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Abstract

We extend the 0-approximation of sensing actions and incomplete information in Son and

Baral (2001) to action theories with static causal laws and prove its soundness with respect

to the possible world semantics. We also show that the conditional planning problem with

respect to this approximation is NP-complete. We then present an answer set programming

based conditional planner, called ascp, that is capable of generating both conformant plans

and conditional plans in the presence of sensing actions, incomplete information about the

initial state, and static causal laws. We prove the correctness of our implementation and argue

that our planner is sound and complete with respect to the proposed approximation. Finally,

we present experimental results comparing ascp to other planners.

KEYWORDS: Reasoning about actions and changes, sensing actions, incomplete information,

conformant planning, conditional planning, answer set programming.

1 Introduction

Classical planning assumes that agents have complete information about the world.

For this reason, it is often labeled as unrealistic because agents operating in real-

world environment often do not have complete information about their environment.

Two important questions arise when one wants to remove this assumption: how to

reason about the knowledge of agents and what is a plan in the presence of incomplete

information. The first question led to the development of several approaches to

reasoning about effects of sensing (or knowledge producing) actions (Golden and

Weld 1996b; Lobo et al. 1997; Moore 1985; Scherl and Levesque 2003; Son and Baral

2001; Thielscher 2000b). The second question led to the notions of conditional plan

and conformant plan whose execution is guaranteed to achieve the goal regardless of

the values of unknown fluents in the initial situation. The former contains sensing
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actions and conditionals such as the well-known “if-then-else” or “cases” construct,

while the latter is just a sequence of actions. In this paper, we refer to conditional

planning and conformant planning as planning approaches that generate conditional

plans and conformant plans, respectively. We use plan as a generic term for both con-

ditional and conformant plan when the distinction between the two is not important.

Approaches to conditional planning can be characterized by the techniques

employed in their search process or by the action formalism that supports their reas-

oning process. Most of the early conditional planners implemented a partial-order

planning algorithm (Golden 1998; Golden et al. 1996a; Pryor and Collins 1996;

Peot and Smith 1992) and used Situation Calculus or STRIPS as their underlying

formalism in representing and reasoning about actions and their effects. Among

them, CoPlaS (Lobo 1998), which is implemented in Sicstus Prolog, is a regression

planner that uses a high-level action description language to represent and reason

about effects of actions, including sensing actions; and FLUX (Thielscher 2000a),

a constraint logic programming based planner, is capable of generating and veri-

fying conditional plans. Another conditional planner based on a QBF theorem

prover was developed in Rintanen (2000). Some other planners, for example, SGP

(Weld et al. 1998) or POND (Bryce et al. 2004), extended the planning graph al-

gorithm (Blum and Furst 95) to deal with sensing actions. The main difference

between SGP and POND is that the former searches solutions within the planning

graph, whereas the latter uses it as a means of computing the heuristic function.

Conformant planning (Bonet and Geffner 2000; Brafman and Hoffmann 2004;

Cimatti et al. 2004; Castellini et al. 2003; Eiter et al. 2003; Smith and Weld 1998)

is another approach to deal with incomplete information. In conformant setting,

a solution is simply a sequence of actions that achieves the goal from every

possible initial situation. A recent study (Cimatti et al. 2004) shows that conformant

planning based on model checking is computationally competitive with other

approaches to conformant planning such as those based on heuristic search al-

gorithms (Bonet and Geffner 2000; Brafman and Hoffmann 2004) or those that ex-

tend Graphplan (Smith and Weld 1998). A detailed comparison in Eiter et al. (2003)

demonstrates that a logic programming based conformant planner is able to compete

with other approaches to planning.

The most important difference between conditional planners and conformant

planners lies in the fact that conditional planners can deal with sensing actions

whereas conformant planners cannot. Consequently, there are planning problems

solvable by conditional planners but not by conformant planners. The following

example demonstrates this issue.

Example 1

Consider a security window with a lock that behaves as follows. The window can be

in one of the three states opened, closed1 or locked2. When the window is closed or

1 The window is closed and unlocked.
2 The window is closed and locked.
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opened, pushing it up or down will open or close it respectively. When the window

is closed or locked, flipping the lock will lock or close it respectively.

Now, consider a security robot that needs to make sure that the window is locked

after 9 pm. Suppose that the robot has been told that the window is not open (but

whether it is locked or closed is unknown).

Intuitively, the robot can achieve its goal by performing the following steps. First,

(1) it checks the window to determine the window’s status. If the window is closed,

(2.a) it locks the window; otherwise (i.e., the window is already locked), simply (2.b)

it does nothing.

Observe that no sequence of actions can achieve the goal from every possible

initial situation. In other words, there exists no conformant plan achieving the

goal. �

In this paper, we investigate the application of answer set programming (Baral

2003; Lifschitz 2002; Marek and Truszczyński 1999; Niemelä 1999) in conformant

and conditional planning. To achieve our goal, we first define an approximation

semantic for action theories with static causal laws and sensing actions based on

the 0-approximation in Son and Baral (2001). It is an alternative to the possible

world semantics for reasoning about effects of actions in the presence of incomplete

information and sensing actions (Moore 1985). The basic idea of this approach is to

approximate the set of possible world states by a set of fluent literals that is true in

every possible world state. The main advantage of the approximation-based approach

is its low complexity in reasoning and planning tasks (NP-complete) comparing to

those based on the possible world semantics Σ2P-complete (Baral et al. 2000a). The

trade-off for this low complexity is incompleteness. As we will demonstrate in our

experiments, this is not really an issue with the benchmarks in the literature.

We prove that the entailment relationship for action theories based on this

approximation is sound with respect to the possible world semantics for action

theories with incomplete initial situation. We then show that the planning prob-

lem with respect to the newly developed approximation is NP-complete. This

facilitates the development of ascp, an answer set programming based planner

that is capable of generating both conditional and conformant plans. Given a

planning problem instance with incomplete information about the initial situation

and sensing actions, we translate it into a logic program whose answer sets

(Gelfond and Lifschitz 1988) – which can be computed using existing answer set

solvers (e.g. cmodels (Lierler and Maratea 2004), smodels (Simons et al. 2002), dlv

(Citrigno et al. 1997), ASSAT (Lin and Zhao 2002), NoMore (Anger, et al. 2002),

etc.) – correspond to conformant or conditional plans that satisfy the goal. We

compare our planner against state-of-the-art planners. The results of our experiments

show that conditional and conformant planning based on answer set programming

can be competitive with other approaches. To the best of our knowledge, no answer

set based conditional planner has been developed except a previous version of the

planner presented in an earlier version of this paper (Son et al. 2004).

The paper is organized as follows. Section 2 presents the basics of an action

language with sensing actions and static causal laws, including its syntax and the
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0-approximation, as well as the notions of conditional plans and queries. It also

contains the complexity result of the conditional planning problem with respect

to the 0-approximation. Section 3 describes a logic programming encoding of a

conditional/conformant planner, called ascp. Section 4 discusses several properties

of ascp. Section 5 experimentally compares ascp with some other state-of-the-art

conformant/conditional planners. Section 6 discusses some desirable extensions of

the current work. The proofs of theorems and propositions are given in Appendices

A and B. An example of encoding is given in Appendix C.

2 Ac
K – an action language with sensing actions and static causal laws

The representation language, Ac
K , for our planner is an extension of the action

language AK in (Son and Baral 2001). While AK extends the high-level action

description language A from Gelfond and Lifschitz (1993) by introducing two new

types of propositions called knowledge producing proposition and the executability

condition,Ac
K extendsAK by adding static causal laws and allowing a sensing action

to sense more than one fluent. Loosely speaking,Ac
K is a subset of the languageLDS

in (Baral et al. 2000b). Nevertheless, like AK , LDS considers sensing actions that

sense only one fluent. The semantics given forAc
K in this paper is an approximation

of the semantics of LDS .

2.1 Action language Ac
K – syntax

The alphabet of an action theory in Ac
K consists of a set of actions A and a set of

fluents F. A fluent literal (or literal for short) is either a fluent f ∈ F or its negation

¬f. f and ¬f are said to be complementary. For a literal l, by ¬l, we mean its

complement. A fluent formula is a propositional formula constructed from the set of

literals using operators ∧, ∨, and/or ¬. To describe an action theory, propositions

of the following forms are used:

initially(l) (1)

executable(a, ψ) (2)

causes(a, l, φ) (3)

if(l, ϕ) (4)

determines(a, θ) (5)

where a ∈ A is an action, l is a literal, and ψ,φ, ϕ, θ are sets of literals3.

The initial situation is described by a set of propositions (1), called v-propositions.

(1) says that l holds in the initial situation. A proposition of form (2) is called

executability condition. It says that a is executable in any situation in which ψ holds

(the precise meaning of hold will be given later). A proposition (3), called a dynamic

3 A set of literals is interpreted as the conjunction of its members. The empty set ∅ denotes true.
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causal law, represents a conditional effect of an action. It says that performing

a in a situation in which φ holds causes l to hold in the successor situation. A

proposition (4), called a static causal law, states that l holds in any situation in

which ϕ holds. A knowledge proposition (or k-proposition for short) (5) states that

the values of literals in θ, sometimes referred to as sensed-literals, will be known

after a is executed. Because the execution of a will determine the truth value of at

least one fluent, without loss of generality, we assume that θ contains at least two

literals. Furthermore, we require that if θ is not a set of two contrary literals f and

¬f then the literals in θ are mutually exclusive, i.e.,

1. for every pair of literals g and g′ in θ, g �= g′, the theory contains the static

causal law

if(¬g′, {g})

and

2. for every literal g in θ, the theory contains the static causal law

if(g, {¬g′ | g′ ∈ θ \ {g}}).

For convenience, we use the abbreviation

oneof(θ)

to denote the above set of static causal laws. Apart from this, we will sometime

write

determines(a, f)

to stand for

determines(a, {f,¬f}).

Actions appearing in (3) and (5) are called non-sensing actions and sensing

actions, respectively. In this paper, we assume that they are disjoint from each

other. In addition, we also assume that each sensing action appears in at most one

k-proposition.

An action theory is given by a pair (D,I) where D is a set of propositions (2)–

(5) and I is a set of propositions (1). D and I are called the domain description

and initial situation, respectively. A planning problem instance is a 3-tuple (D,I,G),

where (D,I) is an action theory and G is a conjunction of fluent literals. It is worth

mentioning that with a proper set of rules for checking the truth value of a fluent

formula (see e.g. (Son et al. 2005a)), the framework and all results presented in this

paper can be extended to allow G to be an arbitrary fluent formula as well.
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Example 2

The planning problem instance P1 = (D1,I1,G1) in Example 1 can be represented

as follows.

D1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

executable(check, {})
executable(push up, {closed})
executable(push down, {open})
executable(flip lock, {¬open})

causes(push down, closed, {})
causes(push up, open, {})
causes(flip lock, locked, {closed})
causes(flip lock, closed, {locked})

oneof({open, locked, closed})

determines(check, {open, closed, locked})

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

I1 =
{

initially(¬open)
}

G1 = {locked}
�

Remark 1

For an action theory (D,I), if(l, ∅) ∈ D implies that literal l holds in every situation.

Since l is always true, queries about the truth value of l (or ¬l) have a trivial answer

and the theory can be simplified by removing all instances of l in other propositions.

Furthermore, if the theory also contains a dynamic law of the form causes(a,¬l, φ)

then the execution of a in a state satisfying φ will result in an inconsistent state of

the world. Thus, the introduction of l in the action theory is either redundant or

erroneous. For this reason, without loss of generality, we will assume that action

theories in this paper do not contain any static causal law (4) with ϕ = ∅.

Remark 2

Since an empty plan can always be used to achieve an empty goal, we will assume

hereafter that planning problem instances considered in this paper have non-empty

goals.

2.2 Conditional plan

In the presence of incomplete information and sensing actions, we need to extend

the notion of a plan from a sequence of actions so as to allow conditional statements

such as if-then-else, while-do, or case-endcase (Levesque 1996; Lobo et al. 1997; Son

and Baral 2001). Notice that an if-then-else statement can be replaced by a case-

endcase statement. Besides, if we are only interested in plans with bounded length

then whatever can be represented by a while-do statement with a non-empty body

can also be represented by a set of case-endcase statements as well. Therefore, in

this paper, we limit ourselves to conditional plans with the case-endcase construct
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only. Formally, we consider conditional plans defined as follows. We note that our

notion of conditional plans in this paper is fairly similar to the ones introduced

elsewhere (Levesque 1996; Lobo et al. 1997; Son and Baral 2001).

Definition 1 (Conditional Plan)

1. [] is a conditional plan, denoting the empty plan, i.e., the plan containing no

action.

2. if a is a non-sensing action and p is a conditional plan then [a; p] is a

conditional plan.

3. if a is a sensing action with proposition (5), where θ = {g1, . . . , gn}, and pj ’s

are conditional plans then [a; cases({gj → pj}nj=1)] is a conditional plan.

4. Nothing else is a conditional plan.

By this definition, clearly a sequence of actions is also a conditional plan. The

execution of a conditional plan of the form [a; p], where a is a non-sensing action and

p is another conditional plan, is done sequentially, i.e., a is executed first, followed

by p. To execute a conditional plan of the form [a; cases({gj → pj}nj=1)], we first

execute a and then evaluate each gj with respect to our current knowledge. If one

of the gj ’s, say gk , holds, we execute the corresponding sub-plan pk . Observe that

because fluent literals in θ are mutually exclusive, such gk uniquely exists.

Example 3

The following are conditional plans of the action theory in Example 2:

p1 = [push down; flip lock]

p2 = check; cases

⎛
⎝ open → []

closed → [flip lock]

locked → []

⎞
⎠

p3 = check; cases

⎛
⎝ open → [push down; flip lock]

closed → [flip lock; flip lock; flip lock]

locked → []

⎞
⎠

p4 = check; cases

⎛
⎝ open → []

closed → p2

locked → []

⎞
⎠

Among those, p2, p3 and p4 are conditional plans that achieve the goal G1
4. �

In the rest of the paper, the terms “plan” and “conditional plan” will be used

alternatively.

2.3 Queries

A query posed to an Ac
K action theory (D,I) is of the form

knows ρ after p (6)

4 Note that p2 and p4 can achieve the goal because the first case “the window is open” cannot happen.
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or

whether ρ after p (7)

where p is a conditional plan and ρ is a fluent formula. Intuitively, the first (resp.

second) query asks whether ρ is true (resp. known) after the execution of p from the

initial situation.

2.4 0-approximation semantics of Ac
K

We now define an approximation semantics of Ac
K , called 0-approximation, which

extends the 0-approximation in Son and Baral (2001) to deal with static causal laws.

It is defined by a transition function Φ that maps actions and a-states into sets of

a-states (the meaning of a-states will follow). Before providing the formal definition

of the transition function, we introduce some notations and terminology.

For a set of literals σ, ¬σ denotes the set {¬l | l ∈ σ}. σ is said to be consistent

if it does not contain two complementary literals. A literal l (resp. set of literals γ)

holds in a set of literals σ if l ∈ σ (resp. γ ⊆ σ); l (resp. γ) possibly holds in σ if

¬l �∈ σ (resp. ¬γ ∩ σ = ∅).
Given a consistent set of literals σ, the truth value of a formula ρ, denoted by

σ(ρ), is defined as follows. If ρ ≡ l for some literal l then σ(ρ) = T if l ∈ σ; σ(ρ) = F

if ¬l ∈ σ; σ(ρ) = unknown otherwise. If ρ ≡ ρ1 ∧ ρ2 then σ(ρ) = T if σ(ρ1) = T

and σ(ρ2) = T; σ(ρ) = F if σ(ρ1) = F or σ(ρ2) = F; σ(ρ) = unknown otherwise.

