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In this paper we study the use of spectral techniques for graph partitioning. Let G = (V , E)

be a graph whose vertex set has a ‘latent’ partition V1, . . . , Vk . Moreover, consider a ‘density

matrix’ E = (Evw)v,w∈V such that, for v ∈ Vi and w ∈ Vj , the entry Evw is the fraction of

all possible Vi–Vj -edges that are actually present in G. We show that on input (G, k)

the partition V1, . . . , Vk can (very nearly) be recovered in polynomial time via spectral

methods, provided that the following holds: E approximates the adjacency matrix of G in

the operator norm, for vertices v ∈ Vi, w ∈ Vj �= Vi the corresponding column vectors Ev ,
Ew are separated, and G is sufficiently ‘regular’ with respect to the matrix E . This result in

particular applies to sparse graphs with bounded average degree as n = #V → ∞, and it

has various consequences on partitioning random graphs.

1. Introduction and results

1.1. Spectral techniques for graph partitioning

To solve various types of graph partitioning problems, spectral heuristics are in common

use. Such heuristics represent a given graph by a matrix and compute its eigenvalues

and eigenvectors to solve the combinatorial problem in question. Spectral techniques are

used to either deal with ‘classical’ NP-hard graph partitioning problems such as Graph

Colouring or Max Cut, or to solve problems such as recovering a ‘latent’ clustering

of the vertices of a graph. In the present paper we mainly deal with the latter problem,

which is of relevance, e.g., in information retrieval [3], scientific simulation [30], or bio-

informatics [14].

Despite their success in applications (e.g., [29], [30]), for most of the known spectral

heuristics there are counter-examples known showing that these algorithms perform badly

in the ‘worst case’. Thus, understanding the conditions that cause spectral heuristics to

succeed (as well as their limitations) is an important research problem. To address this
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problem, quite a few authors have contributed rigorous analyses of spectral techniques

on suitable models of random graphs. For example, Alon and Kahale [1] analysed a

spectral technique for Graph Colouring, Alon, Krivelevich and Sudakov [2] dealt with

the Maximum Clique problem, and Boppana [6] and Coja-Oghlan [10] studied random

instances of Minimum Bisection. In addition, Flaxman [18] has suggested a spectral

heuristic for random 3-SAT.

While the algorithmic techniques of [1, 2, 6, 10, 18] are tailored to the concrete problems

(and random graph models) studied in the respective articles, in a remarkable paper

McSherry [28] investigates a more generic spectral partitioning algorithm on a rather

general random graph model. McSherry’s result comprises the main results from [2, 6],

but does not encompass sparse random graphs, as studied in [1, 10], or graphs in which

edges do not occur independently, as in [18].

The goal of the present work is to devise a new, generic spectral heuristic Partition

that does capture all the previous work [1, 2, 6, 10, 18, 28], and that is indeed applicable

to much more general settings. We first consider the general random graph model studied

by McSherry and develop new algorithmic techniques that apply to the regime of the

parameters not covered in [28], including the case of sparse graphs. Then we study the

so-obtained spectral heuristic from a deterministic point of view, i.e., without referring

to any specific random graph model. More precisely, we single out (reasonably modest)

conditions on the input graph that ensure the success of the spectral heuristic. To this

end, we employ notions related to the concept of quasi-random graphs (see Chung and

Graham [9] or Krivelevich and Sudakov [27]). The deterministic result thus obtained has

a rather broad scope and comprises or improves a number of prior results on spectral

methods (see Section 2). Indeed, in order to obtain such a general deterministic result we

need to come up with new ideas for analysing the spectral heuristic, because the use of

‘standard’ techniques from the theory of random graphs would impose far too restrictive

conditions on the type of input instances.

A further important aspect is that Partition is adaptive in the sense that its input only

consists of the graph G and the desired number of vertex classes k. Thus, the algorithm

does not need any further a priori information about the type of the partition (e.g., no

lower bound on the size of the classes or on the separation of vertices in different classes).

This aspect requires novel algorithmic ingredients.

1.2. A general random graph model

In this section we state the spectral partitioning result for the random graph model

Gn,k(ψ, p) from [28]. To define Gn,k(ψ, p), we need a bit of notation. Let V = {1, . . . , n}
be a vertex set. Moreover, consider a map ψ : V → {1, . . . , k}, set Vi = ψ−1(v), and let

nmin = min1�i�k #Vi. We think of V1, . . . , Vk as the ‘latent’ partition of V that we are

to recover. Moreover, consider a symmetric k × k matrix p = (pij)1�i,j�k , and let E =

E(ψ, p) = (Evw)v,w∈V be the n× n matrix with entries Evw = pψ(v)ψ(w).

We define the random graph Gn,k(ψ, p) as follows: the vertex set of Gn,k(ψ, p) is V =

{1, . . . , n}, and any two vertices v, w ∈ V are connected with probability Evw independently.

Thus, Gn,k(ψ, p) has a ‘planted’ partition V1, . . . , Vk , with the expected edge density between

any two sets Vi, Vj being pij , and the expected density inside each Vi being pii. As we
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shall see in Section 2, Gn,k(ψ, p) comprises various random graph models for specific

partitioning problems such as Graph Colouring or Max Cut.

As we are interested in asymptotic results that hold as n gets ‘large’, we say that

Gn,k(ψ, p) has some property P with high probability (‘w.h.p.’) if the following is true. For

any ε > 0 and any integer k > 1 there exists n0 = n0(ε, k) such that, for all n > n0, all

matrices p, and all maps ψ, the probability that the random graph Gn,k(ψ, p) has property

P is at least 1 − ε.

To state the algorithmic result, we need to introduce a few parameters of the random

graph G = Gn,k(ψ, p). Since any two vertices v, w ∈ V are connected in Gn,k(ψ, p) with

probability Evw independently, the variance of the degree of v equals
∑

w∈V\{v} Evw(1 − Evw).

Thus,

σ∗ = max
1�i�k

k∑
j=1

#Vjpij(1 − pij) = max
v∈V

∑
w∈V

Evw(1 − Evw) (1.1)

is the ‘maximum variance’ of the vertex degrees of G.

In addition, we need to partition G into a ‘sparse’ and a ‘dense’ part. To this end, let

Φ = (Φvw)v,w∈V be the matrix with entries

Φvw =

{
1 if Evw > 1

2
,

0 otherwise.
(1.2)

Then we define

G1 = (V , E1), where E1 = {{v, w} ∈ E : Φvw = 0}, (1.3)

G2 = (V , E2), where E2 = {{v, w} �∈ E : Φvw = 1, v, w ∈ V , v �= w}. (1.4)

Let dG1∪G2
(v) denote the degree of v in the graph G1 ∪ G2 = (V , E1 ∪ E2). Considering

G1 ∪ G2 is helpful, because in G = some of the pairs Vi, Vj may be very sparse (i.e.,

pij = o(1)), while others may be very dense (i.e., pij = 1 − o(1)). Since in G1 ∪ G2 we

replace the ‘dense’ parts of G by their complements, we obtain a graph in which all pairs

Vi, Vj are sparse, thus avoiding case distinctions.

Theorem 1.1. Suppose that the following three conditions hold.

R1. σ∗ � ln2(n/nmin).

R2. nmin � ln30 n.

R3. Let Ev = (Ewv)w∈V denote the v-column of E . For all u, v ∈ V such that ψ(u) �= ψ(v), we

have

‖Eu − Ev‖2 � ρ2 =
c0k

3σ∗

nmin
+ c0 ln

(
σ∗ +

n

nmin

)
max
1�i�k

k∑
j=1

pij(1 − pij), (1.5)

where c0 is a sufficiently large constant.

Then w.h.p. G = Gn,k(ψ, p) has an induced subgraph H on � n− σ∗ −4nmin vertices such that

the following is true.
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• On input (G, k), the polynomial-time algorithm Partition outputs a partition (Ti)1�i�k
of G such that H ∩ Ti = H ∩ Vτ(i) for some permutation τ of the indices {1, . . . , k}.

• All components of the graph (G1 ∪ G2) −H obtained from G1 ∪ G2 by removing the

vertices of H have at most ln n vertices.

The first two assumptions R1 and R2 of Theorem 1.1 are merely of technical relevance.

Condition R2 just guarantees that none of the ‘planted’ classes is extremely small.

Assumption R1 is needed to rule out the case that there is an extremely small partition class

(of size o(n)) while either the random graph or its complement is extremely sparse. Thus,

the crucial assumption is R3. Since for each v ∈ V the vector Ev = (Ewv)w∈V represents

the probabilities that v is connected to other vertices w ∈ V , ‖Eu − Ev‖2 measures the

‘expected difference’ between two vertices u, v with respect to the planted partition. Hence,

R3 quantifies how ‘strongly’ any two planted classes Vi, Vj must be separated to ensure

that Partition succeeds. More precisely, the required lower bound ρ2 increases as a

function of σ∗ and decreases as a function of nmin. That is, the higher the ‘random noise

level’ in Gn,k(ψ, p) (i.e., σ∗), and the smaller the size of the classes that we are to recover

(i.e., nmin), the more the desired partition must ‘stand out’.

Theorem 1.1 ensures that under conditions R1–R3 Partition w.h.p. yields a partition

T1, . . . , Tk that coincides with the planted one on a large subgraph H (up to a permutation

of the indices). Thus, Partition will in general not recover the planted partition V1, . . . , Vk
perfectly. In fact, in general it is plainly impossible to compute V1, . . . , Vk perfectly w.h.p.

(at least for ‘small’ values of σ∗). To see this, assume that pij <
1
2

for all i, j and σ∗ = O(1).

Then in G = Gn,k(ψ, p) all vertex degrees have a bounded mean (namely, at most 2σ∗).

Therefore, for each vertex v the probability that v is isolated in Gn,k(ψ, p) is Ω(1), whence

each class Vi contains Ω(#Vi) isolated vertices w.h.p. Since, on input (G, k), it is impossible

to tell which isolated vertex stems from which of the planted classes V1, . . . , Vk , no

algorithm can recover V1, . . . , Vk entirely.

We can characterize the subgraph H on which Partition succeeds as follows. Set

d(v, w) = e(v, Vj)/#Vj for v ∈ V and w ∈ Vj, and let d(v) = (d(v, w))w∈V ∈ R
V , (1.6)

where e(v, Vj) denotes the number of v–Vj-edges in G. Hence, d(v, w) is the ‘empirical’

edge density between the vertex v and the class of w, so that E(d(v, w)) = Evw for all w

and E(d(v)) = Ev . Now, the induced subgraph H basically consists of those vertices v such

that d(v) is ‘close’ to its expectation Ev . More precisely, set λ = σ∗; then H is the largest

induced subgraph of G that enjoys the following four properties.

H1. #V \H � λ−4nmin and
∑

v∈V\H dG1∪G2
(v)2 � nmin.

H2. For all v ∈ H the vector d(v) defined in (1.6) satisfies ‖Ev − d(v)‖2 � 0.001ρ2.

H3. All v ∈ H have degree � 10σ∗ in the graph G1 ∪ G2.

H4. In the graph G1 ∪ G2 each v ∈ H has at most 100 neighbours in V \H .

Thus, H1 requires that H constitutes a ‘large’ share of G, and that the vertices outside H

are not incident with an exorbitant number of edges. Furthermore, by H2 for all v ∈ H

the vector d(v) should be close to Ev in terms of the parameter ρ. In addition, H3 requires

that the vertices v ∈ H do not have too high a degree in G1 ∪ G2, and H4 means that H
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should be ‘well separated’ from V \H . We call the largest subgraph H of G that satisfies

H1–H4 the core of G.

If σ∗ is sufficiently large (say, σ∗ � ln n), then H = G. This is essentially the situation

considered in [28]. However, as discussed above, if σ∗ is ‘small’ (say, bounded as n → ∞),

then H will be a proper subgraph of G w.h.p.

1.3. The deterministic result

The main result of this paper is that Partition actually works under a few deterministic

assumptions on the input graph G. This result is significantly stronger than Theorem 1.1,

because it covers considerably more general types of input graphs than Gn,k(ψ, p) (e.g.,

random graphs in which the edges are dependent or pseudo-random graphs). To state

these conditions, let V = {1, . . . , n}, let G = (V , E) be a graph, let k � 2 be an integer,

let ψ : V → {1, . . . , k}, and let p = (pij)1�i,j�k be a symmetric k × k matrix. Then we can

define classes Vi = Vi(ψ) = ψ−1(v), set nmin = nmin(ψ) = min1�i�k #Vi, and define an n× n

matrix E = E(ψ, p) = (Evw)v,w∈V by letting Evw = pψ(v)ψ(w). Moreover, we let σ∗ = σ∗(ψ, p),

Φ = Φ∗(ψ, p), G1 = G1(ψ, p), and G2 = G2(ψ, p) be as defined in (1.1)–(1.4). Thus, we keep

the notation from the previous section, but we no longer assume that G is a random

graph. The four deterministic assumptions that we need are the following.

Low-rank structure. The most important assumption is that the matrix E provides an

underlying ‘low-rank structure’ for the adjacency matrix A of G. If M = (mvw)v,w∈V is a

matrix and X ⊂ V , then we let MX be the matrix obtained from M by replacing all entries

mvw with (v, w) �∈ X ×X by 0.

A1. Let A be the adjacency matrix of G, and let M = E − A. There is a number λ such

that σ∗ � λ � σ∗ · min{σ∗, nmin/ ln n} with the following property. For any Δ > 0 the

set D(Δ) = {v ∈ V : dG1∪G2
(v) � Δ} satisfies ‖MD(Δ)‖ � c0k

√
λ+ Δ, where c0 > 0 is a

constant.

Thus, A1 states that E ‘approximates’ A within c0k
√
λ+ Δ on the subgraph of G obtained

by removing all vertices that have degree > Δ in G1 ∪ G2. The crucial parameter that

measures the quality of the approximation is λ, and thus λ will play an important role in

the following ‘separation’ condition as well. In terms of quasi-randomness, the expression

λ/σ∗ 2 basically corresponds to the ‘spectral gap’ of the adjacency matrix. We shall see in

Section 2 that the occurrence of Δ in the bound in A1 is actually necessary.

Separation. This condition quantifies how much for vertices u, v that belong to different

classes the vectors Eu, Ev that represent the ‘expected densities’ should differ (see the R3

condition in Theorem 1.1).

A2. Let ρ = c4
0

√
k3λ/nmin (with λ and c0 are as in A1). Then, for all u, v ∈ V such that

ψ(u) �= ψ(v), we have ‖Eu − Ev‖ � ρ.

Note the dependence of ρ on λ: the more tightly E approximates A, the more ‘subtle’ the

differences between Eu and Ev can be.
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Approximate regularity. The next item is a ‘regularity’ condition on the degree distribution

of G. For each vertex v ∈ V and each set S ⊂ V , we let e(v, S) denote the number of edges

from v to S in G. Moreover, we let μ(v, S) =
∑

w∈S\{v} Evw .

A3. For all v ∈ Vj we have

max
1�i�k

|e(v, Vi) − μ(v, Vi)| � 0.1

(
1

k
σ∗ + #Vipij(1 − pij)

)
+ ln2 n.

This condition requires that e(v, Vi) should be close to the number μ(v, Vi) of edges that we

would expect if G were a random graph Gn,k(ψ, p). The error term on the right-hand side

involves the ‘maximum variance’ σ∗ and the ‘variance’ #Vipij(1 − pij) =
∑

w∈Vi Evw(1 − Evw)

of the number e(v, Vi). Moreover, the additive ln2 n-term is crucial in the case of sparse

graphs (see Section 2).

Lower bound on nmin. Finally, we need that all classes Vi have at least polylogarithmic

size.

A4. nmin = min1�i�k #Vi � ln30 n.

The following theorem shows that if G satisfies A1–A4, and if H is a subgraph of G

that satisfies conditions H1–H4 from Section 1.2, then Partition can recover the desired

partition on H .

Theorem 1.2. There are a polynomial-time algorithm Partition and a constant C > 0 such

that, for each c0 > C and each integer k � 2, there exists a number n0 such that the following

is true. Suppose that n � n0, and that G = (V , E) is a graph with vertex set V = {1, . . . , n}
so that there exist p and ψ such that:

• σ∗ � c0,

• A1–A4 hold, and

• H is a subgraph of G that satisfies H1–H4.

Then Partition(G, k) outputs a partition (T1, . . . , Tk) of V such that Ti ∩H = Vτ(i) ∩H
for some permutation τ of {1, . . . , k}.

We emphasize that the input of Partition only consists of the graph G and the desired

number k of classes; no other parameters of the partition (e.g., E , ρ, nmin) are revealed to

the algorithm. Thus, Partition is adaptive in the sense that the algorithm finds out on

its own what ‘type’ of partition it is actually searching for. Indeed, this adaptivity requires

new algorithmic ideas, and it seems to be an important feature from a practical point of

view.

1.4. Related work

Conditions A1–A4 in Theorem 1.2 are reminiscent of the work on quasi-random graphs

due to Chung and Graham [9], who investigate the connection between spectral and

combinatorial graph properties. Moreover, several authors have investigated the applic-

ability of spectral techniques under various other types of conditions: Bilu and Linial [4]

studied stable instances, the work of Frieze and Kannan [19] applies to dense graphs
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(average degree Ω(n)), Kannan, Vempala and Vetta [25] considered a bicriteria measure

for clustering, and Spielman and Teng [31] investigated planar graphs. In comparison

with prior work, the new aspect of the present paper is that our goal is not to optimize

some objective function, but to detect and recover a ‘latent low-rank structure’ of a given

graph. Thus, Theorem 1.2 is the first result that shows that under general deterministic

assumptions a ‘good’ low-rank structure can be recovered in polynomial time if there is

one.

The Gn,k(ψ, p) model was first considered by McSherry [28], who presented a polynomial-

time algorithm that recovers the planted partition of G = Gn,k(ψ, p), provided that the

following holds. Let σ2
max = max1�i,j�k pij(1 − pij), and let c0 > 0 be a sufficiently large

constant; then the assumption reads

‖Eu − Ev‖2 � c0k · max

{
σ2

max,
ln6 n

n

}
·
[
n

nmin
+ ln n

]
if ψ(u) �= ψ(v). (1.7)

The two conditions (1.7) and (1.5) compare as follows. Due to the ln n-terms occurring

in (1.7), Gn,k(ψ, p) must have average degree at least ln3 n (and � n− ln3 n). In contrast,

Theorem 1.1 also comprises the following three types of graphs.

Sparse graphs. Condition (1.5) allows that the mean μ(v, Vj) of the number of v–Vj-edges

may be O(1) for all v ∈ V and 1 � j � k. In this case the average degree of Gn,k(ψ, p) is

bounded as n → ∞.

Massive graphs. Similarly, (1.5) allows that μ(v, Vj) = #Vj − O(1) for all v, j. Then Gn,k(ψ, p)

is a massive graph, i.e., the average degree is n− O(1).

Mixtures of both. The most difficult case algorithmically is a ‘mixture’ of the above two

cases: for any v and j we have either μ(v, Vj) = O(1) or μ(v, Vj) = #Vj − O(1). In other

words, some of the subgraphs induced on two sets Vi, Vj are sparse, while others are

massive.

In fact, the algorithm suggested in [28] fails to produce a partition that is even close

to the planted one on the three above types of inputs. The reason is essentially that, e.g.,

sparse random graphs have a considerably more irregular degree distribution than random

graphs of average degree � ln n, and that the tails of the degree distribution affect the

spectrum of the adjacency matrix (see Section 2).

Furthermore, condition (1.7) is phrased in terms of nσ2
max, which may exceed the

expression σ∗ from (1.1) significantly if, e.g., Gn,k(ψ, p) features a ‘small’ part (say, of size

n0.1) of density 1
2
. In this case (1.5) can be a considerably weaker assumption than (1.7).

Finally, the algorithm Partition presented in this paper is adaptive in the sense that

it just requires the graph G and the number k at the input. By comparison, the algorithm

as it is described in [28] does require further information about the desired partition (e.g.,

a lower bound on ‖Ev − Ew‖ for v, w in distinct classes, or on nmin).

Dasgupta, Hopcroft, Kannan and Mitra [13] studied the ‘second eigenvector technique’

on Gn,k(ψ, p); an important point of this work is that it provides a rigorous analysis of

this heuristic that contributes to explaining its success in practice. For graphs of moderate

density (average degree � polylog(n) and � n− polylog(n)), the authors obtain a result

similar to [28] (but with a slightly weaker separation assumption).
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Whereas in the present paper we are just dealing with the problem of recovering a

‘latent’ partition of a given graph, there are several papers dealing with spectral heuristics

for ‘classical’ NP-hard problems. For instance, Alon, Krivelevich and Sudakov [2] studied

a ‘dense’ random graph (average degree Ω(n)) with a planted clique of size Ω(
√
n); the

main result of [2] can be re-derived easily from Theorem 1.1 as well as from [28].

Further related results that involve partitioning sparse random graphs (constant average

degree) include Alon and Kahale [1] (3-colouring), Boppana [6] and Coja-Oghlan [10]

(Minimum Bisection), Chen and Frieze [8] (hypergraph 2-colouring), Flaxman [18] (3-

SAT), and Goerdt and Lanka [21] (4-NAE-SAT). These results can only be partially

derived using the techniques of [28] (namely, under the additional condition that the

average degree must be at least polylogarithmic). Nonetheless, as we shall point out in

Section 2, the main results of [1, 6, 8, 10, 18, 21] follow rather easily from Theorems 1.1

and 1.2.

