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Abstract
This paper introduces a novel theoretical framework that offers a closed-form expression for the tail variance (TV)
for the novel family of generalised hyper-elliptical (GHE) distributions. The GHE family combines an elliptical
distribution with the generalised inverse Gaussian (GIG) distribution, resulting in a highly adaptable and powerful
model. Expanding upon the findings of Ignatieva and Landsman ((2021) Insurance: Mathematics and Economics,
101, 437–465.) regarding the tail conditional expectation (TCE), this study demonstrates the significance of the TV
as an additional risk measure that provides valuable insights into the tail risk and effectively captures the variability
within the loss distribution’s tail. To validate the theoretical results, we perform an empirical analysis on two specific
cases: the Laplace – GIG and the Student-t – GIG mixtures. By incorporating the TV derived for the GHE family,
we are able to quantify correlated risks in a multivariate portfolio more efficiently. This contribution is particularly
relevant to the insurance and financial industries, as it offers a reliable method for accurately assessing the risks
associated with extreme losses. Overall, this paper presents an innovative and rigorous approach that enhances our
understanding of risk assessment within the financial and insurance sectors. The derived expressions for the TV in
addition to TCE within the GHE family of distributions provide valuable insights and practical tools for effectively
managing risk.

1. Introduction
Financial and insurance companies have a primary objective of assessing risks associated with financial
losses or insurance claims. The value-at-risk (VaR) measure, introduced in J.P.Morgan/Reuters (1996),
has been widely used for quantifying these risks. However, studies have shown that assuming normality
in returns or losses is unrealistic due to heavy tails and excess kurtosis, as highlighted among others by
McNeil (1997), McNeil et al. (2015), Embrechts et al. (2001), Eling (2012) and Ignatieva and Landsman
(2015, 2019, 2021).

To address the limitations of VaR and the unrealistic assumption of normality in financial and insur-
ance data, numerous studies have sought alternative approaches. The foundation for developing and
applying multivariate symmetric distributions, particularly elliptical distributions, was laid by Fang et al.
(1990), providing a comprehensive framework for constructing these distributions. Barndorff-Nielsen
(1977, 1978) introduced the (univariate) generalised hyperbolic (GH) distribution, which was later
explored by Ignatieva and Landsman (2015) to derive conditional risk measures, with a focus on tail
conditional expectation (TCE) for assessing tail risk in loss severity. The most recent work by Ignatieva
and Landsman (2021) extends this framework by introducing the generalised hyper-elliptical (GHE)
distribution, a broader class that combines elliptical distributions with the generalised inverse Gaussian
(GIG) distribution, providing theoretical results for TCE within this expanded class. The TCE provides
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a means to quantify the expected level of risk in unfavourable scenarios, where the risk factors surpass
a predefined threshold value. Unlike VaR, the TCE takes into account both the minimum and expected
losses incurred in the most extreme cases, offering a more precise evaluation of financial and insurance
risks. The authors demonstrate that the TCE derived for the GHE family yields an excellent and more
conservative and realistic estimation of risk in the extreme tail. This addresses a significant challenge
faced by financial and insurance companies, which revolves around accurately quantifying the risks
associated with extreme losses.

Despite the advancements made in risk quantification through the use of the TCE risk measure, there
is still a need for further improvement in exploiting the information regarding risk at the extreme tails
of the distribution. An additional measure, known as tail variance (TV), offers a more comprehensive
and realistic evaluation of risks. The TV measure plays a significant role in providing valuable insights
into the heavy-tailed behaviour of a distribution by quantifying the rate at which the variance of the
distribution increases as we move towards the extreme tails. The significance of incorporating TV to
assess tail riskiness for elliptical and symmetric GH distributions has been extensively discussed in
Furman and Landsman (2006) and Ignatieva and Landsman (2015), respectively. The rationale behind
using TV stems from the observation made in Ignatieva and Landsman (2015) that the limit of TV for
the quantile level q approaching one can be either zero (in the case of a Normal distribution), infinity (in
the case of Student-t distribution), or a positive constant. Consequently, the asymptotic behaviour of TV
naturally provides a categorisation of riskiness at the tails. Furthermore, integrating TCE and TV risk
measures enables the derivation of an upper bound for the risk. This upper bound provides a high level
of confidence that the risk will not exceed its threshold, further enhancing the paper’s contributions to
risk assessment practices.

This paper presents an integrated framework that extends the GHE family of distributions by incor-
porating the TV as an additional risk measure. We derive a theoretical closed-form expression for TV
within the GHE framework, addressing two key aspects: capturing the distributional characteristics of
financial and insurance data and effectively accounting for extreme tail events. Additionally, TV con-
firms the confidence of using TCE as an estimator for extreme losses (Duan et al., 2024), supporting its
effectiveness in risk aggregation. This makes it a valuable asset in portfolio risk management, as well
as in financial and insurance applications. However, the TV for the GHE class of distributions remains
unexplored in Duan et al. (2024)’s analysis. In this paper, we address this gap by introducing a novel
approach that provides a precise and tractable formula for calculating TV for the GHE distribution. In
contrast to the prior work by Ignatieva and Landsman (2021), which focused on TCE as the primary
measure of tail risk, this study enhances the framework by introducing the TV. TV captures the vari-
ability within the tail of the distribution, offering deeper insights into extreme tail behaviour that TCE
alone cannot provide. The combination of TCE and TV offers a more comprehensive evaluation of risk,
including the derivation of an upper bound, further strengthening its practical relevance. This contri-
bution significantly broadens the theoretical scope and utility of the GHE framework, allowing for a
more robust assessment of tail risk. The framework proposed in this paper enables a more accurate and
holistic evaluation of risks, complementing traditional TCE-based assessments. It provides practitioners
with a deeper understanding of tail risk, aiding in more informed decision-making in areas such as risk
assessment, extreme value analysis, portfolio management and outlier detection. By leveraging the TV
measure alongside the GHE distributions, we offer an innovative solution to overcome key challenges in
risk quantification, ultimately enhancing risk management practices in financial and insurance sectors.

The rest of the paper is structured as follows. Section 2 presents a GHE family of distributions and
its special cases, namely, the Laplace – GIG and the Student-t – GIG mixtures. Section 3 discusses the
concept of the TV and presents innovative theoretical results for calculating the TV. The analysis is
extended to include portfolio risk decomposition in Section 4, where we aggregate individual risks and
derive key theoretical results for the multivariate portfolio. To demonstrate the practical application of
our theoretical findings, we present an empirical analysis in Section 5. Section 6 concludes the paper
and provides final remarks.
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2. The generalised hyper-elliptical family
A recent work by Ignatieva and Landsman (2021) introduces the GHE distributions, which combine
elliptical distributions with the GIG family. Specifically, a random vector X = (X1, ..., Xd)T follows a
multivariate elliptical mean variance mixture if it can be expressed as:

X = μ + Wγ + √
WAZ, (2.1)

where μ is the location vector, γ captures skewness (with γ = 0 indicating a symmetric distribution),
Z ∼ Ek(0, Ik, gk) follows an elliptical distribution, matrix A ∈R

d×k, and W1/l ∼ GIG(λ, χ ,ψ) follows GIG
distribution (see Klugman et al., 2019, p. 438). The distribution of X introduced in this framework is
referred to as the GHE distribution. For any positive l, the exponent 1/l in the random variable W makes
the chosen class of mixture distributions even more flexible than the GIG class. This is because we can
utilise both the GIG distribution itself (when l = 1) and its scaled versions (when l �= 1). This flexibility
is particularly important as it allows to include additional members in the class of GHE distributions. As
an example, we can consider the Laplace-GIG mixture (see Ignatieva and Landsman 2021, Section 4.1),
where l = 2, that is, W1/2 ∼ GIG(λ, χ ,ψ) (see Eq. (4.7) in the cited paper). When l = 1 and Z is Nk(0, Ik),
the random vector X follows the skewed GH distribution as in McNeil et al. (2015) and Ignatieva and
Landsman (2019). This demonstrates the connection between the GHE and skewed GH distributions.
The probability density function (pdf) of W1/l is

fW1/l (w) = cλ,χ ,ψwλ−1 exp

(
−1

2

(
χw−1 +ψw

))
, (2.2)

where w> 0, χ ≥ 0, ψ ≥ 0, λ ∈R and cλ,χ ,ψ given by:

cλ,χ ,ψ = χ−λ(
√
χψ)λ

2Kλ(
√
χψ)

, (2.3)

with Kλ( · ) being the modified Bessel function of the third kind. We notice that since W1/l ∼
GIG(λ, χ ,ψ), we can write the pdf of W as:

fl,λ,χ ,ψ (w) = fW(w) = fW1/l (w1/l)
1

l
w1/l−1 = cλ,χ ,ψ

1

l
wλ/l−1 exp

(
−1

2

(
χw−1/l +ψw1/l

))
. (2.4)

This framework provides a flexible and powerful model for capturing the characteristics of the GHE
distributions, allowing for the analysis of multivariate risk scenarios. Ignatieva and Landsman (2021)
offer a thorough analysis of this distribution class. The distribution of X | W = w is elliptical, denoted
as Ed(μ + wγ , w�, gd), with pdf:

fX(x|W = w) = cd√|�|√w
gd

(
1

2w
(x − μ−wγ )T�−1(x − μ−wγ )