If ρ ≡ ρ1 ∨ ρ2 then σ(ρ) = T if σ(ρ1) = T or σ(ρ2) = T; σ(ρ) = F if σ(ρ1) = F

and σ(ρ2) = F; σ(ρ) = unknown otherwise. If ρ ≡ ¬ρ1 then σ(ρ) = T if σ(ρ1) = F;

σ(ρ) = F if σ(ρ1) = T; σ(ρ) = unknown otherwise.

We say that ρ is known to be true (resp. false) in σ and write σ |= ρ (resp. σ |= ¬ρ)
if σ(ρ) = T (resp. σ(ρ) = F). When σ |= ρ or σ |= ¬ρ we say that ρ is known in σ;

otherwise, ρ is unknown in σ. We will say that ρ holds in σ if it is known to be true

in σ.

A set of literals σ satisfies a static causal law (4) if either (i) ϕ does not hold in σ;

or (ii) l holds in σ (i.e., ϕ holds in σ implies that l holds in σ). By ClD(σ), we denote

the smallest set of literals that includes σ and satisfies all static causal laws in D.

Note that ClD(σ) might be inconsistent but it is unique (see Lemma 1, Appendix A).

An interpretation I of a domain description D is a complete and consistent set of

literals in D, i.e., for every fluent f ∈ F, (i) f ∈ I or ¬f ∈ I; and (ii) {f,¬f} �⊆ I .
A state s is an interpretation satisfying all static causal laws in D. An action a is

executable in s if there exists an executability condition (2) such that ψ holds in s.

For a non-sensing action a executable in s, let

E(a, s) = {l | ∃ a dynamic causal law (3) such that φ holds in s} (8)

The set E(a, s) is often referred to as the direct effects of a. When the agent has

complete information about the world, the set of possible next states after the

execution of a in s, denoted by RescD(a, s), is defined as follows.
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Definition 2 (Possible Next States, (McCain and Turner 1995))

Let D be a domain description. For any state s and non-sensing action a executable

in s, RescD(a, s) = {s′ | s′ is a state such that s′ = ClD(E(a, s) ∪ (s ∩ s′))}.

The intuitive meaning of this definition is that a literal l holds in a possible next

state s′ of s after a is executed iff either (i) it is a direct effect of a, i.e., l ∈ E(a, s)

(ii) it holds by inertia, i.e., l ∈ (s∩ s′), or (iii) it is an indirect effect5 of a, i.e., l holds

because of the operator ClD.

Note that the RescD-function can be non-deterministic, i.e., RescD(a, s) might contain

more than one element. The following example illustrates this point.

Example 4

Consider the following domain description

D2 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

executable(a, {})
causes(a, f, {})
if(g, {f,¬h})
if(h, {f,¬g})
if(k, {¬f})

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

Let s = {¬f,¬g,¬h, k}. Clearly s is a state since it satisfies all static laws in D2.

Executing a in s results in two possible next states

RescD2
(a, s) = {{f,¬g, h, k}, {f, g,¬h, k}}

In the first possible next state s1 = {f,¬g, h, k}, f holds because it is a direct effect

of a, i.e., f ∈ E(a, s); ¬g and k hold because of inertia (s∩ s1 = {¬g, k}); and h holds

because it is an indirect effect of a (in particular, h holds because of the static causal

law if(h, {f,¬g})).
Likewise, we can explain why each literal in the second possible next state

holds. �

Definition 3 (Consistent Domains)

A domain description D is consistent if for every state s and action a executable in

s, RescD(a, s) �= ∅.

In the presence of incomplete information, an agent, however, does not always

know exactly which state it is currently in. One possible way to deal with this

problem is to represent the agent knowledge by a set of possible states (a.k.a.

belief state) that are consistent with the agent’s current knowledge and extend

Definition 2 to define a mapping from pairs of actions and belief states into belief

states as in Baral et al. (2000b). The main problem with this approach is its high

complexity (Baral et al. 2000a), even for the computation of what is true/false after

the execution of one action. We address this problem by defining an approximation

of the set of states in Definition 2 as follows.

First, we relax the notion of a state in Definition 2 to be an approximate state

defined as follows.

5 Indirect effects are those caused by static causal laws.
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Definition 4 (Approximate State)

A consistent set of literals δ is called an approximate state (or a-state, for short) if

δ satisfies all static causal laws in D.

Intuitively, δ represents the (possibly incomplete) current knowledge of the agent,

i.e., it contains all fluent literals that are known to be true to the agent. When δ is a

subset of some state s, we say that it is valid. An action a is executable in δ if there

exists an executability condition (2) in D such that ψ holds in δ.

Next, we define what are the possible next a-states after the execution of an action

a in a given a-state δ, provided that a is executable in δ. Consider the case that a is

a non-sensing action. Let

e(a, δ) = ClD({l | ∃ a dynamic causal law (3) such that φ holds in δ}) (9)

and

pc(a, δ) =
⋃∞
i=0 pc

i(a, δ) (10)

where

pc0(a, δ) = {l | ∃ a dynamic causal law (3) s.t. l �∈ δ and φ possibly holds in δ} (11)

and for i � 0,

pci+1(a, δ) = pci(a, δ)∪ {l | ∃ a static causal law (4) s.t. l �∈ δ, ϕ ∩ pci(a, δ) �= ∅,
and ϕ possibly holds in e(a, δ)} (12)

Intuitively, e(a, δ) and pc(a, δ) denote what definitely holds and what may change in

the next situation respectively6. Specifically, l ∈ e(a, δ) means that l holds in the next

situation and l ∈ pc(a, δ) means that l is not in δ but possibly holds in the next

situation. This implies that δ \ ¬pc(a, δ) is an approximation of the set of literals

that hold by inertia after the execution of a in δ. Taking into account the effects of

the static causal laws, we have that the set of literals δ′ = ClD(e(a, δ)∪(δ\¬pc(a, δ)))
must hold in the next situation. This leads us to the following definition of the

possible next a-states after a non-sensing action gets executed.

Definition 5 (0-Result Function)

For every a-state δ and non-sensing action a executable in δ, let

δ′ = ClD(e(a, δ)∪(δ\¬pc(a, δ))).

Define

1. ResD(a, δ) = {δ′} if δ′ is consistent.

2. ResD(a, δ) = ∅ if δ′ is inconsistent.

The next examples illustrate this definition.

6 Note that the operator ClD is used in the definition of e(a, δ) to maximize what definitely holds in the
next situation.
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Example 5

Consider the domain description D1 in Example 2. Let δ = {¬open, closed,¬locked}.
We can easily check that δ is an a-state of D1. We have

e(flip lock, δ) = ClD1
({locked}) = {¬open,¬closed, locked}

and

pc0(flip lock, δ) = {locked}
Because if(¬open, {locked}) ∈ D1, and if(¬closed, {locked}) ∈ D1, by (12), we have

pc1(flip lock, δ) = {locked,¬closed}

Note that ¬open �∈ pc1(flip lock, δ) because it is already in δ.

It is easy to see that pci(flip lock, δ) = pc1(flip lock, δ) for all i > 1. Hence, we

have

pc(flip lock, δ) =

∞⋃
i=0

pci(flip lock, δ) = {¬closed, locked}

Accordingly, we have

ResD1
(flip lock, δ) = {ClD1

(e(flip lock, δ) ∪ (δ \ ¬pc(flip lock, δ)))} =

{ClD1
({¬open,¬closed, locked})} = {{¬open,¬closed, locked}}

�

Example 6

For the domain description D2 in Example 4, we have

e(a, s) = ClD2
({f}) = {f}

pc0(a, s) = {f}
As if(g, {f,¬h}) ∈ D2 and if(h, {f,¬g}) ∈ D2, we have

pc1(a, s) = {f, g, h}

Note that k �∈ pc1(a, s) since ¬f does not hold in e(a, s). We can check that

pci(a, s) = pc1(a, s) for all i > 1. Hence, we have

pc(a, s) = {f, g, h}

As a result, we have

ResD2
(a, s) = {ClD2

(e(a, s) ∪ (s \ ¬pc(a, s)))} = {ClD2
({f, k})} = {{f, k}}

�

The following proposition shows that when a non-sensing action is executed, the

Res-function is deterministic in the sense that it returns at most one possible next

a-state; furthermore, it is “sound” with respect to the Resc-function.
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Proposition 1

Let D be a consistent domain description. For any state s, a-state δ ⊆ s, and non-

sensing action a executable in δ, there exists an a-state δ′ such that (i) ResD(a, δ) =

{δ′}, and (ii) δ′ is a subset of every state s′ ∈ RescD(a, s).

Proof

see Appendix A. �

We have specified what are the possible next a-states after a non-sensing action

is performed. Let us move to the case when a sensing action is executed. Consider

an a-state δ and a sensing action a with k-proposition (5) in D. Intuitively, after a

is executed, the agent will know the values of literals in θ. Thus, the set of possible

next a-states can be defined as follows.

Definition 6 (0-Result Function)

For every a-state δ and sensing action a with proposition (5) such that a is executable

in δ,

ResD(a, δ) = {ClD(δ ∪ {g}) | g ∈ θ and ClD(δ ∪ {g}) is consistent}

Roughly speaking, executing a will result in several possible next a-states, in each

of which exactly one sensed-literal in θ holds. However, some of them might be

inconsistent with what is currently known. For example, if the security robot in

Example 1 knows that the window is not open then after it checks the window, it

should not consider the case that the window is open because this is inconsistent with

its current knowledge. Thus, in defining the set of possible next a-states resulting

from the execution of a sensing action, we need to exclude such inconsistent a-states.

The following example illustrates this.

Example 7

Consider again the domain descriptionD1 in Example 2 and an a-state δ1 = {¬open}.
We have

ClD1
(δ1 ∪ {open}) = {open,¬open, closed,¬closed, locked,¬locked} = δ1,1

ClD1
(δ1 ∪ {closed}) = {¬open, closed,¬locked} = δ1,2

ClD1
(δ1 ∪ {locked}) = {¬open,¬closed, locked} = δ1,3

Among those, δ1,1 is inconsistent. Therefore, we have

ResD1
(check, δ1) = {δ1,2, δ1,3}

�

The next proposition shows that if a sensing action is performed in a valid a-state

then the set of possible next a-states will contain at least one valid a-state. This

corresponds to the fact that if the current knowledge of the world of the agent is

consistent with the state of the world, it will remain consistent with the state of

the world after the agent acquires additional knowledge through the execution of a

sensing action.
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Proposition 2

Let D be a consistent domain description. For any a-state δ, and a sensing action a

executable in δ, if δ is valid then ResD(a, δ) contains at least one valid a-state.

Proof

see Appendix A. �

The transition function Φ that maps actions and a-states into sets of a-states is

defined as follows.

Definition 7 (Transition Function)

Given a domain description D, for any action a and a-state δ,

1. if a is not executable in δ then

Φ(a, δ) =⊥

2. otherwise,

Φ(a, δ) = ResD(a, δ)

The transition function Φ returns the set of possible next a-states after performing

a single action in a given a-state. We now extend it to define the set of possible next

a-states after the execution of a plan. The extended transition function, called Φ̂, is

given in the following definition.

Definition 8 (Extended Transition Function)

Given a domain description D, for any plan p and a-state δ,

1. if p = [] then

Φ̂(p, δ) = {δ}
2. if p = [a; q], where a is a non-sensing action and q is a sub-plan, then

Φ̂(p, δ) =

{
⊥ if Φ(a, δ) = ⊥⋃
δ′∈Φ(a,δ) Φ̂(q, δ′) otherwise

3. if p = [a; cases({gj → pj}nj=1)], where a is a sensing action and pj ’s are

sub-plans, then

Φ̂(p, δ) =

{
⊥ if Φ(a, δ) = ⊥⋃

1�j�n,δ′∈Φ(a,δ),gj holds in δ′ Φ̂(pj , δ
′) otherwise

where, by convention, . . . ∪ ⊥ ∪ . . . = ⊥.

Items (2) and (3) of the above definition deserve some elaboration.

Remark 3

During the execution of a plan p, when a non-sensing action a is encountered (Item

2), by Definitions 5 and 7, there are three possibilities: Φ(a, δ) = ⊥, Φ(a, δ) = ∅, or

Φ(a, δ) = {δ′} for some a-state δ′. If the first case occurs then the result of execution

of p in δ by the definition is also ⊥. In this case, we say that p is not executable in

δ; otherwise, p is executable in δ. If the second case occurs then by the definition,

Φ̂(p, δ) = ∅. One may notice that, by Proposition 1, this case takes place only if there
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exists no state s such that δ ⊆ s (i.e., δ is invalid), or the domain is inconsistent.

When Φ(a, δ) = {δ′}, then the result of the execution of p in δ is exactly as the result

of the execution of the rest of p in δ′.

Remark 4

If p = [a; cases({gj → pj}nj=1)], where a is a sensing action and pj ’s are sub-plans

(Item 3), and Φ(a, δ) �= ⊥ then by Definitions 6 and 7, we know that Φ(a, δ) may

contain several a-states δj ’s. Each δj corresponds to an a-state in which literal gj
holds. Therefore, we define Φ̂(p, δ) to be the union of the sets of possible a-states

that are the results of the execution of pj in δj . Note that when we add gj to the

current state δ to generate δj , we assume that gj holds. However, if later on, during

the execution of the rest of p, which is pj , we discover that Φ̂(pj , δj) = ∅, then our

assumption about gj is not correct. Therefore, such a δj contributes nothing to the

set of possible a-states of Φ̂(a, δ). To see how this can happen, consider the following

domain description:

D3 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

executable(a, {})
executable(b, {})

causes(b, h, {})
if(f, {g, h})
if(f, {g,¬h})
determines(a, f)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

and suppose that the set of fluents is {f, g, h}. Let us see what are the final possible

a-states after the execution of plan p = [a; cases({f → b;¬f → b})] in a-state

δ = {g} as defined by the extended transition function.

When a is performed, we generate two possible next a-states δ1 = {g, f},
and δ2 = {g,¬f}. Executing b in δ2 results in no possible next a-state because

ClD3
({g,¬f, h}) = {g,¬f, h, f} is not consistent. This means that Φ(b, δ2), and

thus Φ̂([b], δ2), become ∅. Therefore, the set of possible final a-states is Φ̂(p, δ) =

Φ̂([b], δ1) = {{f, g, h}}.
Note that in this example, we did not notice that δ2 is inconsistent at the time

the action a was performed. Rather, its inconsistency was only realized after the

execution of b. In other words, our assumption that ¬f holds was not correct.

Similarly to the execution of a non-sensing action, when a sensing action a is

performed, by Proposition 2, Φ(a, δ) = ∅ only if the domain is inconsistent or δ is

invalid.

The above remarks imply that in some cases, for a plan p and an a-state δ, Φ̂(p, δ)

may be empty. Intuitively, this is because either δ is invalid or the domain is

inconsistent. We will show that under reasonable assumptions about δ and the

domain, this cannot happen.

Definition 9 (Consistent Action Theories)

An action theory (D,I) is consistent if D is consistent and its initial a-state, defined

by ClD({l | initially(l) ∈ I}), is valid.
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The next proposition says that the execution of an executable plan from a valid

a-state of a consistent action theory will result in at least one valid a-state.

Proposition 3

Let (D,I) be a consistent action theory and let δ be its initial a-state. For every

conditional plan p, if Φ̂(p, δ) �= ⊥ then Φ̂(p, δ) contains at least one valid a-state.

Proof

See Appendix A. �

The above proposition implies that if the action theory (D,I) is consistent and δ

is its initial a-state then the execution of p in δ will yield at least a valid trajectory7,

provided that p is executable in δ. This is consistent with the fact that if the initial

a-state is complete (i.e., if we have complete information) then the execution of an

executable plan in the initial a-state would return a valid trajectory. From now on,

we only consider consistent action theories.

We next define the entailment relationship between action theories and queries.