A few authors have analysed spectral techniques on random graphs that cannot

be described in terms of the Gn,k(ψ, p) model. For instance, Dasgupta, Hopcroft and

McSherry [12] suggested a random graph model with a planted partition featuring a

‘skewed’ degree distribution. This model is very interesting, because it covers, e.g., random

‘power law’ graphs. Their main result is that the planted partition can also be recovered

in this case w.h.p. under an assumption similar to (1.7). Thus, it is assumed that the

average degree is � polylog(n). Applied to the Gn,k(ψ, p) model, [12] yields a result similar

to [28].

Moreover, Dasgupta, Hopcroft, Kannan and Mitra [13] point out that their algorithm

can cope with certain very regular sparse random graphs. More precisely, they consider

random graphs with a planted partition V1, . . . , Vk , such that any two vertices v, w ∈ Vi
have (exactly) the same number of randomly chosen neighbours in each class Vj . It

is shown in [13] that under a certain separation condition and under the assumption

that all classes Vj have size Ω(n/k), the planted partition can be recovered using the

second eigenvector heuristic. However, this model is not comparable to Gn,k(ψ, p). In fact,

due to the very regular degree distribution, the model in [13] behaves actually quite

similarly to ‘dense’ Gn,k(ψ, p) graphs (average degree � ln n). We shall see in Section 2

that Theorem 1.2 also captures the model introduced in [13].

Although some of the currently best results on partitioning random graphs rely on

spectral methods, there are quite a few further references on different techniques. Some

examples are Bollobás and Scott [5] (randomization), Bui, Chaudhuri, Leighton and

Sipser [7] (network flows), Dyer and Frieze [15] (combinatorial methods), Feige and

Kilian [16] (semidefinite programming), Jerrum and Sorkin [23] (the Metropolis process),

and Subramanian and Veni Madhavan [32] (breadth-first search).

1.5. Techniques and outline

Let G = Gn,k(ψ, p) be a random graph with adjacency matrix A. To recover V1, . . . , Vk ,

McSherry [28] employs the following ‘projection method’. Let ζ1, . . . , ζk be the eigenvectors

of A with the k largest eigenvalues in absolute value. Let P be a projection of R
V onto the

subspace spanned by ζ1, . . . , ζk , and let Â = PAP . Then Â is called a rank k approximation
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of A. Invoking results on the eigenvalues of random matrices from [20], McSherry shows

that ζ1, . . . , ζk mirror the partition V1, . . . , Vk , and that therefore the Frobenius norm

‖Â− E‖2
F =

∑
v∈V ‖Âv − Ev‖2 � knσ2

max is ‘small’ (here Âv , Ev denote the v-columns of

Â, E). In effect, Âv is ‘close’ to Ev for ‘most’ vertices v. Thus, due to the separation

condition (1.7) it is possible to recover V1, . . . , Vk from Â (provided that the algorithm is

given a lower bound on ‖Eu − Ev‖ for vertices u, v in different classes).

However, this approach breaks down if G = Gn,k(ψ, p) is a sparse graph such that

#Vipij = Θ(1) as n → ∞ for all i, j. In this case the rank k approximation does not

approximate E well. The reason is that w.h.p. the degree distribution of Gn,k(ψ, p) features

an upper tail ; for instance, the maximum degree is Ω( ln n
ln ln n

) w.h.p. In fact, vertices of

degree d � σ∗ induce eigenvalues that are as large as
√
d in absolute value, while the

assumption (1.5) just ensures that the eigenvalues corresponding to the partition V1, . . . , Vk
are about k

√
σ∗ in absolute value. In other words, vertices of ‘atypically high’ degree jumble

up the spectrum of A, so that the most outstanding eigenvalues no longer correspond to

the desired partition.

Thus, in the situation of Theorems 1.1 and 1.2 we need a more sophisticated approach

to obtain a matrix Â that approximates E well. Following the work [1] on 3-colouring

sparse random graphs, one could try to settle the problem by just removing vertices of

degree � σ∗ from G. However, the issue is that the algorithm Partition does not know

σ∗ (it is given just G and k). Indeed, it is not easy to compute (or approximate) σ∗ from

G. To cope with this, Partition employs a subroutine Approx that constructs a ‘Cauchy

sequence’ of matrices Ât that ‘converges’ to E .

As a next step, Partition uses the thus obtained approximation Â to E to compute

an initial partition S1, . . . , Sk . The basic idea is to put u, v ∈ V into the same Si if and

only if ‖Âu − Âv‖ � 0.1ρ, say, where ρ is the separation parameter from A2. Of course,

the problem is that Partition does not get ρ as an input parameter. Instead, Partition

employs a procedure Initial that computes ‘centres’ ξ1, . . . , ξk and a partition S1, . . . , Sk
such that the ‘squared distance’

∑k
i=1

∑
v∈Si ‖Âv − ξi‖2 is minimized. This partition turns

out to be ‘close’ to V1, . . . , Vk .

Finally, to home in on V1, . . . , Vk , Partition calls a local improvement heuristic

Improve. This heuristic repeats the following operation: to each vertex v we assign a

vector δ(v) that represents the densities e(v, Si)/#Si (this is reminiscent of the vector d(v)

in (1.6), whose entries represent the densities e(v, Vi)/#Vi). Then, Improve shifts each

vertex v into that class Si such that ‖δ(v) − ξi‖ is minimum. While this procedure is

purely combinatorial, its analysis relies on spectral arguments. A crucial issue here is

that Improve has to deal with classes V1, . . . , Vk of (possibly) vastly different sizes, e.g.,

polylog(n) versus Θ(n).

The paper is organized as follows. In Section 2 we illustrate Theorems 1.1 and 1.2

with some examples of concrete graph partitioning problems. Sections 3–7 contain the

description of Partition and its subroutines and the proof of Theorem 1.2. Moreover,

in Section 8 we apply Theorem 1.2 to the random graph Gn,k(ψ, p), thereby proving

Theorem 1.1. Finally, Section 9 contains the proofs of a few technical lemmas on the

random graph Gn,k(ψ, p).
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1.6. Notation and preliminaries

Throughout the paper we let V = {1, . . . , n}. If G = (V , E) is a graph, then A(G) denotes its

adjacency matrix. Further, for X,Y ⊂ V we let e(X,Y ) = eG(X,Y ) denote the number of

X–Y -edges in G, and we set e(X) = eG(X) = eG(X,X). Moreover, dG(v) = eG(v, V ) denotes

the degree of v.

We let μ(X,Y ) denote the expected number of X–Y -edges in Gn,k(ψ, p). Even in

Section 3–7, where we do not work with random graphs, it is helpful to use this notation.

Further, we set EVi = Ev for any v ∈ Vi. Note that this is well defined, because all columns

Ev for v ∈ Vi are identical: they represent the ‘expected edge densities’ between vertices in

Vi and vertices in other classes. Moreover, we always let Φ denote the matrix (1.2), and

let G1, G2 denote the graphs defined in (1.3), (1.4).

If M = (mvw)v,w∈V is a matrix and v ∈ V , then Mv = (mwv)w∈V is the v-column of M.

Moreover, if X,Y ⊂ V , then MX×Y signifies the matrix obtained from M by replacing

all entries mxy with (x, y) �∈ X × Y by 0. For brevity we let MX = MX×X . Further, we let

‖M‖ = maxξ:‖ξ‖=1 ‖Mξ‖ denote the operator norm and let

‖M‖F =

√∑
v∈V

‖Mv‖2 =

√ ∑
v,w∈V

m2
vw

denote the Frobenius norm of M. If M a matrix of rank � l, then

‖M‖2 � ‖M‖2
F � l‖M‖2. (1.8)

Furthermore, suppose that M is symmetric and let ζ1, . . . , ζl denote eigenvectors of M with

the l largest eigenvalues in absolute value. Let P be the projection onto the space spanned

by ζ1, . . . , ζl . Then we call M̃ = PMP a rank l approximation of M. The definition ensures

that

‖M̃ − M‖ � ‖B − M‖ for any matrix B of rank � l. (1.9)

We denote the symmetric difference of two sets A,B by A�B. That is,

A�B = (A ∪ B) \ (A ∩ B).

2. Applications and examples

2.1. Graph colouring

Alon and Kahale [1] developed a spectral heuristic for colouring 3-colourable graphs

generated according to the following model. Let ψ : V → {1, 2, 3} be a random mapping,

and let pij = p if i �= j and pii = 0 for i, j = 1, 2, 3. Then V1, V2, V3 is a planted 3-colouring

of G = Gn,k(ψ, p). In this section we observe that the main result of [1] can be derived

from Theorem 1.1 by adding only a few problem-specific details (in a similar way one

can re-derive the results of [6, 10]). We also discuss how the assumptions (1.7) from [28]

and (1.5) from Theorem 1.1 relate to each other.

To satisfy (1.7), we need that p � c′(ln3 n)/n for a certain constant c′ > 0. In this case

w.h.p. all vertices v ∈ Vi have (1 + o(1))np/3 neighbours in the other two classes Vj ,
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i �= j (by Chernoff bounds), so that G is quite regular. Furthermore, let ζi ∈ R
V be the

characteristic vector of Vi. Then, for i �= j we have

A(G)(ζi − ζj) ∼ np

3
(ζj − ζi). (2.1)

Moreover, all eigenvectors ξ ⊥ ζ1, ζ2, ζ3 have eigenvalues of order O(
√
np). Hence, the

spectrum of A(G) is very ‘clean’ in that the three eigenvectors with the ‘most outstanding’

eigenvalues correspond to V1, V2, V3. In fact, V1, V2, V3 can be read off easily from these

three eigenvectors w.h.p.

By comparison, the condition (1.5) of Theorem 1.1 only requires that p � c/n for a

constant c > 0, which is exactly the assumption needed in [1]. Let us assume that actually

p = c/n. Then the numbers e(v, Vj) for v ∈ Vi �= Vj are asymptotically Poisson with mean

c/3. Therefore, w.h.p.

#{v ∈ Vi : e(v, Vj) = γ} ∼ (c/3)γ exp(−c/3)n/(3γ!). (2.2)

Consequently, it is impossible to recover the partition V1, V2, V3 from G perfectly. For

by (2.2) G contains Ω(n) isolated vertices w.h.p., and of course no algorithm can tell

which isolated vertex belongs to which Vi. This shows that Theorems 1.1 and 1.2 are best

possible in the sense that in general we can just hope to recover the correct partition on

a subgraph H of G, but not on the entire graph G.

Furthermore, if p = c/n, then the spectrum of A(G) does not reflect the planted colouring

as nicely as in the ‘dense’ case. For by (2.2) G contains a large number of stars K1,d with

d � c2. Thus, the eigenvalues ±
√
d � c of A(K1,d) show up in the spectrum of A(G). In

effect, the ‘relevant’ eigenvalues (2.1) of order c are ‘hidden’ among a lot of eigenvalues

±
√
d that result from the upper tail of the degree distribution. Hence, the algorithm

from [28] would use eigenvectors merely representing the highest degree vertices, whence

it would fail to recover V1, V2, V3. (In fact, it has been observed in [26] that the spectrum

undergoes a phase transition as np ∼ ln n.)

Nonetheless, by Theorem 1.1 Partition can compute sets S1, S2, S3 such that Si ∩H =

Vi ∩H , where H = core(G). Although S1, S2, S3 do not coincide with V1, V2, V3 perfectly,

we can use S1, S2, S3 to 3-colour G. To this end, we follow the strategy of Alon and

Kahale: by Theorem 1.1, G−H just consists of components of size � ln n. Hence, for

each of these components we can compute in polynomial time a 3-colouring that extends

the 3-colouring S1 ∩H, S2 ∩H, S3 ∩H of H . Glueing all these 3-colourings together yields

the desired 3-colouring of all of G.

It is instructive to compare the 3-colouring algorithm of Alon and Kahale with the

algorithm Partition from the present paper. The algorithm from [1] essentially proceeds

in three phases. In the first (‘spectral’) phase the algorithm exploits the eigenvectors of

a certain matrix A′ to obtain a partition that differs from the planted colouring in at

most, say, 0.01n vertices; here A′ is the adjacency matrix of the graph obtained from G by

removing all vertices of degree > 10np, say. Then, in the second (‘combinatorial’) phase

the algorithm performs a simple local improvement strategy. This improvement strategy

colours all vertices of the core H of G correctly. Finally, since all components of G−H

have size O(log n), in the last phase the algorithm can extend the colouring of H to a

colouring of G in polynomial time.
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The algorithm Partition is based on a similar strategy in that it also combines spectral

and combinatorial steps (see Section 1.5). However, since in the present work we deal

with a much more general type of problem, both the algorithm and the analysis require

new ingredients. With respect to the spectral step, the computation of the matrix Â

requires a rather sophisticated algorithm, instead of just removing high-degree vertices.

Furthermore, the combinatorial procedure Improve is significantly more involved, since the

desired partition V1, . . . , Vk is not necessarily optimal with respect to some simple objective

function. Indeed, the analysis of the combinatorial part involves spectral arguments.

2.2. Random 3-SAT

Flaxman [18] studied the following model of random 3-SAT. Let x1, . . . , xn be propositional

variables, and let L = {xi, x̄i : 1 � i � n} be the set of literals. Let pi = cin
−2. Moreover,

pick a random assignment of x1, . . . , xn, let T be the set of literals that evaluate to true, and

let F = L \ T . Then, let φ be a random 3-SAT formula obtained by including each possible

clause over L that contains exactly i literals in T with probability pi independently.

Flaxman presents an efficient algorithm that computes a satisfying assignment of φ,

provided (essentially) that c1, c2, c3 exceed a certain (large) constant. The algorithm sets

up a graph G with vertex set L in which each clause is represented as a triangle involving

the three literals of the clause. Flaxman proves that in G the partition V1 = T , V2 = F

enjoys a separation property (similar to A2), and that therefore a partition T ′, F ′ of G

that coincides with T , F on a large subgraph H of G can be computed via spectral

techniques. Then he uses a brute force algorithm to assign the literals in G−H so that φ

is satisfied. The same result can be derived easily by employing the algorithm Partition

from Theorem 1.2. Observe, however, that the graph G cannot be described in terms of

the Gn,k(ψ, p) model, because edges do not appear independently; thus Theorem 1.1 does

not apply here.

2.3. Regular graphs

Bui, Chaudhuri, Leighton and Sipser [7] suggested the following model for Minimum

Bisection. Suppose that d′ > d and that n is even, and let V1, V2 be a random partition

of V into two pieces of equal size. Then, let G be a graph chosen uniformly at random

in which each vertex v ∈ Vi has exactly d′ neighbours in Vi and exactly d neighbours in

V3−i (i = 1, 2). They show that in this model a minimum bisection (namely V1, V2) can be

computed in polynomial time (via flow techniques), provided (essentially) that d′ > c and

d = o(1) for a certain constant c > 0.

Using methods from [24], one can show that w.h.p. G has the properties A1–A4, and that

H1–H4 actually hold for H = G, provided that d′ � d+ c(
√
d′ + 1) for a certain constant

c > 0. Thus, Theorem 1.2 shows that Partition yields an optimal bisection w.h.p. This

result improves on [7] considerably, since the necessary condition on the parameters is

much weaker (but of course the flow techniques suggested in [7] are of independent

interest). A similar result was obtained in [13] (via spectral techniques as well).

Once more, G cannot be described in terms of the Gn,k(ψ, p) model, because the edges

do not occur independently. However, even though G can be a sparse graph, due to its
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Figure 1. Pseudocode for the algorithm Partition.

very regular degree distribution it is much easier to deal with than a sparse random graph

Gn,k(ψ, p) (e.g., we can set H = G here).

3. The algorithm Partition

Throughout Sections 3–7, we let G be a graph that satisfies A1–A4. Moreover, we assume

that H is a subgraph of G that has the properties H1–H4. Furthermore, we implicitly

assume that n and the constant c0 from A1 are sufficiently large. Finally, we use the

symbols Φ, σ∗, G1, and G2 as defined in Section 1.3. Condition A3 readily implies the

following bound on the maximum degree of G1 ∪ G2:

dG1∪G2
(v) � 7σ∗ + ln3 n for all v ∈ V . (3.1)

From now on we shall summarize the functioning of Partition and its subroutines.

We will present and analyse the subroutines Identify, Approx, and Improve in detail in

Sections 4–7.

In steps 1–2 the goal is to compute a matrix Â that approximates E well. If σ∗ is

‘sufficiently large’ (say, σ∗ > ln3 n), then actually any rank k-approximation Â of A(G)

is sufficient. But if σ∗ is ‘small’ then G consists of ‘extremely sparse’ and/or ‘extremely

dense’ parts. In this case the tails of the degree distribution may affect the spectrum of

A(G) (see Section 2), and thus a rank k approximation of A(G) may not provide a good

approximation of E . To obtain an appropriate matrix Â, Partition first needs to sort

out which parts of the graph are sparse and which are dense. That is, Partition needs to

compute the matrix Φ, whose entries Φvw are 0 if the ‘density’ Evw � 1
2
, and 1 if Evw > 1

2
.

Computing Φ is the aim of the procedure Identify, which we will describe in Section 4.

The following proposition summarizes its analysis.

Proposition 3.2. Identify outputs either the matrix Φ or ‘fail’, and if σ∗ � ln3 n, then the

output is Φ.

Thus, if Identify outputs ‘fail’, then Partition knows that σ∗ is ‘big’. Therefore, in this

case it just computes a rank k approximation Â of A(G). On the other hand, if Identify

does not fail, Partition feeds the resulting matrix ϕ into the subroutine Approx, which
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we will present in Section 5. The following proposition shows that Approx will provide a

good approximation Â to E; here and throughout c0 signifies the constant from condition

A1.

Proposition 3.3. If ϕ = Φ, then the output Â of Approx(G,ϕ) is a matrix of rank k such

that ‖Â− E‖ � c2
0k

√
λ. Furthermore, if σ∗ > ln3 n, then any rank k approximation A′ of A

satisfies ‖A′ − E‖ � c2
0k

√
λ.

Combining Propositions 3.2 and 3.3, we conclude that the matrix Â computed in step 2

satisfies ‖Â− E‖ � c2
0k

√
λ. Therefore, our bound (1.8) on the Frobenius norm in terms of

the spectral norm entails that ‖Â− E‖2
F � 2k‖Â− E‖ � c5

0k
3λ, because we are assuming

that c0 is a sufficiently large constant. As, furthermore, ρ2 = c8
0k

3λ/nmin (see A2), we obtain

the bound

‖Â− E‖2
F � c5

0k
3λ � c−3

0 ρ2nmin. (3.2)

Having computed the approximation Â to E , the next step is to obtain an initial partition

of the vertices that should be ‘close’ to the desired partition V1, . . . , Vk . Computing this

partition is the task of the subroutine Initial called in step 3. This subroutine basically

partitions the vertices by their corresponding column vectors Âv . More precisely, since the

Frobenius norm ‖Â− E‖2
F =

∑
v∈V ‖Âv − Ev‖2 is ‘small’, for ‘most’ vertices v the distance

‖Âv − Ev‖ is small (< 0.01ρ, say). Furthermore, for vertices v ∈ Vi and w ∈ Vj in different

classes the vectors Ev and Ew are well separated by A2 (namely, ‖Ev − Ew‖ � ρ), while for

vertices u, v ∈ Vi in the same class we have Eu = Ev . In effect, for ‘most’ vertices v, w in

different classes ‖Âv − Âw‖ should be large, while for most u, v in the same class ‖Âu − Âv‖
should be small. Initial exploits this observation to compute k classes S1, . . . , Sk along

with k ‘centre vectors’ ξ1, . . . , ξk ∈ R
V such that for most v ∈ Si the norm ‖Âv − ξi‖ will

be small. We will discuss Initial in Section 6 and establish the following.

Proposition 3.4. There is a permutation τ of {1, . . . , k} such that the output of Initial has

the following properties.

(1) ‖ξi − EVτ(i) ‖2 � 0.001ρ2 for all i = 1, . . . , k.

(2)
∑k

i=1 #Si�Vτ(i) < 0.001nmin.

(3)
∑k

a,b=1 #Sa ∩ Vb · ‖EVτ(a) − EVτ(b) ‖2 < 0.001ρ2nmin for all 1 � j � k.

The initial partition S1, . . . , Sk is solely determined by the matrix Â, i.e., by spectral

properties of G. To home in on the desired output V1, . . . , Vk , step 4 of Partition finally

calls a further subroutine Improve. This subroutine exploits combinatorial properties of

G. More precisely, Improve performs an iterative local improvement of the initial partition

S1, . . . , Sk that, restricted to the subgraph H , converges to the planted partition V1, . . . , Vk .

Proposition 3.5. There is a permutation τ such that the output T1, . . . , Tk of Improve

satisfies Ti ∩H = Vτ(i) ∩H for all i = 1, . . . , k.
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Figure 2. Pseudocode for Identify.

A detailed description of Improve can be found in Section 7. Since all the procedures

run in polynomial time, Theorem 1.2 is an immediate consequence of Propositions 3.2–3.5.

4. Identifying sparse/dense parts

4.1. The procedure Identify

The matrix Φ from (1.2) identifies which parts of the input graph G are sparse and

which parts are dense: we have Φvw = 1 if the edge density Evw = pψ(v)ψ(w) between

the classes of v and w is bigger than 1
2
, and Φvw = 0 otherwise. Moreover, recall that

σ∗ = maxv
∑

w Evw(1 − Evw) denotes the ‘maximum variance’ of any vertex degree of G

(see (1.1)). The objective of Identify is to either compute Φ, or detect that σ∗ > ln3 n

and output ‘fail’ (for if σ∗ > ln3 n, then Partition does not need to know Φ).