)
, (2.5)

where gd (u) is the density generator, u ≥ 0; � = AAT > 0 is a positive definite d × d scale matrix1, and
a constant cd:

cd = � (d/2)

(2π)d/2

[∫ ∞

0

xd/2−1gd(x)dx

]−1

. (2.6)

The pdf of X is then given by:

fX(x) = cd√|�|

∞∫
0

1√
w

gd

(
1

2w
(x − μ − wγ )T�−1(x − μ − wγ )

)
fW(w)dw. (2.7)

1Generally speaking, � represents a scaled version of the variance–covariance matrix for the underlying elliptical distribution,
as outlined in Section 2. The scaling factor is given by −ψ ′( − 1), where ψ(t) is the characteristic generator of the elliptical
family. However, since in our case −ψ ′( − 1)<∞ (as the variance exists), we can choose a characteristic generator such that
ψ ′( − 1) = −1, ensuring that� corresponds exactly to the variance–covariance matrix. In this setup, the density generator gd can
be adjusted accordingly.
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Ignatieva and Landsman (2021) show that if X ∼ GHEd(μ,�, gd, γ , l, λ, χ ,ψ) and we define
Y = BX + b, where matrix B has dimension (m × d) and column vector b is of length k, then
Y ∼ GHEm(Bμ + b, B�BT, gm, Bγ , l, λ, χ ,ψ). The univariate version follows similarly, where X is
represented by:

X =μ+ Wγ + √
WσZ, (2.8)

with Z ∼ E1(0, 1, g), and the univariate pdf is

fX(x) = c

σ

∞∫
0

1√
w

g

(
1

2wσ 2
(x −μ− wγ )2

)
fW(w)dw. (2.9)

Two specific examples of the GHE family are the Laplace – GIG mixture and the Student-t – GIG
mixture. For the Laplace – GIG mixture, we examine a univariate Laplace random variable Z with
mean zero and variance one, having the pdf:

fZ(z) = 1√
2

exp( − √
2|z|), −∞< z<∞.

The cumulative distribution function (cdf) is given by:

FZ(z) =
{

1 − 1
2

exp( − √
2z), z ≥ 0,

1
2

exp(
√

2z), z< 0.

The tail-type cumulative generator Ḡ(z) is

Ḡ(z) = 1√
2

(
√

z + 1

2
) exp( − 2

√
z). (2.10)

The pdf of X is derived in Ignatieva and Landsman (2021) and is given by:

fX(x) = 1√
2σ

∫ ∞

0

1√
w

exp

(
−|x −μ− wγ |√2√

wσ

)
fW(w)dw.

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1√
2σ

cλ,χ ,ψ

(
FGIG(

√
Q1,χ ′,ψ ′ ,λ′)

cλ′ ,χ ′ ,ψ ′ + F̄GIG(
√

Q1,χ ′′,ψ ′′ ,λ′′)
cλ′′,χ ′′,ψ ′′

)
, x>μ, γ > 0

1√
2σ

cλ,χ ,ψ

cλ′,χ ′′,ψ ′′ F̄GIG (0, χ ′′,ψ ′′, λ′′) , x<μ, γ > 0
1√
2σ

cλ,χ ,ψ

cλ′,χ ′,ψ ′ , x>μ, γ < 0

1√
2σ

cλ,χ ,ψ

(
F̄GIG(

√
Q1,χ ′,ψ ′,λ′)

cλ′,χ ′,ψ ′ + FGIG(
√

Q1,χ ′′,ψ ′′ ,λ′)
cλ′′,χ ′′,ψ ′′

)
, x<μ, γ < 0.

(2.11)

For the Student-t – GIG mixture, we examine a univariate Student-t random variable Z with the pdf

fZ(z) = cp

(
1 + z2

ν

)−p

,

where the constant

cp = 1√
νB

(
1
2
, p − 1

2

) = �(p)√
πν�(p − 1

2
)
, (2.12)

and p> 3/2. Then, it holds

Ḡ(z) = cpν/2

p − 1

(
1 + 2z

ν

)1−p

.

The pdf of X is derived in Ignatieva and Landsman (2021) and corresponds to

fX(x) = cpcλ,χ ,ψ

σ

∫ ∞

0

(
1 + 1

ν

(
x −μ− γw

σ
√

w

)2
)−p

wλ−3/2 exp

(
−1

2

(χ
w

+ψw
))

dw.

(2.13)
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3. Tail variance
In this section, we explore new theoretical insights into the TV of the GHE family. TV is a risk mea-
sure that captures the variability within the tail of a distribution, providing insights into the magnitude
and uncertainty of extreme events. Unlike TCE, which focuses on expected losses, TV emphasises the
dispersion of losses in the extreme tail. It can be defined as:

TVq[X] = Var[X | X > xq], where P(X ≤ xq) = q, (3.1)

which was first introduced in Furman and Landsman (2006) (Eq. (1.3)) and is consistent with the
definition provided in Kim and Kim (2019) (Eq. (55)). TV is particularly useful for assessing risk in
heavy-tailed distributions, as it reflects not only the expected level of tail risk but also its potential vari-
ability. Moreover, TV enhances the reliability of using TCE as an estimator of extreme losses (see Duan
et al., 2024) ensuring that it performs well in risk aggregation, making it a valuable tool in portfolio risk
management as well as financial and insurance applications.2 For the sake of completeness, we briefly
summarise the main result here. We denote xq to be the solution of

F̄GHE,1(xq,μ, σ 2, g, γ , l, λ, χ ,ψ) = 1 − q, (3.2)

with F̄GHE,1( · ) = 1 − FGHE,1( · ), where FGHE,1(x,μ, σ 2, g, γ , l, λ, χ ,ψ) is a cdf of a GHE random variable
X. Alternatively, we can write

xq = VaRq(X; μ, σ 2, g, γ , l, λ, χ ,ψ)

with VaRq( · ) denoting VaR at level q. Assuming the existence of the variance within the elliptical family,
that is,

Var(Z) = σ 2
Z <∞, (3.3)

Ignatieva and Landsman (2021) show in Theorem 3.1 that the TCE can be computed as follows:

TCEq(X) = μ+ γ

1 − q
kλ,λ̃F̄GHE,1(xq; μ, σ 2, g, γ , l, λ̃, χ ,ψ)

+ σ 2

1 − q
kλ,λ̃σ

2
Z fGHE,1(xq; μ, σ 2, G, γ , l, λ̃, χ ,ψ), (3.4)

where a constant kλ,λ̃j
is given by:

kλ,λ̃j
=

(√
χ

ψ

)λ̃j−λ Kλ̃j
(
√
χψ)

Kλ(
√
χψ)

. (3.5)

Consider λ̃j = λ+ jl
2
, where j = 1, 2, 3, 4. Let FGHE,1(xq,μ, σ 2, g, γ , l, λ̃j, χ ,ψ) denote the cdf of a GHE-

distributed random variable Xj with the parameter λ̃j, fGHE,1(x,μ, σ 2, G, γ , l, λ̃j, χ ,ψ) denote the pdf of
the GHE random variable X∗

j associated with Xj and F̄GHE,1(xq; μ, σ 2, G, γ , l, λ̃2, χ ,ψ) denote the cdf

2We note that while the proposed risk measure has clear relevance in financial applications, its applicability in the actuarial field
is particularly significant for investment-linked policies, capital allocation, or reinsurance contracts, where losses exhibit skewness
and heavy tails similar to financial data. For traditional actuarial losses, such as vehicle accidents or large claims, which may lack
a second-order moment, data transformations (e.g., log-transformations) could be necessary to apply the risk measure effectively.
In Section 6 of Ignatieva and Landsman (2021), it is shown that the log-transformed data of Danish fire losses fits well within the
GHE family of distributions. The TCE for the GHE class was previously derived in Ignatieva and Landsman (2021).
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of a GHE-distributed random variable X∗
2 . We note that λ̃= λ̃2 in Eq. (3.4) and, thus, kλ,λ̃ = kλ,λ̃2

. This
brings us to the following theorem.

Theorem 3.1. Suppose that the condition in Equation (3.3) is satisfied. Then

TVq(X) = σ 2σ 2
Z

1 − q
kλ,λ̃2

F̄GHE,1(xq; μ, σ 2, G, γ , l, λ̃2, χ ,ψ)

(
1 + (xq −μ)

fGHE,1(xq; μ, σ 2, G, γ , l, λ̃2, χ ,ψ)

F̄GHE,1(xq; μ, σ 2, G, γ , l, λ̃2, χ ,ψ)

)

+ kλ,λ̃4

1 − q
F̄GHE,1(xq; μ, σ 2, g, γ , l, λ̃2, χ ,ψ)γ

(
γ + σ 2 fGHE,1(xq; μ, σ 2, G, γ , l, λ̃4, χ ,ψ)

F̄GHE,1(xq; μ, σ 2, g, γ , l, λ̃4, χ ,ψ)

)

− k2
λ,λ̃2

(1 − q)2
F̄GHE,1(xq; μ, σ 2, g, γ , l, λ̃2, χ ,ψ)2

(
γ + σ 2σ 2

Z

fGHE,1(xq; μ, σ 2, G, γ , l, λ̃2, χ ,ψ)

F̄GHE,1(xq; μ, σ 2, g, γ , l, λ̃2, χ ,ψ)

)2

.

(3.6)

Proof. Refer to Appendix A.2.
We note that the obtained result of Theorem 3.1 not only conforms with but also extends the findings

of Kim and Kim (2019) who derive TV for the normal mean-variance mixture distributions.