Definition 10 (Entailment)

Let (D,I) be an action theory and δ be its initial a-state. For a plan p and a fluent

formula ρ, we say that

• (D,I) entails the query knows ρ after p and write

D |=I knows ρ after p

if Φ̂(p, δ) �= ⊥ and ρ is true in every a-state in Φ̂(p, δ); and

• (D,I) entails the query whether ρ after p and write

D |=I whether ρ after p

if Φ̂(p, δ) �= ⊥ and ρ is known in every a-state in Φ̂(p, δ).

Example 8

For the action theory (D1,I1) in Example 2, we will show that

D1 |=I1
knows locked after p2 (13)

where p2 is given in Example 3.

Let p2,1 = [], p2,2 = [flip lock] and p2,3 = []. It is easy to see that the initial a-state

of (D1,I1) is δ1 = {¬open}.
It follows from Example 7 that

Φ(check, δ1) = {δ1,2, δ1,3}

On the other hand, we have

Φ̂(p2,2, δ1,2) = {{locked,¬open,¬closed}}

and

Φ̂(p2,3, δ1,3) = {{locked,¬open,¬closed}}

7 A trajectory is an alternate sequence of a-states and actions, δ0a1δ1a2 . . . anδn, such that δi ∈ Φ(ai, δi−1)
for i = 1, . . . , n; A trajectory is valid if δi’s are valid a-states.
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Therefore, we have

Φ̂(p2, δ1) = Φ̂(p2,2, δ1,2) ∪ Φ̂(p2,3, δ1,3) = {{locked,¬open,¬closed}}

Since locked is true in {locked,¬open,¬closed}, we have (13) holds. On the other

hand, because closed is false in {locked,¬open,¬closed}, we have

D1 �|=I1
knows closed after p2 but D1 |=I1

knows ¬closed after p2.

Likewise, we can prove that

D1 |=I1
knows locked after p3 and D1 |=I1

knows locked after p4.

Definition 11 (Solutions)

A plan p is called a solution to a planning problem instance P = (D,I,G) iff

D |=I knows G after p

When p is a solution to P, we say that p is a plan that achieves the goal G.

According to this definition, it is easy to see that plans p2, p3, and p4 in Example 3

are solutions to P1 = (D1,I1,G1) in Example 2.

2.5 Properties of the 0-approximation

We will now discuss some properties of the 0-approximation. For a domain

description D, we define the size of D to be the sum of (1) the number of

fluents; (2) the number of actions; and (3) the number of propositions in D. The

size of a planning problem instance P = (D,I,G) is defined as the size of D. The

size of a plan p, denoted by size(p), is defined as follows:

1. size([]) = 0;

2. size([a; p]) = 1 + size(p) if a is a non-sensing action and p is a plan; and

3. size([a; cases({gj → pj}nj=1)]) = 1+Σnj=1(1+ size(pj)) if a is a sensing action and

pj ’s are plans.

Then, we have the following proposition.

Proposition 4

For a domain description D, an action a, and an a-state δ, computing Φ(a, δ) can

be done in polynomial time in the size of D.

Proof

See Appendix A. �

From this proposition, we have the following corollary.

Corollary 2.1

Determining whether or not a plan p is a solution of the planning problem instance

P = (D,I,G) from an a-state δ can be done in polynomial time in the size of p

and P.
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Definition 12

The conditional planning problem is defined as follows.

• Given: A planning problem instance P = (D,I,G) of size n and a polynomial

Q(n) � n;

• Determine: whether there exists a conditional plan, whose size is bounded by

Q(n), that achieves G from I (with respect to Definition 11).

Theorem 1

The conditional planning problem is NP-complete.

Proof

See Appendix A. �

The above theorem shows that planning using the 0-approximation has lower

complexity than planning with respect to the full semantics. Here, by the full

semantics we mean the possible world semantics extended to domains with sensing

actions. Yet, the price one has to pay is the incompleteness of this approximation, i.e.,

there are planning instances which have solutions with respect to the full semantics

but do not have solutions with respect to the approximation. This can be seen in

the following example.

Example 9

Consider the planning problem instance P=(D,I,G) with

D = {causes(a, f, {g}), causes(a, f, {¬g})}, I = ∅, and G = {f}.

We can easily check that p = [a] is a plan achieves f from every initial situation (with

respect to the possible world semantics developed for Ac
K in (Baral et al. 2000b)).

However, p is not a solution with respect to Definition 11, because D �|=I knows f

after a.

The above example highlights the main weakness of this approximation in that

it does not allow for reasoning by cases for non-sensing actions or in the presence

of disjunctive initial situation. In our experiments with the benchmarks, we observe

that most of the benchmarks that our planner could not solve fall into the second

category, i.e., they require the capability of reasoning with disjunctive information

about the initial state. Given that we do not consider action theories with disjunctive

initial state, this should not come as a surprise.

3 A logic programming based conditional planner

This section describes an answer set programming based conditional planner, called

ascp. Given a planning problem instance P = (D,I,G), we translate it into a logic

program πh,w(P), where h and w are two input parameters whose meanings will

become clear shortly, and then use an answer set solver (e.g., smodels or cmodels)

to compute its answer sets. The answer sets of πh,w(P) represent solutions to P. Our

intuition behind this task rests on the observation that each plan p (Definition 1)
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Fig. 1. Sample plan trees

corresponds to a labeled plan tree Tp defined as below:

• If p = [] then Tp is a tree with a single node.

• If p = [a], where a is a non-sensing action, then Tp is a tree with a single node

and this node is labeled with a.

• If p = [a; q], where a is a non-sensing action and q is a non-empty plan, then

Tp is a tree whose root is labeled with a and has only one subtree which is Tq .

Furthermore, the link between a and Tq ’s root is labeled with an empty string.

• If p = [a; cases({gj → pj}nj=1)], where a is a sensing action that determines gj ’s,

then Tp is a tree whose root is labeled with a and has n subtrees {Tpj | j ∈
{1, . . . , n}}. For each j, the link from a to the root of Tpj is labeled with gj .

Observe that each trajectory of the plan p corresponds to a path from the root to

a leave of Tp. As an example, Figure 1 depicts the labeled trees for plans p1, p2, p3

and p4 in Example 3 (black nodes indicate that there exists an action occurring at

those nodes, while white nodes indicate that there is no action occurring at those

nodes).

For a plan p, let α be the number of leaves of Tp and β be the number of nodes

along the longest path from the root to the leaves of Tp. α and β will be called the

width and height of Tp respectively. Suppose w and h are two integers that such that

α � w and β � h.

Let us denote the leaves of Tp by x1, . . . , xα. We map each node y of Tp to a pair

of integers ny = (ty ,py), where ty is the number of nodes along the path from the

root to y, and py is defined in the following way.

• For each leaf xi of Tp, pxi is an arbitrary integer between 1 and w. Furthermore,

there exists a leaf x with p-value of 1, i.e., px = 1, and there exist no i �= j such

that pxi = pxj .

• For each interior node y of Tp with children y1, . . . , yr , py = min{py1
, . . . , pyr}.

For instance, Figure 2 shows some possible mappings with h = 4 and w = 5 for the

trees in Figure 1. It is easy to see that if α � w and β � h then such a mapping

always exists. Furthermore, from the construction of Tp, independently of how the

leaves of Tp are numbered, we have the following properties.
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Fig. 2. Possible mappings for the trees in Figure 1

Fig. 3. Grid representation of conditional plans

1. For every node y, ty � h and py � w.

2. For a node y, all of its children have the same t-value. That is, if y has r

children y1, . . . , yr then tyi = tyj for every 1 � i, j � r. Furthermore, the p-value

of y is the smallest one among the p-values of its children.

3. The root of Tp is always mapped to the pair (1, 1).

Our encoding is based on the above mapping. We observe that a conditional

plan p can be represented on a grid h × w where each node y of Tp is placed at

the position (ty, py) relative to the leftmost top corner of the grid. This way, it is

guaranteed that the root of Tp is always placed at the leftmost top corner. Figure 3

depicts the 4 × 5 grid representation of conditional plans Tp3
and Tp4

in Figure 2.

As it can be seen in Figure 3, each path (trajectory) of the plan can end at an

arbitrary time point. For example, the leftmost and rightmost trajectories of TP4
end

at 2, whereas the others end at 3. On the other hand, to check if the plan is indeed

a solution, we need to check the satisfaction of the goal at every leaf node of the

plan, that is, at the end of each trajectory. In our encoding, this task is simplified by
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extending all the trajectories of the plan so that they have the same height h+1 and

then checking the goal at the end of each extended trajectory (see Figure 3). Note

that an a-state associated with each node on the extended part of each trajectory in

our encoding will be guaranteed to be the same as the one associated with the end

node of the original trajectory.

We now describe the program πh,w(P) in the syntax of smodels (for a concrete

example, see Appendix C). In πh,w(P), variables of sorts time and path correspond

to rows and columns of the grid. Instead of using the predicate holds(L,T )

(Dimopoulos et al. 1997; Lifschitz 1999) to denote that a literal L holds at the

time T , we use the predicate holds(L,T , P ) to represent the fact that L holds at

node (T , P ) (the time moment T , the path number P on the grid).

The program πh,w(P) contains the following elements:

1. Constants. There are two constants used in the program h and w which serve as

the input parameters of the program. In addition, we have constants to denote

fluents, literals and actions in the domain. Due to the fact that smodels does

not allow symbol ¬, to represent a literal constant ¬f, we will use neg(f).

2. Predicates. The program uses the following predicates.

• time(T ) is true if 1 � T � h.

• time1(T1) is true if 1 � T1 � h+ 1.

• path(P ) is true if 1 � P � w.

• fluent(F) is true if F is a fluent.

• literal(L) is true if L is a literal.

• contrary(L,L1) is true if L and L1 are two complementary literals.

• sense(L) is true if L is a sensed literal.

• action(A) is true if A is an action

• holds(L,T , P ) is true if literal L holds at (T , P ).

• poss(A,T , P ) is true if action A is executable at (T , P ).

• occ(A,T , P ) is true if action A occurs at (T , P ). That means the node (T , P )

in Tp is labeled with action A.

• e(L,T , P ) is true if literal L is an effect of a non-sensing action occurring at

(T , P ).

• pc(L,T , P ) is true if literal L may change at (T + 1, P ).

• goal(T , P ) is true if the goal is satisfied at (T , P ).

• br(G,T , P , P1) is true if there exists a branch from (T , P ) to (T+1, P1) labeled

with G in Tp. For example, in the grid representation of Tp3
(Figure 3), we

have br(open, 1, 1, 1), br(closed, 1, 1, 2), and br(locked, 1, 1, 5).

• used(T , P ) is true if (T , P ) belongs to some extended trajectory of the plan.

This allows us to know which paths are used in the construction of the plan

and thus to be able to check if the plan satisfies the goal. As an example, for

Tp3
in Figure 3, we have used(t, 1) for 1 � t � 5, and used(t, 2) and used(t, 5)

for 2 � t � 5. The goal satisfaction, hence, will be checked at nodes used(5, 1),

used(5, 2), and used(5, 5).

3. Variables. The following variables are used in the program:

• F: a fluent variable.
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• L and L1: literal variables.

• T and T1: time variables, in ranges 1..h and 1..h+ 1 respectively,

• G, G1 and G2: sensed−literal variables.

• A: an action variable.

• P , P1, and P2: path variables, in range 1..w.

The domains of these variables are declared in smodels using the keyword

#domain (see Appendix C for more details). Observe that the type of each

variable has to be declared accordingly if this feature of smodels is not used.

4. Rules. The program has the following facts to define variables of sort time and

path:

time(1..h) ←
time1(1..h+ 1) ←

path(1..w) ←

For each action a, fluent f, or sensed-literal g in the domain, πh,w(P) contains

the following facts respectively

action(a) ←
fluent(f) ←
sense(g) ←

The remaining rules of πh,w(P) are divided into three groups: (i) domain

dependent rules; (ii) goal representation and (iii) domain independent rules,

which are given next. Note that they are shown in a shortened form in which

the following shortening conventions are used.

• Two contrary literal variables are written as L and ¬L.

• For a predicate symbol p, and a set γ of literals or actions, we will write

p(γ, . . .) to denote the set of atoms {p(x, . . .) | x ∈ γ}.
• For a literal constant l, ¬l stands for neg(f) (resp. f) if l = f (resp. l = ¬f)

for some fluent f.

For example, the rule (28) stands for the following rule

holds(L,T+1, P )← holds(L,T , P ), contrary(L,L1), not pc(L1, T , P )

3.1 Domain dependent rules

• Rules encoding the initial situation. For each v-proposition (1) in I, πh,w(P)

contains the fact

holds(l, 1, 1) ← (14)

• Rules encoding actions’ executability conditions. For each executability condi-

tion (2) in D, πh,w(P) contains the rule

poss(a, T , P ) ← holds(ψ,T , P ) (15)
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• Rules for reasoning about the effect of non-sensing actions. For each dynamic

causal law (3) in D, we add to πh,w(P) the following rules:

e(l, T , P ) ← occ(a, T , P ), holds(φ,T , P ) (16)

pc(l, T , P ) ← occ(a, T , P ), not holds(l, T , P ), not holds(¬φ,T , P ) (17)

Here, a is a non-sensing action. Its execution changes the world according

to the Res-function. The first rule, when used along with (22), encodes what

definitely holds as the effect of a in the next a-state. The second rule, when

used along with (21), describes what would potentially be changed by a (see

the definitions of e(a, δ) and pc(a, δ) in Subsection 2.4). Note that in the second

rule, not holds(¬φ,T , P ) stands for {not holds(¬l) | l ∈ φ}, meaning that φ

possibly holds at (T , P ). These rules will be used in cooperation with (23),

(27), and (28) to define the next a-state after the execution of a non-sensing

action.

• Rules for reasoning about the effect of sensing actions. For each k-proposition

(5) in D, πh,w(P) contains the following rules:

← occ(a, T , P ), not br(θ, T , P , P ) (18)

1{br(g, T , P ,X):new br(P ,X)}1 ← occ(a, T , P ) (19)

(g ∈ θ)
← occ(a, T , P ), holds(g, T , P ) (20)

(g ∈ θ)

The first rule assures that if a sensing action a occurs at (T , P ) then there must

be a branch from (T , P ) to (T + 1, P ). The second rule ensures that a new

branch, corresponding to a new successor a-state, will be created for each literal

sensed by the action. The last rule is a constraint that prevents a from taking

place if one of the literals sensed by the action is already known. With this

rule, the returned plan is guaranteed to be optimal in the sense that a sensing

action should not occur if one of the literals sensed by the action already holds.

Observe that the semantics ofAc
K does not prevent a sensing action to execute

when some of its sensed-fluents is known. For this reason, some solutions to a

planning problem instance might not be found using this encoding. However,

as we will see later, the program will generate an “equivalent” plan to those

solutions. Section 4.2 will elaborate more on this issue.

• Rules for reasoning about static causal laws. For each static causal law (4) in

D, πh,w(P) contains the rules

pc(l, T , P ) ← not holds(l, T , P ), pc(l′, T , P ),

not e(¬ϕ,T , P ) (21)

(l′ ∈ ϕ)

e(l, T , P ) ← e(ϕ,T , P ) (22)

holds(l, T1, P ) ← holds(ϕ,T1, P ) (23)

Rules in this group encode the equations (10)-(12) and the operator ClD.
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3.2 Goal representation

The following rules encode the goal and make sure that it is always achieved at the

end of every possible branch created by the execution of the plan.

goal(T1, P ) ← holds(G, T1, P ) (24)

goal(T1, P ) ← holds(L,T1, P ), holds(¬L,T1, P ) (25)

← used(h+1, P ), not goal(h+1, P ) (26)

The first rule says that the goal is satisfied at a node if all of its subgoals are satisfied

at that node. The last rule guarantees that if a path P is used in the construction

of a plan then the goal must be satisfied at the end of this path, that is, at node

(h+ 1, P ).