Let us call two classes Vi, Vj similar if, for all indices l, we have pil � 1
2

↔ pjl � 1
2
. In

other words, Vi and Vj are similar if, for all v ∈ Vi and all w ∈ Vj , the corresponding

columns Φv , Φw coincide. Moreover, call two vertices v, w similar if they belong to similar

classes Vi, Vj . Identify performs a very coarse spectral partitioning of G to identify

similar vertices. As a first step, Identify computes a low-rank approximation A∗ of A(G).

As we will see, the spectral assumption A1 entails that A∗ provides (at least) a ‘rough’

approximation of E . Then, Identify constructs a matrix B by rounding the entries of A∗

to 0/1. Since the desired output Φ is obtained by rounding the entries of E , B should be

‘close’ to Φ.

Step 2 sets up a graph B with the same vertex set as G in which two vertices are

adjacent if their corresponding column vectors in B are far apart in Euclidean distance.
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The intuition is that the columns of similar vertices should be close, unless the variance σ∗

of the vertex degrees is very large. Then, Identify applies the greedy algorithm for graph

colouring to B. Recall that the greedy algorithm processes the vertices in an (arbitrary

but) fixed order, assigning to each vertex the least possible colour in {1, . . . , n} that is

not yet occupied by a neighbour of that vertex. This colouring is then used in step 3 to

set up a matrix ϕ, which is based on the ‘empirical’ edge densities between the colour

classes.

Finally, step 4 performs a ‘consistency check’. First of all, it checks whether the number

R of colours used by the greedy algorithm is bounded by k. If not, then ϕ does not

coincide with Φ (because the matrix E that describes the desired partition has rank at

most k). In addition, step 4 sets up two graphs G∗
1 and G∗

2. The first graph G∗
1 contains

all edges {v, w} such that ϕvw = 0, and in G∗
2 two vertices v, w are adjacent if and only

if {v, w} �∈ E and ϕvw = 1. This construction mimics the definition of the ‘sparse’ part G1

and the ‘dense’ part G2 of G as in (1.3). In fact, if ϕ = Φ (which is what we would like

to establish), then G1 = G∗
1 and G2 = G∗

2. If σ∗ � ln3 n, then condition A3 implies that the

maximum degrees of both G1 and G2 are bounded by σ∗ + ln2 n � ln4 n, and step 4 checks

if this bound holds for G∗
1 and G∗

2. If so, Identify outputs ϕ, and otherwise the output

is ‘fail’.

The analysis of Identify proceeds in three steps. Firstly, in Section 4.2 we prove that

either B is reasonably close to E in the Frobenius norm, or σ∗ is rather large.

Lemma 4.2. If σ∗ � ln10 n, then ‖B − E‖2
F � log23 n.

The next step is to rule out that Identify outputs a matrix ϕ that differs from Φ. In

Section 4.3 we shall prove the following.

Lemma 4.3. If σ∗ � ln10 n, then Identify either fails or outputs ϕ = Φ. Furthermore, if

σ∗ � ln3 n, then actually Identify outputs ϕ = Φ.

To complete the proof of Proposition 3.2 we just need to show that in the case σ∗ > ln10 n

the algorithm outputs ‘fail’ (but does not return a ‘wrong’ matrix ϕ �= Φ).

Lemma 4.4. If σ∗ > ln10 n, then Identify outputs ‘fail’.

The proof of Lemma 4.4 can be found in Section 4.4. Finally, Proposition 3.2 is an

immediate consequence of Lemmas 4.2–4.4.

4.2. Proof of Lemma 4.2

We begin with the following simple observation.

Fact 4.5. Suppose that σ∗ � ln10 n. Let 1 � i, j � k. If pij >
1
2
, then actually pij > 0.9.

Moreover, pij � 1
2

in fact implies that pij < 0.1.
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Proof. Recall from (1.1) that σ∗ = maxv
∑

w Evw(1 − Evw) = maxi
∑k

j=1 #Vjpij(1 − pij).

Therefore, for all i, j we have

#Vjpij(1 − pij) � σ∗ � ln10 n. (4.1)

Moreover, by assumption A4 we have #Vj � nmin � ln11 n for all j. Thus, (4.1) shows that

pij(1 − pij) � ln−1 n � 0.01 for all i, j, provided that n is sufficiently large.

Lemma 4.6. Suppose that σ∗ � ln10 n. Then ‖Φ − E‖2
F � ln22 n.

Proof. Remember that the matrix E is constant with value pij on each rectangle Vi × Vj .

Moreover, Φ is equal to zero on each rectangle Vi × Vj such that pij � 1
2
, and Φ is equal

to one on any rectangle Vi × Vj such that pij >
1
2
. Therefore,

‖Φ − E‖2
F =

k∑
i,j=1

‖ΦVi×Vj − EVi×Vj‖2
F

=
∑

i,j:pij� 1
2

p2
ij#Vi#Vj +

∑
i,j:pij>

1
2

(1 − pij)
2#Vi#Vj

� 4

k∑
i,j=1

p2
ij(1 − pij)

2#Vi#Vj. (4.2)

Since σ∗ = maxi
∑

j #Vjpij(1 − ppij) (see (1.1)), we have pij(1 − ppij)#Vj � σ∗ for any i, j.

Consequently, ‖Φ − E‖2
F � (2kσ∗)2. Further, since σ∗ � ln10 n and as we are assuming that

n > n0 = n0(k) for some sufficiently large n0, we have 2k < ln n. Therefore, ‖Φ − E‖2
F �

(2kσ∗)2 � ln22 n.

Lemma 4.7. Assume that σ∗ � ln10 n. We have ‖Φ − B‖2
F � ln22 n.

Proof. We recall that maxv∈V dG1∪G2
(v) � 7σ∗ + ln3 n � 2 ln10 n (see (3.1)). Therefore, the

spectral condition A1 yields

‖A∗ − E‖2 � c2
0k

2
(
σ∗ 2 + max

v∈V
dG1∪G2

(v)
)

� 3c2
0k

2 ln20 n.

Hence, as both A∗, E have rank k, the bound (1.8) on the Frobenius norm in terms of the

spectral norm entails

‖A∗ − E‖2
F � 2k‖A∗ − E‖2 � 6c2

0k
3 ln20 n. (4.3)

Since we assume that n > n0 for some sufficiently large number n0 = n0(k), (4.3) implies

that

‖A∗ − E‖2
F � ln21 n. (4.4)

Furthermore, Bvw is obtained by rounding A∗
vw to 0/1, and Φvw is obtained by round-

ing Evw to 0/1. Consequently, Fact 4.5 shows that Bvw �= Φvw implies |A∗
vw − Evw| � 1

3

for any v, w ∈ V . Therefore, ‖B − Φ‖2
F � 9‖A∗ − E‖2

F , and thus the assertion follows

from (4.4).
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Proof of Lemma 4.2. Since we are assuming that σ∗ � ln10 n, the assertion follows

directly from Lemmas 4.6 and 4.7 and the triangle inequality.

4.3. Proof of Lemma 4.3

Throughout this section we assume that σ∗ � ln10 n. To prove Lemma 4.3, we need the

following observation.

Lemma 4.8. For all v, w ∈ V we have ‖Bv − Bw‖2 � ln24 n if and only if v, w are similar.

Proof. Suppose that v ∈ Vi and w ∈ Vj are not similar. Then there is an index l such

that either pil >
1
2

and pjl � 1
2
, or pjl >

1
2

and pil � 1
2
. Swapping i and j if necessary, we

may assume that pil >
1
2

and pjl � 1
2
. Since ‖B − E‖2

F � ln23 n by Lemma 4.2, we conclude

that

1

4
· #{u ∈ Vl : Bvu = 0} � p2

il · #{u ∈ Vl : Bvu = 0}

� ‖B − E‖2
F � ln23 n, and similarly (4.5)

1

4
· #{u ∈ Vl : Bwu = 1} � (1 − pjl)

2 · #{u ∈ Vl : Bwu = 1}

� ‖B − E‖2
F � ln23 n. (4.6)

As B is a 0/1 matrix, (4.5) and (4.6) imply that we can bound the distance of the columns

Bv, Bw as follows:

‖Bv − Bw‖2 � #Vl − #{u ∈ Vl : Bvu = Bwu} (4.7)

� #Vl − #{u ∈ Vl : Bvu = 0} − #{u ∈ Vl : Bwu = 1} � #Vl − 8 ln23 n.

Since #Vl � nmin � ln30 n by condition A4, (4.7) implies that

‖Bv − Bw‖2 � ln30 n− 8 ln23 n � ln24 n.

Conversely, assume that v, w ∈ V are similar. Let x = #{u ∈ V : |Buv − Euv| � 1
3
} and

y = #{u ∈ V : |Buw − Euw| � 1
3
}. Since for all i, j we either have pij < 0.1 or pij > 0.9 by

Fact 4.5, we obtain ‖Bv − Bw‖2 � x+ y � 9‖B − E‖2
F . This implies the assertion, because

‖B − E‖2
F � ln23 n by Lemma 4.2.

Lemma 4.9. For all 1 � i, j � k the following holds:

if pij >
1

2
, then e(Vi, Vj)�

2

3
#Vi#Vj (i �= j), resp. e(Vi, Vj) � 2

3

(
#Vi

2

)
(i = j), (4.8)

if pij � 1

2
, then e(Vi, Vj)�

1

3
#Vi#Vj (i �= j), resp. e(Vi, Vj) � 1

3

(
#Vi

2

)
(i = j). (4.9)

Proof. To prove (4.8), suppose that pij >
1
2
. Then we actually know that pij > 0.9 due

to Fact 4.5. Suppose that i �= j. Then the ‘expected’ number μ(Vi, Vj) = #Vi#Vjpij of
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Vi–Vj-edges satisfies μ(Vi, Vj) > 0.9#Vi#Vj . Therefore, assumption A3 entails that

e(Vi, Vj) =
∑
v∈Vi

e(v, Vj) �
∑
v∈Vi

[
μ(v, Vi) − 0.1

(
1

k
σ∗ + #Vjpij(1 − pij)

)
− ln2 n

]

� μ(Vi, Vj) − 0.1k−1σ∗#Vi − 0.1#Vi#Vjpij − #Vi ln
2 n.

Hence, we obtain

e(Vi, Vj) � 0.9pij#Vi#Vj − #Vi · ln10 n (because σ∗ � ln10 n)

� 0.9pij#Vi#Vj − #Vi#Vj/ ln n (as #Vj � nmin � ln30 n by A4)

� 0.8pij#Vi#Vj >
2

3
#Vi#Vj (because pij � 0.9).

Thus, we have established (4.8) in the case i �= j. If i = j, then μ(Vi) =
(

#Vi
2

)
pii > 0.9

(
#Vi

2

)
,

and A3 implies that e(Vi) � 0.8pij
(

#Vi
2

)
> 2

3

(
#Vi

2

)
, whence (4.8) follows. A similar argument

yields (4.9).

Proof of Lemma 4.3. Lemma 4.8 implies that two vertices v, w ∈ V are adjacent in the

graph B if and only if they are not similar. Hence, B is a complete R-partite graph, whose

colour classes T1, . . . , TR are exactly the equivalence classes of the similarity relation.

Therefore, (4.8) and (4.9) entail that ϕ equals Φ and thus the graphs G∗
1, G∗

2 constructed

in step 4 of Identify coincide with G1 and G2. Consequently, Identify outputs either

‘fail’ or ϕ = Φ. Furthermore, if σ∗ � ln3 n, then (3.1) entails that

dG1∪G2
(v) � 7σ∗ + ln3 n � ln4 n for all v ∈ V ,

whence Identify outputs ϕ = Φ.

4.4. Proof of Lemma 4.4

The basic idea of the proof is as follows. If Identify does not output ‘fail’, then the

number R of colours used in step 2 is � k. Moreover, the graph G∗
1 ∪ G∗

2 that is obtained

by including all edges {v, w} of G such that ϕvw = 0 and all {v, w} �∈ E(G) such that

ϕvw = 1 has maximum degree � ln4 n (step 4 checks this condition). Hence, Identify has

managed to find a partition of G into R � k classes T1, . . . , TR that led to a matrix ϕ such

that the graph G∗
1 ∪ G∗

2 is very sparse. However, we will show that under our assumption

that the maximum ‘variance’ σ∗ = maxj
∑k

i=1 #Vipij(1 − pij) of the vertex degrees exceeds

ln10 n, such a partition does not exist. This implies that the assumption that Identify

does not answer ‘fail’ was false.

Let us now carry out this idea in detail. We assume in this section that

σ∗ = max
i

∑
j

#Vjpij(1 − pij) > ln10 n.

Let 1 � i, j � k be such that #Vjpij(1 − pij) � k−1σ∗ (note that possibly i = j). We may

assume without loss of generality that pij � 1
2

(if pij >
1
2
, we just replace G by its

complement and E by the all-ones matrix minus E). Condition A3 and the bound
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σ∗ > ln10 n show that, for all v ∈ Vi,

|e(v, Vj) − #Vjpij | � σ∗

10k
+ #Vjpij(1 − pij)/10 + ln2 n <

σ∗

2k
.

As #Vjpij � σ∗/k, this yields

e(v, Vj) � σ∗

2k
for all v ∈ Vi. (4.10)

Furthermore, assuming that Identify does not fail, we know that its output is a matrix

ϕ that is based on a partition T1, . . . , TR with R � k. Recall that each entry ϕvw for v ∈ Ti
and w ∈ Tj is obtained by rounding the ‘edge density’ e(Ti, Tj)/#Ti#Tj if i �= j, resp.

e(Ti)/
(

#Ti
2

)
if i = j, to 1 if it is bigger than 0.66 and to 0 otherwise.

To each v ∈ Vi we assign an index γ(v) ∈ {1, . . . , R} such that

e(v, Vj ∩ Tγ(v)) = max
1�l�R

e(v, Vj ∩ Tl).

Ties can be broken arbitrarily. Then e(v, Vj ∩ Tγ(v)) � R−1e(v, Vj).

Fact 4.10. e(v, Vj ∩ Tγ(v)) � #Tγ(v) ∩ Vj − ln4 n, for all v ∈ Vi.

Proof. We assign to each v ∈ Vi the unique index β(v) ∈ {1, . . . , R} such that v ∈ Tβ(v).

Assume for contradiction that there exists v ∈ Vi such that the entries of ϕ on the rectangle

Tγ(v) × Tβ(v) are 0. Then all v–Tγ(v)-edges are present in the graph G∗
1. Hence, the degree

of v in G∗
1 satisfies dG∗

1
(v) � e(v, Tγ(v)) � R−1e(v, Vj). In combination with our assumption

that n > n0 for some sufficiently large n0 = n0(k), (4.10) shows that

dG∗
1
(v) � R−1e(v, Vj) � σ∗

2kR
>

ln10 n

2kR
� ln10 n

2k2
> ln4 n.

But then step 4 of Identify would have failed. This contradiction shows that ϕ attains the

value 1 on the rectangle Tγ(v) × Tβ(v) for all v ∈ Vi. Therefore, the degree dG∗
2
(v) of v ∈ Vi

in G∗
2 provides an upper bound on the number #Tγ(v) ∩ Vj − e(v, Vj ∩ Tγ(v)) of ‘missing’

edges. Since we are assuming that Identify did not fail, we know that dG∗
2
(v) � ln4 n

(see step 4), and thus

#Tγ(v) ∩ Vj − e(v, Vj ∩ Tγ(v)) � dG∗
2
(v) � ln4 n,

as claimed.

Fact 4.11. ln9 n � σ∗

2kR
� #Tγ(v) ∩ Vj � e(v, Vj ∩ Tγ(v)) + ln4 n, for all v ∈ Vi.

Proof. To obtain the left-hand inequality, recall that we are assuming that n > n0 for some

sufficiently large n0 = n0(k), which we can choose so that ln n > 2kR. As σ∗ > ln10 n, we

thus get σ∗/(2kR) > ln9 n. The right-hand inequality follows from Fact 4.10. Furthermore,

(4.10) entails that e(v, Vj) � σ∗/(2k) for any v ∈ Vi, and the choice of γ(v) yields

#Vj ∩ Tγ(v) � e(v, Vj ∩ Tγ(v)) � e(v, Vj)/R � σ∗/(2kR).

This yields the middle inequality.
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The map γ : Vi → {1, . . . , R} assigns to each v ∈ Vi an index γ(v) such that e(v, Vj ∩ Tγ(v))
is maximal, i.e., e(v, Vj ∩ Tγ(v)) � e(v, Vj ∩ Tl) for all l. Let 1 � α � R be such that #γ−1(α)

is maximal. Intuitively, Tα is the class of the partition T1, . . . , TR where most of the vertices

in Vi have most of their neighbours. Then the number #γ−1(α) of vertices in Vi that have

most of their neighbours in Tα is at least R−1#Vi. Since R � k and #Vi � nmin, we have

#γ−1(α) � nmin/k. Hence, it is possible to choose a set S ⊂ γ−1(α) ⊂ Vi of cardinality

s = �10−4k−3nmin�. (4.11)

(That is, we choose a set S ⊂ γ−1(α) ⊂ Vi of this size arbitrarily.) Let T = Tα ∩ Vj \ S ,

and let t = #T .

Fact 4.12. e(S, T ) � 0.9st.

Proof. Double-counting edges in G1 yields the bound

#Tα ∩ Vj � eG1
(γ−1(α), Tα ∩ Vj)

maxw∈Tα dG1
(w)

, (4.12)

which is in terms of the degree dG1
(w) in G1. Since σ∗ > ln10 n, the bound (3.1) on

the maximum degree of G1 ∪ G2 implies that dG1
(w) � 7σ∗ + ln3 n � 8σ∗ for all w ∈ Tα.

Furthermore, Fact 4.11 entails that

eG1
(γ−1(α), Tα ∩ Vj) � 1

2

∑
v∈Vi:γ(v)=α

e(v, Vj ∩ Tα) � #γ−1(α)

2
· σ∗

2kR
. (4.13)

Since R � k and #γ−1(α) � #Vi/k by the choice of α, (4.12) and (4.13) yield

#Tα ∩ Vj � eG1
(γ−1(α), Tα ∩ Vj)

8σ∗ � #Vi
32k3

(4.11)

� 50s. (4.14)

Recalling that T = Tα ∩ Vj \ S , we obtain

t = #T � #Tα ∩ Vj − s
(4.14)

� 1

2
#Tα ∩ Vj

Fact 4.11
� σ∗

4k2
. (4.15)

Since we are assuming that σ∗ > ln10 n and n > n0 for some n0 = n0(k) that is sufficiently

large that ln n > 4k2, (4.15) yields t− ln4 n > 0.9t. Hence, the right-hand inequality from

Fact 4.11 entails e(S, T ) � s(t− ln4 n) � 0.9st, as desired.

To complete the proof of Lemma 4.4, we consider the matrix M = E − A(G). Its entries

areMvw = Evw − 1 if v, w are adjacent, andMvw = Evw if v, w are not adjacent. Condition A1

ensures that ‖M‖ � c0k
√
λ+ Δ, where λ � σ∗nmin/ ln n and Δ is the maximum degree of the

graph G1 ∪ G2. Furthermore, (3.1) provides a bound on Δ, namely Δ � 7σ∗ + ln3 n � 8σ∗,

where the last inequality is due to our assumption σ∗ > ln10 n. Hence, assuming that

n > n0(k) is sufficiently large, we obtain

‖M‖ � c0k
√
σ∗nmin/ ln n+ 8σ∗ � 2c0k

√
σ∗nmin/ ln n < 10−4k−3

√
σ∗nmin. (4.16)
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Furthermore, since S ⊂ Vi and T ⊂ Vj and S ∩ T = ∅, the definition of M shows that

〈M1S , 1T 〉 =
∑

(v,w)∈S×T
Mvw = −e(S, T ) +

∑
(v,w)∈S×T

Evw = #S#Tpij − e(S, T ).

Since pij � 1
2
, Fact 4.12 entails that

2

5
st � e(S, T ) − #S#Tpij = −〈M1S , 1T 〉

� ‖M‖ · ‖1S‖ · ‖1T‖ = ‖M‖
√
st. (4.17)

Combining (4.11), (4.15), and (4.17), we obtain ‖M‖ � 2
5

√
st � 10−4k−3

√
nminσ∗, in con-

tradiction to (4.16). This shows that our assumption that Identify does not answer ‘fail’

was false.

5. Approximating the expected densities

5.1. The procedure Approx

The aim of Approx is to compute a low-rank matrix Â such that ‖Â− E‖ � c2
0k

√
λ

(see Proposition 3.3). Here λ denotes the spectral parameter from condition A1 (and c0

is the constant from A1). Remember that σ∗ = maxj
∑k

i=1 #Vipij(1 − pij) is the maximum

‘variance’ of the vertex degrees, and that σ∗ � λ � σ∗ min{σ∗, nmin/ ln n}. Thus, the larger

σ∗ the less accurate an approximation Â to E we need to provide. Furthermore, recall

the decomposition of the graph G into its ‘sparse’ part G1 and the complement G2 of

its ‘dense’ part (see (1.3)): G1 contains all edges {v, w} ∈ E(G) such that Evw � 1
2
, and G2

contains all edges {v, w} �∈ E(G) such that Evw > 1
2
.

In order to compute the approximation Â of E , Approx analyses the spectrum of the

adjacency matrix A = A(G). As we will see, if the maximum variance σ∗ is very large

(more precisely, σ∗ > ln3 n), then it is easy to obtain the desired approximation Â: just

computing a rank k approximation of A is sufficient. In contrast, if σ∗ is ‘small’ (say,

σ∗ < ln ln n), then matters are more involved. In this case the graph G1 ∪ G2 is sparse.