4. Tail risk decomposition
In this section, we focus on a multivariate portfolio scenario, assuming that an insurance company oper-
ates across multiple lines of business or an investor manages a diverse investment portfolio with multiple
constituents. By considering the multivariate nature of the scenario, we gain a more comprehensive
understanding of the joint behaviour and risk profile associated with such multivariate portfolio.

We examine a multivariate GHE vector X = (X1, . . . , Xd)T , where each Xi, for i = 1, . . . , d, can be
interpreted as an insurance loss or the return on a financial asset. We are interested in the contribution of
the variability of each constituent, Xi to the TV of the sum of individual components in the multivariate
portfolio, S =∑d

i=1 Xi. We observe that, given a multivariate vector X ∼ GHEd(μ,�, gd, γ , l, λ, χ ,ψ),
where μis are the univariate means of constituents X1, ..., Xd, σij are the elements of the variance–
covariance matrix � and γis are the components of the vector γ , the sum S has a univariate GHE
distribution: S ∼ GHE1(μS, σ 2

S , g, γS, l, λ, χ ,ψ), where μS =∑d
i=1 μi, σ 2

S =∑d
i=1

∑d
j=1 σij, γS =∑d

i=1 γi.
We recall from Theorem 2 in Ignatieva and Landsman (2021) that the conditional expectation

E(Xi|S> sq) can be written as:

Ki = E(Xi|S> sq) =μi + γi

1 − q
kλ,λ̃F̄GHE,1(sq,μS, σ 2

S , g, γS, l, λ̃, χ ,ψ) (4.1)

+ σiS

1 − q
σ 2

Z kλ,λ̃fGHE,1(sq,μS, σ 2
S , G, γS, l, λ̃, χ ,ψ), i = 1, ..., d.

Here, each Ki represents TCE-based allocations of the ith constituent in the multivariate portfolio, that
is, summing Ki with i = 1, ..., d we naturally obtain TCE of the sum, that is,

∑d
i=1 Ki = TCEq(S).

The TV of each constituent variable Xi within the multivariate portfolio represents the individual
contribution of its variability to the overall variance in the extreme tail region. By quantifying the impact
of each component’s variability, we gain insights into the relative importance of different constituents
in shaping the tail risk of the portfolio. This would allow us to assess the significance of each variable’s
contribution to the overall risk profile and make informed decisions regarding risk management and
portfolio optimisation. We can write

TVq(Xi|S) = Var(Xi|S> sq) = E
(
(Xi − TCEq(Xi|S))2|S> sq

)
= E

(
X2

i |S> sq

)− TCEq(Xi|S)2 (4.2)
where sq denotes the q−level quantile of S and TCEq(Xi|S) = E(Xi|S> sq). For simplicity of explo-
ration, we concentrate on the two-dimensional scenario of our model. We assume that a bivariate vector
Y = (Y1, Y2)T ∼ GHE2(μ,�, g2, γ , l, λ, χ ,ψ) where � is a bivariate variance–covariance matrix:
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� =
(
σ11 σ12

σ12 σ22

)
.

We note that E(Xi|S> sq) has been derived in Ignatieva and Landsman (2021). Here, we first derive the
quantity E(Y2

1 |Y2 > y2,q) and then set Y1 = Xi and Y2 = S.

Lemma 4.1. Tail variance of Y1 given Y2 > y2,q has the following analytical representation

TV(Y1|Y2) = Var(Y1|Y2 > y2,q) = γ 2
1 kλ,λ̃4

1

1 − q
F̄GHE,1(y2,q; μ2, σ 2

2 , g, γ2, l, λ̃4, χ ,ψ)

+ 2γ1σ1σ2ρ12σ
2
Z kλ,λ̃5

1

1 − q
fGHE,1(y2,q,μ2, σ 2

2 , G, γ2, l, λ̃5, χ ,ψ)

+ σ 2
1 σ

2
Z kλ,λ̃2

1

1 − q
F̄GHE,1(y2,q; μ2, σ 2

2 , G, γ2, l, λ̃2, χ ,ψ)

+ σ 2
1 σ2σ

2
Zρ

2
12

(y2,q −μ2)

σ2

kλ,λ̃2

1

1 − q
fGHE,1(y2,q; μ2, σ

2
2 , G, γ2, l, λ̃2, χ ,ψ)

− σ 2
1 σ

2
Zρ

2
12γ2kλ,λ̃4

fGHE,1(y2,q; μ2, σ 2
2 , G, γ2, l, λ̃4, χ ,ψ)

− γ 2
1 k2

λ,λ̃2

1

(1 − q)2
F̄GHE,1(y2,q,μ2, σ

2
2 , g, γ2, l, λ̃2, χ ,ψ)2

− σ 2
12σ

4
Z k2

λ,λ̃2

1

(1 − q)2
fGHE,1(y2,q,μ2, σ 2

2 , G, γ2, l, λ̃2, χ ,ψ)2

− 2γ1kλ,λ̃2

1

1 − q
F̄GHE,1(y2,q,μ2, σ 2

2 , g, γ2, l, λ̃2, χ ,ψ)

× σ12σ
2
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1 − q
fGHE,1(y2,q,μ2, σ

2
2 , G, γ2, l, λ̃2, χ ,ψ), (4.3)

where y2,q = VaRq(Y2), σ 2
i = σii, i = 1, 2.

Proof. Refer to Appendix A.3.

Corollary 4.1. For a special case of symmetry when γ1, γ2 = 0 we obtain:

E(Y2
1 |Y2 > y2,q) =μ2

1+
+ σ 2

1 σ
2
Z kλ,λ̃2

1

1 − q
F̄GHE,1(y2,q; μ2, σ 2

2 , G, γ2 = 0, l, λ̃2, χ ,ψ)

+ 2μ1σ1ρ12σ
2
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fGHE,1(y2,q,μ2, σ 2

2 , G, γ2 = 0, l, λ̃1, χ ,ψ)

+ σ 2
1 σ

2
Zρ

2
12

(y2,q −μ2)

σ2

kλ,λ̃1

1

1 − q
fGHE,1(y2,q; μ2, σ

2
2 , G, γ2 = 0, l, λ̃1, χ ,ψ), and

E((Y1 − TCE(Y1|Y2))
2|Y2 > y2,q)

= σ 2
1 σ

2
Z kλ,λ̃2

1

1 − q
F̄GHE,1(y2,q; μ2, σ 2

2 , G, 0, l, λ̃2, χ ,ψ)

+ σ 2
1 σ2σ

2
Zρ

2
12

(y2,q −μ2)

σ2

kλ,λ̃2

1

1 − q
fGHE,1(y2,q; μ2, σ

2
2 , G, 0, l, λ̃2, χ ,ψ)

= Var(Y1)kλ,λ̃2
[

1

1 − q
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Table 1. Summary statistics for Apple, Microsoft, Amazon and Nvidia stock returns.

Mean Median Min Max Std Dev Skewness Kurtosis
Apple 0.000902 0.000987 -0.197470 0.130194 0.020396 -0.417188 9.737376
Microsoft 0.000646 0.000492 -0.121033 0.170626 0.017689 0.273642 10.632304
Amazon 0.000941 0.000779 -0.136759 0.237402 0.023584 0.586598 12.655522
Nvidia 0.000806 0.001394 -0.367109 0.260876 0.030946 -0.500305 13.211964

This result corroborates with Lemma 2 from Furman and Landsman (2006), essentially providing a
generalisation of its findings. By replacing Y1 with Xi and Y2 with S in Lemma 4.1, we can formulate
the following theorem.

Theorem 4.1. For 1 ≤ i ≤ n, tail variance of Xi given S> sq has the following analytical representation:
For 1 ≤ i ≤ n, tail variance of Xi given S> sq has the following analytical representation:

TV(Xi|S) = Var(Xi|S> sq) = γ 2
i kλ,λ̃4

1

1 − q
F̄GHE,1(sq; μS, σ 2

S , g, γS, l, λ̃4, χ ,ψ)

+ 2γiσiσsρiSσ
2
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1 − q
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+ σ 2
i σ

2
Z kλ,λ̃2

1

1 − q
F̄GHE,1(sq; μS, σ 2

S , G, γS, l, λ̃2, χ ,ψ)

+ σ 2
i σSσ

2
Zρ

2
iS

(sq −μS)

σ2

kλ,λ̃2

1

1 − q
fGHE,1(sq; μS, σ 2

S , G, γS, l, λ̃2, χ ,ψ)

− σ 2
i σ

2
Zρ

2
iSγ2kλ,λ̃4

fGHE,1(sq; μS, σ 2
S , G, γS, l, λ̃4, χ ,ψ)

− γ 2
i k2

λ,λ̃2

1

(1 − q)2
F̄GHE,1(sq,μS, σ 2

S , g, γS, l, λ̃2, χ ,ψ)2

− σ 2
iSσ

4
Z k2

λ,λ̃2

1

(1 − q)2
fGHE,1(sq,μS, σ 2

S , G, γS, l, λ̃2, χ ,ψ)2

− 2γikλ,λ̃2

1

1 − q
F̄GHE,1(sq,μS, σ 2

S , g, γS, l, λ̃2, χ ,ψ)

× σiSσ
2
Z kλ,λ̃2

1

1 − q
fGHE,1(sq,μS, σ 2

S , G, γS, l, λ̃2, χ ,ψ),

where notice that λ̃= λ̃2. This result essentially generalises the Theorem 2 of Furman and Landsman
(2006).