Rule (25) deserves some explanation. Intuitively, the presence of holds(L,T , P )

and holds(¬L,T , P ) indicates that the a-state at the node (T , P ) is inconsistent. This

means that no action should be generated at this node as inconsistent a-states will be

removed by the extended transition function (Definition 8). To achieve this effect8,

we say that the “goal” has been achieved at (T , P ). The inclusion of this rule might

raise the question: is it possible for the program to generate a plan whose execution

yields inconsistent a-states only. Fortunately, due to Proposition 3, this will not be

the case for consistent action theories.

3.3 Domain independent rules

• Rules encoding the effect of non-sensing actions. Rules (16) – (17) specify what

definitely holds and what could potentially be changed in the next a-state as

the effect of a non-sensing action. The following rules encode the effect and

frame axioms for non-sensing actions.

holds(L,T+1, P ) ← e(L,T , P ) (27)

holds(L,T+1, P ) ← holds(L,T , P ), not pc(¬L,T , P ) (28)

When used in conjunction with (16) – (17), they define the Res function.

• Inertial rules for sensing actions. This group of rules encodes the fact that the

execution of a sensing action does not change the world. However, there is

one-to-one correspondence between the set of sensed literals and the set of

possible next a-states after the execution of a sensing action.

← P1 < P2, P2 < P , br(G1, T , P1, P ),

br(G2, T , P2, P ) (29)

← P1 � P ,G1 �= G2, br(G1, T , P1, P ),

br(G2, T , P1, P ) (30)

← P1 < P , br(G,T , P1, P ), used(T , P ) (31)

8 The same effect can be achieved by (i) introducing a new predicate, say stop(T , P ), to represent that
the a-state at (T , P ) is inconsistent; (ii) adding not stop(T , P ) in the body of rule (35) to prevent action
to occur at (T , P ); and (iii) modifying the rule (26) accordingly.
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used(T+1, P ) ← P1 < P , br(G,T , P1, P ) (32)

holds(G,T+1, P ) ← P1 � P , br(G,T , P1, P ) (33)

holds(L,T+1, P ) ← P1 < P , br(G,T , P1, P ), holds(L,T , P1) (34)

The first three rules make sure that there is no cycle in the plan that we are

encoding. The next rule is to mark a node as used if there exists a branch in

the plan that coming to that node. This allows us to know which paths on the

grid are used in the construction of the plan and thus to be able to check if

the plan satisfies the goal (see rule (26)).

The last two rules, along with rule (23), encode the possible next a-state

corresponding to the branch denoted by literal G after a sensing action is

performed in a state δ. They say that such a-state should contain G (rule (33))

and literals that hold in δ (rule (34)).

Note that because for each literal G sensed by a sensing action a, we create a

corresponding branch (rules (18) and (19)), the rules of this group guarantee

that all possible next a-states after a is performed are generated.

• Rules for generating action occurrences.

1{occ(X,T , P ) : action(X)}1 ← used(T , P ), not goal(T , P ) (35)

← occ(A,T , P ), not poss(A,T , P ) (36)

The first rule enforces exactly one action to take place at a node that was

used but the goal has not been achieved. The second one guarantees that only

executable actions can occur.

• Auxiliary Rules.

literal(F) ← (37)

literal(¬F) ← (38)

contrary(F,¬F) ← (39)

contrary(¬F, F) ← (40)

new br(P , P1) ← P � P1 (41)

used(1, 1) ← (42)

used(T+1, P ) ← used(T , P ) (43)

The first four rules define literals and contrary literals. Rule (41) says that a

newly created branch should outgo to a path number greater than the current

path. The last two rules mark nodes that have been used.

4 Properties of ascp

This section discusses some important properties of ascp. We begin with how to

extract a solution from an answer set returned by ascp. Then, we argue that ascp is

sound and complete with respect to the 0-approximation semantics. We also show

that ascp can be used as a conformant planner. Finally, we present how to modify

ascp to act as a reasoner.
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4.1 Solution extraction

In some previous answer set based planners (Dimopoulos et al. 1997; Eiter et al.

2003; Lifschitz 1999), reconstructing a plan from an answer set for a logic program

encoding the planning problem instance is quite simple: we only need to collect

the action occurrences in the model and then order them by the time they occur.

In other words, if the answer set contains occ(a1, 1), . . ., occ(am, m) then the plan is

a1, . . . , am. For πh,w(P), the reconstruction process is not that simple because each

answer set for πh,w(P) represents a conditional plan which may contain conditionals

in the form br(l, t, p, p1). The following procedure describes how to extract such a

plan from an answer set.

Let P = (D,I,G) be a planning problem instance and S be an answer set for

πh,w(P). For any pair of integers, 1 � i � h + 1, 1 � k � w, we define pki (S) as

follows:

pki (S) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

[] if i = h+ 1 or occ(a, i, k) �∈ S for all a

a; pki+1(S) if occ(a, i, k) ∈ S and

a is a non-sensing action

a; cases({gj → p
kj
i+1(S)}nj=1) if occ(a, i, k) ∈ S,

a is a sensing action, and

br(gj , i, k, kj) ∈ S for 1 � j � n

Intuitively, pki (S) is the conditional plan whose corresponding tree is rooted at node

(i, k) on the grid h×w. p1
1(S) is, therefore, a solution to P. This is stated in Theorem

2 in the next subsection.

4.2 Soundness and completeness

Theorem 2

Let (D,I) be a consistent action theory, P = (D,I,G) be a planning problem

instance and h � 1 and w � 1 be integers. If πh,w(P) returns an answer set S then

p1
1(S) is a solution to P.

Proof

see Appendix B. �

Theorem 2 shows the soundness of πh,w(P). We will now turn our attention to the

completeness of πh,w(P). Observe that solutions generated by πh,w(P) are optimal in

the following sense

1. actions do not occur once the goal is achieved or a possible next a-state does

not exist; and

2. sensing actions do not occur if one of its sensed literals holds.

The first property holds because of rule (35) and the second property holds because

of constraint (20). Since the definition of a conditional plan in general does not

rule out non-optimal plans, obviously πh,w(P) will not generate all possible solutions

to P.

https://doi.org/10.1017/S1471068406002948 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068406002948


402 P. H. Tu et al.

For example, consider the planning problem instance P1 in Example 2. We have

seen that plans p2, p3, and p4 in Example 3 are all solutions to P1. However, p3 and

p4 are not optimal because they do not satisfy the above two properties.

The above example shows that πh,w(P) is not complete w.r.t. the 0-approximation

in the sense that no one-to-one correspondence between its answer sets and solutions

to P exists. However, we will show next that it is complete in the sense that for each

solution p to P, there exist two integers h and w such that πh,w(P) will generate an

answer set S whose corresponding plan, p1
1(S), can be obtained from p by applying

the following transformation (called the reduct operation).

Definition 13 (Reduct of a plan)

Let P = (D,I,G) be a planning problem instance, p be a plan and δ be an a-state

such that Φ̂(p, δ) �= ⊥. A reduct of p with respect to δ, denoted by reductδ(p), is

defined as follows.

1. if p = [] or δ |= G then

reductδ(p) = []

2. if p = [a; q], where a is a non-sensing action and q is a plan, then

reductδ(p) =

{
a; reductδ′(q) if Φ(a, δ) = {δ′}
a otherwise

3. if p = [a; cases({gj → pj}nj=1)], where a is a sensing action that senses g1, . . . , gn,

then

reductδ(p) =

{
reductδ(pk) if gk holds in δ for some k

a; cases({gj → qj}nj=1) otherwise

where

qj =

{
[] if ClD(δ ∪ {gj}) is inconsistent

reductClD(δ∪{gj})(pj) otherwise

Example 10

Consider the planning problem instance P1 in Example 2 and plans p2, p3, and p4

in Example 3. Let δ = {¬open}. We will show that

reductδ(p3) = p2 (44)

and

reductδ(p4) = p2 (45)

Because open, closed, and locked do not hold in δ, we have

reductδ(p3) = check; cases({open→ q1, closed→ q2, locked→ q3})

where qj ’s are defined as in Definition 13.

Let

δ1 = ClD1
(δ ∪ {open}) = {open,¬open, closed,¬closed, locked,¬locked}

δ2 = ClD1
(δ ∪ {closed}) = {¬open, closed,¬locked}

δ3 = ClD1
(δ ∪ {locked}) = {¬open,¬closed, locked}
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It is easy to see that q1 = [] (because δ1 is inconsistent) and q3 = [] (because the

sub-plan corresponding to the branch “locked” in p3 is empty).

Let us compute q2. We have

q2 = reductδ2
(flip lock; flip lock; flip lock)

Because δ2 does not satisfy G and Φ(flip lock, δ2) = {δ2,1} �= ∅, where

δ2,1 = {¬open,¬closed, locked},

we have

q2 = flip lock; reductδ2,1
(flip lock; flip lock)

As δ2,1 satisfies G, we have reductδ2,1
(flip lock; flip lock) = []. Hence, q2 = flip lock.

Accordingly, we have

reductδ(p3) = check; cases({open→ [], closed→ [flip lock], locked→ []}) = p2

That is, (44) holds.

We now show that (45) holds. It is easy to see that

reductδ(p4) = check; cases({open→ [], closed→ reductδ2
(p2), locked→ []})

Because closed holds in δ2, we have

reductδ2
(p2) = reductδ2

(flip lock) = flip lock

Thus,

reductδ(p4) = check; cases({open→ [], closed→ flip lock, locked→ []}) = p2

As a result, we have (45) holds.

We have the following proposition.

Proposition 5

Let P = (D,I,G) be a planning problem instance and δ be its initial a-state. Then,

for every solution p to P, reductδ(p) is unique and also a solution to P.

Proof

see Appendix B. �

The following theorem shows the completeness of our planner with respect to the

0-approximation semantics.

Theorem 3

Let P = (D,I,G) be a planning problem instance, and p be a solution to P.

Then, there exist two integers h and w such that πh,w(P) has an answer set S and

p1
1(S) = reductδ(p), where δ is the initial a-state of (D,I).

Proof

see Appendix B. �
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4.3 Special case: ascp as a conformant planner

Since conformant planning deals only with incomplete information, it is easy to see

that πh,1(P) can be used to generate conformant plans for P.

Let S be an answer set for πh,1(P). Recall that we assume that each sensing action

senses at least two literals. Hence, w = 1 implies S does not contain occ(a, . . .) where

a is a sensing action because if otherwise rules (19) and (30) cannot be satisfied.

Thus, p1
1(S) is a sequence of non-sensing actions. By Theorem 2, we know that

p1
1(S) achieves the goal of P from every possible initial a-state of the domain, which

implies that p1
1(S) is a conformant plan. In Section 5, we compare the performance

of πh,1(P) against some of the state-of-the-art conformant planners.

4.4 Special case: ascp as a reasoner

It is easy to see that with minor changes, ascp can be used to compute the

consequences of a plan. This can be done as follows. Given an action theory

(D,I), for any integers h, w, let πh,w(D,I) be the set of rules: πh,w(P) \ {(18) −
(20), (24)− (26), (29)− (31), (35), (41)}. Intuitively, πh,w(D,I) is the program obtained

from πh,w(P) by removing the rules for (i) generating the branches when sensing

actions are executed; (ii) checking the satisfaction of the goal; (iii) representing

the constraints on branches; and (iv) generating action occurrences. For a plan p,

let Tp be the corresponding tree for p that is numbered according to the principles

described in the previous section. We define ε(p) to be the following set of atoms:

{occ(a, t, p) | ∃ a node x in Tp labeled with action a and numbered with (t, p)} ∪
{br(g, t, p, p′) | ∃a link labeled with g that connects the node numbered with (t, p)

to the node numbered with (t+ 1, p′) in Tp}.

It is easy to see that the program πh,w(D,I) ∪ ε(p) has a unique answer set which

corresponds to Φ̂(p, s0). This is detailed in the following proposition.

Proposition 6

Let (D,I) be an action theory, p be a plan, ρ be a fluent formula, Tp be the plan

tree for p with a given numbering, and h and w be the height and width of Tp
respectively. Let

Π = πh,w(D,I) ∪ ε(p).
We have that

• Π has a unique answer set S;

• D |=I knows ρ after p if and only if

— there exists some j, 1 � j � w, δh+1,j(S) �= ⊥; and

— for every j, 1 � j � w and δh+1,j(S) �= ⊥, ρ is known to be true in δh+1,j(S).

• D |=I whether ρ after p if and only if

— there exists some j, 1 � j � w, δh+1,j(S) �= ⊥; and

— for every j, 1 � j � w and δh+1,j(S) �= ⊥, ρ is known in δh+1,j(S).
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where

δt,j(S) =

⎧⎨
⎩
{l | holds(l, t, j) ∈ S} if used(t, j) ∈ S and

{l | holds(l, t, j) ∈ S} is consistent

⊥ otherwise

Proof

The proof of this theorem is very similar to the proof of Theorem 2 so we omit it

for brevity. �

5 Evaluation

In this section, we evaluate ascp against other planners using planning benchmarks

from the literature. We first briefly summarize the features of the systems that are

used in our experiments. We then describe the benchmarks. Finally, we present the

experimental results.

5.1 Planning systems

The planning systems that we compared with are the following:

• DLVK: DLVK is a declarative, logic-based planning system built on top of the DLV

system ( http://www.dbai.tuwien.ac.at/proj/dlv/ ). The input languageK is

a logic-based planning language described in (Eiter et al. 2003). The version

we used for testing is available at http://www.dbai.tuwien.ac.at/proj/dlv/K/

. DLVK is capable of generating both concurrent and conformant plans. It,

however, does not support sensing actions and cannot generate conditional

plans.

• CMBP (Conformant Model Based Planner) (Cimatti and Roveri 1999, 2000):

CMBP is a conformant planner developed by Cimatti and Roveri. A planning

domain in CMBP is represented as a finite state automaton. BDD (Binary

Decision Diagram) techniques are employed to represent and search the

automaton. CMBP allows nondeterministic domains with uncertainty in both

the initial state and action effects. Nevertheless, it does not have the capability

of generating concurrent and conditional plans. The input language to CMBP

is AR described in Giunchiglia et al. (1997). The version used for testing was

downloaded from http://www.cs.washington.edu/research/jair/contents/

v13.html .

• KACMBP (Cimatti et al. 2004): Similarly to CMBP, KACMBP uses tech-

niques from symbolic model checking to search in the belief space. However,

in KACMBP, the search is guided by a heuristic function which is derived

based on knowledge associated with a belief state.

KACMBP is designated for sequential and conformant setting. It, however,

does not support concurrent planning and conditional planning. The input

language of KACMBP is SMV. The system was downloaded from http:

//sra.itc.it/tools/mbp/AIJ04/.
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Table 1. Features of planning systems

ascp DLVK MBP CMBP SGP POND CFF KACMBP

Input Language Ac
K K AR AR PDDL PDDL PDDL SMV

Sequential planning yes yes yes yes no yes yes yes

Concurrent planning no yes no no yes no no no

Conformant planning yes yes yes yes yes yes yes yes

Conditional planning yes no yes no yes yes no no

• Conformant-FF (CFF) (Brafman and Hoffmann 2004): CFF9, to our best

knowledge, is one of the current fastest conformant planners in most of the

benchmark domains in the literature. It extends the classical FF planner

(Hoffmann and Nebel 2001) to deal with uncertainty in the initial state. The

basic idea is to represent a belief state s just by the initial belief state (which

is described as a CNF formula) together with the action sequence that leads

to s. In addition, the reasoning is done by checking the satisfiability of CNF

formulae.

The input language of CFF is a subset of PDDL with a minor change that

allows the users to specify the initial state as a CNF formula. Both sequential

and and conformant planning are supported in CFF. However, it does not

support concurrent and conditional planning.

