε
dT

, (22a)

and

ε2n = T2n
dε

dT
. (22b)

The thermal balance (Eq. (17a)) may be expressed in terms of
variables (η,z) as follows,

χ

r20nf
2
n

∂2T
∂η2

+ 1
η

∂T
∂η

( )
+ 2n

η2
∂2T
∂η2

− 1
η

∂T
∂η

( )[ ]
= dI

dz
, (23)

where

β = r0g(αa + αs).

Substituting for T(η,z) from Eq. (21) in Eq. (23) and compar-
ing the η independent terms on both sides in the resulting
equation one gets,

T2n = c

4π
αar20n
4χf 2n

E2
0n exp −2n( )n2n exp −(αa + αs)z( ). (24)

From Eqs. (22b) and (24) one obtains,

ε2n = c

4π
αar20n
4χf 2n

E2
0n exp −2n( )n2n exp −(αa + αs)z( ) dε

dT
,

or

ε2n = αa
4πχf 2n

22n

2n!

( )
P0n exp −2n( )n2n exp −(αa + αs)z( ) dε

dT
, (25a)

where

P0n = cr20nE
2
0n

4
2n!
22n

( )
is the initial power of the HGB. (25b)

On substituting for ε2n from Eq. (25a) in Eq. (16) and
remembering that ε0n≈ 1 the equation for beam width par-
ameter fn is
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fn
d2fn
dz2

= (12n2 − 2n− 13/4)

k2r40nf
2
n

− αa
4πχ

P0n

r20n

dε

dT

22n

2n!

( )
n2n

× exp −2n( ) exp −(αa + αs)z( ),

or

fn
d2fn
dξ2

= (12n2 − 2n− 13/4)

f 2n ρ
2
0n

+ Π0n exp −βξ
( )

, (16a)

where

Π0n = − αa
4πχe

dε

dT
P0n

22n

2n!

( )
n2n exp −2n( )

( )

= 22n

2n!

( )
n2n exp −2n( )

( )
Λ (with Pog = Pon),

corresponds to initial dimensionless power of the HGB,
ρ0n= (r0n ω/c) is the dimensionless beam width and βn=
r0n (αa+ αs ); for n= 1, Πon= 2exp(−2)Λ.

NUMERICAL RESULTS AND DISCUSSION

Atmospheric Parameters

The absorption (αa) and scattering (αs) coefficients for four
environments, arrived at by Spangle et al. (2005) are given
in Table 1.
Thermal conductivity of air χ= 2.5 × 103 erg/s cmK
Rate of change of dielectric function with temperature

dε

dT
= −8.7 × 10−7/K

Laser Parameters

r0 (r0g= r0n)= 50 to 100 cm, initial power P0= 0.5 to 5.0MW
and wavelengths 1.045 μm, 1.625 μm and 2.141 μm (water
absorption windows).

Dimensionless Parameters

With the above data the relevant dimensionless parameters lie
in the ranges indicated as follows;

Λ = αa
4πχ

P0

r20n

dε

dT
; 10−6 to 5 × 10−4,

β = r0(αa + αs); 2.5 × 10−5 to 2 × 10−4,

and

ρ0 = (r0ω/c) = (2πr0/λ); 1.5 × 106 to 6 × 106. T
ab
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Figure 1 illustrates the dependence of the focusing parameter f
on dimensionless distance of propagation ξ for different
values of Λ (proportional to the product of initial beam
power and the absorption coefficient). It is seen that f (or de-
focusing) increases with increasing Λ and that it is very much
less for a hollow Gaussian beam as compared to that for a
Gaussian beam; the physical reasoning for this fact is rather
simple. In the central portion of a dark hollow beam 0<
r< rm the temperature increases radially, while in the periph-
eral region the temperature decreases radially; the maximum
irradiance of the beam occurs at r= rm. Hence the dielectric
function decreases radially in the central r< rm portion of
beam which tends to focus the beam, while the peripheral por-
tion of the beam (in which ε increases with r) defocuses.

Hence in contrast to a Gaussian beam the central r <rm por-
tion of HGB tends to focus the beam, while the peripheral
portion of the beam defocuses. As a result the defocusing
in case of HGB is much less than that in case of Gaussian
beams, where all portions of the beam defocus. Fig. 2 indi-
cates the dependence of f on ξ for different values of β. It is
seen that f or defocusing decreases with increasing β this is
due to the fact that the thermal effect decreases as the beam
propagates due to decrease in the beam power, corresponding
to enhanced absorption. Fig. 2 also indicates much reduced
defocusing for the hollow Gaussian beam, as compared to a
Gaussian beam. Computations also lead to an interesting con-
clusion that f – ξ relationship is independent of ρ0 and to a
good approximation f∝ ξ (=z/r0) and hence inversely pro-
portional to r0 at a given position (value of z).

In addition to the dimensionless discussion (Figs. 1 and 2),
it will also be of general interest to consider a specific case of
propagation (in maritime environment) viz. λ= 1.045 μm,
P0= 1MW, αa= 2 × 10−3 km−1, αs= 1.2 × 10−1 km−1 and
r0= 50 cm; the dependence of the beam width parameter f
on the distance of propagation z in km is shown in Figure 3.
This figure also highlights the fact that an HGB defocuses
significantly less than a corresponding Gaussian beam of
same radius and power.

CONCLUSION

The thermal defocusing of a hollow Gaussian beam in the
atmosphere is much less than that of a corresponding Gaus-
sian beams with the same radius and power.
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Fig. 1. Dependence of beam width parameter f on dimensionless distance of
propagation ξ for different values of Λ (proportional to the product of initial
beam power and the absorption coefficient) for β= 10− 4 and ρ= 4.5 × 106;
where a, b and c refer toΛ= 5 × 10− 4, 2 × 10− 5 and 10− 5 respectively. The
broken and full curves correspond to Gaussian and hollow Gaussian beams,
respectively.

Fig. 2. Dependence of beam width parameter f on dimensionless distance of
propagation ξ for different values of attenuation constant β= r0 (αa+ αs ) for
Λ= 2 × 10− 5 and ρ= 4.5 × 106; where a, b and c refer to β= 5 × 10− 4, 2 ×
10− 5 and 10−5 respectively. The broken and full curves correspond to Gaus-
sian and hollow Gaussian beams, respectively.

Fig. 3. Dependence of beam width parameter f on dimensionless distance of
propagation ξ(=z/r0) in maritime environment; λ= 1.045 μm, P0= 1 MW,
αa= 2 × 10−3 km−1, αs= 1.2 × 10−1 km−1 and r0= 50 cm. The broken and
full curves correspond to Gaussian and hollow Gaussian beams, respectively.
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