We note that quantity TV(Xi|S) allows us to present distribution-free (in some sense) inequality for any
component Xi, i = 1, ..., d of the aggregated sum S, when it exceeds q−level sq = VaRq(S). The following
proposition can be formulated:

Proposition 4.1. (One-tailed Cantelli’s inequality) For any k> 0, the following inequality holds:

Pr
{

Xi > TCE(Xi|S) + k
√

TV(Xi|S) |S> sq

}
≤ 1

1 + k2
, i = 1, ..., d. (4.4)

Proof. Equation (4.4) follows directly from the classical Cantelli’s Inequality (refer to Boucheron
et al. 2013):

Pr {X > E(X) + λ} ≤ Var(X)

Var(X) + λ2
, λ> 0
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Table 2. Estimated parameters from the univariate fit of the GHE family of distributions for Apple,
Microsoft, Amazon and Nvidia stocks.

μ σ ψ χ λ γ ν

Panel A: Apple
GHE (Laplace – GIG) -0.000927 0.018773 6.623701 0.839636 3.348752 0.094748 –
GHE (Student-t – GIG) 0.001056 0.015456 2.177807 2.013394 1.396627 0.046044 3.458763

Panel B: Microsoft
GHE (Laplace – GIG) -0.000140 0.026480 6.956953 0.576036 3.645934 0.009634 –
GHE (Student-t – GIG) 0.000540 0.012314 2.159043 0.839696 1.165294 0.012435 3.374653

Panel C: Amazon
GHE (Laplace – GIG) 0.000940 0.034304 7.347657 3.753249 3.546346 0.012451 –
GHE (Student-t – GIG) 0.000635 0.010185 2.217083 3.435743 1.546823 0.009143 4.243534

Panel D: Nvidia
GHE (Laplace – GIG) 0.003538 0.018754 6.918984 2.099945 3.354563 0.027331 –
GHE (Student-t – GIG) 0.001064 0.016019 4.456383 2.537887 1.474250 0.008124 4.354621
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Figure 1. Histogram representing the empirical distribution (black) versus GHE Laplace – GIG pdf
(blue) and GHE Student-t – GIG pdf (red) fitted to Apple, Microsoft, Amazon and Nvidia stock returns.
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Table 3. A comparison of univariate TVs and TCEs for Apple, Microsoft, Amazon and
Nvidia stock returns, calculated using GHE distributions (Laplace – GIG and Student-t –
GIG) across various quantile levels.

Laplace – GIG Student-t – GIG
Panel A: Apple TCE TV TCE TV
0.95 0.00651 0.02629 0.04545 0.09528
0.975 0.03567 0.08276 0.05789 0.12137
0.99 0.08525 0.17879 0.07905 0.16572
0.995 0.13373 0.27278 0.09974 0.20914
0.999 0.59260 1.16855 0.29554 0.62289
Panel B: Microsoft TCE TV TCE TV
0.95 0.02063 0.03136 0.03768 0.06477
0.975 0.03425 0.05839 0.04782 0.08204
0.99 0.05605 0.10154 0.06405 0.10961
0.995 0.07961 0.14832 0.08159 0.13950
0.999 0.15595 0.30003 0.13841 0.23644
Panel C: Amazon TCE TV TCE TV
0.95 0.02854 0.09158 0.05088 0.11988
0.975 0.04971 0.14794 0.06460 0.15181
0.99 0.08443 0.24039 0.08709 0.20419
0.995 0.12099 0.33805 0.11078 0.25952
0.999 0.24045 0.65756 0.18818 0.44054
Panel D: Nvidia TCE TV TCE TV
0.95 0.05804 0.09634 0.06999 0.12257
0.975 0.08517 0.15004 0.08758 0.15300
0.99 0.13513 0.24930 0.11994 0.20924
0.995 0.18265 0.34380 0.15073 0.26278
0.999 0.34931 0.67601 0.25870 0.45100

Substituting k = 3 into Equation (4.4), we obtain the following 90% upper bound for Xi

Pr
{

Xi < TCE(Xi|S) + 3
√

TV(Xi|S) | S> sq

}
≥ 0.9, i = 1, ..., d.

This upper bound offers a reliable upper threshold for risk estimation associated with extreme losses
such that the risk will not exceed this threshold with probability 90%, as illustrated in Section 5.

5. Empirical results
This section shows how the proposed methodology can be effectively applied to quantify the risk of a
portfolio. We focus on analysing the data of individual stocks that are constituents of the S&P 500 index,
specifically considering four prominent stocks: Apple, Microsoft, Amazon and Nvidia. Our analysis
covers a significant time frame of 15 years, starting from July 1, 2007, and ending on June 30, 2022.
Throughout this period, we collected a total of 3777 return observations. Table 1 provides summary
statistics of the data highlighting key measures such as mean, standard deviation, skewness and kur-
tosis, indicating notable skewness and high kurtosis in all data reflecting asymmetric and heavy-tailed
distributions.

In the subsequent discussion, we delve into the univariate case, where we examine the suitability of the
univariate GHE Laplace – GIG and GHE Student-t – GIG distributions for modelling individual stock
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Figure 2. TV- and TCE-based allocations (TVq(Xi|S> sq) and Ki, respectively) computed for GHE
Laplace – GIG and GHE Student-t – GIG distributions for Apple, Microsoft, Amazon and Nvidia stock
returns.

returns. Additionally, we calculate the univariate tail values (TVs) associated with these distributions.
This analysis is covered in Section 4.1.

Moving forward to Section 4.2, we shift our focus to the multivariate aspect, where we explore the
fit of the GHE family to the four-dimensional portfolio return data. We also compute the TV for the
combined portfolio returns and individual stock losses. To provide a meaningful comparison, we will
also report the TCE.

5.1 Univariate case
Table 2 presents the estimated parameters for the stocks of Apple, Microsoft, Amazon and Nvidia,
displayed horizontally in Panels A through D, respectively.3 We note that the skewness parameter γ
is positive, although it is close to zero. This suggests that the stock returns exhibit a near symmetry.

3Parameters are estimated using maximum likelihood estimation (MLE) by optimising the density function to best fit the
observed data. Specifically, we employ the univariate density functions from Equations (2.11) and (2.13), which are specific
versions of the probability density function in Equation (2.9) for the Laplace – GIG and Student-t – GIG mixtures. The optimi-
sation is carried out in R using the optim function. Initial values for the optimisation procedure are based on parameters from the
GH distribution, obtained through the ghyp package.
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Table 4. Parameter estimates from the multivariate fit of GHE (Laplace – GIG and Student-t – GIG)
and GH distributions to the Apple, Microsoft, Amazon and Nvidia stock returns. Parameters are
computed using maximum likelihood estimation.

Param. Laplace – GIG mixture Student-t – GIG mixture
λ -1.99184 -1.99704
χ 1.11144 0.58053
ψ 2.40952 2.63069
μ1 0.00163 0.01607
μ2 0.00120 0.00571
μ3 0.00182 0.01559
μ4 0.00220 0.03839
μS 0.00687 0.064361

�

⎛
⎜⎜⎝

0.11933 0.35769 0.15701 0.19248
0.35769 0.11972 0.15415 0.25236
0.15701 0.15415 0.29543 0.25051
0.19248 0.25236 0.25051 0.29242

⎞
⎟⎟⎠

⎛
⎜⎜⎝

0.21362 0.84255 0.20702 0.20250
0.84255 0.13885 0.27990 0.27998
0.20702 0.27990 0.27390 0.27358
0.20251 0.27998 0.27358 0.27334

⎞
⎟⎟⎠

σ 2
S 3.55530 5.07078
γ1 0.128278 0.12423
γ2 0.01338 0.12807
γ3 0.09118 0.08194
γ4 0.07118 0.08095
γS 0.30403 0.41520

Moving on to the number of degrees of freedom ν for the Student-t – GIG distribution, we observe
a range from 3.37 to 4.35, which is common for equities.4 The dispersion parameter σ is relatively
larger for the Laplace – GIG mixture, which indicates that the distribution is more spread out around the
mean when compared to the Student-t – GIG distribution. The parameter ψ is significantly larger for
the Laplace – GIG distribution compared to the Student-t – GIG. This difference in ψ leads to a higher
kurtosis in case of the Laplace – GIG distribution. This can also be observed in Figure 1 that shows
a histogram showcasing the distribution of returns (depicted in black) for Apple, Microsoft, Amazon
and Nvidia stocks, while the fitted probability density functions (pdfs) of the GHE Laplace – GIG pdf
(shown in blue) and GHE Student-t – GIG pdf (displayed in red) are overlaid on top. Upon examination,
it becomes evident that both distributions fit the individual losses quite well with the Student-t – GIG
only marginally outperforming Laplace – GIG, which is consistent with the result reported in Ignatieva
and Landsman (2021). The Laplace – GIG distribution generates fatter tails and exhibits excess kurto-
sis when compared to the Student-t – GIG distribution, implying that the Laplace – GIG distribution
portrays a more pronounced tail behaviour. It is worth noting that despite these differences, both distribu-
tions capture the characteristics of the returns reasonably well, demonstrating their efficacy in modelling
the data, including the heavy tails.