• MBP (Bertoli et al. 2001): MBP is a previous version of CMBP. Unlike

CMBP which only deals with conformant planning, MBP supports conditional

planning as well. The version used for testing was downloaded from http:

//sra.itc.it/tools/mbp/.

• SGP (Sensory Graph Plan) (Weld et al. 1998; Anderson et al. 1998): SGP is a

planner based on the planning graph algorithm proposed by Blum and Furst (95).

SGP supports conditional effects, universal and existential quantification. It

also handles uncertainty and sensing actions. SGP has the capability of

generating both conformant and conditional plans, as well as concurrent

plans. Nevertheless, static laws are not allowed in SGP. The input syntax

is PDDL (Planning Domain Definition Language). The version used for

testing is 1.0h (dated January 14th, 2000), written in Lisp, available at

http://www.cs.washington.edu/ai/sgp.html .

• POND (Bryce et al. 2004): POND extends the planning graph algorithm

(Blum and Furst 95) to deal with sensing actions. Conformant planning is

also supported as a feature of POND. The input language is a subset

of PDDL. POND was downloaded from http://rakaposhi.eas.asu.edu/

belief-search/.

Table 1 summarizes the features of these planning systems.

9 We would like to thank Jörg Hoffmann for providing us with an executable version of the system for
testing.
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5.2 Benchmarks

To test the performance of the planners, we prepared two test suites for conformant

and conditional planning, separately. In our preparation, we attempt to encode the

planning problem instances given to the systems in a uniform way (in terms of the

number of actions, fluents, and effects of actions). Due to the differences in the

representation languages of these systems, there are situations in which the encoding

of the problems might be different for each system.

5.2.1 Conformant planning

We tested the systems on the following domains10:

• Bomb in the Toilet (BT): This set of problems was introduced in (McDermott

1987): “It has been alarmed that there is a bomb in a lavatory. There are

m suspicious packages, one of which contains the bomb. The bomb can

be defused if we dunk the package that contains the bomb into a toilet.”

Experiments were made with m = 2, 4, 6, 8, and 10.

• Bomb in the Toilet with Multiple Toilets (BMT): This set of problems is similar

to the BT problem but we have multiple toilets. There are five problems in this

set, namely BMT (2, 2), BMT (4, 2), BMT (6, 2), BMT (8, 4), and BMT (10, 4),

where the first parameter is the number of suspicious packages and the second

parameter is the number of toilets.

• Bomb in the Toilet with Clogging (BTC): This set of problems is similar to

BTs but we assume that dunking a package clogs the toilet and flushing the

toilet unclogs it. We know that in the beginning, the toilet is unclogged. We did

experiments with m = 2, 4, 6, 8, and 10, where m is the number of suspicious

packages.

• Bomb in the Toilet with Multiple Toilets and Clogging (BMTC): This set of

problems is similar to BTC but we have multiple toilets. We did experiments

with five problems BMTC(2, 2), BMTC(4, 2), BMTC(6, 2), BMTC(8, 4), and

BMTC(10, 4), where the first parameter is the number of suspicious packages

and the second parameter is the number of toilets.

• Bomb in the Toilet with Clogging and Uncertainty in Clogging (BTUC): This

set of problems is similar to BTC except that we do not know whether the

toilet is clogged or not in the beginning.

• Bomb in the Toilet with Multiple Toilets and Uncertainty in Clogging (BMTUC):

This set of problems is similar to BMTC except that we do not know whether

or not each toilet is clogged in the beginning.

• Ring: This set of problems is from Cimatti et al. (2004). In this domain, one

can move in a cyclic fashion (either forward or backward) around a n-room

building to lock windows. Each room has a window and the window can

be locked only if it is closed. Initially, the robot is in the first room and it

does not know the state (open, closed or locked) of the windows. The goal

10 The system is available at http://www.cs.nmsu.edu/~tson/ASPlan/Sensing.
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is to have all windows locked. A possible conformant plan is to perform a

sequence of actions forward, close, lock repeatedly. In this domain, we tested

with n =2,4,6,8, and 10.

• Domino (DOM): This domain is very simple. We have n dominos standing

on a line in such a way that if one of them falls then the domino on its right

also falls. There is a ball hanging close to the leftmost one. Touching the ball

causes the first domino to fall. Initially, the states of dominos are unknown.

The goal is to have the rightmost one to fall. The solution is obviously to touch

the ball. In this domain, we tested with n =10,20,50,100, 1000, and 10000.

5.2.2 Conditional planning

The set of problems for testing includes:

• Bomb in the Toilet with Sensing Actions (BTS): This set of examples is taken

from (Weld et al. 1998). They are variations of the BTC problem that allow

sensing actions to be used to determine the existence of a bomb in a specific

package. There are m packages and only one toilet. We can use one of the

following methods to detect a bomb in a package: (1) use a metal detector

(action detect metal); (2) use a trained dog to sniff the bomb (action sniff); (3)

use an x-ray machine (action xray); and, finally, (4) listen for the ticking of the

bomb (action listen for ticking). This set of examples contains four subsets of

problems, namely BTS1(m), BTS2(m), BTS3(m), and BTS4(m) respectively,

where m is the number of suspicious packages. These subsets differ from each

other in which ones of the above methods are allowed to use. The first subset

allows only one sensing action (1); the second one allows sensing actions

(1)-(2); and so on.

• Medical Problem (MED): This set of problems is from Weld et al. (1998). A

patient is sick and we want to find the right medication for her. Using a wrong

medication may be fatal. Performing a throat culture will return either red,

blue, or white, which determines the group of illness the patient is infected

with. Inspecting the color (that can be performed only after the throat culture

is done) allows us to observe the color returned by a throat culture, depending

on the illness of the patient. Analyzing a blood sample tells us whether or not

the patient has a high white cell count. This can be done only after a blood

sample is taken. In addition, we know that in the beginning, the patient is not

dead but infected. In addition, none of the tests have been done. There are five

problems in this set, namely, MED1, . . ., MED5. These problems are different

from each other in how much we know about the illness of the patient in the

beginning.

• Sick Domain (SICK): This set of problems is similar to MED. A patient is sick

and we need to find a proper medication for her. There are n kinds of illness

that she may be infected with and each requiring a particular medication.

Performing throat culture can return a particular color. Inspecting that color

determine what kind of illness the patient has. Initially, we do not know the

exact illness that the patient is infected with. The characteristic of this domain
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is that the length of the plan is fixed (only 3) but the width of the plan may

be large, depending on the number of illnesses. We did experiments with five

problems in the domain, namely, SICK(2), SICK(4), ..., SICK(10). They differ

from each other in the number of illnesses that the patient may have.

• Ring (RINGS): This domain is a modification of the RING domain. In this

modified version, the agent can close a window only if it is open. It can lock

a window only if it is closed. The agent can determine the status of a window

by observing it (sensing action observe window).

• Domino (DOMS): This is a variant of the DOM domain in which some

dominos may be glued to the table. Unlike the original version of the DOM

domain, in this variant, when a domino falls, the next one falls only if it is not

glued. The agent can do an action to unglue a glued domino. We introduce

a new sensing action observe domino(X) to determine whether a domino X is

glued or not.

5.3 Performance

We ran our experiments on a 2.4 GHz CPU, 768MB RAM, DELL machine, running

Slackware 10.0 operating system. We compared ascp with DLVK, CMBP, SGP, CFF

and KACMBP on the conformant benchmarks and with SGP, POND, and MBP on

the conditional benchmarks. Time limit was set to 30 minutes. The CMU Common

Lisp version 19a was used to run SGP examples. We ran ascp examples on both

cmodels and smodels. By convention, in what follows, we will use ascp
c and ascp

s

to refer to the planner ascp when it was run on cmodels and smodels respectively.

Sometimes, if the distinction between the two is not important, by ascp we mean

both.

The experimental results for conformant and conditional planning are shown in

Tables 2 and 3 respectively. Times are in seconds. “TO/AB” indicates that the

corresponding planner does not return a solution within the time limit or stopped

abnormally due to some reasons, for example, out of memory or segmentation fault.

In conformant setting (Table 2), it is noticeable that ascp
c behaves better than

ascp
s in all the conformant benchmark domains, especially in large problems.

Furthermore, CFF and KACMBP are superior to all the other planners on most of

the testing problems. Especially, both of them scale up to larger instances very well,

compared with the others. Yet, it is interesting to observe that ascp
c does not lose

out a whole lot against these two planners in many problems. In the following, we

will discuss the performance ascp in comparison with CMBP, DLVK, and SGP.

It can be seen that ascp
c is competitive with CMBP and outperforms DLVK and

SGP in most of problems. Specifically, in the BT domain, ascp
c took only 0.12

seconds to solve the last problem, while DLVK, CMBP, and SGP took 11.37, 0.5 and

2.13 seconds respectively. ascp
s however is slower than CMBP and SGP in this

domain.

In the BMT domain, ascp
s is the worst. ascp

s took more than two minutes to

solve the largest problem in this domain, while CMBP took only 0.53 seconds. ascp
c,

however, is competitive with CMBP and outperforms both DLVK and SGP.
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Table 2. Conformant planning performance

Problem Min. ascp DLVK CMBP SGP CFF KA-

PL cmodels smodels CMBP

BT(2) 2 0.06 0.03 0.01 0.03 0.04 0.02 0.12

BT(4) 4 0.04 0.06 0.03 0.03 0.27 0.04 0.12

BT(6) 6 0.05 0.12 0.18 0.04 0.42 0.09 0.1

BT(8) 8 0.10 0.33 1.47 0.10 1.04 0.10 0.11

BT(10) 10 0.12 2.54 11.37 0.50 2.13 0.13 0.11

BMT(2,2) 2 0.04 0.04 0.01 0.03 0.07 0.02 0.07

BMT(4,2) 4 0.05 0.09 0.03 0.04 0.28 0.03 0.12

BMT(6,2) 6 0.11 0.23 0.19 0.05 0.29 0.07 0.10

BMT(8,4) 8 0.41 4.70 1.70 0.11 3.14 0.09 0.11

BMT(10,4) 10 0.51 152.45 12.18 0.53 5.90 0.12 0.14

BTC(2) 2 0.04 0.04 0.01 0.03 0.44 0.05 0.12

BTC(4) 7 0.04 0.12 0.33 0.04 21.62 0.06 0.10

BTC(6) 11 0.06 0.33 TO 0.1 TO 0.07 0.11

BTC(8) 15 0.11 0.53 TO 0.79 TO 0.07 0.13

BTC(10) 19 0.12 468.04 TO 9.76 TO 0.13 0.14

BMTC(2,2) 2 0.06 0.06 0.01 0.03 0.18 0.05 0.12

BMTC(4,2) 6 0.10 0.19 0.17 0.05 2.03 0.04 0.09

BMTC(6,2) 10 0.14 0.63 20.02 0.24 TO 0.07 0.12

BMTC(8,4) 12 0.56 60.56 TO TO TO 0.10 0.12

BMTC(10,4) 16 1.44 TO TO TO TO 0.13 0.17

BTUC(2) 4 0.05 0.04 0.02 0.02 0.59 0.03 0.09

BTUC(4) 8 0.04 0.11 0.94 0.04 TO 0.04 0.11

BTUC(6) 12 0.06 0.22 524.3 0.11 TO 0.06 0.11

BTUC(8) 16 0.11 4.7 TO 0.96 TO 0.08 0.12

BTUC(10) 20 0.12 TO TO 11.58 TO 0.13 0.16

BMTUC(2,2) 4 0.06 0.07 0.03 0.03 16.11 0.06 0.11

BMTUC(4,2) 8 0.10 0.23 0.24 0.07 TO 0.09 0.14

BMTUC(6,2) 12 0.14 19.88 1368.28 0.43 TO 0.08 0.14

BMTUC(8,4) 16 0.56 TO TO TO TO 0.13 0.18

BMTUC(10,4) 20 0.63 TO TO TO TO 0.16 0.16

RING(2) 5 0.12 0.47 0.201 0.04 0.14 0.05 0.00

RING(4) 11 0.21 6.76 0.638 0.05 2.28 0.09 0.12

RING(6) 17 31.73 TO TO 0.40 77.10 0.20 0.13

RING(8) 23 1246.58 TO TO 832.73 TO 0.74 0.18

RING(10) 29 TO TO TO TO TO 2.46 0.18

DOM(10) 1 0.11 0.08 0.03 0.04 2.24 0.05 0.13

DOM(20) 1 0.14 0.07 0.24 0.05 33.4 0.29 0.14

DOM(50) 1 0.47 0.40 1368.28 0.06 1315.98 4.44 1.34

DOM(100) 1 1.70 1.64 TO 0.11 TO TO 2.56

DOM(500) 1 31.28 32.52 TO 2.16 TO TO 29.10

DOM(1000) 1 121.91 129.96 TO 9.83 TO TO TO

In the BTC domain, although ascp
s is better than DLVK and SGP, its performance

is far from that of CMBP. The time for ascp
s to solve the largest problem is nearly

8 minutes, while that for CMBP is just 9.76 seconds. Again, ascp
c is the best. It

took only 0.12 seconds to solve the same problem.
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Table 3. Conditional planning performance

Problem Min. Plan ascp SGP POND MBP

Length & Width cmodels smodels

BTS1(2) 2x2 0.166 0.088 0.11 0.188 0.047

BTS1(4) 4x4 0.808 1.697 0.22 0.189 0.048

BTS1(6) 6x6 5.959 83.245 2.44 0.233 0.055

BTS1(8) 8x8 25.284 TO 24.24 0.346 0.076

BTS1(10) 10x10 85.476 TO TO 0.918 0.384

BTS2(2) 2x2 0.39 0.102 0.19 0.186 0.038

BTS2(4) 4x4 1.143 3.858 0.32 0.198 0.067

BTS2(6) 6x6 19.478 1515.288 3.23 0.253 2.163

BTS2(8) 8x8 245.902 TO 25.5 0.452 109.867

BTS2(10) 10x10 345.498 TO TO 1.627 178.823

BTS3(2) 2x2 0.357 0.13 0.22 0.185 0.082

BTS3(4) 4x4 1.099 5.329 0.44 0.195 1.93

BTS3(6) 6x6 7.055 TO 3.89 0.258 147.76

BTS3(8) 8x8 56.246 TO 28.41 0.549 AB

BTS3(10) 10x10 248.171 TO TO 2.675 AB

BTS4(2) 2x2 0.236 0.149 0.26 0.194 0.098

BTS4(4) 4x4 1.696 3.556 0.64 0.191 AB

BTS4(6) 6x6 13.966 149.723 4.92 0.264 AB

BTS4(8) 8x8 115.28 TO 30.34 0.708 AB

BTS4(10) 10x10 126.439 TO TO 4.051 AB

MED(1) 1x1 1.444 1.434 0.09 0.187 0.048

MED(2) 5x5 35.989 9.981 0.59 0.193 0.047

MED(3) 5x5 42.791 9.752 1.39 0.2 0.049

MED(4) 5x5 39.501 10.118 7.18 0.205 0.049

MED(5) 5x5 35.963 9.909 44.64 AB 0.05

SICK(2) 3x2 0.234 0.121 0.21 0.189 0.045

SICK(4) 3x4 0.901 0.797 10.29 0.19 0.048

SICK(6) 3x6 5.394 3.9 TO 0.201 0.059

SICK(8) 3x8 17.18 14.025 TO 0.221 0.129

SICK(10) 3x10 82.179 43.709 TO 0.261 0.778

RINGS(1) 3x3 0.768 0.14 0.67 0.198 0.045

RINGS(2) 7x9 1386.299 TO TO 0.206 0.057

RINGS(3) 11x27 TO TO TO 0.391 0.207

RINGS(4) 15x64 TO TO TO 3.054 3.168

DOMS(1) 3x1 0.117 0.203 0.11 0.08 0.043

DOMS(2) 5x4 0.306 0.325 48.82 0.183 0.048

DOMS(3) 7x8 3.646 53.91 TO 0.19 0.057

DOMS(4) 9x16 87.639 TO TO 0.248 0.101

DOMS(5) 11x32 TO TO TO 0.687 0.486

The BMTC domain turns out to be hard for DLVK, CMBP, and SGP. None of

them were able to solve the BMTC(8, 4) within the time limit. Although ascp
s was

able to solve this instance, it could not solve the last instance. ascp
c on the contrary

can solve these instances very quickly, less than two seconds for each problem.