In effect, just as in the graph colouring example in Section 2, fluctuations of the vertex

degrees affect the spectrum of the adjacency matrix A. Hence, as in Section 2, we could in

principle just disregard vertices that have an ‘atypically high’ degree in G1 ∪ G2. Indeed,

condition A1 suggests that we should ignore all vertices whose degree in G1 ∪ G2 is bigger

than 10λ, say. The problem with this is that Approx does not know λ. In fact, it is not

obvious how to estimate either λ or σ∗ given just the graph G and the number k of classes.

Therefore, Approx pursues an adaptive strategy (see Figure 3). Suppose that σ∗ < ln3 n.

The input of Approx consists of G, k, and the matrix ϕ = Φ that indicates which parts

of G are sparse/dense (see Proposition 3.2). Thus, the two graphs G∗
1, G∗

2 set up in

step 1 coincide with G1, G2. Proceeding in log2 n rounds t = 1, . . . , log2 n, step 2 of Approx

computes sets Rt of vertices of ‘high’ degree dG∗
1∪G∗

2
(v) � Δt = 2−tn in the graph G∗

1 ∪ G∗
2,

and certain matrices At. The matrix At is obtained from the adjacency matrix A(G) by

replacing all entries indexed by V × Rt ∪ Rt × V by the corresponding entries of ϕ. The

combinatorial meaning is that all edges incident with vertices in Rt get deleted from the

graph G1 ∪ G2. As discussed above, ideally we would like to return a matrix At such
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Figure 3. The procedure Approx.

that Δt ≈ λ, say. Since we cannot actually implement this stopping criterion (because λ is

unknown), we check instead if the sequence of matrices At ‘converges’ by computing the

spectral norm ‖As − At‖ for all s < t. This condition is somewhat reminiscent of Cauchy’s

criterion for the convergence of sequences. If ‖As − At‖ is ‘too large’ for some s < t, then

Δt has become too small, and therefore the algorithm returns the previous approximation

At−1.

To analyse Approx, we remember the ‘core’ subgraph H that satisfies conditions H1–H4

(see Theorem 1.2). Intuitively H consists of the ‘well-behaved’ vertices of G. Below we will

need condition H1, which states that #V \H � λ−4nmin, and condition H3, according to

which all vertices v of H have degree at most dG1∪G2
(v) � 10σ∗ in G1 ∪ G2.

Lemma 5.2. Suppose that Δt � 50λ and that ϕ = Φ. Then ‖At − E‖ � 2c0k
√

Δt.

Proof. The set Rt contains all vertices that have degree greater than Δt in G∗
1 ∪ G∗

2. Since

we are assuming that ϕ = Φ, we have G∗
1 = G1 and G∗

2 = G2. Therefore, condition A1

shows that the minor of A induced on V \ Rt satisfies

‖EV\Rt − AV\Rt‖ � c0k
√

Δt + λ � 3

2
c0k

√
Δt. (5.1)

Let F = ERt + ERt×V\Rt + EV\Rt×Rt and M = ϕRt + ϕRt×V\Rt + ϕV\Rt×Rt . Since

V 2 \ (V \ Rt)2 = (Rt × Rt) ∪ (Rt × V \ Rt) ∪ (V \ Rt × Rt),

the entries Fvw are 0 for (v, w) ∈ (V \ Rt)2, and Fvw = Evw for (v, w) �∈ (V \ Rt)2. Similarly,

Mvw = 0 for (v, w) ∈ (V \ Rt)2, and Mvw coincides with ϕ for (v, w) �∈ (V \ Rt)2. Since on

V 2 \ (V \ Rt)2 the matrix At coincides with ϕ, we have

F −M = E − At − (EV\Rt − AV\Rt ). (5.2)
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Thus, to complete the proof we need to bound ‖F −M‖. Bounding the spectral norm by

the Frobenius norm (see (1.8)), we obtain

‖F −M‖2 � ‖F −M‖2
F

= ‖ERt − ϕRt‖2
F + ‖ERt×V\Rt − ϕRt×V\Rt‖2

F

+ ‖EV\Rt×Rt − ϕV\Rt×Rt‖2
F

� 2‖ERt×V − ϕRt×V‖2
F (because E − ϕ is symmetric)

= 2‖ERt×V − ΦRt×V‖2
F (since we assume that ϕ = Φ)

= 2
∑
v∈Rt

∑
w∈V

(pψ(v)ψ(w) − Φvw)2 (as Evw = pψ(v)ψ(w)). (5.3)

The matrix Φ is defined so that Φvw = 1 if pψ(v)ψ(w) >
1
2

and Φvw = 0 if pψ(v)ψ(w) � 1
2
.

Therefore, (pψ(v)ψ(w) − Φvw)2 � 4(pψ(v)ψ(w)(1 − pψ(v)ψ(w)))
2. Hence, (5.3) yields

‖F −M‖2 � 8
∑
v∈Rt

∑
w∈V

[
pψ(v)ψ(w)(1 − pψ(v)ψ(w))

]2

= 8

k∑
a=1

k∑
b=1

#Va ∩ Rt · #Vb ·
[
pab(1 − pab)

]2
(because Va = ψ−1(a)) (5.4)

Since σ∗ = maxb
∑k

a=1 #Vapab(1 − pab), (5.4) entails

‖F −M‖2 � 8σ∗
k∑
a=1

#Va ∩ Rt
k∑
b=1

pab(1 − pab)

� 8σ∗ 2

nmin

k∑
a=1

#Va ∩ Rt (because σ∗ �
∑

b nminpab(1 − pab))

=
8σ∗ 2#Rt
nmin

� 8σ∗ 2#V \H
nmin

(as Rt ⊂ V \H by H3). (5.5)

As #V \H � nmin/λ
4 by condition H1 and λ � σ∗ � c0 for some large constant c0 by

assumption A1, (5.5) yields ‖F −M‖2 � 8σ∗ 2#V \H/nmin � 1. Combining this estimate

with (5.1) and (5.2), we obtain ‖At − E‖ � ‖EV\Rt − AV\Rt‖ + ‖F −M‖ � c0k
√

Δt + 1 �
2c0k

√
Δt.

Proof of Proposition 3.3. If Identify fails, then σ∗ > ln3 n by Proposition 3.2, and step 2

of Partition computes a rank k approximation Â of A. Since σ∗ > ln3 n, the bound (3.1)

on the maximum degree of G1 ∪ G2 entails that dG1∪G2
(v) � 8σ∗ for all v ∈ V . Therefore,

‖E − Â‖ � ‖E − A‖ + ‖Â− A‖
(1.9)

� 2‖E − A‖
A1
� c2

0k
√
λ,

as desired.

Let us now assume that Identify did not fail, and thus ϕ = Φ. In this case, Partition

executes Approx(G,ϕ). Let s, t be such that Δs � Δt � 50λ. Then by Lemma 5.2 and the

triangle inequality we have ‖As − At‖ � ‖As − E‖ + ‖At − E‖ � 4c0k
√

Δs, and thus step 3
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of Approx will not abort the loop. Consequently, the index t̂ chosen in step 4 of Approx

satisfies Δt̂ � 100λ. Let t∗ be maximal such that Δt∗ � 50λ. Then ‖At̂ − At∗ ‖ � 4c0k
√

Δt∗ ,

because the exit condition in step 3 of Approx was not satisfied for t = t̂ and s = t∗.

Therefore, invoking Lemma 5.2 and the triangle inequality once more, we get

‖At̂ − E‖ � ‖At̂ − At∗ ‖ + ‖At∗ − E‖ � 6c0k
√

Δt∗ � 60c0k
√
λ. (5.6)

Finally, if Â is a rank k approximation of At̂, then by the key property (1.9) of

the rank k approximation we have ‖Â− At̂‖ � ‖E − At̂‖, because E has rank at most

k. Therefore, (5.6) implies ‖Â− E‖ � ‖Â− At̂‖ + ‖At̂ − E‖ � 2‖At̂ − E‖ � 120c0k
√
λ �

c2
0k

√
λ, as claimed.

6. Computing an initial partition

6.1. The procedure Initial

Once Partition has obtained the matrix Â, the algorithm calls the subroutine Initial.

We know from Proposition 3.3 that Â is a matrix of rank � k that approximates the

‘expected’ adjacency matrix E well. More precisely, in the notation of condition A1 we

have

‖Â− E‖ � c2
0k

√
λ. (6.1)

Given the matrix Â as input, Initial now tries to find a partition (S1, . . . , Sk) of the

vertices of G that is ‘close’ to the planted partition. In fact, our aim is to show that the

output (S1, . . . , Sk) satisfies
∑k

i=1 #Si�Vτ(i) � 0.001nmin, where � denotes the symmetric

difference, τ is a permutation of the indices, and nmin is the size of the smallest class of

the desired partition.

To construct such a partition, Initial basically classifies the vertices v ∈ V by their

corresponding column Âv of Â. Two vertices v, w are deemed ‘similar’ if their columns Âv ,

Âw are close in �2. This approach is based on two observations:

(a) If v ∈ Vi and w ∈ Vj with i �= j, then Ev and Ew are far apart in �2. More precisely, by

condition A2

‖Ev − Ew‖2 � ρ2, where ρ = c4
0

√
k3λ/nmin. (6.2)

Furthermore, if u, v ∈ Vi are in the same class, then Ev = Eu by definition.

(b) For ‘most’ vertices v the vector Âv is close to Ev in �2.

To establish (b), we combine (6.1) with the bound (1.8) on the Frobenius norm in terms

of the operator norm: since both Â and E have rank � k, we get

‖Â− E‖2
F � c4

0k
3λ. (6.3)

Now, let z = #{v ∈ V : ‖Âv − Ev‖2 > 0.001ρ2} be the number of vertices for which Âv and

Ev are not close. Then

‖Â− E‖2
F =

∑
v∈V

‖Âv − Ev‖2 � 0.001ρ2 · z. (6.4)

https://doi.org/10.1017/S0963548309990514 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548309990514


252 A. Coja-Oghlan

Figure 4. The procedure Initial.

If the constant c0 is chosen to be sufficiently large, then 0.001ρ2 > c5
0k

3λ/nmin. Hence,

(6.1) and (6.4) imply that z � nmin/c0 < nmin/1000 is small relative to the size nmin of the

smallest class of the desired partition.

Thus, for all but 0.001nmin vertices we have ‖Âv − Ev‖ �
√

0.001ρ. Furthermore, it

makes sense to classify such vertices v by their corresponding column Âv . For assume that

‖Âv − Ev‖ �
√

0.001ρ and ‖Âw − Ew‖ �
√

0.001ρ. If v, w ∈ Vi for some i, then Ev = Ew , and

thus by the triangle inequality

‖Âv − Âw‖ � ‖Âv − Ev‖ + ‖Âw − Ew‖ � 2
√

0.001ρ. (6.5)

In contrast, if v ∈ Vi and w ∈ Vj , i �= j, then by (6.2)

‖Âv − Âw‖ � ‖Êv − Ev‖ − ‖Âv − Ev‖ − ‖Âw − Ew‖ � (1 − 2
√

0.001)ρ. (6.6)

If Initial knew the parameter ρ, then it could utilize (6.5) and (6.6) to compute

a good approximation to the desired partition V1, . . . , Vk as follows. For each vertex

v ∈ V we could determine the set Q(v) = {w ∈ V : ‖Âv − Âw‖2 � 0.01ρ2} of vertices w

whose vector Âw is close to Âv . If v ∈ Vi and ‖Âv − Ev‖ �
√

0.001ρ, then Q(v) will

contain all vertices w ∈ Vi such that ‖Âw − Ew‖ �
√

0.001ρ. As we have seen, there are

at least #Vi − z � 0.999#Vi such vertices w ∈ Vi. Hence, Q(v) contains almost all of Vi.

Conversely, any vertex w ∈ V \ Vi such that ‖Âw − Ew‖ �
√

0.001ρ does not lie in Q(v)

(see (6.6)). Hence, #Q(v)�Vi � z � 0.001nmin. Thus, to obtain a partition of V we could

first choose a vertex v1 such that #Q(v1) = maxv∈V #Q(v) is maximum. Then, choose a

vertex v2 ∈ V \ Q(v1) such that #Q(v2) \ Q(v1) = maxv∈V\V1
#Q(v) \ Q(v1) is maximum, etc.

This is essentially what steps 2–3 of Initial do, and a similar procedure is at the core

of McSherry’s algorithm [28].
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However, we do not actually assume that ρ is known to Initial. Therefore, the

algorithm applies the above clustering procedure for various ‘candidate’ values ρj = n2−j .

For each j this yields a collection Q(j)
1 , . . . , Q

(j)
k of pairwise disjoint subsets of V . For each

of them we compute the ‘barycentre’ ξ(j)
i , which is just the arithmetic mean of the vectors

Âw with w ∈ Q
(j)
i . Hence, ξ(j)

i should approximate EVi well if Q(j)
i is a good approximation

of Vi. In effect, if Q(j)
1 , . . . , Q

(j)
k is ‘close’ to V1, . . . , Vk , then the error term

rj =

k∑
i=1

∑
v∈S (j)

i

‖Âv − ξ
(j)
i ‖2

should be about as small as ‖Â− E‖2
F . Therefore, the output of Initial is just the

partition S (j)
1 , . . . , S

(j)
k with minimal rj . The following lemma shows that, if the above error

term is actually small, then the resulting partition is close to V1, . . . , Vk .

Lemma 6.2. Let S1, . . . , Sk be a partition and let ξ1, . . . , ξk be a sequence of vectors such

that

k∑
i=1

∑
v∈Si

‖ξi − Âv‖2 � c6
0k

3λ.

Then there is a permutation γ : {1, . . . , k} → {1, . . . , k} such that the following holds.

(1) ‖ξi − EVγ(i) ‖2 � 0.001ρ2 for all i = 1, . . . , k,

(2)
∑k

i=1 #Si�Vγ(i) < 0.001nmin, and

(3)
∑k

a,b=1 #Sa ∩ Vb · ‖EVγ(a) − EVγ(b) ‖2 < 0.001nminρ
2 for all 1 � j � k.

Proof. Let Sab = Sa ∩ Vb be the set of all vertices in class Vb that end up in Sa (1 � a, b �
k). For each 1 � a � k choose an index 1 � γ(a) � k such that ‖EVγ(a) − ξa‖ is minimum

(ties can be broken arbitrarily). Then for all b �= γ(a) we have

ρ � ‖EVγ(a) − EVb‖ (by condition A2)

� ‖EVγ(a) − ξa‖ + ‖EVb − ξa‖ (by the triangle inequality)

� 2‖EVb − ξa‖, (by the choice of γ(a)). (6.7)

Hence, ‖EVb − ξa‖ � ρ/2. Therefore, the assumption
∑k

i=1

∑
v∈Si ‖ξi − Âv‖2 � c6

0k
3λ im-

plies

ρ2

4

k∑
a=1

∑
1�b�k:b�=γ(a)

#Sab �
k∑

a,b=1

#Sab‖EVb − ξa‖2

� 2

k∑
a,b=1

∑
v∈Sab

‖Ev − Âv‖2 + ‖Âv − ξa‖2 (by the triangle inequality)
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= 2
∑
v∈V

‖Ev − Âv‖2 + 2

k∑
a,b=1

∑
v∈Sab

‖Âv − ξa‖2

= 2‖Â− E‖2
F + 2

k∑
a=1

∑
v∈Sa

‖Âv − ξa‖2 � 2‖Â− E‖2
F + 2c6

0k
3λ. (6.8)

Furthermore, (6.1) shows in combination with the bound (1.8) on the Frobenius norm in

terms of the spectral norm that ‖Â− E‖2
F � c4

0k
2λ. Hence, (6.8) yields

ρ2

4

k∑
a=1

∑
1�b�k:b�=γ(a)

#Sab �
k∑

a,b=1

#Sab‖EVb − ξa‖2 � 3c6
0k

3λ � c7
0k

3λ. (6.9)

Remembering that ρ2 = c8
0k

3λ/nmin (see A2) for some large constant c0, we see that (6.9)

yields

k∑
a=1

#Sa�Vγ(a) =

k∑
a=1

∑
1�b�k:b�=γ(a)

2#Sab � 8c7
0k

3λ

ρ2
� 0.001nmin. (6.10)

This establishes assertion (2).

In addition, (6.10) shows that γ is a bijection. For assume for contradiction that there

are 1 � a < b � k such that γ(a) = γ(b). Then (6.10) yields #Sa�Vγ(a) � 0.001nmin and

#Sb�Vγ(a) � 0.001nmin. But this is impossible, since Sa ∩ Sb = ∅ and Vγ(a) � nmin.

Furthermore, (6.10) implies that #Sa ∩ Vγ(a) � #Vγ(a) − 0.001nmin � nmin/2. Thus, by

(6.8) for any 1 � a � k we have

nmin

2
‖EVγ(a) − ξa‖2 � #Sa ∩ Vγ(a)‖EVγ(a) − ξa‖2 �

k∑
α,β=1

#Sαβ‖EVβ − ξα‖2 � c7
0k

3λ.

Recalling that ρ2 = c8
0k

3λ/nmin for a large constant c0, we thus get

‖Eγ(a) − ξa‖2 � 2c7
0k

3λ

nmin
� 0.001ρ2 for all 1 � a � k, (6.11)

thereby proving assertion (1).

Finally, to prove assertion (3) we apply the triangle inequality to obtain

k∑
a,b=1

#Sab‖EVγ(a) − EVγ(b) ‖2 � 2

k∑
a,b=1

#Sab
(
‖EVγ(a) − ξa‖2 + ‖EVγ(b) − ξa‖2

)
.

Since ‖EVγ(a) − ξa‖ � ‖EVγ(b) − ξa‖ by the choice of γ(a), we obtain

k∑
a,b=1

#Sab‖EVγ(a) − EVγ(b) ‖2 � 4

k∑
a,b=1

#Sab‖EVγ(b) − ξa‖2
(6.9)

� 4c7
0k

3λ.

This implies assertion (3), because ρ2 = c8
0k

3λ/nmin for some large c0 (see A2).

Finally, in Section 6.2 we shall derive the following bound on the minimum error

term rj .
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Lemma 6.3. Suppose that the index j from step 1 of Initial is such that 1
2
ρ � ρj � ρ.

Then the term rj =
∑k

i=1 ‖Âv − ξ
(j)
i ‖2 computed in step 4 satisfies rj � c6

0k
3λ.

Proof of Proposition 3.4. Lemma 6.3 shows that there is an index j such that rj � c6
0k

3λ.

Therefore, the minimum error term r∗ computed in step 5 satisfies r∗ � c6
0k

3λ. Let J be the

index chosen in step 5, i.e., rJ = r∗. Then Lemma 6.2 shows that the partition S (J)
1 , . . . , S

(J)
k

satisfies the conditions stated in Proposition 3.4.

6.2. Proof of Lemma 6.3

Suppose that 1
2
ρ � ρj � ρ. To ease up the notation, we omit the superscript j; thus, we

let Si = S
(j)
i , Qi = Q

(j)
i be the sets constructed in iteration j, and we let Q(v) = Q(j)(v) for

v ∈ V (see steps 2–4 of Initial). We start by showing that there is a permutation γ such

that ξi is ‘close’ to EVγ(i) for all 1 � i � k, and that the sets Qi are ‘not too small’.

Lemma 6.4. There is a permutation γ : {1, . . . , k} → {1, . . . , k} such that for each 1 � i � k

we have #Qi � 1
2
#Vγ(i) and ‖ξi − EVγ(i) ‖2 � 0.1ρ2.

Proof. For 1 � i � k choose γ(i) so that #Qi ∩ Vγ(i) is maximum (ties are broken

arbitrarily). We claim that then for all 1 � l � k the following three inequalities hold:

#Ql � max{#Vi : i ∈ {1, . . . , k} \ γ({1, . . . , l − 1})} − 0.01nmin, (6.12)

#Ql ∩ Vγ(l) � #Ql − 0.01nmin, (6.13)

‖ξl − EVγ(l) ‖2 � 0.1ρ2. (6.14)

The proof is by induction on l. Thus, let us assume that (6.12)–(6.14) hold for all l < L.

We are going to show that (6.12)–(6.14) are then true for l = L as well. As a first step,

we establish (6.12). To this end, consider a class Vi such that i �∈ γ({1, . . . , L− 1}) and

let Zi = {v ∈ Vi : ‖Âv − EVi‖2 � 0.001ρ2}. Recall our bound (3.2) on ‖Â− E‖2
F : we have

‖Â− E‖2
F � c5

0k
3λ. Therefore,

0.001ρ2(#Vi − #Zi) �
∑

v∈Vi\Zi

‖Âv − Ev‖2 � ‖Â− E‖2
F � c5

0k
3λ. (6.15)

Since ρ2 = c8
0k

3λ/nmin for some large constant c0 (see A2), (6.15) implies

#Zi � #Vi − 0.01nmin. (6.16)

Moreover, the triangle inequality shows that, for any two vertices v, w ∈ Zi, the bound

‖Âv − Âw‖2 � 2(‖Âv − EVi‖2 + ‖Âw − EVi‖2) � 0.004ρ2 holds. In effect, for all v ∈ Zi we

have

Q(v) = {w ∈ V : ‖Âv − Âw‖2 � 0.01ρ2} ⊃ Zi. (6.17)

Now, consider a vertex v ∈ Zi and a vertex w such that w ∈ Ql for some l < L. Since

i �= γ(l) by our choice of i, the separation condition A2 shows that ‖EVγ(l) − Ev‖ � ρ.