Using the estimated parameters from Table 2, we then calculate the univariate TV and TCE for the
stock returns. The results are presented in Table 3 and graphically depicted in Figure 2 for both the GHE
Laplace – GIG and GHE Student-t – GIG distributions, encompassing various quantile levels ranging
from 0.95 to 0.999. In Figure 2, the TCE and TV for the Laplace – GIG distribution are represented by
solid purple and green lines, respectively. The dotted red and blue lines depict the TCE and TV for the
Student-t – GIG distribution, respectively. Our observations indicate that, for a specific quantile range,
the TCE and TV for the Student-t – GIG distribution surpass their corresponding counterparts for the
Laplace – GIG distribution. However, when considering extremely high quantiles, the Laplace – GIG

4 To guarantee a finite TV in the GHE – Student-t-distribution, the degrees of freedom must satisfy ν > 2.
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Table 5. Comparison of multivariate TVs and TCEs computed for Apple, Microsoft,
Amazon and Nvidia stock returns using GHE (Laplace – GIG and Student-t – GIG)
distributions at different quantile levels.

Laplace – GIG Student-t – GIG
Panel A: Apple Ki TVq(Xi|S) Ki TVq(Xi|S)
0.95 0.69071 0.31558 0.26225 0.15366
0.975 1.19836 0.35500 0.42244 0.18771
0.99 2.72559 0.47391 0.90334 0.28992
0.995 5.28513 0.67331 1.70715 0.46077
0.999 27.28260 2.38721 8.19873 1.84054
Panel B: Microsoft Ki TVq(Xi|S) Ki TVq(Xi|S)
0.95 0.88826 1.08750 0.28425 0.36939
0.975 1.41220 1.26182 0.41620 0.45912
0.99 2.98841 1.78753 0.81232 0.72854
0.995 5.63006 2.66902 1.47442 1.17886
0.999 28.33312 10.24568 6.82152 4.81566
Panel C: Amazon Ki TVq(Xi|S) Ki TVq(Xi|S)
0.95 0.39527 0.22589 0.12128 0.05743
0.975 0.62422 0.26146 0.17018 0.07490
0.99 1.31300 0.36876 0.31699 0.12736
0.995 2.46735 0.54868 0.56239 0.21504
0.999 12.38818 2.09511 2.54419 0.92317
Panel D: Nvidia Ki TVq(Xi|S) Ki TVq(Xi|S)
0.95 0.39405 0.14564 0.14315 0.08471
0.975 0.65790 0.16955 0.1918 0.12774
0.99 1.45169 0.24165 0.33792 0.25692
0.995 2.78203 0.36254 0.58213 0.47283
0.999 14.21536 1.40159 2.55437 2.21655

distribution generates larger values for both TCE and TV compared to the Student-t – GIG distribution.
This disparity can be attributed to the fatter tail of the distribution exhibited by the Laplace – GIG case,
as we observed in Figure 1. Consequently, these findings suggest that the Laplace – GIG distribution
leads to more conservative estimates for TV (as well as TCE). This result regarding the TCE aligns with
the findings reported in Ignatieva and Landsman (2021) for insurance loss data.

5.2 Multivariate case
We analyse a multivariate portfolio comprising stock returns from Apple, Microsoft, Amazon and
Nvidia. We fit multivariate GHE models (Laplace – GIG and Student-t – GIG) to the four-dimensional
dataset. This approach differs from the analysis in Section 5.1, where univariate distributions were
applied to each return individually. We begin by estimating the model parameters for the multivariate
distribution, followed by the calculation of TV and TCE for the entire portfolio.

The estimated parameters for the multivariate data fitting are presented in Table 4.5 Alongside the
estimated values of λ,χ andψ , we provide additional information including a vector of means denoted as
μ = (μ1,μ2,μ3,μ4)T , a skewness vector represented as γ = (γ1, γ2, γ3, γ4)T and a variance–covariance

5For the multivariate case, MLE for mixture models is similar in principle to the univariate case, but the complexity increases
due to the need to account for correlations between multiple variables. The mixture model now involves multivariate distributions,
and the estimation process must consider the covariance structure of the data.
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Figure 3. TCE-based allocations Ki and TVq(Xi|S) computed for Apple, Microsoft, Amazon and Nvidia
stock returns using GHE (Laplace – GIG and Student-t – GIG) distributions at different quantile levels.

matrix denoted as �. We use the variance–covariance matrix � instead of the correlation matrix for
several important reasons. First,� is essential for the Cholesky decomposition, represented as� = AAT ,
which defines the random vector X. Second, in the theory of elliptical families,� plays a central role, as
it defines characteristic and density functions, and supports linear transformations of elliptical, GH and
GHE random vectors. Furthermore,� allows us to compute the aggregate sum variance σ 2

S by summing
its entries. The parametersμS and γS for the aggregate sum S are determined by summing the components
of the vectors μ and γ , respectively. Additionally, the variance of the aggregate sum, denoted as σ 2

S , is
calculated directly from the entries of �. In the multivariate setting, we find that the Laplace – GIG
mixture exhibits larger values for the parameter ψ compared to the Student-t – GIG distribution, which
is also consistent with the univariate results. This observation suggests a higher kurtosis for the Laplace –
GIG. Additionally, the positive but nearly zero values of the parameters γ indicate a greater degree of
symmetry for both mixtures.

Utilising the parameter estimates provided in Table 4, we proceed to calculating the TV and the TCE
for the stock returns in a multivariate setting. The results are reported in Table 5 for quantile levels rang-
ing from 0.95 to 0.999. Furthermore, Figure 3 shows TCE- and TV-based allocations Ki (from Equation
(4.1)) and TVq(Xi|S), respectively, for different stocks. In the graphical representation, we illustrate Ki

and TVq(Xi|S) for the Student-t – GIG distribution with dotted red and blue lines, respectively. For the
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Figure 4. Left panel: Comparison between
√

TVq(S) and
∑d

i=1

√
TVq(Xi|S)) computed for the GHE

Student-t – GIG distributions for Apple, Microsoft, Amazon and Nvidia stock returns. Right panel: TCE
and its upper bound for Apple stock computed using GHE Student-t – GIG distribution.

Laplace – GIG distribution, we use solid purple and green lines to depict Ki and TVq(Xi|S), respectively.
We observe that typically the Laplace – GIG distribution yields higher values for both TCE and TV com-
pared to the Student-t – GIG distribution, which is consistent with the univariate scenario. This again
aligns with the characteristic of the Laplace – GIG distribution having a heavier tail, which becomes
evident in extreme tail regions.

We recall that TCE of the portfolio TCEq(S) can be decomposed into the sum of individual Ki’s,
that is, TCE-based allocation is additive and it holds

∑d
i=1 Ki = TCEq(S)). This result in general does

not apply for the TV (i.e.,
∑d

i=1 TVq(Xi|S) �= TVq(S)) as TV-based allocation is not additive. Furman and
Landsman (2006) show that the following result holds for the family of elliptical distributions:

√
TVq(S) ≤

d∑
i=1

√
TVq(Xi|S). (5.1)

We illustrate this result in the left panel of Figure 4 for the Student-t – GIG distribution. Finally, using
the result of Proposition 4.1, we compute the upper bound for the TCE, which is shown in the right panel
of Figure 4. The upper bound shown using the blue dashed line provides a threshold such that the risk
will not exceed this boundary with probability 90%. To have this upper bound is particularly relevant to
the insurance and financial industries, as it offers a reliable upper threshold for accurately assessing the
risks associated with extreme losses.

6. Conclusion
This paper introduces a novel theoretical framework for GHE distributions, presenting a closed-form
expression for the TV as an additional risk measure to complement the previously derived in Ignatieva
and Landsman (2021) TCE risk measure. TV serves as an insightful additional risk measure that illumi-
nates the intricacies of tail risk and adeptly captures the variability present within the loss distribution’s
tail. It offers valuable insights into achieving accurate quantification of correlated risks within a mul-
tivariate portfolio. Through empirical analysis for the univariate and multivariate scenario, the paper
demonstrates the framework’s efficacy in providing reliable tail risk estimation for specific cases, such
as the Laplace – GIG and the Student-t – GIG mixtures. Our multivariate analysis allows to quantify
correlated risks by means of the TCE and TV risk measure. Despite the fact that TV is not an additive
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risk measures, we were able to derive TV-based allocations TVq(Xi|S) and assess an upper bound for
the risk, ensuring that the risk will not surpass this threshold with a 90% probability. The integration
of TV into the framework significantly enhances the efficiency of quantifying correlated risks in multi-
variate portfolios. This valuable contribution holds particular importance for the financial and insurance
industries, as it provides a reliable method for assessing extreme loss risks. Ultimately, the paper’s find-
ings strengthen risk assessment practices within these sectors, empowering decision-makers to make
informed and prudent risk management choices.
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A Appendix
A.1 TV-related computations
In this section, we address the computation of F̄GHE,1(xq; μ, σ 2, G, γ , l, λ̃2, χ ,ψ) which enters TV for-
mula in Equation (3.6) for the special cases of Laplace – GIG and Student-t – GIG mixtures. In other
words, we need to evaluate the following expression for these distributions:

F̄GHE,1(xq; μ, σ 2, G, γ , l, λ̃2, χ ,ψ) =
∫ ∞

0

∫ xq

−∞

1

σ
√

w
Ḡ

(
1

2

(
x −μ− γw√

wσ

)2
)

dxfW(w)dw. (A1)

Laplace – GIG mixture
For the Laplace – GIG mixture, we use the result from Equation (2.10) for Ḡ(u) when evaluating

the inner integral I(z) = ∫ z

−∞ Ḡ
(

1
2
u2
)

du in Equation (A1), where u = x−μ−γw√
wσ

, dx = du, separately for the
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case when z> 0 and z ≤ 0:

I(z) =
∫ z

−∞
Ḡ

(
1

2
u2

)
du =

⎧⎨
⎩

1
2
− 1

2
√

2
z exp( − √

2z) + 1
2

(
1 − exp( − √

2z)
)

, z> 0;(
1
2
− 1

2
√

2
z
)

exp( − √
2z), z< 0

(A2)

The outer integral in Equation (A1) can be evaluated numerically, after plugging in the result for fW(w)
in Equation (2.4) with parameter l = 2.