In the BTUC and BMTUC domains, although not competitive with ascp
c,

CMBP outperforms both DLVK and SGP. For example, CMBP took less than 12
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seconds to solve the largest instance in the BTUC domain, while ascp
s, DLVK, and

SGP indicated a timeout. ascp
s is competitive with DLVK and much better than SGP.

Its performance is worse than CMBP in these domains however.

The RING domain is really hard for the planners except CFF and KACMBP.

CFF and KACMBP took just a few minutes to solve the largest problem; however,

KACMBP seems to scale up better than CFF on this domain. None of the other

planners could solve the last problem. Among the others, CMBP is the best, followed

by ascp
c. CMBP took around 14 minutes to solve RING(8) while ascp

c took more

than 20 minutes. ascp
s is outperformed by both DLVK and SGP.

In the last domain, DOM, again, CMBP outperforms ascp, DLVK, and SGP. The

solving time of ascp for the last problem is around 2 minutes, while that for CMBP

is just less than 10 seconds. DLVK and SGP were able to solve the first three instances

of this domain only. It is worth noting here that the not-very-good performance of

CFF and KACMBP on this domain is because that this domain is in nature very

rich in static causal laws, a feature that is not supported by CFF and KACMBP.

Therefore, to encode the domain in CFF and KACMBP, we had to compile away

static causal laws.

The performance of ascp in the conditional benchmarks is not as good as in

the conformant benchmarks, compared with other testing planners. As can be seen

in Table 3, it was outperformed by both POND and MBP in the benchmarks,

except in the last two problems of the BTS3 domain or in the last three of the

BTS4, where MBP had a problem with segmentation fault or memory excess, or

in MED(5) problem where POND stopped abnormally. Both POND and MBP did

very good at testing domains. POND took just a few seconds to solve each instance

in the testing domains. ascp is also not competitive with SGP in small instances of

the first five domains (BTS1-MED). However, when scaling up to larger problems,

ascp
c seems to be better than SGP. In the last three domains (SICK , RINGS , and

DOMS), SGP is outperformed by both ascp
c and ascp

s.

6 Conclusion and future work

In this paper, we define an approximation for action theories with static causal laws

and sensing actions. We prove that the newly developed approximation is sound

with respect to the possible world semantics and is deterministic when non-sensing

actions are executed. We also show that the approximation reduces the complexity

of the conditional planning problem.

We use the approximation to develop an answer set programming based con-

ditional planner, called ascp. ascp differs from previously developed model-based

planners for domains with incomplete initial state (Bonet and Geffner 2000; Cimatti

and Roveri 1999; Eiter et al. 2003; Smith and Weld 1998), in that it is capable

of dealing with sensing actions and generating both conditional and conformant

plans. We prove the correctness of ascp by showing that plans generated by ascp

are solutions of the encoded planning problem instances. Furthermore, we prove

that ascp will generate a solution to P if it has a solution with respect to the
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given approximation. We also discuss the use of ascp in reasoning about effects of

conditional plans.

We compare ascp with several planners. These results provide evidence for the

usefulness of answer set planning in dealing with sensing actions and incomplete

information. Our experiments also show that there are situations in which ascp does

not work as well as other state-of-the-art planners. In the future, we would like to

investigate methods such as the use of domain knowledge to speed up the planning

process (Son et al. 2005a).
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Appendix A: Proofs related to the 0-approximation

This appendix contains the proofs for the propositions and theorems given in the

paper. As stated, we assume that the body of each static law (4) is not an empty set

and G �= ∅ for every planning problem (D,I,G).

We begin with a lemma about the operator ClD that will be used in these proofs.

We need the following definition. Given a domain description D, for a set of literals

σ, let

Γ(σ) = σ ∪ {l | ∃if(l, ϕ) ∈ D such that ϕ ⊆ σ}.
Let Γ0(σ) = Γ(σ) and Γi+1(σ) = Γ(Γi(σ)) for i � 0. Since, by the definition of Γ, for

any set of literals σ′ we have σ′ ⊆ Γ(σ′), the sequence 〈Γi(σ)〉∞i=0 is monotonic with

respect to the set inclusion operation. In addition, 〈Γi(σ)〉∞i=0 is bounded by the set of

fluent literals. Thus, there exists σlimit such that σlimitD =
⋃∞
i=0 Γi(σ). Furthermore,

σlimitD is unique and satisfies all static causal laws in D.

Lemma 1

For any set of literals σ, we have σlimitD = ClD(σ).

Proof

By induction we can easily show that Γi(σ) ⊆ ClD(σ) for all i � 0. Hence, we have

σlimitD ⊆ ClD(σ)

Furthermore, from the construction of Γi(σ), it follows that σlimit satisfies all static

causal laws in D. Because of the minimality property of ClD(σ), we have

ClD(σ) ⊆ σlimitD

Accordingly, we have

σlimitD = ClD(σ)

�
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The following corollary follows immediately from the above lemma.

Corollary 6.1

For two sets of literals σ ⊆ σ′, ClD(σ) ⊆ ClD(σ′).

For an action a and a state s, let e(a, s) = ClD(E(a, s)). We have the following

lemma:

Lemma 2

Let a be an action and s, s′ be states. Then, we have

ClD(E(a, s) ∪ (s ∩ s′)) = ClD(e(a, s) ∪ (s ∩ s′))

Proof

Let γ = E(a, s)∪ (s∩ s′) and γ′ = e(a, s)∪ (s∩ s′). As γ ⊆ γ′, it follows from Corollary

6.1 that to prove this lemma, it suffices to prove that

ClD(γ′) ⊆ ClD(γ)

It is easy to see that

γ′ = ClD(E(a, s)) ∪ (s ∩ s′) ⊆ ClD(E(a, s) ∪ (s ∩ s′)) = ClD(γ)

Therefore, by Corollary 6.1, we have

ClD(γ′) ⊆ ClD(ClD(γ)) = ClD(γ)

Proof done. �

Proof of Proposition 1

Lemma 3

For every state s′ ∈ RescD(a, s), we have

s′ \ (e(a, s) ∪ (s ∩ s′)) ⊆ pc(a, δ)

Proof

Let σ denote e(a, s) ∪ (s ∩ s′). By Corollary 6.1, since e(a, δ) ⊆ e(a, s) ⊆ σ, we have

ClD(e(a, δ)) ⊆ ClD(σ) = s′ (46)

We now show that, for every i � 1,

Γi(σ) \ Γi−1(σ) ⊆ pci(a, δ) (47)

by induction on i.

1. Base case: i = 1. Let l be a literal in Γ1(σ) \ Γ0(σ). We need to prove that

l ∈ pc1(a, δ).
By the definition of Γ, it follows that

l �∈ Γ0(σ) = σ (48)

l ∈ Γ1(σ) ⊆ s′ (49)
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and, in addition, there exists a static causal law

if(l, ϕ)

in D such that

ϕ ⊆ Γ0(σ) = σ (50)

By (48), we have l �∈ (s ∩ s′). By (49), we have l ∈ s′. Accordingly, we have

l �∈ s. On the other hand, because δ ⊆ s, we have

l �∈ δ (51)

It follows from (50) that ϕ ⊆ s′ since σ ⊆ s′. Because of the completeness of

s′, we have ¬ϕ ∩ s′ = ∅. On the other hand, by (46), we have ClD(e(a, δ)) ⊆ s′.
As a result, we have

¬ϕ ∩ ClD(e(a, δ)) = ∅ (52)

We now show that ϕ �⊆ s. Suppose otherwise, that is, ϕ ⊆ s. This implies that

l ∈ s. By (49), it follows that l ∈ (s∩ s′) ⊆ σ and this is a contradiction to (48).

Thus, ϕ �⊆ s.
On the other hand, we know that ϕ ⊆ σ = e(a, s) ∪ (s ∩ s′) and thus we have

ϕ ∩ (e(a, s) \ s) �= ∅. In addition, it is easy to see that e(a, s) \ s ⊆ e(a, s) \ δ ⊆
pc0(a, δ). Therefore, we have

ϕ ∩ pc0(a, δ) �= ∅ (53)

From (51) – (53), and by the definition of pc1(a, δ), we can conclude that

l ∈ pc1(a, δ). The base case is thus true.

2. Inductive Step: Assume that (47) is true for all i � k. We need to prove that

it is true for i = k + 1. Let l be a literal in Γk+1(σ) \ Γk(σ). We will show that

l ∈ pck+1(a, δ).

By the definition of Γ, there exists a static causal law

if(l, ϕ)

in D such that

ϕ ⊆ Γk(σ) ⊆ s′ (54)

Because ϕ ⊂ s′, we have ¬ϕ ∩ s′ = ∅. In addition, by (46), ClD(e(a, δ)) is a

subset of s′. A a result, we have

¬ϕ ∩ ClD(e(a, δ)) = ∅ (55)

It is easy to see that ϕ �⊆ Γk−1(σ) for if otherwise then, by the definition of

Γ, l must be in Γk(σ), which is impossible. In other words, there exists l′ ∈ ϕ
such that l′ �∈ Γk−1(σ) but l′ ∈ Γk(σ). By the inductive hypothesis, we have

l′ ∈ pck(a, δ), which implies that

ϕ ∩ pck(a, δ) �= ∅ (56)
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Because l �∈ Γk(σ), we have l �∈ σ. As a result, l �∈ (s ∩ s′). On the other hand,

since l ∈ Γk+1(σ) ⊆ s′, it follows that l �∈ s. Thus, we have

l �∈ δ (57)

From (55) – (57), and by the definition of pck+1(a, δ), it follows that l ∈
pck+1(a, δ). So the inductive step is proven.

As a result, it is always the case that (47) holds. Hence, we have

Γi(σ) \ σ ⊆
i⋃

j=0

(pcj(a, δ)) = pci(a, δ)

and thus,
∞⋃
i=0

(Γi(σ) \ σ) ⊆
∞⋃
i=0

pci(a, δ)

Accordingly, by Lemma (1) and by the definition of pc(a, δ), we have

(s′ \ σ) ⊆ pc(a, δ).

The lemma is thus true. �

We now prove Proposition 1. Let

γ = e(a, δ) ∪ (δ \ ¬pc(a, δ)) δ′ = ClD(γ)

Let s′ be some state in RescD(a, s). Such an s′ exists because D is consistent. By

Lemma 2 and by Definition 2, we have

s′ = ClD(σ) (58)

where

σ = e(a, s) ∪ (s ∩ s′)
To prove Proposition 1, it suffices to prove that δ′ ⊆ s′. But first of all, let us

prove, by induction, the following

Γi(γ) ⊆ s′ (59)

for every integer i � 0.

1. Base Case: i = 0. Assume that l ∈ Γ0(γ) = γ. We need to show that l ∈ s′.
There are two possibilities for l ∈ γ.
a) l ∈ e(a, δ). It is easy to see that l ∈ s′ because

e(a, δ) ⊆ e(a, s) ⊆ σ ⊆ ClD(σ) = s′.

b) l �∈ e(a, δ), l ∈ δ, and ¬l �∈ pc(a, δ). Since δ ⊆ s, we have l ∈ s. Because of

the completeness of s, it follows that ¬l �∈ s. Accordingly, we have

¬l �∈ (s ∩ s′) (60)

On the other hand, because ¬l �∈ pc(a, δ), ¬l �∈ s, and (e(a, s) \ s) ⊆
pc0(a, δ) ⊆ pc(a, δ), we have

¬l �∈ e(a, s) (61)
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From (60) and (61), it follows that ¬l �∈ σ. In addition, since ¬l �∈ pc(a, δ),
by Lemma 3, we have ¬l �∈ s′ \ σ. Accordingly, we have ¬l �∈ s′. Because s′

is complete, we can conclude that l ∈ s′.
2. Inductive Step: Assume that (59) is true for all i � k. We need to show that

Γk+1(γ) ⊆ s′. Let l be a literal in Γk+1(γ). By the definition of Γk+1(γ), there

are two possibilities for l:

a) l ∈ Γk(γ). Clearly, in this case, we have l ∈ s′.
b) there exists a static causal law

if(l, ϕ)

in D such that ϕ ⊆ Γk(γ).

By the inductive hypothesis, we have ϕ ⊆ s′. Hence, l must hold in s′.

Therefore, in both cases, we have l ∈ s′. This implies that Γk+1(γ) ⊆ s′.

As a result, (59) always holds. By Lemma 1, we have

δ′ =

∞⋃
i=0

Γi(γ) ⊆ s′

Since s′ is a state, δ′ is consistent. Thus, by the definition of the Res-function, we

have

ResD(a, δ) = {δ′}
Furthermore, δ′ ⊆ s′ for every s′ ∈ RescD(a, s).

The proposition is proven.

Proof of Proposition 2

Since δ is valid, there exists a state s such that δ ⊆ s.
On the other hand, we assume that in every state of the world, exactly one literal

in θ holds, there exists a literal g ∈ θ such that g holds in s and for all g′ ∈ θ \ {g},
g′ does not hold in s.

Accordingly, we have δ ∪ {g} ⊆ s. By Corollary 6.1, we have δ′ = ClD(δ ∪ {g}) ⊆
ClD(s) = s. Hence, δ′ is consistent. By the definition of the Res−function, we have

δ′ ∈ ResD(a, δ). Since δ′ ⊆ s, δ′ is a valid a-state.

The proposition is thus true.

Proof of Proposition 3

Let us prove this proposition by using structural induction on p.

1. p = []. Trivial.

2. p = [a; q], where q is a conditional plan and a is a non-sensing action.

Assume that Proposition 3 is true for q. We need to prove that it is also true

for p.

Suppose Φ̂(p, δ) �= ⊥. Clearly we have Φ(a, δ) �= ⊥.
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Therefore, we have Φ(a, δ) = ResD(a, δ). On the other hand, since δ is a valid

a-state, it follows from Proposition 1 that ResD(a, δ) = {δ′} for some valid

a-state δ′.

As a result, we have Φ̂(q, δ′) contains at least one valid a-state. Hence, Φ̂(p, δ) �=
⊥ contains at least one valid a-state.

3. p = [a; cases({gj → pj}nj=1)], where a is a sensing action that senses g1, . . . , gn.

Assume that Proposition 3 is true for pj ’s. We need to prove that it is also true

for p.

Because Φ̂(p, δ) �= ⊥, we have Φ(a, δ) �= ⊥. By the definition of the Φ-function,

we have Φ(a, δ) = ResD(a, δ). As δ is valid, by Proposition 2, ResD(a, δ)

contains at least one valid a-state δ′.

By the definition of the Res−function for sensing actions, we know that

δ′ = ClD(δ ∪ {gk}) for some k. This implies that gk holds in δ′.

By the inductive hypothesis, we have Φ̂(pk, δ
′) contains at least one valid

a-state.

By the definition of the Φ̂-function, we have Φ̂(pk, δ
′) ⊆ Φ̂(p, δ). Thus, Φ(p, δ)

contains at least one valid a-state.

Proof of Proposition 4

Let n denote the size of D. Because of Lemma 1, we can conclude that for any set

of literals σ, computing ClD(σ) can be done in polynomial time in n.

Observe that for a non-sensing action a and an a-state δ, computing e(a, δ) and

pc(a, δ) can be done in polynomial time in n. Thus, computing Φ(a, δ) can be done

in polynomial time in n.

Likewise, computing Φ(a, δ) for a sensing action a can also be done in polynomial

time in n.

Hence, Proposition 4 holds.