Consequently,

ρ � ‖EVγ(l) − Ev‖ � ‖Ev − Âv‖ + ‖Âw − Âv‖ + ‖ξl − Âw‖ + ‖ξl − EVγ(l) ‖. (6.18)

https://doi.org/10.1017/S0963548309990514 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548309990514


256 A. Coja-Oghlan

Since w ∈ Ql , the construction in step 3 of Initial ensures that ‖Âw − ξl‖ � 0.1ρ.

Furthermore, ‖ξl − EVγ(l) ‖ � ρ/3 by the induction hypothesis (see (6.14)). Moreover, ‖Âv −
Ev‖ � 0.1ρ, because v ∈ Zi. Hence, (6.18) entails that ‖Âw − Âv‖ > 0.1ρ, and thus w �∈ Q(v).

Since this holds for all w ∈ Ql with l < L, (6.17) yields

Zi ∩ Ql = ∅ for all l < L. (6.19)

Finally, let vL signify the vertex chosen by step 3 of Initial to construct QL = Q(vL) \⋃
l<L Ql . The vertex vL is chosen so that

#QL = #Q(vL) \
L−1⋃
l=1

Ql � #Q(v) \
L−1⋃
l=1

Ql for all v ∈ V \
L−1⋃
l=1

Ql.

Since Zi ∩
⋃L−1
l=1 Ql = ∅ by (6.19), for all v ∈ Zi we have

#QL � #Q(v) \
L−1⋃
l=1

Ql
(6.17)

� #Zi
(6.16)

� #Vi − 0.01nmin.

As this estimate holds for all i �∈ γ({1, . . . , L− 1}), (6.12) follows.

Thus, we know that QL is ‘big’. As a next step, we prove (6.13), i.e., we show that QL
‘mainly’ consists of vertices of Vγ(L). Remember that γ(L) was chosen so that #QL ∩ Vγ(L)

is maximum. In addition, let 1 � i � k be such that ‖EVi − ÂvL‖ is minimum. We are going

to show that i = γ(L). Let w ∈ QL \ Vi. Then ‖Ew − ÂvL‖ � ‖EVi − ÂvL‖ by the choice of i.

Further, assumption A2 ensures that ‖Ew − EVi‖ � ρ. Hence, by the triangle inequality

ρ � ‖Ew − EVi‖ � ‖Ew − ÂvL‖ + ‖EVi − ÂvL‖ � 2‖Ew − ÂvL‖.

Consequently, ‖Ew − ÂvL‖2 � 1
4
ρ2. On the other hand, as w ∈ QL ⊂ Q(vL), we have ‖Âw −

ÂvL‖2 � 0.01ρ2. Therefore, we obtain

‖Âw − Ew‖ � ‖Ew − ÂvL‖ − ‖Âw − ÂvL‖ � 0.4ρ.

Since this is true for all w ∈ QL \ Vi, we conclude that

0.16ρ2 · #QL \ Vi �
∑

w∈QL\Vi

‖Âw − Ew‖2 � ‖Â− E‖2
F . (6.20)

Furthermore, we know from (3.2) that ‖Â− E‖2
F � c5

0k
3λ. Therefore, as ρ2 = c8

0k
3λ/nmin

for a large constant c0 > 0 (see A2), (6.20) yields

#QL \ Vi �
‖Â− E‖2

F

0.16ρ2
� c5

0k
3λ

0.16ρ2
< 0.01nmin. (6.21)

Since we have already established (6.12), we know that #QL � #Vi − 0.01nmin, and

thus (6.21) shows that #Vi ∩ QL � 0.99#QL. This implies i = γ(L), because γ(L) was

chosen to be the index j such that #QL ∩ Vj is maximum. In effect, #QL ∩ Vγ(L) =

#QL ∩ Vi � #QL − 0.01nmin. This completes the proof of (6.13).

To show (6.14), we note that by construction we have ‖Âw − ÂvL‖ � 0.1ρ for all w ∈ QL
(see step 3 of Initial). As ξL is the arithmetic mean of the vectors Âw over w ∈ QL, this
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implies ‖ξL − ÂvL‖ � 0.1ρ. Hence, by the triangle inequality

#QL ∩ Vγ(L)‖EVγ(L) − ξL‖2

� 3
∑

w∈QL∩Vγ(L)

‖ξL − ÂvL‖2 + ‖Âw − ÂvL‖2 + ‖Âw − EVγ(L) ‖2

� 0.06ρ2#QL ∩ Vγ(L) + 3
∑

w∈QL∩Vγ(L)

‖Âw − EVγ(L) ‖2

� 0.06ρ2#QL ∩ Vγ(L) + 3‖Â− E‖2
F . (6.22)

As the construction of Â ensures that ‖Â− E‖2
F � c5

0k
3λ (see (3.2)), (6.22) yields

#QL ∩ Vγ(L)‖EVγ(L) − ξL‖2 � 0.06ρ2#QL ∩ Vγ(L) + 3c5
0k

3λ. (6.23)

Since #QL ∩ Vγ(L) � 0.9nmin due to (6.12) and (6.13), and because ρ2 = c8
0k

3λ/nmin for a

large constant c0 (see A2), (6.23) entails that ‖Eγ(L) − ξL‖2 � 0.06ρ2 + 6c5
0k

3λ/nmin � 0.1ρ2.

Thus, (6.14) follows.

Finally, (6.12)–(6.13) imply the assertion. To see that γ is a bijection, let us assume

that γ(l) = γ(l′) for two indices 1 � l < l′ � k. Indeed, choose l to be the least index such

that γ(l) = γ(l′). Then #Ql � #Vγ(l) − 0.01nmin by (6.12), and thus #Vγ(l) \ Ql � 0.1nmin

by (6.13). Therefore, we obtain the contradiction

0.99nmin

(6.12)

� #Ql′
(6.13)

� 1.1#Ql′ ∩ Vγ(l) � 1.1#Vγ(l) \ Ql � 0.11nmin.

Finally, as γ is bijective, (6.12) entails that #Ql � 0.9Vγ(l) for all 1 � l � k. Hence, due to

(6.13) we obtain #Ql ∩ Vl � 0.9#Ql � 1
2
#Vγ(l), as desired.

From now on we shall assume without loss of generality that the map γ from Lemma 6.4

is just the identity, i.e., γ(i) = i for all i. Bootstrapping on the estimate ‖ξi − EVi‖2 � 0.1ρ2

for 1 � i � k from Lemma 6.4, we derive the following stronger estimate.

Corollary 6.5. For all 1 � i � k we have ‖ξi − EVi‖2 � 100#Q−1
i

∑
v∈Qi ‖Âv − Ev‖2.

Proof. The vector ξi is just the arithmetic mean of the vectors Âv over v ∈ Qi. Therefore,

using first the triangle inequality and then Cauchy–Schwarz, we obtain

‖ξi − EVi‖ � #Q−1
i

∥∥∥∥∑
v∈Qi

Âv − EVi
∥∥∥∥ � #Q

−1/2
i

[∑
v∈Qi

‖Âv − EVi‖2

]1/2

. (6.24)

Lemma 6.4 shows that ‖ξi − EVi‖2 � 0.1ρ2. In addition, all v ∈ Qi satisfy ‖Âv − ξi‖ � 0.2ρ

due to the construction of Qi in steps 2–3. Therefore, for all v ∈ Qi \ Vi we have

‖Âv − EVi‖2 � 2(‖Âv − ξi‖2 + ‖ξi − EVi‖2) � ρ2/3. (6.25)

Hence, as ‖Ev − EVi‖2 � ρ2 by the separation condition A2, (6.25) implies that ‖Âv − Ev‖ �
0.1‖Âv − EVi‖ for all v ∈ Qi. Therefore, the assertion follows from (6.24).
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As a next step we are going to analyse the set Si. Recall that steps 2–3 construct the

sets Qi as the set Q(vi) of vertices w such that Âw is ‘close’ to Âvi minus the vertices

covered by previous sets Q1, . . . , Qi−1. Thus, the sets Q1, . . . , Qk do not necessarily contain

all vertices. To obtain a partition S1, . . . , Sk of all vertices, step 4 assigns each left-over

vertex v �∈ Q1 ∪ · · · ∪ Qk to a class Si such that the distance ‖Âv − ξi‖ between Âv and

the ‘centre vector’ ξi of class Qi is minimum. The following lemma relates the resulting

distance ‖Âv − ξi‖ to the distance ‖Âv − Ev‖ between Âv and the ‘expected density’ vector

Ev .

Corollary 6.6. For all v ∈ Si \ Vi we have ‖Âv − ξi‖ � 3‖Âv − Ev‖.

Proof. Let i �= l and consider a vertex v ∈ Si ∩ Vl . We claim that

‖Âv − ξi‖ � ‖Âv − ξl‖. (6.26)

If v ∈ Si ∩ Vl \ Qi, then the construction of Si in step 4 of Initial guarantees that

‖Âv − ξi‖ � ‖Âv − ξl‖, as claimed. Thus, assume that v ∈ Qi ∩ Vl . Then

‖Âv − ξi‖ � 0.15ρ (by the definition of Qi in step 3 of Initial),

max{‖ξi − EVi‖, ‖ξl − Ev‖} � 1

3
ρ (by Lemma 6.4), (6.27)

‖EVi − Ev‖ � ρ (by the separation assumption A2).

Assume for contradiction that ‖Âv − ξl‖ < ‖Âv − ξi‖. Then the three estimates above

would yield

ρ � ‖EVi − Ev‖ � ‖EVi − ξi‖ + ‖Ev − ξl‖ + ‖ξi − ξl‖

� 2

3
ρ+ ‖Âv − ξi‖ + ‖Âv − ξl‖ <

2

3
ρ+ 2‖Âv − ξi‖ � 0.99ρ,

which is clearly untrue. Thus, we conclude that ‖Âv − ξl‖ � ‖Âv − ξi‖, thereby prov-

ing (6.26).

To complete the proof, we use the bound ‖Ev − ξl‖ � ρ/3 once more (see (6.27)). It

implies in combination with the triangle inequality and (6.26) that

‖Âv − ξi‖ � ‖Âv − Ev‖ + ‖Ev − ξi‖ � ‖Âv − Ev‖ + ‖Ev − ξl‖ � ‖Âv − Ev‖ + ρ/3.

Hence, as ‖ξi − EVi‖ � ρ/3 (again by (6.27)) and ‖Ev − EVi‖ = ‖EVi − EVl‖ � ρ (by the

separation assumption A2), we obtain

ρ � ‖Ev − EVi‖ � ‖Âv − ξi‖ + ‖ξi − EVi‖ + ‖Âv − Ev‖ � 2‖Âv − Ev‖ +
2

3
ρ.

This shows that ‖Âv − Ev‖ � 1
6
ρ. Finally, the estimate

‖Âv − ξi‖
(6.26)

� ‖Âv − ξl‖ � ‖Âv − Ev‖ + ‖Ev − ξl‖
(6.27)

� ‖Âv − Ev‖ +
ρ

3
� 3‖Âv − Ev‖

implies the assertion.
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Proof of Lemma 6.3. Since #Qi � 1
2
#Vi by Lemma 6.4, we have the estimate

k∑
i=1

∑
w∈Si∩Vi

‖Âw − ξi‖2 � 2

k∑
i=1

∑
w∈Si∩Vi

[
‖Âw − Ew‖2 + ‖Ew − ξi‖2

]
Cor. 6.5

� 2‖Â− E‖2
F + 200

k∑
i=1

#Si ∩ Vi
#Qi

∑
v∈Qi

‖Âv − Ev‖2 � 500‖Â− E‖2
F . (6.28)

Moreover, since by Corollary 6.6 we have ‖Âv − ξi‖ � 3‖Âv − Ev‖ for all v ∈ Si \ Vi, we

get

k∑
i=1

∑
v∈Si\Vi

‖Âv − ξi‖2 � 9

k∑
i=1

∑
v∈Si\Vi

‖Âv − Ev‖2 � 9‖Â− E‖2
F . (6.29)

Since ‖Â− E‖2
F � c5

0k
3λ by (3.2), the bounds (6.28) and (6.29) imply the assertion.

7. Local improvement

7.1. The procedure Improve

When the subroutine Improve gets called in step 4 of Partition, the first three steps

have already computed a partition S1, . . . , Sk along with the ‘centre vectors’ ξ1, . . . , ξk ∈ R
V

such that the following three statements are true (see Proposition 3.4; we are assuming

without loss of generality that the index permutation τ is just the identity):

‖ξi − EVi‖2 � 0.001ρ2 for i = 1, . . . , k, (7.1)

k∑
i=1

#Si�Vi < 0.001nmin, (7.2)

k∑
a,b=1

#Sa ∩ Vb · ‖EVa − EVb‖2 < 0.001nminρ
2. (7.3)

Starting from this partition S1, . . . , Sk , Improve aims to find a partition T1, . . . , Tk that

coincides with the desired partition V1, . . . , Vk on the ‘core’ subgraph H . Recall that H is

an induced subgraph of G that satisfies conditions H1–H4 detailed in Section 1.2. These

conditions basically state that H consists of ‘well-behaved’ vertices v for which the number

e(v, Vj) of neighbours of v in class Vj is approximately equal to the ‘expected number’

μ(v, Vi) = #Vj · pψ(v)j .

Whereas Partition, up to this point, has only exploited spectral properties of G,

Improve is a combinatorial procedure. It is based on comparing the numbers e(v, Si)

of neighbours that vertex v has in the classes S1, . . . , Sk with the ‘expected’ numbers of

neighbours μ(v, Vi) = #Vj · pψ(v)j . The obvious problem is that Improve does not know

the latter. But if μ(v, Vi) were known to the algorithm, a natural approach would be

the following. By (7.2) the partition (S1, . . . , Sk) is already close to the desired partition

V1, . . . , Vk . Therefore, we would expect that for ‘most’ vertices v we have e(v, Si) ≈ e(v, Vi).

Suppose that v ∈ Si ∩ Vj and that v ∈ H . Thus, v is in Si but should get assigned to class
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Figure 5. The subroutine Improve.

Tj by Improve. Since v ∈ H , we know that e(v, Vi) ≈ μ(v, Vi) = #Vi · pji. Hence, all we

need to do is look for an index γ(v) such that e(v, Si) is ‘closest’ to #Vi · pγ(v)i for all

i = 1, . . . , k. If actually e(v, Si) ≈ e(v, Vi), then due to the separation condition A2 this will

yield γ(v) = j.

Of course, we need to specify what it means that e(v, Si) is ‘closest’ to #Vi · pγ(v)i
for all i. Condition H2 suggests the following. For each vertex v we set up a vector

δ(v) = (δ(v, w))w∈V . The entries are defined as follows: if w ∈ Sl , then δ(v, w) = e(v, Sl)/#Sl
is the ‘empirical’ density between v and class Sl . This is somewhat analogous to the

vector d(v) = d(v, w) from condition H2, whose entries are d(v, w) = e(v, Vl)/#Vl for w ∈
Vl . Indeed, H2 states that ‖d(v) − Ev‖2 � 0.001ρ2 is ‘small’ for all v ∈ H . Hence, we

expect that for ‘most’ v ∈ H ‖δ(v) − Ev‖ is also small, because by (7.2) the partition

S1, . . . , Sk is already ‘close’ to V1, . . . , Vk . Thus, γ(v) ∈ {1, . . . , k} should be chosen so that

‖δ(v) − EVγ(v) ‖ = minl ‖δ(v) − EVl‖. Then for ‘most’ v ∈ H we expect γ(v) to be ‘correct’,

i.e., v ∈ Vγ(v). Finally, in order to ensure that all v ∈ H get classified correctly, we could

repeat this procedure, say, log2 n times. That is, we compute γ as before and update the

partition S1, . . . , Sk by letting Sj = γ−1(j). Then recompute γ, and so on.

The remaining gap is that Improve should compute ‖δ(v) − EVl‖ for l = 1, . . . , k but

does not know the vectors EV1 , . . . , EVk . However, Improve does know the vectors ξ1, . . . , ξk ,

which are good approximations of EV1 , . . . , EVk by (7.1). Hence, instead of computing

‖δ(v) − EVl‖ Improve calculates ‖δ(v) − ξl‖. This leads to the pseudocode detailed in

Figure 5.

In order to establish Proposition 3.5 we need to prove that Improve actually homes

in on the planted partition. To this end, we need a few definitions. For a partition

S = (S1, . . . ,Sk) and a vertex v ∈ V , we define a vector δS (v) = (δS (v, w))w∈V by letting

δS (v, w) = e(v,Sj)/#Sj for all w ∈ Sj and all 1 � j � k. We will omit the index S if it is

clear from the context. Moreover, we call a partition R = (R1, . . . ,Rk) an improvement

of S if, for all i = 1, . . . , k and all v ∈ Ri, we have ‖δS (v) − ξi‖ = min1�j�k ‖δS (v) − ξj‖.
Thus, each step of Improve just computes an improvement R of the previous partition S .

Furthermore, we say that S is feasible if 1
2
#Vi � #Si � 2#Vi for all i. In addition, we

set Sij = Si ∩ Vj . In words, Sij contains all vertices that are in class Si but actually belong

in class Sj . Let us call S tight if
∑

i�=j #Sij‖EVi − EVj‖2 � 0.001ρ2nmin. Thus, (7.2) and (7.3)
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ensure that the initial partition partition S = (S1, . . . , Sk) given to Improve is both feasible

and tight. Therefore, Proposition 3.5 will follow from the next two lemmas, which we shall

prove in Sections 7.2 and 7.3.

Lemma 7.2. If S is feasible and tight, then any improvement R of S is tight.

Lemma 7.3. Suppose that S is feasible and tight and that R is an improvement of S . Then

we have
∑

i�=j #Rij ∩H � 1
10

∑
i�=j #Sij ∩H.

Proof of Proposition 3.5. Let S = (S1, . . . ,Sk) be a feasible and tight partition such that∑k
i=1 #Si�Vi � 0.001nmin, and let R be an improvement of S . Then, by Lemma 7.2 R is

tight, and by Lemma 7.3 we have

k∑
i=1

#Ri�Vi � 0.1

k∑
i=1

#Si�Vi � 0.1#V \H + 0.1
∑
i�=j

#Sij ∩H

� 0.1#V \H + 10−4nmin.

Since, by condition H1, #V \H � nmin/λ
4, where λ > c0 for a large constant c0 > 0

(see A1), we have 0.1#V \H � 10−4nmin. Hence, R is feasible. Thus, as the partition

(S1, . . . , Sk) with which Improve starts is feasible and tight by Proposition 3.4, and in fact

satisfies

k∑
i=1

#Si�Vi � 0.001nmin,

all the partitions generated by Improve remain feasible and tight.

Let T = (T1, . . . , Tk) denote the partition returned by Improve. Then, due to Lemma 7.3

we have
∑

i�=j #Tij ∩H � 10− log2 n · nmin < 1, whence Ti ∩H = Vi ∩H for all i.

To facilitate the proof of Lemmas 7.2 and 7.3, we introduce some notation. Let A = A(G)

be the adjacency matrix and

M = EH − AH. (7.4)

Thus, for v, w ∈ H the entry Mvw is Evw minus one if v, w are adjacent, and just Evw
otherwise. The spectral condition A1 and condition H3 on the vertex degrees in H yield

the bound

‖M‖ � c2
0k

√
λ. (7.5)

Moreover, for a set S ⊂ V and a vertex v ∈ V we let μ′(v, S) = 〈Ev, 1S 〉 =
∑

w∈S Evw . Then

‖M1S‖2 =
∑
v∈H

|e(v, S) − μ′(v, S)|2 for all S ⊂ V (H). (7.6)

Recall that μ(v, S) =
∑

w∈S\{v} Evw denotes the ‘expected’ number of edges between v and

S . The relation between μ(v, S) and μ′(v, S) is that μ′(v, S) = μ(v, S) + Evv if v ∈ S , and

μ(v, S) = μ′(v, S) if v �∈ S . If S = (S1, . . . ,Sk) is a partition of V , then for v ∈ Vi and w ∈ Sl
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we set

δ̄(v, w) =
μ′(v,Sl)

#Sl
and δ̄(v) = (δ̄(v, w))w∈V .

Thus, we can think of δ̄(v) ∈ R
V as the ‘expectation’ of δ(v).

7.2. Proof of Lemma 7.2

Throughout this section we fix a partition S that is both feasible and tight and a partition

R that is an improvement of S . We are going to prove the two inequalities

9
∑
v∈V

‖δ(v) − δ̄(v)‖2 � 0.001ρ2nmin, (7.7)

k∑
a,b=1

#Rab‖EVa − EVb‖2 � 9
∑
v∈V

‖δ(v) − δ̄(v)‖2, (7.8)

from which Lemma 7.2 is immediate. Observe that by the definitions of δ(v), δ̄(v)

∑
v∈V

‖δ(v) − δ̄(v)‖2 =

k∑
a=1

#Sa
(
e(v,Sa) − μ′(v,Sa)

#Sa

)2

=

k∑
a=1

(e(v,Sa) − μ′(v,Sa))2

#Sa
. (7.9)

As a first step we establish (7.7). To this end, we need to remember the decomposition of

the graph G into its ‘sparse’ part G1 and its ‘dense’ part G2: recall the matrix Φ = (Φvw)v,w∈V
whose entries are Φvw = 1 if Evw > 1

2
and Φvw = 0 if Evw � 1

2
. Then G1 contains all edges

{v, w} ∈ E such that Φvw = 0 and G2 contains all edges {v, w} �∈ E such that Φvw = 1. For

v ∈ V and S ⊂ V we let

μ′
1(v, S) =

∑
w∈S :Φvw=0

Evw, μ′
2(v, S) =

∑
w∈S :Φvw=1

1 − Evw.