Student-t – GIG mixture
For the Student-t – GIG mixture, to simplify notation, we denote a =μ+ γw and c = √

wσ . We can
show that the inner integral corresponds to

1

c
Ḡ

(
1

2

(
x − a

c

)2
)

= cp

ν

2(p − 1)

1

c̃

1

c
ν
′

c
ν
′

1

c
′ ′

(
1 + 1

ν
′

(
x − a

c
′ ′

)2
)− ν

′
+1
2

︸ ︷︷ ︸
Student-t pdf

(
x−a

c ,ν
′)

, (A3)

where cp is defined in Equation (2.12) and ν
′ = ν − 2, c̃ =

√
ν

′
/ν, c

′ ′ = c
c̃
. Thus, we recognise in Equation

(A3) the pdf of Student-t distribution with ν
′

degrees of freedom, evaluated at x−a
c

. Integrating the
expression in Equation (A3), we obtain an inner integral from Equation (A1):∫ xq

−∞

1

c
Ḡ

(
1

2

(
x − a

c

)2
)

dx = cp

ν

2(p − 1)

1

c̃

1

c
ν
′
FStudent-t

(
x − a

c
, ν

′
)

, (A4)

where FStudent-t( · ) denotes a cdf of Student-t distribution with ν degrees of freedom, evaluated at x−a
c

.
Given the result from Equation (A4), the outer integral in Equation (A1) can be evaluated numerically,
after plugging in formula for fW(w) with parameter l = 1.

A.2 Proof of Theorem 3.1
Proof. We investigate a key characteristic of the GHE distribution, namely its representation as a mixture
of an elliptical distribution with a GIG mixing distribution. The proof of this theorem is more complex
than that of Theorem 3.1 from Ignatieva and Landsman (2021). We will highlight only the key differences
from the cited paper. In fact, we can write

TVq(X) = 1

1 − q

∫ ∞

0

IwfW(w)dw − (TCEq(X))2, (A5)

where the integral

Iw =
∫ ∞

xq

y2fX|w(y)dy. (A6)

This integral is more complex than the corresponding integral given in Eq. (3.9) of Ignatieva and
Landsman (2021), because instead of integral of y we have the integral of y2. Recall that the pdf of
W1/l has a form in Equation (2.2). Then it holds

Iw = c

σ
√

w

∫ ∞

xq

y2g

(
1

2wσ 2
(y −μ− γw)2

)
dy. (A7)

After applying the transformation z = (y −μ− γw)/
√

wσ , dy = √
wσdz, we obtain
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Iw = c

σ
√

w

∫ ∞

xq−μ−γw√
wσ

(
μ+ γw + √

wσ z
)2

g

(
1

2
z2

)√
wσdz

= c(μ+ γw)2

∫ ∞

xq−μ−γw√
wσ

g

(
1

2
z2

)
dz + cwσ 2

∫ ∞

xq−μ−γw√
wσ

z2g

(
1

2
z2

)
dz

+ 2c(μ+ γw)
√

wσ
∫ ∞

xq−μ−γw√
wσ

zg

(
1

2
z2

)
dz

= (μ+ γw)2F̄Z

(
xq −μ− γw

σ
√

w

)
+ √

wσ
(
xq +μ+ γw

)
Ḡ

(
1

2

(
xq −μ− γw√

wσ

)2
)

+ wσ 2σ 2
Z F̄Z∗

(
xq −μ− γw

σ
√

w

)
(A8)

where we used

−wσ 2

∫ ∞

xq−μ−γw√
wσ

zdḠ

(
1

2
z2

)
= −wσ 2zḠ

(
1

2
z2

)
|∞xq−μ−γw√

wσ

+ wσ 2σ 2
Z

∫ ∞

xq−μ−γw√
wσ

1

σ 2
Z

Ḡ

(
1

2
z2

)
dz

= wσ 2 xq −μ− γw√
wσ

Ḡ

(
1

2

(
xq −μ− γw√

wσ

)
2

)
+wσ 2σ 2

Z F̄Z∗

(
xq −μ− γw

σ
√

w

)
.

(A9)

In this context, FZ(z) represents the cdf of the spherical random variable Z , while

fZ∗ (z) = 1

σ 2
Z

Ḡ

(
1

2
z2

)
(A10)

is the pdf of another spherical random variable Z∗, associated with Z . Given the condition in
Equation (3.3), G(z) serves as the density generator for an associated elliptical random variable defined
as:

X∗ =μ+ γW + √
WσZ∗. (A11)

Substituting the result for Iw from Equation (A8) into Equation (A5), we obtain

TVq(X) = 1

1 − q

∫ ∞

0

(μ+ γw)2F̄Z

(
xq −μ− γw

σ
√

w

)
fW(w)dw

+ σ

1 − q

∫ ∞

0

√
w
(
xq +μ+ γw

)
Ḡ

(
1

2

(
xq −μ− γw√

wσ

)2
)

fW(w)dw

+ σ 2σ 2
Z

1 − q

∫ ∞

0

wF̄Z∗

(
xq −μ− γw

σ
√

w

)
fW(w)dw − (TCEq(X))2

= μ2

1 − q

∫ ∞

0

F̄Z

(
xq −μ− γw

σ
√

w

)
fW(w)dw + 2μγ

1 − q

∫ ∞

0

F̄Z

(
xq −μ− γw

σ
√

w

)
wfW(w)dw

+ γ 2

1 − q

∫ ∞

0

F̄Z

(
xq −μ− γw

σ
√

w

)
w2fW(w)dw

+ (xq +μ)σ 2

1 − q

∫ ∞

0

1√
wσ

Ḡ

(
1

2

(
xq −μ− γw√

wσ

)2
)

wfW(w)dw

+ γ σ 2

1 − q

∫ ∞

0

1√
wσ

Ḡ

(
1

2

(
xq −μ− γw√

wσ

)2
)

w2fW(w)dw

+ σ 2σ 2
Z

1 − q

∫ ∞

0

F̄Z∗

(
xq −μ− γw

σ
√

w

)
wfW(w)dw − (TCEq(X))2. (A12)
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Now, we assess w1/2fW(w), wfW(w), w3/2fW(w) and w2fW(w) that enter Equation (A12) by writing wi/2fW(w),
where i = 1, 2, 3, 4, that is,

wj/2fW(w) = wi/2cλ,χ ,ψ

1

l
wλ/l−1 exp( − 1

2
(χw−1/l +ψw1/l))

= 1

l
cλ̃j ,χ ,ψwλ̃j/l−1 exp( − 1

2
(χw−l +ψwl))︸ ︷︷ ︸

fl,λ̃j ,χ ,ψ (w)

cλ,χ ,ψ

cλ̃j ,χ ,ψ︸ ︷︷ ︸
k
λ,λ̃j

= fl,λ̃j ,χ ,ψ (w)kλ,λ̃j
. (A13)

Furthermore, λ̃j (j = 1, 2, 3, 4) corresponding to w1/2fW(w), wfW(w), w3/2fW(w) and w2fW(w), respectively,
are defined as:

λ̃j = λ+ jl

2
,

where fW
λ̃j ,χ ,ψ

(w) = fl,λ̃j ,χ ,ψ (w) is the pdf of W with parameters λ̃j, χ ,ψ . Furthermore, we obtain

kλ,λ̃j
=

(√
χ

ψ

)λ̃j−λ Kλ̃j
(
√
χψ)

Kλ(
√
χψ)

. (A14)

Substituting the outcome of Equation (A13) in Equation (A12), we obtain

TVq(X) = μ2 + 2μγ

1 − q
kλ,λ̃2

∫ ∞

0

F̄Z

(
xq −μ− γw

σ
√

w

)
fl,λ̃2,χ ,ψ (w)dw

+ γ 2

1 − q
kλ,λ̃4

∫ ∞

0

F̄Z

(
xq −μ− γw

σ
√

w

)
fl,λ̃4,χ ,ψ (w)dw

+ (xq +μ)σ 2σ 2
Z

1 − q
kλ,λ̃2

∫ ∞

0

1

σ 2
Z

√
wσ

Ḡ

(
1

2

(
xq −μ− γw√

wσ

)2
)

fl,λ̃2,χ ,ψ (w)dw

+ γ σ 2

1 − q
kλ,λ̃4

∫ ∞

0

1√
wσ

Ḡ

(
1

2

(
xq −μ− γw√

wσ

)2
)

fl,λ̃4,χ ,ψ (w)dw

+ σ 2σ 2
Z

1 − q
kλ,λ̃2

∫ ∞

0

F̄Z∗

(
xq −μ− γw

σ
√

w

)
fl,λ̃2,χ ,ψ (w)dw − (TCEq(X))2

= μ2+ 2μγ

1 − q
kλ,λ̃2

F̄GHE,1(xq; μ, σ 2, g, γ , l, λ̃2, χ ,ψ) + γ 2

1 − q
kλ,λ̃4

F̄GHE,1(xq; μ, σ 2, g, γ , l, λ̃4, χ ,ψ)