Proof of Theorem 1

The proof is similar to the proof of Theorem 3 in Baral et al. (2000a) which

states that the conditional planning problem with respect to the 0-approximation

in Son and Baral (2001) is NP-complete. Membership follows from Corollary 2.1.

Hardness follows from the fact that the approximation proposed in this paper

coincides with the 0-approximation in Son and Baral (2001), i.e, the conditional

planning problem considered in this paper coincides with the planning problem

with limited-sensing in Baral et al. (2000a) which is NP-complete. By the restriction

principle, we conclude that the problem considered in this paper is also NP-complete.

Appendix B: Proofs related to π

This section contain proofs related to the correctness of π. Before we present the

proofs, let us introduce some notations that will be used throughout the rest of the

appendix. Given a program Π, by lit(Π) we mean the set of atoms in Π. If Z is a
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splitting set for Π and Σ is a set of atoms then by bZ (Π) and eZ (Π \ bZ (Π),Σ), we

mean the bottom part of Π w.r.t. Z and the evaluation of the top part w.r.t. (Z,Σ)

(see Lifschitz and Turner (1994) for more information about these notions).

Lemma 4

1. Let Π be a logic program. Suppose Π can be divided into two disjoint

subprograms Π1 and Π2, i.e., Π = Π1 ∪Π2 and lit(Π1)∩ lit(Π2) = ∅. Then S is

an answer set for Π if and only if there exist two sets S1 and S2 of atoms such

that S = S1 ∪ S2 and S1 and S2 are answer sets for Π1 and Π2 respectively.

2. The result in Item 1 can be generalized to n disjoint subprograms, where n is

an arbitrary integer.

Proof

The first item can easily proved by using the splitting set Z = lit(Π1). The second

item immediately follows from this result. �

Proof of Theorem 2

Suppose we are given a planning problem instance P = (D,I,G) and πh,w(P),

where h � 1 and w � 1 are some integers, returns an answer set S . The proof

is primarily based on the splitting set and splitting sequence theorems described

in (Lifschitz and Turner 1994). It is organized as follows. We first prove a lemma

related to the closure of a set of literals (Lemma 5). Together with Lemma 4, this

lemma is used to prove some properties of πh,w(P) (Lemmas 6, 7 & 8). Based

on these results, we prove the correctness of πh,w(P) in implementing the Φ and

Φ̂ functions (Lemma 9 & Lemma 10). Theorem 2 can be derived directly from

Lemma 10.

Recall that we have made certain assumptions for action theories given to ascp:

(a) for every k-proposition determines(a, η), η contains at least two elements; and

(b) for every static causal law if(f, φ), φ is not an empty set.

The following lemma shows a code fragment that correctly encodes the closure

of a set of literals.

Lemma 5

Let i and k be two integers greater than 0, and x be a 3-ary predicate. For any set

σ of literals, the following program

x(l, i, k)← (l ∈ σ)

x(l, i, k)← x(ϕ, i, k) (if(l, ϕ) ∈ D)

has the unique answer set {x(l, i, k) | l ∈ ClD(σ)}.

Proof

By the definition of a model of a positive program, it is easy to see that the above

program has the unique answer set {x(l, i, k) | l ∈ σlimitD } = {x(l, i, k) | l ∈ ClD(σ)}
(see Lemma 1). �

Before showing some lemmas about the properties of πh,w(P), let us introduce

some notions and definitions that will be used throughout the rest of this section.
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We first define some sets of atoms which will frequently be used in the proofs of

Lemmas 6 – 10 and Theorem 2. Then we divide the program πh,w(P) into small parts

to simplify the proofs. In particular, πh,w(P) is divided into two programs π∗h,w(P)

and πch,w(P). The former consists of normal logic program rules while the latter

consists of constraints in πh,w(P). Then we use the splitting set theorem to remove

from π∗h,w(P) auxiliary atoms such as fluent(. . .), literal(. . .), time(. . .), path(. . .), etc.

The resulting program, denoted by π0, consists of “main” atoms only. We then

use the splitting sequence theorem to further split π0 into a set of programs πi’s.

Intuitively, each πi corresponds to a “cut” of π0 at time point i. Finally, each πi is

divided into disjoint subprograms πki ’s, each of which, intuitively, is a “cut” of πi at

a specific path.

For 1 � i � h+ 1 and 1 � k � w, let Ai,k be the set of all the atoms of the form

occ(a, i, k), poss(a, i, k), used(i, k), goal(i, k), holds(l, i, k), br(g, i, k, k′) (k′ � k), e(l, i, k),

pc(l, i, k), i.e.,

Ai,k = {occ(a, i, k), poss(a, i, k) | a ∈ A} ∪
{holds(l, i, k), e(l, i, k), pc(l, i, k) | l is a literal} ∪
{br(g, i, k, k′) | g is a sensed-literal, k � k′ � w} ∪
{used(i, k), goal(i, k)} (62)

and let

Ai =

w⋃
k=1

Ai,k, A =

h+1⋃
i=1

Ai (63)

For a set of atoms Σ ⊆ A and a set of predicate symbols X, by ΣX we denote

the set of atoms in Σ whose predicate symbols are in X and by δi,k(Σ), we mean

{l | holds(l, i, k) ∈ Σ}.
Observe that πh,w(P) can be divided into two parts (1) π∗h,w(P) consisting of

normal logic program rules, and (2) πch,w(P) consisting of constraints. Since S is an

answer set for πh,w(P)11, S is also an answer set for π∗h,w(P) and does not violate

any constraint in πch,w(P).

Let V be the set of atoms in πh,w(P) whose parameter list does not contain either

the time or path variable. Specifically, V is the following set of atoms

{fluent(f), literal(f), literal(¬f), contrary(f,¬f), contrary(¬f, f) | f ∈ F} ∪
{sensed(g) | ∃determines(a, θ) ∈ D.g ∈ θ} ∪ {action(a) | a ∈ A} ∪

{time(t) | t ∈ {1..h}} ∪ {time1(t) | t ∈ {1..h+ 1}} ∪ {path(p) | p ∈ {1..w}} (64)

It is easy to see that V is a splitting set for π∗h,w(P). Furthermore, the bottom part

bV (π∗h,w(P)) is a positive program and has only one answer set X0 = V . The partial

evaluation of the top part of π∗h,w(P) with respect to X0,

π0 = eV (π∗h,w(P) \ bV (π∗h,w(P)), X0),

11 Recall that at at the beginning of this section, we state that πh,w(P) returns S as an answer set.
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is the following set of rules (the condition for each rule follows that rule; and, by

default t and p are in ranges 1 . . . h and 1 . . . w unless otherwise specified):

holds(l, 1, 1) ← (65)

(initially(l) ∈ I)

poss(a, t, p) ← holds(ψ, t, p) (66)

(executable(a, ψ) ∈ D)

e(l, t, p) ← occ(a, t, p), holds(φ, t, p) (67)

(causes(a, l, φ) ∈ D)

pc(l, t, p) ← occ(a, t, p), not holds(l, t, p), not holds(φ, t, p) (68)

(causes(a, l, φ) ∈ D)

br(g, t, p, p) | . . .
| br(g, t, p, w) ← occ(a, t, p) (69)

(determines(a, θ) ∈ D, g ∈ θ)
pc(l, t, p) ← not holds(l, t, p), pc(l′, t, p), not e(¬ϕ, t, p) (70)

(if(l, ϕ) ∈ D, l′ ∈ ϕ)

e(l, t, p) ← e(ϕ, t, p) (71)

(if(l, ϕ) ∈ D)

holds(l, t, p) ← holds(ϕ, t, p) (72)

(if(l, ϕ) ∈ D, 1 � t � h+ 1)

goal(t, p) ← holds(G, t, p) (73)

(1 � t � h+ 1)

goal(t, p) ← holds(f, t, p), holds(¬f, t, p) (74)

(1 � t � h+ 1)

holds(l, t+1, p) ← e(l, t, p) (75)

holds(l, t+1, p) ← h(l, t, p), not pc(¬l, t, p) (76)

used(t+1, p) ← br(g, t, p1, p) (77)

(p1 < p)

holds(g, t+1, p) ← br(g, t, p1, p) (78)

(p1 � p)

holds(l, t+1, p) ← br(g, t, p1, p), holds(l, t, p1) (79)

(p1 < p)

occ(a1, t, p) | . . .
occ(am, t, p) ← used(t, p), not goal(t, p) (80)

used(1, 1) ← (81)

used(t+1, p) ← used(t, p) (82)
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And πch,w(P) is the following collection of constraints

← occ(a, t, p), not br(θ, t, p, p) (83)

(determines(a, θ) ∈ D)

← occ(a, t, p), br(g, t, p, p1), br(g, t, p, p2) (84)

(determines(a, θ) ∈ D, g ∈ θ, p � p1 < p2)

← occ(a, t, p), holds(g, t, p) (85)

(determines(a, θ) ∈ D, g ∈ θ)
← used(h+1, p), not goal(h+1, p) (86)

← br(g1, t, p1, p), br(g2, t, p2, p) (87)

(p1 < p2 < p)

← br(g1, t, p1, p), br(g2, t, p1, p) (88)

(g1 �= g2, p1 � p)

← br(g, t, p1, p), used(t, p) (89)

(p1 < p)

← used(t, p), not goal(t, p), occ(ai, t, p), occ(aj , t, p) (90)

(1 � i < j � m)

← occ(a, t, p), not poss(a, t, p) (91)

Note that choice rules of the form

1{L1, . . . , Ln}1← Body

have been translated into

L1 | . . . | Ln ← Body

and

← Body, Li, Lj (1 � i < j � n)

By the splitting set theorem, there exists an answer set S0 for π0 such that

S = S0 ∪ X0. Let Ui be the set of atoms in π0 whose time parameter is less than or

equal to i, i.e.,

Ui =

i⋃
j=1

Aj (92)

It is easy to see that the sequence 〈Ui〉h+1
i=1 is a splitting sequence for π0. By the

splitting sequence theorem, since S0 is an answer set for π0, there must be a sequence

of sets of literals 〈Xi〉h+1
i=1 such that Xi ⊆ Ui \Ui−1, and

• S0 =
⋃h+1
i=1 Xi

• X1 is an answer set for

π1 = bU1
(π0) (93)

• for every 1 < i � h+ 1, Xi is an answer set for

πi = eUi
(bUi

(π0) \ bUi−1
(π0),

⋃
1�t�i−1

Xt) (94)
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Given a set of atoms Σ, consider rules of the following forms:

holds(l, 1, 1) ← (95)

(initially(l) ∈ I)

poss(a, t, p) ← holds(ψ, t, p) (96)

(executable(a, ψ) ∈ D)

e(l, t, p) ← occ(a, t, p), holds(φ, t, p) (97)

(causes(a, l, φ) ∈ D)

pc(l, t, p) ← occ(a, t, p), not holds(l, t, p),

not holds(¬φ, t, p) (98)

(causes(a, l, φ) ∈ D)

br(g, t, k, p) | . . .
br(g, t, k, w) ← occ(a, t, p) (99)

(determines(a, θ) ∈ D, g ∈ θ)
pc(l, t, p) ← not holds(l, t, p), pc(l′, t, p), not e(¬ϕ, t, p) (100)

(if(l, ϕ) ∈ D, l′ ∈ ϕ)

e(l, t, p) ← e(ϕ, t, p) (101)

(if(l, ϕ) ∈ D)

holds(l, t, p) ← holds(ϕ, t, p) (102)

(if(l, ϕ) ∈ D)

goal(t, p) ← holds(G, t, p) (103)

goal(t, p) ← holds(f, t, p), holds(¬f, t, p) (104)

holds(l, t, p) ← (105)

(e(l, t−1, p) ∈ Σ)

holds(l, t, p) ← (106)

(holds(l, t−1, p) ∈ Σ, pc(¬l, t−1, p) �∈ Σ)

used(t, p) ← (107)

(∃〈g, p′〉.p′ < p ∧ br(g, t−1, p′, p) ∈ Σ)

holds(g, t, p) ← (108)

(∃〈g, p′〉.p′ � p ∧ br(g, t−1, p′, p) ∈ Σ)

holds(l, t, p) ← (109)

∃〈g, p′〉.p′ < p ∧ br(g, t−1, p′, p) ∈ Σ ∧
holds(l, t−1, p′) ∈ Σ)

occ(a1, t, p) | . . .
| occ(am, t, p) ← used(t, p), not goal(t, p) (110)

used(1, 1) ← (111)

used(t, p) ←
(used(t−1, p) ∈ Σ) (112)
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Then for each i ∈ {1, . . . , h+ 1}, πi can be divided into w disjoint subprograms πki ,

1 � k � w, where πki is defined as follows

πki =

⎧⎪⎪⎨
⎪⎪⎩
{(95)− (104), (110)− (111) | t = 1, p = 1} if i = 1, k = 1

{(96)− (104), (110) | t = 1, p = k} if i = 1, k > 1

{(96)− (110), (112) | t = i, p = k,Σ = Xi−1} if 1 < i � h

{(102)− (109), (112) | t = h+ 1, p = k,Σ = Xh} otherwise

(113)

Let Xi,k denote Xi ∩Ai,k . From Lemma 4, it follows that Xi,k is an answer set for πki .

Hence, we have

δi,k(S) = δi,k(S0) = δi,k(Xi) = δi,k(Xi,k)

Due to this fact, from now on, we will use δi,k to refer to either δi,k(S), δi,k(S0),

δi,k(Xi), or δi,k(Xi,k).

We have the following lemma

Lemma 6

For 1 � i � h+ 1 and 1 � k � w,

1. if used(i, k) �∈ S then S does not contain any atoms of the forms holds(l, i, k),

e(l, i, k), br(g, i, k, k);

2. if used(h+ 1, k) ∈ S and δh+1,k is consistent then

δh+1,k |= G.

Proof

1. We will use induction on i to prove this item.

a. Base case: i = 1. Let k be an integer such that used(1, k) �∈ S . Clearly we

have k > 1. On the other hand, it is easy to see that (by using the splitting

set Z = A
{holds,e,br,occ,goal,used}
1,k ) if k > 1 then S does not contain atoms of the

forms holds(l, 1, k), e(l, 1, k), and br(g, 1, k, k). Thus, the base case is true.

b. Inductive step: Assume that Item 1 is true for i � j−1, where j > 1. We

will prove that it is also true for i = j. Let k be an integer such that

used(j, k) �∈ S .

Clearly, to prove Item 1 we only need to prove that atoms of the forms

e(l, j, k), holds(l, j, k), br(g, j, k, k) do not belong to Xj,k . Consider the

program πkj (see (113)). We know that Xj,k is an answer set for πkj .

Because of rule (112), we have used(j−1, k) �∈ Xj−1. From (107), it follows

that br(g, j−1, k′, k) �∈ Xj−1 for every pair 〈g, k′〉 such that k′ < k. In

addition, by the inductive hypothesis, we have that for any l and g,

e(l, j−1, k), holds(l, j−1, k), and br(g, j−1, k, k) are not in Xj−1. As a result,

rules (105)-(109) do not exist in πkj . If we split πkj by the set Z =

A
{holds,e,br,occ,used,goal}
j,k then bZ (πkj ) is the set of rules of the forms

i. (97), (99), (101)–(103), (110) if i � h

ii. (102)–(103) if i = h+ 1
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It is not difficult to show that this program has the empty set as its only

answer set (recall that G �= ∅). From this, we can conclude the inductive

step.

2. It is obvious because of the rules (73), (74) and the constraint (86).

�

Lemma 7

For 1 � i � h and 1 � k � w, if occ(a, i, k) ∈ S then a is executable in δi,k and there

is no b �= a such that occ(b, i, k) ∈ S .

Proof

From constraint (91), it follows that poss(a, i, k) ∈ S . Notice only rules of the form

(66) may have poss(a, i, k) as its head. Hence, there must be a proposition (2) in D
such that ψ holds in δi,k . This means a is executable in δi,k .