Thus, we can think of μ′
a(v, S) as the ‘expected number’ of neighbours that v has in S in

the graph Ga (a = 1, 2). Moreover, we let ea(v, S) be the number of v–S-edges in the graph

Ga. Finally, recall that μ′(v, S) =
∑

w∈S Evw .

Lemma 7.4. For any set S ⊂ V and any v ∈ V we have

|e(v, S) − μ′(v, S)| � |e1(v, S) − μ′
1(v, S) − (e2(v, S) − μ′

2(v, S))| + 1.

Moreover, if v �∈ S , then e(v, S) − μ′(v, S) = e1(v, S) − μ′
1(v, S) − (e2(v, S) − μ′

2(v, S)).

Proof. Let S1 = {w ∈ S : Φvw = 0} and S2 = {w ∈ S : Φvw = 1}. Moreover, let ι = 1 if

v ∈ S2 and ι = 0 otherwise. Then, by the definition of the graphs G1, G2 we have

e(v, S) − μ′(v, S) = e1(v, S1) − μ′
1(v, S1) + (#S2 − ι− e2(v, S2)) − (#S2 − μ′

2(v, S2))

= e1(v, S) − μ′
1(v, S) − (e2(v, S) − μ′

2(v, S)) − ι,

whence the assertion follows.
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The ‘core’ subgraph H (which satisfies conditions H1–H4) contains vertices for which

the numbers e(v, Vi) are ‘close’ to the expected numbers μ(v, Vi) =
∑

w∈Vi Evw . Moreover,

by (7.5) the matrix M = EH − AH has a small spectral norm. Intuitively this means

that AH ≈ EH , i.e., the graph H is quasi-random with respect to the density matrix E .

Hence, we expect that for ‘most’ vertices v ∈ H and ‘sufficiently large’ sets S ⊂ V we

have e(v, S) ≈ μ(v, S). In effect, for most v ∈ H we should have δ(v) ≈ δ̄(v). The following

lemma, which is the key step in the proof of (7.8), provides a precise estimate.

Lemma 7.5. Let S be a feasible partition. Then
∑

v∈H ‖δ(v) − δ̄(v)‖2 � 10−4ρ2nmin.

Proof. Let A(v) =
∑k

a=1 #S−1
a

[
e(v,Sa ∩H) − μ′(v,Sa ∩H)

]2
. Then by (7.6)

∑
v∈H

A(v) =

k∑
a=1

#S−1
a ‖M1Sa∩H‖2 � ‖M‖2

k∑
a=1

‖1Sa∩H‖2

#Sa
.

Since ‖1Sa∩H‖2 = #Sa ∩H � #Sa, the right-hand side is at most k‖M‖2. Further, (7.5)

shows that k‖M‖2 � c2
0k

3λ. Since ρ2 = c8
0k

3λ/nmin for some large constant c0 (see A2), we

get k‖M‖2 � 10−5ρ2nmin. Thus,

∑
v∈H

A(v) =
∑
v∈H

k∑
a=1

#S−1
a

[
e(v,Sa ∩H) − μ′(v,Sa ∩H)

]2 � 10−5ρ2nmin. (7.10)

Furthermore, let

A′(v) =

k∑
a=1

#S−1
a ((e(v,Sa) − μ′(v,Sa))2 − (e(v,Sa ∩H) − μ′(v,Sa ∩H))2).

Since e(v,Sa) = e(v,Sa ∩H) + e(v,Sa \H) and μ′(v,Sa) = e(v,Sa ∩H) + μ′(v,Sa \H), A′(v)

is equal to

A′(v) =

k∑
a=1

#S−1
a

[
e(v,Sa) − μ′(v,Sa) + e(v,Sa ∩H) − μ′(v,Sa ∩H)

]
×

[
e(v,Sa \H) − μ′(v,Sa \H)

]
. (7.11)

Lemma 7.4 entails that for all v ∈ H and all 1 � a � k we have

|e(v,Sa) − μ′(v,Sa) + e(v,Sa ∩H) − μ′(v,Sa ∩H)| � 2 + 2

2∑
i=1

ei(v,Sa) + μ′
i(v,Sa).

Further, e1(v,Sa) + e2(v,Sa) is bounded by the degree dG1∪G2
(v) of v in G1 ∪ G2. Since

v ∈ H , condition H3 entails that dG1∪G2
(v) � 10σ∗, where σ∗ = maxv∈V

∑
w∈V Evw(1 − Evw)

is the ‘maximum variance’ of any vertex degree in G. The definition of σ∗ also shows that

μ′
1(v,Sa) + μ′

2(v,Sa) � μ′
1(v, V ) + μ′

2(v, V ) =
∑

w∈V :Evw� 1
2

Evw +
∑

w∈V :Evw> 1
2

1 − Evw � 2σ∗.

(7.12)

In summary, as λ � σ∗ by condition A1, we obtain that for all 1 � a � k

|e(v,Sa) − μ′(v,Sa) + e(v,Sa ∩H) − μ′(v,Sa ∩H)| � 2 + 24σ∗ � 25λ. (7.13)
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Applying Lemma 7.4 once more, we obtain

∑
v∈H

k∑
a=1

|e(v,Sa \H) − μ′(v,Sa \H)| �
∑
v∈H

k∑
a=1

2∑
i=1

eGi (v,Sa \H) + μ′
i(v,Sa \H)

=

2∑
i=1

eGi (H,V \H) +
∑
v∈H

μ′
i(v, V \H)

�
∑
v∈V\H

dG1∪G2
(v) + μ′

1(v, V ) + μ′
1(v, V )

� 2σ∗ · #V \H +
∑
v∈V\H

dG1∪G2
(v) (by (7.12))

� 2σ∗ · #V \H +

√
#V \H

∑
v∈V\H

dG1∪G2
(v)2, (7.14)

where the last inequality follows from Cauchy–Schwarz. Now, condition H1 ensures that

#V \H � λ−4nmin, and that
∑

v∈V\H dG1∪G2
(v)2 � nmin. Hence, (7.14) is at most (2σ∗λ−4 +

λ−2)nmin. As λ � σ∗ by A1, we obtain

∑
v∈H

k∑
a=1

|e(v,Sa \H) − μ′(v,Sa \H)| � (2σ∗λ−4 + λ−2)nmin � 2λ−2nmin. (7.15)

Finally, as (Sa)1�a�k is feasible, we have #Sa � 1
2
nmin for all a. Therefore, plugging (7.13)

and (7.15) into (7.11), we obtain

∑
v∈H

A′(v) � 75nmin

λ2 min1�a�k #Sa
� 150

λ2
. (7.16)

Since we are assuming that λ � σ∗ � c0 for some sufficiently large c0 > 0 (see A1), (7.16)

shows that
∑

v∈H A
′(v) � 1. Combining (7.9), (7.10), and (7.16), we obtain

∑
v∈H

‖δ(v) − δ̄(v)‖2 �
∑
v∈H

A(v) + A′(v) � 10−5ρ2nmin + 1 � 10−4ρ2nmin,

as desired.

The previous lemma provides an estimate of
∑

v∈H ‖δ(v) − δ̄(v)‖2. The next step is

to analyse the remaining vertices, i.e.,
∑

v∈V\H ‖δ(v) − δ̄(v)‖2. Since by condition H1 the

subgraph H contains the vast majority of vertices and edges, we expect the latter sum to

be quite small.

Lemma 7.6. Let S be a feasible partition. Then
∑

v∈V\H ‖δ(v) − δ̄(v)‖2 � 2.
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Proof. For v ∈ V and a ∈ {1, . . . , k} let ιva = 1 if v ∈ Sa and let ιva = 0 otherwise. Then

Lemma 7.4 and Cauchy–Schwarz yield

∑
v∈V\H

k∑
a=1

#S−1
a (e(v,Sa) − μ′(v,Sa))2

�
∑
v∈V\H

k∑
a=1

#S−1
a

[
ιva +

2∑
i=1

ei(v,Sa) + μ′
i(v,Sa)

]2

� 5
∑
v∈V\H

k∑
a=1

#S−1
a

[
ιva +

2∑
i=1

ei(v,Sa)2 + μ′
i(v,Sa)2

]
. (7.17)

Moreover, we know that
∑2

i=1

∑k
a=1 μ

′
i(v,Sa) �

∑2
i=1 μ

′
i(s, V ) � 2σ∗ (see (7.12)). In effect,

2∑
i=1

k∑
a=1

μ′
i(v,Sa)2 � (2σ∗)2.

Furthermore, as S is feasible, we have #Sa � nmin/2 for all a. Hence, (7.17) yields

∑
v∈V\H

k∑
a=1

#S−1
a (e(v,Sa) − μ′(v,Sa))2

�
#V \H · (20σ∗ 2 + 5) +

∑
v∈V\H dG1∪G2

(v)2

nmin
. (7.18)

As #V \H � λ−4nmin by H1 and λ � σ∗ � c0 for some large constant c0 > 0 (see A1),

we have 20σ∗ 2#V \H/nmin � 20λ−2 < 1
2
. Furthermore, 5#V \H/nmin � 5λ−4 � 1

2
. Hence,

(7.18) entails that

∑
v∈V\H

k∑
a=1

#S−1
a (e(v,Sa) − μ′(v,Sa))2 � 1 +

∑
v∈V\H

dG1∪G2
(v)2/nmin. (7.19)

Finally, condition H1 ensures that
∑

v∈V\H dG1∪G2
(v)2/nmin � 1. Hence, (7.19) and (7.9)

imply

∑
v∈V\H

‖δ(v) − δ̄(v)‖2 =
∑
v∈V\H

k∑
a=1

#S−1
a (e(v,Sa) − μ′(v,Sa))2 � 2,

as desired.

Combining Lemmas 7.5 and 7.6, we obtain
∑

v∈V ‖δ(v) − δ̄(v)‖2 � 10−4ρ2nmin + 2 <

0.001ρ2nmin, where the last inequality follows from the fact that ρ2nmin = c8
0k

3λ for some

large constant c0 and λ > c0 (see A1). Thus, we have established (7.7).

To prove (7.8), the following lemma is instrumental. Remember that for each v ∈ V we

have defined a vector δ̄(v) = (δ̄(v, w))w∈V by letting δ̄(v, w) = μ′(v,Sl)/#Sl =
∑

u∈Sl Evu/#Sl
for w ∈ Sl .
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Lemma 7.7. Let S be any partition. Then, for all 1 � i � k and all v ∈ Vi, we have ‖δ̄(v) −
Ev‖2 � 2

∑k
a,b=1 #Sab(pia − pib)

2.

Proof. Let δ̃(v, w) = pia for all w ∈ Sl , and set δ̃(v) = (δ̃(v, w))w∈V . Since Evw = pib for

w ∈ Vb and Sab = Sa ∩ Vb, we have

‖δ̃(v) − Ev‖2 =

k∑
a,b=1

#Sab(pia − pib)
2. (7.20)

Moreover, since δ̄(v, w) = μ′(v,Sa)/#Sa for w ∈ Sa, we obtain

‖δ̃(v) − δ̄(v)‖2 =

k∑
a=1

#Sa
[
μ′(v,Sa)#S−1

a − pia
]2

=

k∑
a=1

#S−1
a

[
μ′(v,Sa) − #Sapia

]2

=

k∑
a=1

#S−1
a

[ k∑
b=1

μ′(v,Sab) − #Sabpia
]2

. (7.21)

Since Sab = Sa ∩ Vb, we have Evw = pib for all w ∈ Sab, and thus μ′(v,Sab) =
∑

w∈Sab Evw =

#Sabpib. Therefore, (7.21) implies

‖δ̃(v) − δ̄(v)‖2 =

k∑
a=1

#S−1
a

[ k∑
b=1

#Sab(pib − pia)

]2

�
k∑

a,b=1

#Sab(pia − pib)
2 (by Cauchy–Schwarz). (7.22)

Combining (7.20) and (7.22) completes the proof.

Corollary 7.8. If S is tight and R is an improvement of S , then

k∑
a,b=1

#Rab‖Ea − Eb‖2 � 9
∑
v∈V

‖δ(v) − δ̄(v)‖2.

Proof. Let v ∈ Rab. Recall that the ‘centre vectors’ ξ1, . . . , ξk that Improve receives as

input parameters satisfy ‖ξb − Eb‖2 � 0.001ρ2 for b = 1, . . . , k (see (7.1)). Hence, by the

triangle inequality

‖δ(v) − ξb‖ � ‖δ(v) − Eb‖ + ‖Eb − ξb‖ � ‖δ(v) − δ̄(v)‖ + ‖δ̄(v) − Eb‖ +
√

0.001ρ.

Thus, bounding ‖δ̄(v) − Eb‖ via Lemma 7.7, we obtain

‖δ(v) − ξb‖ �
√

0.001ρ+ ‖δ(v) − δ̄(v)‖ +

√
2
∑
α�=β

#Sαβ(pbα − pbβ)2. (7.23)

For any two indices α �= β and all w ∈ Vb the w-entry of the vector EVα equals pbα.

Similarly, the w-entry of EVβw is equal to pbβ . Therefore, ‖EVα − EVβ‖2 � #Vb(pbα − pbβ)2.
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Plugging this into (7.23), we get

‖δ(v) − ξb‖ � ρ

30
+ ‖δ(v) − δ̄(v)‖ +

√
2
∑
α�=β

#Sαβ
#Vb

‖EVα − EVβ‖2

� ρ

30
+ ‖δ(v) − δ̄(v)‖ +

√
2

nmin

∑
α�=β

#Sαβ‖EVα − EVβ‖2, (7.24)

because #Vb � nmin. Our assumption that S is tight means that
∑

α�=β #Sαβ‖EVα − EVβ‖2 �
0.001ρ2nmin. Thus, (7.24) yields

‖δ(v) − ξb‖ � ‖δ(v) − δ̄(v)‖ +
ρ

20
. (7.25)

Furthermore, if v ∈ Rab, then v ∈ Vb but ‖δ(v) − ξa‖ � ‖δ(v) − ξb‖, because R is an

improvement of S . Since the centre vectors ξa, ξb satisfy ‖ξa − Ea‖2, ‖ξb − Eb‖2 � 0.001ρ2

(see (7.1)) and ‖Ea − Eb‖2 � ρ2 by the separation condition A2, we obtain

ρ � ‖Ea − Eb‖ � ‖Ea − ξa‖ + ‖Eb − ξb‖ + ‖ξa − ξb‖

� ρ

15
+ ‖δ(v) − ξa‖ + ‖δ(v) − ξb‖ � ρ

15
+ 2‖δ(v) − ξb‖.

Thus, ‖δ(v) − ξb‖ � 2
5
‖Ea − Eb‖ � 2

5
ρ. Hence, (7.25) yields ‖δ(v) − δ̄(v)‖ � 1

3
‖Ea − Eb‖.

As Corollary 7.8 implies (7.8), we have completed the proof of Lemma 7.2.

7.3. Proof of Lemma 7.3

Suppose that S is a partition that is both feasible and tight; that is, for all a ∈ {1, . . . , k}
we have 1

2
#Va � #Sa � 2#Va, and letting Sab = Sa ∩ Vb we have∑

a�=b
#Sab‖EVa − EVb‖2 � 0.001ρ2nmin.

Recall that for a vertex v and a set T ⊂ V we can think of μ′(v, T ) =
∑

w∈T Evw as the

‘expected’ edge density between v and T . For all v ∈ Rab, all α ∈ {1, . . . , k}, and all w ∈ Sα,
we set

Δ(v, w) =
e(v,Sα ∩H)

#Sα
, Δ̄(v, w) =

μ′(v,Sα ∩H)

#Sα
, and we recall that

δ(v, w) =
e(v,Sα)

#Sα
, δ̄(v, w) =

μ′(v,Sα)
#Sα

.

Moreover, we let Δ(v) = (Δ(v, w))w∈H , Δ̄(v) = (Δ̄(v, w))w∈H , and remember that δ(v) =

(δ(v, w))w∈V , δ̄(v) = (δ̄(v, w))w∈V . The relationship between δ(v) and Δ(v) is that the

latter vector disregards the ‘exceptional’ vertices in V \H . We can think of Δ̄(v) as

the ‘expectation’ of Δ(v).

Assume that R is an improvement of S , i.e., for all v ∈ Ra we have ‖δ(v) − ξa‖ =

minb ‖δ(v) − ξb‖, where ξ1, . . . , ξk signify the centre vectors that Improve received as

inputs. Our goal is to show that
∑

a�=b #Rab ∩H � 0.1
∑

a�=b #Sab. The key step is to

prove that for a vertex v ∈ Rba ∩H = Rb ∩ Va ∩H that lies in class b of the improvement

R although it ‘belongs’ in class a �= b the vector Δ(v) is far from its ‘expectation’ Δ̄(v).
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Lemma 7.9. Suppose that S is feasible and tight. Let R be an improvement of S . Then for

all v ∈ Rba ∩H we have ‖Δ(v) − Δ̄(v)‖2 � 0.1‖EVa − EVb‖2 (a �= b).

Proof. Let δH (v) = (δ(v, w))w∈H and δ̄H (v) = (δ̄(v, w))w∈H , i.e., δH (v), δ̄H (v) are the restric-

tions of δ(v), δ̄(v) to H . We claim that for all v ∈ Rba ∩H we have

‖δH (v) − δ̄H (v)‖ � 0.134‖EVa − EVb‖. (7.26)

For as R is an improvement of S and v ∈ Rb, we have ‖δ(v) − ξb‖ � ‖δ(v) − ξa‖.

Moreover, since a �= b the separation condition A2 ensures that ‖EVa − EVb‖ � ρ. There-

fore, the triangle inequality yields

ρ � ‖EVa − EVb‖ � ‖δ(v) − ξb‖ + ‖δ(v) − ξa‖ + ‖ξa − EVa‖ + ‖ξb − EVb‖
� 2‖δ(v) − ξa‖ + ‖ξa − EVa‖ + ‖ξb − EVb‖. (7.27)

Furthermore, the centre vectors ξa, ξb are close to EVa, EVb respectively. More precisely,

by (7.1) we have ‖EVa − ξa‖2 � 0.001ρ2, ‖EVb − ξb‖2 � 0.001ρ2. Hence, (7.27) yields

ρ � ‖EVa − EVb‖ � 2
√

0.001ρ+ 2‖δ(v) − ξa‖

� 2ρ

33
+ 2‖ξa − EVa‖ + 2‖δ(v) − EVa‖ � 4ρ

33
+ 2‖δ(v) − EVa‖.

Thus,

‖δ(v) − EVa‖ � 29

66
‖EVa − EVb‖ � 29ρ

66
. (7.28)

Furthermore, Lemma 7.7 shows that

‖δ̄(v) − EVa‖2 � 4

k∑
α,β=1

#Sαβ(paα − paβ)2. (7.29)

For all w ∈ Va the w-entry of EVα is equal to paα, and the w-entry of EVβ equals paβ .

Therefore, ‖EVα − EVβ‖2 � #Va(paα − paβ)2. Consequently, (7.29) yields, in combination

with our assumption that S is tight,

‖δ̄(v) − EVa‖2 � 4

k∑
α,β=1

#Sαβ‖EVα − EVβ‖2

#Va

� 4

nmin

k∑
α,β=1

#Sαβ‖EVα − EVβ‖2 � 0.004ρ2. (7.30)

Combining (7.28) and (7.30), we see that

‖δ(v) − δ̄(v)‖ � 0.37‖EVa − EVb‖. (7.31)

For any vertex w ∈ Sα the w-entry of the vector δ(v) is e(v,Sα)/#Sα, and the w-entry of

δ̄(v) is μ′(v,Sα)/#Sα. Therefore, (7.31) entails

0.136‖EVa − EVb‖2 � ‖δ(v) − δ̄(v)‖2 =

k∑
α=1

#Sα
(
e(v,Sα) − μ′(v,Sα)

#Sα

)2

. (7.32)
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Further, condition H1 ensures that #V \H � 10−4nmin. Moreover, since the partition S is

feasible, we have Sα � 1
2
#Vα for all α, and #Vα � nmin = minβ #Vβ . Hence, recalling that

δH (v) (resp. δ̄H (v)) is the restriction of δ (resp. δ̄) to H , we obtain from (7.32)

0.136‖EVa − EVb‖2 � 1.01

k∑
α=1

#Sα ∩H
(
e(v,Sα) − μ′(v,Sα)

#Sα

)2

= 1.01‖δH (v) − δ̄H (v)‖2,

whence (7.26) follows.

Now we shall compare the vectors δH (v) − δ̄H (v) and Δ(v) − Δ̄(v), so that we can

use (7.26) to bound the norm of the latter vector. Suppose that w ∈ Sα ∩H . Then by

definition the w-entry of δH (v) is e(v,Sα)/#Sα, and the w-entry of ΔH (v) is e(v,Sα ∩H)/#Sα.
Similarly, the w-entry of δ̄H (v) equals μ′(v,Sα)/#Sα, and that of Δ̄H (v) is μ′(v,Sα ∩H)/#Sα.
Plugging these expressions in, we obtain for all v ∈ H

‖(δH (v) − δ̄H (v)) − (Δ(v) − Δ̄(v))‖2

=
∑
w∈H

(δH (v, w) − δ̄H (v, w) − (Δ(v, w) − Δ̄(v, w)))2

=

k∑
α=1

#Sα ∩H
(
e(v,Sα) − e(v,Sα ∩H) − (μ′(v,Sα) − μ′(v,Sα ∩H))

Sα

)2

=

k∑
α=1

#Sα ∩H
(
e(v,Sα \H) − μ′(v,Sα \H)

Sα

)2

�
k∑
α=1

#S−1
α

[
e(v,Sα \H) − μ′(v,Sα \H)

]2
. (7.33)

To continue we need to consider the ‘dense’ and the ‘sparse’ bits of the graph separately.