+ (xq +μ)σ 2

1 − q
σ 2

Z kλ,λ̃2
fGHE,1(xq; μ, σ 2, G, γ , l, λ̃2, χ ,ψ)

+ γ σ 2

1 − q
kλ,λ̃4

fGHE,1(xq; μ, σ 2, G, γ , l, λ̃4, χ ,ψ)

+ σ 2σ 2
Z

1 − q
kλ,λ̃2

F̄GHE,1(xq; μ, σ 2, G, γ , l, λ̃2, χ ,ψ) − (TCEq(X))2, (A15)

where

FGHE,1(xq,μ, σ 2, g, γ , l, λ̃j, χ ,ψ) = 1 −
∫ ∞

0

F̄Z

(
xq −μ− γw

σ
√

w

)
fl,λ̃j ,χ ,ψ (w)dw, (A16)
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is the cdf of a GHE-distributed random variable Xj with the parameter λ̃j and

fGHE,1(x,μ, σ 2, G, γ , l, λ̃j, χ ,ψ)

= 1

σ 2
Z

∫ ∞

0

1√
wσ

Ḡ

(
1

2

(
xq −μ− γw√

wσ

)2
)

fl,λ̃j ,χ ,ψ (w)dw

=
∫ ∞

0

1√
wσ

fZ∗ (
xq −μ− γw√

wσ
)fl,λ̃j ,χ ,ψ (w)dw (A17)

is the pdf of the GHE random variable X∗
j associated with Xj. Finally, F̄GHE,1(xq; μ, σ 2, G, γ , l, λ̃2, χ ,ψ)

denotes the cdf of a GHE-distributed random variable X∗
2 . In the final step of the calculation, we plug in

TCE formula from Equation (3.4) into Equation (A15), keeping in mind that kλ,λ̃ = kλ,λ̃2
to obtain

TVq(X) = μ2 + 2μγ

1 − q
kλ,λ̃2

F̄GHE,1(xq; μ, σ 2, g, γ , l, λ̃2, χ ,ψ) + γ 2

1 − q
kλ,λ̃4

F̄GHE,1(xq; μ, σ 2, g, γ , l, λ̃4, χ ,ψ)

+ xqσ
2

1 − q
σ 2

Z kλ,λ̃2
fGHE,1(xq; μ, σ 2, G, γ , l, λ̃2, χ ,ψ) + μσ 2

1 − q
σ 2

Z kλ,λ̃2
fGHE,1(xq; μ, σ 2, G, γ , l, λ̃2, χ ,ψ)

+ γ σ 2

1 − q
kλ,λ̃4

fGHE,1(xq; μ, σ 2, G, γ , l, λ̃4, χ ,ψ) + σ 2σ 2
Z

1 − q
kλ,λ̃2

F̄GHE,1(xq; μ, σ 2, G, γ , l, λ̃2, χ ,ψ)

− μ2 − γ 2

(1 − q)2
k2
λ,λ̃2

F̄GHE,1(xq; μ, σ 2, g, γ , l, λ̃2, χ ,ψ)2

− σ 4σ 4
Z k2

λ,λ̃2

(1 − q)2
fGHE,1(xq; μ, σ 2, G, γ , l, λ̃2, χ ,ψ)2

− 2μγ kλ,λ̃2

(1 − q)
F̄GHE,1(xq; μ, σ 2, g, γ , l, λ̃2, χ ,ψ) − 2μσ 2σ 2

Z kλ,λ̃2

(1 − q)
fGHE,1(xq; μ, σ 2, G, γ , l, λ̃2, χ ,ψ)

− 2γ σ 2σ 2
Z k2

λ,λ̃2

(1 − q)2
F̄GHE,1(xq; μ, σ 2, g, γ , l, λ̃2, χ ,ψ)fGHE,1(xq; μ, σ 2, G, γ , l, λ̃2, χ ,ψ)

The statement of Theorem 3.1 follows directly from this result.

A.3 Proof of Lemma 4.1
Proof. The proof of the first part of the Lemma is more complex than the proof of Lemma 3.1
in Ignatieva and Landsman (2021). Instead of calculating the integral as in Equation (3.25) of
Ignatieva and Landsman (2021), we must compute the following, assuming that Y | w ∼ E2(μ +
γ w, w�, g2, γ , l, λ, χ ,ψ):

(1 − q)E(Y2
1 |Y2 > y2,q) =

∫ ∞

0

Ĩwfl,λ,χ ,ψ (w)dw, (A18)

where

Ĩw =
∫ ∞

−∞
y2

1

(∫ ∞

y2,q

c2√|�|wg2

[
1

2w
(y − μ−γ w)T �−1 (y − μ−γ w)

]
dy2

)
dy1,

and fl,λ,χ ,ψ (w) has the form in Equation (2.4). Here, we observe that in Ĩw, instead of integrating y1, we
now integrate y2

1. By applying the same transformation, z1 = y1−μ1−γ1w√
wσ1

and z2 = y2−μ2−γ2w√
wσ2

, we obtain a
representation for Ĩw that is more complex than Equation (3.26) in Ignatieva and Landsman (2021):

Ĩw = c2√
(1 − ρ2

12)

∫ ∞

(y2,q−μ2−γ2w)/(
√

wσ2)

dz2

∫ ∞

−∞
(μ1 + γ1w + √

wσ1z1)
2

×g2

(
− 1

2(1 − ρ2
12)

(z2
1 − 2ρ12z1z2 + z2

2)

)
dz1

= (μ1 + γ1w)2F̄Z((y2,q −μ2 − γ2w)/(
√

wσ2)) + I2 + I3.
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Here, we obtain

I2 = 2(μ1 + γ1w)
√

wσ1

c2√
(1 − ρ2

12)

∫ ∞

(y2,q−μ2−γ2w)/(
√

wσ2)

z1

∫ ∞

−∞
g2

(
− 1

2(1 − ρ2
12)

(z2
1 − 2ρ12z1z2 + z2

2)

)
dz2dz1

= 2(μ1 + γ1w)
√

wσ1ρ12σ
2
Z fZ∗ (

y2,q −μ2 − γ2w√
wσ2

).

For the the component I3, we apply another transformation:{
z′ = (z1 − ρ12z2)/

√
(1 − ρ2

12)
z2 = z2

and obtain

I3 = wσ 2
1 c2

∫ ∞

(y2,q−μ2−γ2w)/(
√

wσ2)

dz2

∫ ∞

−∞
(
√

(1 − ρ2
12)z′ + ρ12z2)

2g2(
1

2
z′2 + 1

2
z2

2)dz′

= wσ 2
1 (1 − ρ2

12)c2

∫ ∞

(y2,q−μ2−γ2w)/(
√

wσ2)

dz2

∫ ∞

−∞
z′2g2(

1

2
z′2 + 1

2
z2

2)dz′

+ wσ 2
1 c2ρ

2
12

∫ ∞

(y2,q−μ2−γ2w)/(
√

wσ2)

z2
2dz2

∫ ∞

−∞
g2(

1

2
z′2 + 1

2
z2

2)dz′.

We take into account that ∫ ∞

−∞
z′g2(

1

2
z′2 + 1

2
z2

2)dz′ = 0

as an integral of odd function on symmetric (around the origin) interval. Using a tail function of bivariate
elliptical distribution defined as:

Ḡ2(z) = c2

∫ ∞

z

g2(u)du,

we can write

c2

∫ ∞

−∞
z′2g2(

1

2
z′2 + 1

2
z2

2)dz′ = −
∫ ∞

−∞
z′dḠ2(

z′2

2
+ 1

2
z2

2)

= −z′dḠ2(
z′2

2
+ 1

2
z2

2)|z′=∞
z′=−∞ +

∫ ∞

−∞
Ḡ2(

1

2
z′2 + 1

2
z2

2)dz′.

Using Lemma 1 from Furman and Landsman (2006), we can write∫ ∞

−∞
G2(

1

2
z′2 + 1

2
z2

2)dz′ = Ḡ1(
1

2
z2).

Then,

c2

∫ ∞

−∞
z′2g2(

1

2
z′2 + 1

2
z2

2)dz′ = Ḡ1(
1

2
z2

2).

By the same principle, we obtain

c2z2
2dz2

∫ ∞

−∞
g2(

1

2
z′2 + 1

2
z2

2)dz′ = c1z2
2g1(

1

2
z2

2)dz2.
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Hence, it follows that

I3 = wσ 2
1 (1 − ρ2

12)
∫ ∞

(y2,q−μ2−γ2w)/(
√

wσ2)

Ḡ1(
1

2
z2

2)dz2

+ wσ 2
1 ρ

2
12c1

∫ ∞

(y2,q−μ2−γ2w)/(
√

wσ2)

z2
2g1(

1

2
z2

2)dz2

= wσ 2
1 (1 − ρ2

12)σ 2
Z F̄Z∗ (

(y2,q −μ2 − γ2w)√
wσ2

)

+ wσ 2
1 ρ

2
12

(y2,q −μ2 − γ2w)√
wσ2

σ 2
Z fZ∗ (

(y2,q −μ2 − γ2w)√
wσ2

)

+ wσ 2
1 ρ

2
12σ

2
Z F̄Z∗ (

(y2,q −μ2 − γ2w)√
wσ2

)

= wσ 2
1 σ

2
Z

[
F̄Z∗ (

(y2,q −μ2 − γ2w)√
wσ2

) + ρ2
12

(y2,q −μ2 − γ2w)√
wσ2

fZ∗ (
(y2,q −μ2 − γ2w)√

wσ2

)

]
.