Let Φ1(v) = {w ∈ V : pψ(v)ψ(w) � 1/2} be the set of all vertices w such that the ‘edge

probability’ pψ(v)ψ(w) is at most 1
2
, and let Φ2(v) = {w ∈ V : pψ(v)ψ(w) > 1/2}. Then (7.33)

yields

‖(δH (v) − δ̄H (v)) − (Δ(v) − Δ̄(v))‖2 �
k∑
α=1

#S−1
α

[
e(v,Sα \H) − μ′(v,Sα \H)

]2

� 2

k∑
α=1

#S−1
α

[
e(v,Φ1(v) ∩ Sα \H) − μ′(v,Φ1(v) ∩ Sα \H)

]2

+ #S−1
α

[
e(v,Φ2(v) ∩ Sα \H) − μ′(v,Φ2(v) ∩ Sα \H)

]2
. (7.34)

We recall the decomposition of the graph G into the ‘sparse’ part G1 and the complement

of the dense part G2: G1 contains all edges e = {v, w} of G such that w ∈ Φ1(v), and G2

contains all edges {v, w} that are not present in G such that w ∈ Φ2(v). Condition H4

states that in the union G1 ∪ G2 each vertex v ∈ H has at most 100 neighbours in V \H .
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Therefore, for all v ∈ H we have

e(v,Φ1(v) ∩ Sα \H) � 100, (7.35)

e(v,Φ2(v) ∩ Sα \H) � #Φ2(v) ∩ Sα \H − 101. (7.36)

Moreover,

k∑
α=1

μ′(v,Φ1(v) ∩ Sα \H) = μ′(v,Φ1(v) \H)

=
∑

w∈V\H:Evw� 1
2

Evw � #V \H · max
w∈V :Evw� 1

2

Evw. (7.37)

Since σ∗ = maxu∈V
∑

w∈V Euw(1 − Euw) and the terms Euw(1 − Euw) are constant on the

partition classes V1, . . . , Vk , we have maxw∈V :Evw� 1
2
Evw � 2σ∗/#Vα for some 1 � α � k, and

hence maxw∈V :Evw� 1
2
Evw � 2σ∗/nmin. Therefore, (7.37) yields

k∑
α=1

μ′(v,Φ1(v) ∩ Sα \H) � #V \H · 2σ∗

nmin
.

As, furthermore, #V \H � nmin/λ
4 by condition H1 and λ � σ∗ � c0 for some large

constant c0, we conclude

k∑
α=1

μ′(v,Φ1(v) ∩ Sα \H) � nmin

λ4
· 2σ∗

nmin
� 1

2
, (7.38)

whence
∑k

α=1 μ
′(v,Φ1(v) ∩ Sα \H)2 � 1

4
. Consequently, as the fact that S is feasible implies

that #Sα � 1
2
nmin, we obtain

k∑
α=1

μ′(v,Φ1(v) ∩ Sα \H)2

#Sα
� 1

2nmin
� 10−4ρ2 (as ρ2 > 104/nmin by A2). (7.39)

A similar argument shows that

k∑
α=1

(#Φ2(v) ∩ Sα \H − μ′(v,Φ2(v) ∩ Sα \H))2

#Sα
� 10−4ρ2. (7.40)

Plugging (7.35), (7.36), (7.39), and (7.40) into (7.34), we get

‖(δH (v) − δ̄H (v)) − (Δ(v) − Δ̄(v))‖2 � 2 · 10−4ρ2 +

k∑
α=1

105

#Sα

� 4 · 10−4ρ2 +
106k

nmin
. (7.41)

Since ρ2 = c8
0k

3λ/nmin by condition A2, the last expression in (7.41) is less than 10−3ρ2.

Therefore, (7.26) entails that ‖Δ(v) − Δ̄(v)‖2 � 0.1‖Ea − Eb‖2 for all v ∈ Rba ∩H .
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Lemma 7.10. Suppose that the partition S is feasible and tight, and that R is an improve-

ment of S . Then∑
a�=b

∑
v∈Rab∩H

‖Δ(v) − Δ̄(v)‖2 � 0.02
∑
a�=b

ρ2#Rab ∩H + 10−5ρ2
∑
a�=b

#H ∩ Sab.

Proof. Let M be the matrix defined in (7.4). That is, for any two vertices v, w ∈ H

the entry Mvw equals Evw − 1 if v, w are adjacent, and Mvw = Evw otherwise. Since R is

an improvement of S , for any vertex v ∈ Ra the vector δS (v) satisfies ‖δS (v) − ξa‖ =

minb ‖δS (v) − ξb‖. Also remember that Rab = Ra ∩ Vb. For any w ∈ Sα the w-entry of

Δ(v) equals e(v,Sα ∩H)/#Sα, and the w-entry of Δ̄(v) equals μ′(v,Sα ∩H)/#Sα. Therefore,

for all v ∈ Rab ∩H such that a �= b, we have

‖Δ(v) − Δ̄(v)‖2 � 2

k∑
α=1

#S−1
α

[
e(v, H ∩ Sα) − μ′(v, H ∩ Sα)

]2

� 6 · (S1(v) + S2(v) + S3(v)), where (7.42)

S1(v) =

k∑
α=1

#S−1
α

[
e(v, H ∩ Vα) − μ′(v, H ∩ Vα)

]2
,

S2(v) =

k∑
α=1

#S−1
α

[
e(v, H ∩ Sα \ Vα) − μ′(v, H ∩ Sα \ Vα)

]2
,

S3(v) =

k∑
a=1

#S−1
a

[
e(v, H ∩ Va \ Sa) − μ′(v, H ∩ Va \ Sa)

]2
.

We begin by bounding the last two summands. Since S is feasible, we have #Sα � #Vα �
nmin/2 for all α. Therefore, the definition of the matrix M entails that (see (7.6))

∑
v∈H

S3(v) =

k∑
α=1

#S−1
α ‖M1H∩Vα\Sα‖2 � 2‖M‖2

nmin

∑
α

‖1H∩Vα\Sα‖2

=
2‖M‖2

nmin

∑
α

#H ∩ Vα \ Sα. (7.43)

Analogously,

∑
v∈H

S2(v) � 2‖M‖2

nmin

k∑
α=1

#H ∩ Sα \ Vα. (7.44)

As Sαβ = Sα ∩ Vβ , we obtain

∑
a�=b

∑
v∈Rab∩H

S2(v) + S3(v) �
∑
v∈H

S2(v) + S3(v) � 2‖M‖2

nmin

k∑
α=1

#H ∩ (Vα�Sα)

� 2‖M‖2

nmin

∑
α�=β

#H ∩ Sαβ. (7.45)
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Finally, as ‖M‖2 � c2
0kλ by (7.5) and ρ2 = c8

0k
3λ/nmin for some large constant c0 > 0 by

A2, (7.45) yields

∑
a�=b

∑
v∈Rab∩H

S2(v) + S3(v) � ρ2

106

∑
α�=β

#H ∩ Sαβ. (7.46)

To bound S1(v) for v ∈ Rab ∩H = Ra ∩ Vb ∩H with a �= b, we consider the expression

S4(v) =

k∑
α=1

#S−1
α (e(v, Vα \H) − μ(v, Vα \H))2 � 8(S41(v)2 + S42(v)2)

nmin
, where

S41(v) =
∑

α:pαb� 1
2

e(v, Vα \H) + μ(v, Vα \H),

S42(v) =
∑

α:pαb>
1
2

(Vα \H − e(v, Vα \H)) + (Vα \H − μ(v, Vα \H)).

In order to estimate S41(v) and S42(v), we remember the decomposition of G into the

graphs G1, G2: G1 contains all edges {u, w} of G such that Euw � 1
2
, and G2 contains all

edges {u, w} that are not present in G such that Euw > 1
2
. Then condition H4 implies that

in the union G1 ∪ G2 each vertex v ∈ H has at most 100 neighbours in V \H . Therefore,∑
α:pαb� 1

2

e(v, Vα \H) � 100 and
∑

α:pαb>
1
2

(Vα \H − e(v, Vα \H)) � 101. (7.47)

Since the vector Ev is constant on the classes V1, . . . , Vk and σ∗ = maxu
∑

w∈V Euw(1 − Euw),

we have maxw:Evw� 1
2
Evw � 2σ∗/nmin. Consequently,

∑
α:pαb� 1

2

μ(v, Vα \H) � #V \H · max
w:Evw� 1

2

Evw � #V \H · 2σ∗/nmin. (7.48)

Analogously, we obtain∑
α:pαb>

1
2

Vα \H − μ(v, Vα \H) � #V \H · max
w:Evw> 1

2

1 − Evw � #V \H · 2σ∗/nmin. (7.49)

Since #V \H � nminλ
−4 by condition H1, λ � σ∗ by condition A1, and ρ2 = c8

0k
3λ/nmin

by assumption A2, (7.47)–(7.49) yield

S41(v) + S42(v) � 201 +
4σ∗

nmin
· #V \H � 201 +

4σ∗

λ4
� 202.

Thus, we conclude that

S4(v) � 106/nmin for all v ∈ Rab ∩H. (7.50)

Finally, to bound S1(v) consider the vector d(v) = (d(v, w))w∈V with entries d(v, w) =

e(v, Vα)/#Vα for w ∈ Vα. By condition H2 we have ‖d(v) − Ev‖2 � 0.001ρ2 for all v ∈ H .

Moreover, as S is feasible, we have #Sα � 1
2
#Vα � nmin/2. Therefore, by Cauchy–Schwarz,
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for all v ∈ H we have

S1(v) =

k∑
α=1

#S−1
α

[
e(v, H ∩ Vα) − μ′(v, H ∩ Vα)

]2

�
k∑
α=1

#S−1
α (e(v, Vα) − μ(v, Vα))

2 + #S−1
α (e(v, Vα \H) − μ(v, Vα) \H)2

� 2

k∑
α=1

#V−1
α (e(v, Vα) − μ(v, Vα))

2 + S4(v)

= 2

k∑
α=1

#Vα

(
e(v, Vα) − μ(v, Vα)

#Vα

)2

+ S4(v)

= 2‖d(v) − Ev‖2 + S4(v) � 0.002ρ2 + 106/nmin (by (7.50)).

Since ρ2 = c8
0k

3λ/nmin for a large constant c0, we conclude that S1(v) � 0.003ρ2 for all

v ∈ H . In combination with (7.46) and (7.42), this implies the assertion.

Proof of Lemma 7.3. Suppose that S is both feasible and tight, and that R is an

improvement of S . If v ∈ Rab ∩H with a �= b, then Lemma 7.9 implies that ‖Δ(v) −
Δ̄(v)‖2 � 0.1‖EVa − EVb‖2. Further, ‖EVa − EVb‖2 � ρ2 by condition A2. Therefore, we

conclude that ∑
a�=b

∑
v∈Rab∩H

‖Δ(v) − Δ̄(v)‖2 � 0.1
∑
a�=b

#Rab ∩H · ρ2. (7.51)

Combining Lemma 7.10 and (7.51), we obtain

0.1
∑
a�=b

#Rab ∩H · ρ2 � 0.02
∑
a�=b

ρ2#Rab ∩H +
ρ2

105

∑
a�=b

#H ∩ Sab.

Cancelling ρ2, we obtain
∑

a�=b #Rab ∩H � 10−3
∑

a�=b #H ∩ Sab, as desired.

8. The random graph Gn,k(ψ, p)

In this section we prove Theorem 1.1. We start with some preliminaries on random graphs

in Section 8.1. Then, we discuss the construction of the core of Gn,k(ψ, p) in Section 8.2.

Finally, in Section 8.4 we investigate the components of Gn,k(ψ, p) − core(Gn,k(ψ, p)).

Throughout this section, we let ψ, p, E , nmin, and let σ∗ be as in Sections 1.2 and 1.3.

Furthermore, we always assume that n is sufficiently large.

8.1. Preliminaries on Gn,k(ψ, p)

We need to bound the probability that a random variable deviates from its mean

significantly. To this end, let φ denote the function φ : (−1,∞) → R, x �→ (1 + x) ln(1 +

x) − x. A proof of the following Chernoff bound can be found in [22, pp. 26–29].
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Lemma 8.1. Let X =
∑N

i=1 Xi be a sum of mutually independent Bernoulli random variables

with variance σ2 = Var(X). Then, for any t > 0 we have

max{P(X � E(X) − t),P(X � E(X) + t)} � exp

(
−σ2φ

(
t

σ2

))

� exp

(
− t2

2(σ2 + t/3)

)
. (8.1)

The following bound, whose proof can be found in Section 9.1, is a consequence of

Azuma’s inequality.

Lemma 8.2. Let X be a function from graphs to reals that satisfies the following Lipschitz

condition:

Let G = (V , E) be a graph, and let v, w ∈ V . Let G′ be the graph obtained from G

by removing the edge {v, w} if it is present in G, and let G′′ be the graph obtained

by adding {v, w} to G if it is not present. Then |X(G′) −X(G′′)| � 1.

(8.2)

Then P
[
|X(Gn,k(ψ, p)) − E(X(Gn,k(ψ, p)))| >

√
σ∗n ln2 n

]
� n−10.

In Section 9.2 we shall use Lemma 8.2 to derive the following estimate on the upper

tail of the degree distribution of Gn,k(ψ, p).

Lemma 8.3. Let Ui = #{v ∈ V : maxj=1,2 dGj (v) � 2i+1σ∗}. Then w.h.p. #Ui �
exp(−2i−2σ∗)n for all i = 2, . . . , �log2 n�.

Furthermore, in Section 9.3 we shall establish that the graph G1 ∪ G2 does not contain

any ‘atypically dense’ spots w.h.p.

Lemma 8.4. With high probability G = Gn,k(ψ, p) enjoys the following property:

For all sets T ⊂ V such that #T � n
(
nmin

nσ∗

)2
we have eG1∪G2

(T ) � 10#T . (8.3)

Furthermore, with probability � 1 − exp(− ln3 n) the following holds:

For all T ⊂ V such that ln3 n � #T � n
(
nmin

nσ∗

)2
we have eG1∪G2

(T ) � 10#T . (8.4)

Finally, we need the following result on the spectrum of the adjacency matrix of

Gn,k(ψ, p).

Lemma 8.5. Let Δ > 0 and X = {v ∈ V : maxi=1,2 dGi (v) � Δ}. Then ‖AX − EX‖ �
ck

√
σ∗ + Δ.

In Section 9.4 we indicate how Lemma 8.5 follows from spectral considerations of Alon

and Kahale [1], Feige and Ofek [17], and Füredi and Komloś [20].
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8.2. The core

In this section our objective is to construct a subgraph core(G) of G = Gn,k(ψ, p) such

that for all vertices v ∈ core(G) the numbers e(v, Vi ∩ core(G)) do not deviate from the

expectations μ(v, Vi) ‘too much’. To this end, we assign to each v ∈ V a vector d(v) as

in (1.6), which represents the actual numbers of v–Vi-edges. By comparison, Ev represents

the expected numbers of v–Vi-edges. The first step of the construction is as follows.

CR1. Initially, remove all vertices v such that ‖d(v) − Ev‖ > 0.01ρ from G; that is, set

H = G− {v ∈ V : ‖d(v) − Ev‖ > 0.01ρ}. (Here ρ2 is the right-hand side of (1.5).)

Moreover, recall the decomposition of G = Gn,k(ψ, p) into the ‘sparse’ part G1 and the

‘dense’ part G2 from Section 1.6. Then E(dG1∪G2
(v)) � 2σ∗ for all v ∈ V . Nevertheless, in

the case σ∗ = O(1) as n → ∞ there may occur vertices such that dG1∪G2
(v) exceeds 2σ∗

significantly. Therefore, as a second step we remove such vertices v.

CR2. Remove all vertices v such that dG1∪G2
(v) > 10σ∗ from H .

However, in general the result H of CR1–CR2 will not be such that e(v, Vi ∩H)

approximates μ(v, Vi) well for all v ∈ H . The reason is that there may occur vertices v ∈ H

such that ‘many’ neighbours of v are removed. Hence, in the final step of our construction

we iteratively remove these vertices v from H .

CR3. While there is a vertex v ∈ H such that eG1∪G2
(v, V \H) > 100, remove v from H .

The outcome of the process CR1–CR2 is core(G) = H . In Section 8.3 we shall prove

that w.h.p. core(G) constitutes a huge fraction of G.

Proposition 8.6. Suppose that (1.5) holds. Then w.h.p. core(Gn,k(ψ, p)) contains � n−
nminσ

∗ −10 vertices. For all v ∈ core(G) we have ‖d(v) − Ev‖ � 0.01ρ, dG1∪G2
(v) � 10σ∗, and

eG1∪G2
(v, G−H) � 100.

In addition, adapting proof techniques from [1], we shall prove in Section 8.4 that

G− core(G) has the following simple structure w.h.p.

Proposition 8.7. If (1.5) holds, then w.h.p. all components of (G1 ∪ G2) − core(G) have size

� ln n.

Proof of Theorem 1.1. Assuming that c0 is a sufficiently large constant and letting

λ = σ∗ > c0, we note that Lemma 8.5 implies that Gn,k(ψ, p) satisfies A1 w.h.p. Moreover,

our assumption R3 ensures that A2 is true. Further, for each vertex v ∈ Vj and each 1 �
i � k the number e(v, Vi) has a binomial distribution with variance #ViPij(1 − pij) � σ∗;

therefore, the Chernoff bound (8.1) entails that

P

[
|e(v, Vi) − μ(v, Vi)| >

σ∗

10k
+ ln2 n

]
� 2 exp

[
− σ∗ 2k−2 + ln4 n

300(σ∗ + ln2 n)

]
� n−1. (8.5)

Thus, we conclude that in both cases A3 holds w.h.p. Finally, assumption R2 yields A4.

With respect to H1, letting H = core(G) we observe that Proposition 8.6 entails

that #V \H � nminλ
−4. Furthermore, let Ui = {v ∈ V : 2i+1σ∗ � maxj=1,2 dGj (v) � 2i+2σ∗}.
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Then Lemma 8.3 and our assumption that σ∗ � c0 for a sufficiently large number c0 entail

that w.h.p. ∑
v∈V\H

dG1∪G2
(v)2 � 210σ∗ 2#V \H +

∑
i�2

22i+4σ∗ 2#Ui

� 210nminσ
∗ −2 +

∑
i�2

2i+2σ∗ 2 exp(−2i−2σ∗)n

� 1

2
nmin + 8n exp(−σ∗/2)

R1
� 1

2
nmin + 8nmin exp(−

√
σ∗/2) � nmin,

whence H1 follows. Moreover, H2, H3, and H4 follow directly from Proposition 8.6.

8.3. Proof of Proposition 8.6

To estimate #V (core(G)), we consider the following modification of the process CR1–CR3.

Set ω = σ∗ + n
nmin

, and note that ω � n/nmin � k.

K1. Initially, let K be the subgraph of G obtained by removing all vertices v ∈ V such

that

max
1�i�k

|e(v, Vi) − μ(v, Vi)| � 104
[√

#Vipij(1 − pij) lnω + lnω
]
.

K2. While there is a vertex v ∈ K such that eG1∪G2
(v, V \K) > 50, remove v from K .

To establish Proposition 8.6, we proceed in two steps. First, we show that core(G) ⊃ K .

Then, we bound #V (G−K).

Lemma 8.8. We have core(G) ⊃ K .

Proof. Suppose that v ∈ K . Then

‖d(v) − Ev‖2 =

k∑
i=1

#Vi

(
e(v, Vi) − μ(v, Vi)

#Vi

)2

=

k∑
i=1

#V−1
i (e(v, Vi) − μ(v, Vi))

2

� 2 · 104
k∑
i=1

#V−1
i

[
#Vipij(1 − pij) lnω + ln2 ω

]
(due to K1)

� 2 · 104

[ k∑
i=1

pij(1 − pij) lnω +

k∑
i=1

ln2 ω

#Vi

]
� 10−4ρ2,

where the last step follows from (1.5) and R1. Thus, none of the vertices v ∈ K gets

removed by CR1. Further, K1 ensures that dG1∪G2
(v) � 10σ∗ for all v ∈ K , so that K is

contained in the subgraph of G obtained in CR2. Finally, as K2 is more restrictive than

CR3, we conclude that core(G) ⊃ K .

Our next aim is to bound #V (G−K). We first estimate the number of vertices removed

by K1.
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Lemma 8.9. With high probability there are at most nω−198 vertices v such that

max
1�i�k

|e(v, Vi) − μ(v, Vi)| � 103
[√

#VIPij(1 − pij) lnω + lnω
]
.

Moreover, if ω � n1/190, then with probability � 1 − exp(− ln3 n) there are at most nω−90

such vertices.

Proof. By the Chernoff bound (8.1), for each vertex v ∈ Vj we have

Pij = P
[
|e(v, Vi) − μ(v, Vi)| � 103

(√
#Vipij(1 − pij) lnω + lnω

)]
� 2 exp

[
− 106(#Vipij(1 − pij) + ln2 ω)

2(#Vipij(1 − pij) + 103(
√

#Vipij(1 − pij) lnω + lnω)

]

� 2 exp

[
−106#Vipij(1 − pij) lnω + 106 ln2 ω

5 · 103(#Vipij(1 − pij) + lnω)

]
� 2ω−200.

Hence, letting

Zij = #
{
v ∈ Vj : |e(v, Vi) − μ(v, Vi)| � 103

(√
#VIPij(1 − pij) lnω + lnω

)}
,

we have

E(Zij) � 2#Vjω
−200. (8.6)

To obtain a bound on Zij that actually holds w.h.p., we consider two cases.

Case 1: ω � ln n. Then Markov’s inequality entails that w.h.p.

k∑
i,j=1

#Zij � nkω−199 � nω−198.

Case 2: ω < ln n. As adding or removing a single edge e = {u, v} affects only the numbers

e(u, Vi) and e(v, Vi), the random variable Zij/2 satisfies the Lipschitz condition (8.2).

Further, σ∗ � ω � ln n, and #Vj � nmin � n/ω > n/ ln n. Hence, Lemma 8.2 entails that

P
[
Zij � #Vjω

−199
] (8.6)

� P
[
Zij − E(Zij) �

√
σ∗n ln2 n

]
= o(1),

and thus
∑k

i,j=1 Zij � knω−199 � nω−198 w.h.p.

Now, assume that ω � n1/190. Then the inequalities ω � σ∗ and ω � n/nmin imply that√
nσ∗ ln2 n � √

nω ln2 n � n96/190, while nω−92 � n98/190. Therefore, Lemma 8.2 entails

P
[
Zij � nω−92

] (8.6)

� P
[
Zij − E(Zij) �

√
σ∗n ln2 n

]
� exp(− ln4 n).

Hence, with probability � 1 − exp(− ln3 n) the bound Zij < nω−92 holds for all 1 � i, j � k

simultaneously, and thus
∑k

i,j=1 Zij � k2nω−92 � nω−90.

Lemma 8.9 implies that w.h.p. K1 removes at most nω−198 vertices. Finally, we need to

bound the number of vertices that get removed during K2.
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Lemma 8.10. With high probability K2 removes at most nω−198 vertices.

Proof. Let S be the set of vertices removed by K1. By Lemma 8.9 we may assume that

s = #S � nω−198. Moreover, let v1, . . . , vq be the vertices removed by K2 (in this order).

Assume that q � s, and let T = S ∪ {v1, . . . , vs}. We shall prove that T violates (8.3), so

Lemma 8.4 entails that actually q < s w.h.p.

To see that T is an ‘atypically dense’ set in G1 ∪ G2 that violates (8.3), observe that

by construction each vi satisfies eG1∪G2
(vi, S ∪ {v1, . . . , vi−1}) � 50. Therefore, eG1∪G2

(T ) �
50s � 25#T , while #T = 2s � nω−197.

Combining Lemmas 8.8–8.10, we obtain the following corollary, which implies Propos-

ition 8.6.

Corollary 8.11. With high probability we have #V (K) � n(1 − ω−197).

8.4. Proof of Proposition 8.7

If ω = σ∗ + n
nmin

� n1/190, then Lemma 8.8 and Corollary 8.11 yield that core(G) = G

w.h.p., and thus there is nothing to prove. Hence, we shall assume that ω < n1/200. We

shall prove that in this case w.h.p. the graph (G1 ∪ G2) −K does not contain a tree on

ln n vertices w.h.p., where K is the outcome of the process K1–K2 defined in Section 8.3.

Since core(G) ⊃ K by Lemma 8.8, this implies the assertion.

Thus, let T = (VT , ET ) be a tree with vertex set VT ⊂ V on t = #VT = �ln n� vertices

(T is not necessarily a subgraph of G, but just a tree whose vertex set is contained

in V ). We shall estimate the probability that T is contained in (G1 ∪ G2) −K . To this

end, we consider IT = {v ∈ VT : dT (v) � 4} and JT = VT \ IT ; as #ET = t− 1, we have

#IT � t/2. Moreover, let KT be the outcome of the following modification of the process

K1–K2 (see Section 8.3). Set ω = σ∗ + n
nmin

.

K0′. Let G∗ be a graph obtained from G by replacing the edges in ET by fresh random

edges. That is, each edge e = {v, w} ∈ ET is present in G∗ with probability pψ(v)ψ(w)

independently of all others and of the choice of G, and G∗ − ET = G− ET .

K1′. Let KT be the subgraph of G∗ obtained by removing the vertices

JT ∪
{
v ∈ V : max

1�i�k
|eG(v, Vi) − μG(v, Vi)| � 103

[√
#VIPij(1 − pij) lnω + lnω

]}
.

K2′. While there is a vertex v ∈ KT such that maxi=1,2 eGi (v, V \KT ) > 40, remove v

from KT .

Lemma 8.12. Let K be the result of the process K1–K2 (see Section 8.3). Then KT ⊂ K ,

regardless of the outcome of step K0′.

Proof. Since every vertex v ∈ IT is incident with � 4 edges of T , the graph defined in

step K1′ is contained in the graph defined in step K1. Consequently, all vertices removed

by K2 also get removed by K2′.
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Let us call G good if, for all trees T as above, we have #V (G−KT ) � nω−88, regardless

of the outcome of step K0′.

Lemma 8.13. We have P[G is good] � 1 − 2 exp(− ln3 n).

Proof. Let S be the set of vertices removed by K1′, and let s = #S . Since ω � n1/190,

Lemma 8.9 entails that with probability � 1 − exp(− ln3 n) we have s � #JT + nω−90 �
nω−89. Furthermore, if K2′ removes q � nω−89 vertices v1, . . . , vq , then consider the set T =

S ∪ {v1, . . . , v�nω−89�}. Then ln3 n � nω−89 � #T � s+ nω−89 + 1 � nω−88, but eG1∪G2
(T ) �

40#T/2 = 20#T (see the proof of Lemma 8.10). Hence, T violates (8.4). Consequently,

Lemma 8.4 entails that q � nω−89 with probability � 1 − exp(− ln3 n), whence the assertion

follows.

Proof of Proposition 8.7. Since the construction of KT is independent of the presence

of edges of T in G1 ∪ G2 due to K0′, Lemma 8.12 yields

P
[
T ⊂ G1 ∪ G2 ∧ VT ∩K = ∅

]
� P

[
T ⊂ G1 ∪ G2

]
· P

[
IT ∩KT = ∅

]
. (8.7)

Given their cardinalities, the sets Vi ∩HT are uniformly distributed random subsets of

Vi \ JT , as due to K0′ the distribution of G∗ − JT is invariant under permutations of the

vertices within the classes Vi. Therefore, letting ti = #IT ∩ Vi and ν = �nω−88�, we obtain

P
[
IT ∩KT = ∅

]
� P

[
G is not good

]
+

k∏
i=1

(
#Vi−ti
ν−ti

)
(

#Vi
ν

)
Lem. 8.13

� exp(− ln3 n) +

k∏
i=1

(#Vi − ti)ν−ti (ν)ti
(#Vi)ν−ti (#Vi − ν + ti)ti

� exp(− ln3 n) +

k∏
i=1

(
ν

#Vi − ν

)ti

� exp(− ln3 n) +

k∏
i=1

(
2ν

#Vi

)ti

� exp(− ln3 n) + ω−86
∑ k

i=1 ti

� exp(− ln3 n) + ω−43t � ω−42t. (8.8)

To bound P
[
T ⊂ G1 ∪ G2

]
, we note that

P
[
{v, w} ∈ E(G1 ∪ G2)

]
� 2pψ(v)ψ(w)(1 − pψ(v)ψ(w)) � 2σ∗/nmin

by the definition of σ∗ (v, w ∈ V ). Consequently,

P
[
T ⊂ G1 ∪ G2

]
�

(
2σ∗

nmin

)t−1

. (8.9)

Combining (8.7), (8.8), and (8.9), and recalling that ω = σ∗ + n
nmin

, we conclude

P
[
T ⊂ G1 ∪ G2 ∧ VT ∩K = ∅

]
�

(
2σ∗

nmin

)t−1

ω−42t � n1−tω−39t. (8.10)
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Finally, we are going to apply the union bound to estimate the probability that there

exists a tree T as above such that T ⊂ G1 ∪ G2 and VT ∩K = ∅. Since by Cayley’s

formula there are
(
n
t

)
tt−2 ways to choose the tree T , (8.10) entails that

P
[
∃T : T ⊂ G1 ∪ G2 ∧ VT ∩K = ∅

]
�

(
n

t

)
tt−2n1−tω−39t � exp(t)n2ω−39t � n−36,

because t � ln n. Hence, w.h.p. (G1 ∪ G2) −K contains no tree on � ln n vertices.

9. Proofs of auxiliary lemmas

9.1. Proof of Lemma 8.2

The proof relies on the following general tail bound, which is a consequence of Azuma’s

inequality (see [22, p. 38] for a proof).

Lemma 9.1. Let Ω =
∏N

i=1 Ωi be a product of probability spaces Ω1, . . . ,ΩN . Let Y : Ω →
R be a random variable that satisfies the following condition for all 1 � j � N.

If ω = (ωi)1�i�N, ω′ = (ω′
i)1�i�N ∈ Ω differ only in the jth component

(i.e., ωi = ω′
i if i �= j), then |Y (ω) − Y (ω′)| � τ.

Further, assume that E(Y ) exists. Then P
[
|Y − E(Y )| � λ

]
� 2 exp

(
−λ2/(2τ2N)

)
for all

λ > 0.

To derive Lemma 8.2 from Lemma 9.1, we let P = {{v, w} : v, w ∈ V , v �= w} be the set

of all
(
n
2

)
possible edges. Further, for each e = {v, w} ∈ P we let Ωe denote a Bernoulli

experiment with success probability pψ(v)ψ(w). Then we have the product decomposition

Gn,k(ψ, p) =
∏

e∈P Ωe, because the edges occur independently in Gn,k(ψ, p). However, we

cannot apply Lemma 9.1 to this decomposition directly, because the number of factors is

too large. Therefore, we are going to set up a different product decomposition Gn,k(ψ, p) =∏K
i=1 Ωi, where each Ωi is a product of several Ωe.

To this end, we partition P into K � 2σ∗n/ ln n subsets P1, . . . ,PK such that

E(#E(G1 ∪ G2) ∩ Pi) =
∑
e∈Pi

P
[
e ∈ G1 ∪ G2

]
� ln n for all 1 � i � K,

where G1, G2 are the graphs defined in (1.3), (1.4). Then we have the decomposition

Gn,k(ψ, p) =

K∏
i=1

Ωi, where Ωi =
∏
e∈Pi

Ωe. (9.1)

Let us call Pi critical if #E(G1 ∪ G2) ∩ Pi > 100 ln n. As #E(G1 ∪ G2) ∩ Pi is a sum of

mutually independent Bernoulli variables, the generalized Chernoff bound (8.1) entails

that P[Pi is critical] � n−21. Therefore, by the union bound

P
[
∃i : Pi is critical

]
� n−19. (9.2)

Now, for G = Gn,k(ψ, p) we define

G̃ = G−
⋃

i:Piis critical

E(G1) ∩ Pi +
⋃

i:Piis critical

E(G2) ∩ Pi
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and set Y (G) = X(G̃). Then (9.2) yields

P
[
X(Gn,k(ψ, p)) = Y (Gn,k(ψ, p))

]
� 1 − n−19. (9.3)

Furthermore, by the Lipschitz condition (8.2) we have |X(G) − Y (G)| � n2 for all possible

outcomes G = Gn,k(ψ, p). Therefore, (9.3) entails that

|E
(
X(Gn,k(ψ, p))

)
− E

(
Y (Gn,k(ψ, p))

)
| � n2−19 � 1. (9.4)

Moreover, we claim that, for all 1 � j � K:

If G,G′ are such that G− Pj = G′ − Pj , i.e., G,G′ differ only on edges

corresponding to the factor Ωj , then |Y (G) − Y (G′)| � 200 ln n
(9.5)

To prove (9.5), let G1, G2 and G′
1, G′

2 be the decompositions of G and G′ into the

sparse/dense part as defined in (1.3), (1.4).

Case 1: the set Pj is critical in neither G nor G′. In this case G̃′ can be obtained from G̃

by either adding or removing the edges in Pj ∩ (E(G)�E(G′)). Since Pj is not critical in

either G and G′, we have #Pj ∩ (E(G)�E(G′)) � 200 ln n, so that (9.5) follows from the

Lipschitz condition (8.2).

Case 2: Pj is critical in both G and G′. Then G̃′ = G̃, so that Y (G) = Y (G′).

Case 3: Pj is critical in G but not in G′. Then G̃′ is obtained from G̃ by adding or remov-

ing the edges in Pj ∩ E(G′); since #Pj ∩ E(G′) � 100 ln n, the Lipschitz condition (8.2)

implies (9.5).

Case 4: Pj is critical in G′ but not in G. Analogous to Case 3.

Due to (9.5), Lemma 9.1 applied to Y (Gn,k(ψ, p)) and the decomposition (9.1) yields

P

[
|Y (Gn,k(ψ, p)) − E(Y (Gn,k(ψ, p)))| > 1

2

√
σ∗n ln2 n

]

� exp

[
− σ∗ ln4 n

160000K ln2 n

]
� n−11, (9.6)

provided that n is sufficiently large. Thus, we finally obtain

P
[
|X(Gn,k(ψ, p)) − E(X(Gn,k(ψ, p)))| �

√
σ∗n ln2 n

]
� P

[
X(Gn,k(ψ, p)) �= Y (Gn,k(ψ, p))

]
+ P

[
|Y (Gn,k(ψ, p)) − E(X(Gn,k(ψ, p)))| �

√
σ∗n ln2 n

]
(9.3), (9.4)

� n−19 + P

[
|Y (Gn,k(ψ, p)) − E(Y (Gn,k(ψ, p)))| � 1

2

√
σ∗n ln2 n

]
(9.6)

� n−19 + n−11 � n−10,

as desired.

9.2. Proof of Lemma 8.3

Since for all v and a = 1, 2 the degree dGa(v) of v in Ga is a sum of mutually independent

Bernoulli variables with mean � 2σ∗, the Chernoff bound (8.1) entails that P
[
v ∈ Ui

]
�
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exp
[
− 1

3
2iσ∗]. Hence, E(#Ui) � exp

[
− 1

3
2iσ∗]n. To obtain a bound on #Ui that actually

holds w.h.p., we consider two cases.

Case 1: 2iσ∗ � 24 ln ln n. By Markov’s inequality, we have

P
[
#Ui > exp

(
−2i−2σ∗)n] � E(#Ui)

exp[−2i−2σ∗]n
� exp

[
−2iσ∗/12

]
� ln−2 n. (9.7)

Case 2: 2iσ∗ < 24 ln ln n. Then exp
[
− 1

3
2iσ∗]n � n1−o(1). Therefore, by Lemma 8.2

P

[
#Ui > 2 exp

(
−1

3
2iσ∗

)
n

]
� P

[
#Ui − E(#Ui) �

√
σ∗n ln2 n

]
� n−10. (9.8)

Finally, combining (9.7) and (9.8) and invoking the union bound, we conclude that with

probability � 1 − O(ln−1 n) we have #Ui � exp(−2i−2σ∗)n for all i = 1, . . . , �log2 n�.

9.3. Proof of Lemma 8.4

For any two vertices v, w ∈ V the probability that v, w are connected in G1 ∪ G2 is

P
[
{v, w} ∈ E(G1 ∪ G2)

]
� 2pψ(v)ψ(w)(1 − pψ(v)ψ(w)) � 2σ∗

nmin
. (9.9)

Let S ⊂ V be a set of cardinality s = #S � smax = n
(
nmin

nσ∗

)2
. As there are

((s2)
10s

)
ways to

choose a graph with vertex set S that contains 10s edges, the union bound entails in

combination with (9.9) that

P
[
eG1∪G2

(S) � 10s
]

�
((

s
2

)
10s

)(
2σ∗

nmin

)10s

�
(

esσ∗

10nmin

)10s

.

Hence, once more due to the union bound we obtain that

Ps = P
[
∃S ⊂ V : #S � smax ∧ eG1∪G2

(S) � 10#S
]

�
(
n

s

)(
esσ∗

10nmin

)10s

.

Consequently, we can estimate Ps as follows:(
n

s

)
Ps �

[(
en

s

)2(
esσ∗

10nmin

)10]s
�

(
nmin

nσ∗

)8s

� 1. (9.10)

Thus, for any smin � 1 we have

P
[
∃S ⊂ V : smin � #S � smax ∧ eG1∪G2

(S) � 10#S
]

�
smax∑
s=smin

Ps
(9.10)

� 2

(
n

smin

)−1

. (9.11)

Finally, (9.11) entails that w.h.p. there is no set S ⊂ V of cardinality 1 � #S � smax such

that eG1∪G2
(S) � 10#S , whence the first part of Lemma 8.4 follows. Furthermore, setting

smin = �ln3 n� in (9.11), we obtain the second assertion.

9.4. Proof of Lemma 8.5

The proof relies on the following two general lemmas, which are implicit in the work of

Alon and Kahale, Feige and Ofek, and Füredi and Komloś [1, 17, 20]; both lemmas are

stated and proved explicitly in [11, Chapter 5].
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Lemma 9.2. There are constants c1, c2 such that the following holds. Let (aij)1�i<j�ν be

a family of mutually independent Bernoulli random variables with mean 0 � p � 1. Set

aij = aji for 1 � j < i � ν, and let aii = 0 for all 1 � i � ν. Moreover, let A = (aij)1�i,j�ν
and M = p�J − A. Further, let d � 0, and set X = {i ∈ {1, . . . , ν} :

∑ν
j=1 aij � d}.

Then, with probability � 1 − O(ν−1) we have ‖MX‖ � c2

√
max{νp, d}.

Lemma 9.3. There are constants c1, c2 such that the following holds. Let (aij)1�i,j�ν be a

family of mutually independent Bernoulli random variables with mean 0 � p � 1. Moreover,

let A = (aij)1�i,j�ν and M = p�J − A. Further, let d � 0, and set X = {i ∈ {1, . . . , ν} :∑ν
j=1 aij + aji � d}. Then, with probability � 1 − O(ν−1) we have ‖MX‖ � c2

√
max{νp, d}.

Proof of Lemma 8.5. Let A = A(G) be the adjacency matrix, and set M(i,j) = pij�JVi×Vj −
AVi×Vj . Then, by Lemmas 9.2 and 9.3 (applied to the matrices AVi×Vj ), for all i, j such that

pij � 1
2

w.h.p. we have

‖M(i,j)
X ‖ � c

√
max{Δ, σ∗} (9.12)

for a certain constant c > 0. Furthermore, applying Lemmas 9.2 and 9.3 to�JVi×Vj − AVi×Vj ,

we conclude that w.h.p. (9.12) holds for all i, j such that pij >
1
2

as well.

To bound ‖MX‖, let ξ, η ∈ R
V be unit vectors. We decompose ξ =

∑k
i=1 ξi, where the

entries of ξi equal the entries of ξ on the coordinates in Vi, and ξi is 0 on V \ Vi. Similarly,

we let η =
∑k

i=1 ηi. Then

|〈MXη, ξ〉| =

∣∣∣∣
k∑

i,j=1

〈M(i,j)
X ηj , ξi〉

∣∣∣∣ �
k∑

i,j=1

‖M(i,j)
X ‖ · ‖ξi‖ · ‖ηj‖

(9.12)

� ck
√

max{Δ, σ∗},

because
∑k

i=1 ‖ξ‖2 =
∑k

i=1 ‖ηi‖2 = 1. Thus, w.h.p. we have

‖MX‖ = sup
ξ,η:‖ξ‖=‖η‖=1

|〈MXη, ξ〉| � ck
√

max{Δ, σ∗},

as desired.
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[24] Friedman, J., Kahn, J. and Szemerédi, E. (1989) On the second eigenvalue in random regular

graphs. In Proc. 21st STOC , pp. 587–598.

[25] Kannan, R., Vempala, S. and Vetta, A. (2004) On clusterings: Good, bad and spectral. J. Assoc.

Comput. Mach. 51 497–515.

[26] Krivelevich, M. and Sudakov, B. (2003) The largest eigenvalue of sparse random graphs.

Combin. Probab. Comput. 12 61–72.

[27] Krivelevich, M. and Sudakov, B. (2006) Pseudo-random graphs. In More Sets, Graphs and

Numbers (E. Gyori, G. O. H. Katona and L. Lovász, eds), Vol. 15 of Bolyai Society Mathematical

Studies, pp. 199–262.

[28] McSherry, F. (2001) Spectral partitioning of random graphs. In Proc. 42nd FOCS , pp. 529–537.

[29] Pothen, A., Simon, H. D. and Kang-Pu, L. (1990) Partitioning sparse matrices with eigenvectors

of graphs. SIAM J. Matrix Anal. Appl. 11 430–452.

[30] Schloegel, K., Karypis, G. and Kumar, V. (2000) Graph partitioning for high performance

scientific simulations. In CRPC Parallel Computation Handbook (J. Dongarra, I. Foster, G. Fox,

K. Kennedy and A. White, eds), Morgan Kaufmann.

[31] Spielman, D. A. and Teng, S.-H. (1996) Spectral partitioning works: Planar graphs and finite

element meshes. In Proc. 36th FOCS , pp. 96–105.

[32] Subramanian, C. R. and Veni Madhavan, C. E. (2002) General partitioning on random graphs.

J. Algorithms 42 153–172.

https://doi.org/10.1017/S0963548309990514 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548309990514