Now, combining I2 and I3 we can write

Ĩw = (μ1 + γ1w)2F̄Z((y2,q −μ2 − γ2w)/(
√

wσ2))

+ 2(μ1 + γ1w)
√

wσ1ρ12σ
2
Z fZ∗ (

y2,q −μ2 − γ2w√
wσ2

)

+ wσ 2
1 σ

2
Z

[
F̄Z∗ (

(y2,q −μ2 − γ2w)√
wσ2

) + ρ2
12

(y2,q −μ2 − γ2w)√
wσ2

fZ∗ (
(y2,q −μ2 − γ2w)√

wσ2

)

]
.

(A19)

Substituting Equation (A19) into Equation (A18), we obtain

(1 − q)E(Y2
1 |Y2 > y2,q) = (1 − q)

∫ ∞

0

Ĩwfl,λ,χ ,ψ (w)dw.

We can further write

(1 − q)E(Y2
1 |Y2 > y2,q) =

∫ ∞

0

(μ1 + γ1w)2F̄Z((y2,q −μ2 − γ2w)/(
√

wσ2))fl,λ,χ ,ψ (w)dw

+ 2
∫ ∞

0

(μ1 + γ1w)
√

wσ1ρ12σ
2
Z fZ∗ (

y2,q −μ2 − γ2w√
wσ2

)fl,λ,χ ,ψ (w)dw

+
∫ ∞

0

wσ 2
1 σ

2
Z

[
F̄Z∗ ( (y2,q−μ2−γ2w)√

wσ2
)

+ρ2
12

(y2,q−μ2−γ2w)√
wσ2

fZ∗ ( (y2,q−μ2−γ2w)√
wσ2

)

]
fl,λ,χ ,ψ (w)dw

= A1 + 2A2 + A3. (A20)

Then,

A1 = μ2
1

∫ ∞

0

F̄Z((y2,q −μ2 − γ2w)/(
√

wσ2))fl,λ,χ ,ψ (w)dw

+ 2μ1γ1

∫ ∞

0

wF̄Z((y2,q −μ2 − γ2w)/(
√

wσ2))fl,λ,χ ,ψ (w)dw

+ γ 2
1

∫ ∞

0

w2F̄Z((y2,q −μ2 − γ2w)/(
√

wσ2))fl,λ,χ ,ψ (w)dw

= (1 − q)μ2
1 + 2μ1γ1kλ,λ̃

∫ ∞

0

F̄Z((y2,q −μ2 − γ2w)/(
√

wσ2))fl,λ̃,χ ,ψ (w)dw

+ γ 2
1 kλ,λ̃4

∫ ∞

0

F̄Z((y2,q −μ2 − γ2w)/(
√

wσ2))fl,λ̃4,χ ,ψ (w)dw,
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where we recall that W1/l ∼ GIG(λ, χ ,ψ) and the density fl,λ,χ ,ψ (w) has a form in Equation (2.4). Thus,

A1 = (1 − q)μ2
1 + 2μ1γ1kλ,λ̃2

F̄GHE,1(y2,q; μ2, σ 2
2 , g, γ2, l, λ̃2, χ ,ψ) (A21)

+ γ 2
1 kλ,λ̃4

F̄GHE,1(y2,q; μ2, σ 2
2 , g, γ2, l, λ̃4, χ ,ψ);

A2 =
∫ ∞

0

(μ1 + γ1w)
√

wσ1ρ12σ
2
Z fZ∗ (

y2,q −μ2 − γ2w√
wσ2

)fl,λ,χ ,ψ (w)dw

= μ1σ1ρ12σ
2
Z

∫ ∞

0

√
wfZ∗ (

y2,q −μ2 − γ2w√
wσ2

)fl,λ,χ ,ψ (w)dw

+ γ1σ1ρ12σ
2
Z

∫ ∞

0

w3/2fZ∗ (
y2,q −μ2 − γ2w√

wσ2

)fl,λ,χ ,ψ (w)dw

= μ1σ1σ2ρ12σ
2
Z

∫ ∞

0

w
1√
wσ2

fZ∗ (
y2,q −μ2 − γ2w√

wσ2

)fl,λ,χ ,ψ (w)dw

+ γ1σ1σ2ρ12σ
2
Z

∫ ∞

0

w5/2 1√
wσ2

fZ∗ (
y2,q −μ2 − γ2w√

wσ2

)fl,λ,χ ,ψ (w)dw

= μ1σ1σ2ρ12σ
2
Z kλ,λ̃2

fGHE,1(y2,q,μ2, σ
2
2 , G, γ2, l, λ̃2, χ ,ψ)

+ γ1σ1σ2ρ12σ
2
Z kλ,λ̃5

fGHE,1(y2,q,μ2, σ 2
2 , G, γ2, l, λ̃5, χ ,ψ), (A22)

where we recall that λ̃j = λ+ jl
2

for j = 1, 2, 3, 4, 5. At last, we obtain

A3 =
∫ ∞

0

wσ 2
1 σ

2
Z

[
F̄Z∗ ( (y2,q−μ2−γ2w)√

wσ2
)

+ρ2
12

(y2,q−μ2−γ2w)√
wσ2

fZ∗ ( (y2,q−μ2−γ2w)√
wσ2

)

]
fl,λ,χ ,ψ (w)dw

= σ 2
1 σ

2
Z kλ,λ̃2

F̄GHE,1(y2,q; μ2, σ 2
2 , G, γ2, l, λ̃2, χ ,ψ)

+ σ 2
1 σ

2
Zρ

2
12

∫ ∞

0

w
(y2,q −μ2 − γ2w)√

wσ2

fZ∗ (
(y2,q −μ2 − γ2w)√

wσ2

)fl,λ,χ ,ψ (w)dw

= σ 2
1 σ2σ

2
Z kλ,λ̃2

FGHE,1(y2,q; μ2, σ 2
2 , G, γ2, l, λ̃2, χ ,ψ)

+ σ 2
1 σ2σ

2
Zρ

2
12[

(y2,q −μ2)

σ2

[
∫ ∞

0

w
1√
wσ2

fZ∗ (
(y2,q −μ2 − γ2w)√

wσ2

)fl,λ,χ ,ψ (w)dw

− γ2

∫ ∞

0

w2 1√
wσ2

fZ∗ (
(y2,q −μ2 − γ2w)√

wσ2

)fl,λ,χ ,ψ (w)dw]

= σ 2
1 σ

2
Z kλ,λ̃2

F̄GHE,1(y2,q; μ2, σ 2
2 , G, γ2, l, λ̃2, χ ,ψ)

+ σ 2
1 σ2σ

2
Zρ

2
12

(y2,q −μ2)

σ2

kλ,λ̃2
fGHE,1(y2,q; μ2, σ 2

2 , G, γ2, l, λ̃2, χ ,ψ)

− σ 2
1 σ

2
Zρ

2
12γ2kλ,λ̃4

fGHE,1(y2,q; μ2, σ 2
2 , G, γ2, l, λ̃4, χ ,ψ). (A23)

Substituting Equations (A21), (A22) and (A23) into Equation (A20), we obtain

(1 − q)E(Y2
1 |Y2 > y2,q) = (1 − q)μ2

1 + 2μ1γ1kλ,λ̃2
F̄GHE,1(y2,q; μ2, σ 2

2 , g,2 γ , l, λ̃2, χ ,ψ)

+ γ 2
1 kλ,λ̃4

F̄GHE,1(y2,q; μ2, σ 2
2 , g, γ2, l, λ̃4, χ ,ψ)

+ 2μ1σ1σ2ρ12σ
2
Z kλ,λ̃2

fGHE,1(y2,q,μ2, σ 2
2 , G, γ2, l, λ̃2, χ ,ψ)

+ 2γ1σ1σ2ρ12σ
2
Z kλ,λ̃5

fGHE,1(y2,q,μ2, σ
2
2 , G, γ2, l, λ̃5, χ ,ψ)

+ σ 2
1 σ

2
Z kλ,λ̃2

F̄GHE,1(y2,q; μ2, σ
2
2 , G, γ2, l, λ̃2, χ ,ψ)

+ σ 2
1 σ2σ

2
Zρ

2
12

(y2,q −μ2)

σ2

kλ,λ̃2
fGHE,1(y2,q; μ2, σ 2

2 , G, γ2, l, λ̃2, χ ,ψ)

− σ 2
1 σ

2
Zρ

2
12γ2kλ,λ̃4

fGHE,1(y2,q; μ2, σ 2
2 , G, γ2, l, λ̃4, χ ,ψ). (A24)
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Then, using Equation (A24) and Lemma 3.1 of Ignatieva and Landsman (2021), we can write

E((Y1 − TCE(Y1|Y2))2|Y2 > y2,q) = E(Y2
1 |Y2 > y2,q) − TCE(Y1|Y2)2

and the result in Equation (4.3) of Lemma 4.1 follows, noting that λ̃= λ̃2.
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