If there exists b �= a such that occ(b, i, k) ∈ S then constraint (90) could not be

satisfied. �

Lemma 8

for 1 � i � h and 1 � k � w

1. if occ(a, i, k) ∈ S and a is a non-sensing action then

a. e(l, i, k) ∈ S iff l ∈ e(a, δi,k)
b. pc(l, i, k) ∈ S iff l ∈ pc(a, δi,k)
c. ¬∃〈g, k′〉.br(g, i, k′, k) ∈ S

2. if occ(a, i, k) ∈ S and a is a sensing action a with occurring in a k-proposition

of the form (5) in D and θ = {g1, . . . , gn} then there exist n distinct integers

k1, . . . , kn greater than or equal to k such that

a. X
{br}
i,k = {br(gj , i, k, kj) | j ∈ {1, . . . , n}}

b. gj does not hold in δi,k ,

c. if kj > k then S does not contain any atoms of the form holds(l, i, kj)

3. if occ(a, i, k) �∈ S for every action a then

a. ∀l.pc(l, i, k) �∈ S ∧ e(l, i, k) �∈ S
b. ∀〈g, k′〉.br(g, i, k, k′) �∈ S

Proof

Let us split πki by the set Z1 = A
{used,goal,occ,holds,poss}
i,k . By the splitting set theorem,

Xi,k = M ∪ N where M is an answer set for bZ1
(πki ) and N is an answer set for

Π1 = eZ1
(πki \ bZ1

(πki ),M), which consists of the following rules

e(l, i, k) ← (114)

(occ(a, i, k) ∈M, causes(a, l, φ) ∈ D,
holds(φ, i, k) ⊆M)

pc(l, i, k) ← (115)

(occ(a, i, k) ∈M, holds(l, i, k) �∈M,

causes(a, l, φ) ∈ D, holds(¬φ, i, k) ∩M = ∅)
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br(g, i, k, k) | . . .
br(g, i, k, w) ← (116)

(occ(a, i, k) ∈M, determines(a, θ) ∈ D, g ∈ θ)
pc(l, i, k) ← pc(l′, i, k), not e(¬ϕ, i, k) (117)

(if(l, ϕ) ∈ D, holds(l, i, k) �∈M, l′ ∈ ϕ)

e(l, i, k) ← e(ϕ, i, k) (118)

(if(l, ϕ) ∈ D)

From the splitting set theorem, it follows that δi,k(M) = δi,k

1. Assume that occ(a, i, k) ∈ S and a is a non-sensing action. By Lemma 7, we

know that there exists no sensing action12 b such that occ(b, i, k) ∈ S . This

means that rules of form (116) does not exist. Therefore, Π1 can be rewritten

to

e(l, i, k) ←
(causes(a, l, φ) ∈ D, holds(φ, i, k) ⊆M)

pc(l, i, k) ←
(holds(l, i, k) �∈M, causes(a, l, φ) ∈ D,
holds(¬φ, i, k) ∩M = ∅)

pc(l, i, k) ← pc(l′, i, k), not e(¬ϕ, i, k)
(if(l, ϕ) ∈ D, holds(l, i, k) �∈M, l′ ∈ ϕ)

e(l, i, k) ← e(ϕ, i, k)

(if(l, ϕ) ∈ D)

If we continue splitting the above program using Z2 = A
{e}
i,k then by Lemma 5,

the bottom part has the only answer set

{e(l, i, k) | l ∈ e(a, δi,k)}

and the evaluation of the top part has the only answer set

{pc(l, i, k) | l ∈ pc(a, δi,k)}

Due to the fact that M does not contain any atoms of the form e(l, i, k) or

pc(l, i, k), we therefore can conclude Items (a) and (b).

We now show that ¬∃〈g, k′〉.br(g, i, k′, k) ∈ S . Suppose otherwise, i.e., there

exists g and k′ such that br(g, i, k′, k) ∈ S . Notice that only rule (80) with t = i

and p = k has occ(a, i, k) in its head. Hence, its body must be satisfied by S .

That implies used(i, k) ∈ S .

On the other hand, since only rules of the form (69) with p = k′ may have

br(g, i, k′, k) in its head, there exists a sensing action b such that occ(b, i, k′) ∈ S
and in addition, k′ � k. As the sets of non-sensing actions and sensing actions

12 Recall that the sets of non-sensing actions and sensing actions are disjoint from each other. Hence, a
itself is not a sensing action.

https://doi.org/10.1017/S1471068406002948 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068406002948


ASP with sensing actions, incomplete information, and static causal laws 427

are disjoint from each other, we have b �= a. From Lemma 7, it follows that

k′ < k.

Accordingly, we have used(i, k) ∈ S, br(g, i, k′, k) ∈ S and k′ < k. Constraint

(89) with t = i, p = k, and p1 = k′ is thus violated. Thus, Item (c) holds.

2. Assume that occ(a, i, k) ∈ S and a is a sensing action occurring in a k-

proposition of the form (5) in D withθ = {g1, . . . , gn}.
In this case, since rules of the forms (114) and (115) do not exist, Π1 is the

following set of rules

br(g1, i, k, k) | . . .
br(g1, i, k, w) ←

. . . . . . . . .

br(gn, i, k, k) | . . .
br(gn, i, k, w) ←

pc(l, i, k) ← pc(l′, i, k), not e(¬ϕ, i, k)
(if(l, ϕ) ∈ D, holds(l, i, k) �∈M, l′ ∈ ϕ)

e(l, i, k) ← e(ϕ, i, k)

(if(l, ϕ) ∈ D)

By further splitting the above program using the set A
{e,pc}
i,k , we will see that

the bottom part has the empty set as its only answer set (recall that we are

assuming that the body of each static law of the form (4) is not empty).

Therefore, the answer set for the above program is also the answer set for the

following program and vice versa.

br(g1, i, k, k) | . . .
br(g1, i, k, w) ←

. . . . . . . . .

br(gn, i, k, k) | . . .
br(gn, i, k, w) ←

Thus, there exist n integers k1, . . ., kn greater than or equal to k such that

N =

n⋃
j=1

{br(gj , i, k, kj)}

It is easy to see that X
{br}
i,k = N{br}. In addition, by constraints of the form

(88), kj ’s must be distinct. Thus, Items (a) is true.

Item (b) can be drawn from constraints of the form (85).

Assume kj > k. Because of constraints of the form (89), we have used(i, kj) �∈ S .

From Lemma 6, it follows that S does not contain any atoms of the form

holds(l, i, kj). Item (c) is thus true.

3. occ(a, i, k) �∈ S for every action a. In this case, Π1 is the following set of rules

pc(l, i, k) ← pc(l′, i, k), not e(¬ϕ, i, k)
(if(l, ϕ) ∈ D, holds(l, i, k) �∈M, l′ ∈ ϕ)
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e(l, i, k) ← e(ϕ, i, k)

(if(l, ϕ) ∈ D)

which has an empty set as its only answer set. Items (a)–(b) follow from this.

�

The following lemma shows that πh,w(P) correctly implements the transition function

Φ.

Lemma 9

For 1 � i � h and 1 � k � w

1. if there exists a non-sensing action a such that occ(a, i, k) ∈ S then

Φ(a, δi,k) =

{
∅ if δi+1,k is inconsistent

{δi+1,k} otherwise
;

2. if there exists a sensing action a occurring in a k-proposition of the form (5)

in D with θ = {g1, . . . , gn} such that occ(a, i, k) ∈ S then there exist n integers

{k1, . . . , kn} such that

Φ(a, δi,k) = {δi+1,kj | 1 � j � n, δi+1,kj is consistent},

and for each j, gj holds in δi+1,kj ;

3. if occ(a, i, k) �∈ S for every action a,

δi+1,k = δi,k.

Proof

1. Assume that there exists a non-sensing action a such that occ(a, i, k) ∈ Xi.

Observe that Z1 = A
{holds}
i+1,k is a splitting set for πki+1. Hence, by the splitting set

theorem, Xi+1,k = M ∪ N, where M ⊆ Z1 is an answer set for Π1 = bZ1
(πki+1)

and N is an answer set for Π2 = eZ1
(πki+1 \Π1,M).

Notice that by Lemma 8, rules (108)–(109) for t = i + 1, p = k do not exist.

Thus, Π1 is the following set of rules:

holds(l, i+1, k) ← holds(ϕ, i+1, k)

(if(l, ϕ) ∈ D)

holds(l, i+1, k) ←
(e(l, i, k) ∈ Xi)

holds(l, i+1, k) ←
(holds(l, i, k) ∈ Xi, pc(¬l, i, k) �∈ Xi)

Also by Lemma 8, the conditions for the second and third rules can be written

as (l ∈ e(a, δi,k)) and (l ∈ δi,k,¬l �∈ pc(a, δi,k)) respectively. Thus, by Lemma 5,

Π1 has the unique answer set

M = {holds(l, i+1, k) | l ∈ ClD(a, δi,k)}

https://doi.org/10.1017/S1471068406002948 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068406002948


ASP with sensing actions, incomplete information, and static causal laws 429

On the other hand, by Lemma 7, a is executable in δi,k . From the definition of

the ResD and Φ functions, it follows that

Φ(a, δi,k) =

{
∅ if δi+1,k is inconsistent

{δi+1,k} otherwise

2. Assume that there exists a sensing action a with a k-proposition of the form

(5) and θ = {g1, . . . , gn} such that occ(a, i, k) ∈ S .

By Lemma 8, for each j ∈ {1 . . . n}, there exists kj � k such that br(gj , i, k, kj) ∈
Xi. It is easy to see that Z2 = A

{holds}
i+1,kj

is a splitting set for π
kj
i+1. Considering

cases kj = k and kj > k in turn and observe that holds(l, i, kj) �∈ S if kj > k, we

will see that in both cases bZ2
(π
kj
i+1) is the following set of rules:

holds(l, i+1, kj) ← holds(ϕ, i+1, kj)

(if(l, ϕ) ∈ D)

holds(l, i+1, kj) ←
(holds(l, i, k) ∈ Xi)

holds(gj , i+1, kj) ←

By Lemma 5, the only answer set for the above program is

M = {holds(l, i+ 1, kj) | l ∈ ClD(δi,k ∪ {gj})}

On the other hand, by Lemma 7, a is executable in δi,k and by Lemma 8,

gj does not hold in δi,k . Thus, according to the definition of the transition

function, we have

Φ(a, δi,k) = {ClD(δi,k ∪ {gj}) | 1 � j � n, ClD(δi,k ∪ {gj}) is consistent}
Hence, we have

Φ(a, δi,k) = {δi+1,kj (M) | 1 � j � n, δi+1,kj (M) is consistent} =

{δi+1,kj | 1 � j � n, δi+1,kj is consistent}
and obviously, gj holds in δi+1,kj .

3. Assume that occ(a, i, k) �∈ S for every action a.

Similar to the first case, Z1 is a splitting set for πki+1. bZ1
(πki+1) is the following

set of rules:

holds(l, i+1, k) ← holds(ϕ, i+1, k)

(if(l, ϕ) ∈ D)

holds(l, i+1, k) ←
(holds(l, i, k) ∈ Xi)

Because that δi,k is an a-state (Lemma 6), by Lemma 5 the only answer set for

this program is

M = {holds(l, i+ 1, k) | l ∈ δi,k}
Thus, we have

δi+1,k = δi+1,k(M) = δi,k

�
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The following lemma shows that πh,w(P) correctly implements the extended transition

function.

Lemma 10

We have

1. δ1,1 is the initial a-state for P.

2. For every pair of integers 1 � i � h+1, 1 � k � w, if used(i, k) ∈ S then

a) pki (S) is a conditional plan

b) furthermore, if δi,k is consistent then for every δ ∈ Φ̂(pki (S), δi,k), δ |= G.

Proof

1. Z1 = A
{holds}
1,1 is a splitting set for π1

1 . The bottom part, bZ1
(π1

1), consists of the

following rules:

holds(l, 1, 1) ←
{initially(l) ∈ I}

holds(l, 1, 1) ← holds(ϕ, 1, 1)

{if(l, ϕ) ∈ D}

By Lemma 5, the only answer set for the above program is

M = {holds(l, 1, 1) | l ∈ δ1}

where δ1 is the initial a-state of P. Thus, δ1,1 = δ1,1(M) is the initial a-state of

P.

2. We now prove Item 2 by induction on parameter i.

a. Base case: i = h+1. Let k be an arbitrary integer between 1 and w such

that used(i, k) ∈ S . Clearly pki (S) = [] is a conditional plan.

Now suppose that δi,k is consistent. According to the definition of the

extended transition function, we have

Φ̂(pki (S), δi,k) = Φ̂([], δi,k) = {δi,k}

On the other hand, by Lemma 6, we have that δi,k |= G. Thus, Item 2 is

true for i = h+1.

b. Inductive step: Assume that Item 2 is true for all h + 1 � i > t. We will

show that it is true for i = t. Let k be an integer between 1 and w such

that used(t, k) ∈ S . Consider three possibilities:

i. occ(a, t, k) ∈ S for some non-sensing action a. By the definition of

pkt (S), we have pkt (S) = [a; pkt+1(S)]. In addition, by rule (82) we have

used(t+1, k) ∈ S . Thus, according to the inductive hypothesis, pkt+1(S) is

a conditional plan. Accordingly, pkt (S) is also a conditional plan.

Now suppose that δt,k is consistent. Consider two cases

– δt+1,k is consistent. We have

Φ̂(pkt (S), δt,k) = Φ̂([a; pkt+1(S)], δt,k) = Φ̂(pkt+1(S), δt+1,k)

(by Lemma 9 and by the definition of the extended transition

function).
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On the other hand, according to the inductive hypothesis, for

every δ in Φ̂(pkt+1(S), δt+1,k), δ |= G. Hence, the inductive step is

proven.

– δt+1,k is inconsistent. By Lemma 9, we have Φ̂(pkt (S), δt,k) = ∅.
Thus, the inductive step is proven.

ii. occ(a, t, k) ∈ S for some sensing action a with a k-proposition of the

form (5) and θ = {g1, . . . , gn}. By Lemma 8 there exist exactly n integers

k1, . . . , kn greater than k such that br(gj , t, k, kj) ∈ S for 1 � j � n. This

implies that used(t + 1, kj) ∈ S (see rules (77) and (82)). Thus, by the

definition of pkt (S), we have pkt (S) = [a; cases({gj → p
kj
i+1(S)}nj=1)]. On

the other hand, we know by the inductive hypothesis that p
kj
i+1(S) is a

conditional plan for 1 � j � n. As a result, pkt (S) is also a conditional

plan.

Suppose δi,k is consistent. Let J = {j | δt+1,kj is consistent}. By Lemma 9,

we have

Φ(a, δt,k) = {δt+1,kj | j ∈ J}
and gj holds in δt+1,kj for every 1 � j � n. Hence, by the definition of

Φ̂, we have

Φ̂(pkt (S), δt,k) =
⋃
j∈J

Φ̂(pkt+1(S), δt+1,kj )

According to the inductive hypothesis, for every δ ∈ Φ̂(pkt+1(S), δt+1,kj ),

where j ∈ J , we have δ |= G. This implies that for every δ ∈
Φ̂(pkt (S), δt,k), we have δ |= G.

iii. There is no action a such that occ(a, t, k) ∈ S . According to the definition

of pkt (S), pkt (S) = []. Hence, it is a conditional plan.

It is easy to see that goal(t, k) ∈ S , which means that either δt,k is

inconsistent or δt,k |= G (see rules (73), (74), and (80)). Now suppose

that δt,k is consistent. This implies that δt,k |= G. We have

Φ̂(pkt (S), δt,k) = Φ̂([], δt,k) = {δt,k}

Thus, the inductive step is proven.

�

Theorem 2 immediately follows from Lemma 10.

Proof of Proposition 5

First, we prove the following lemma.

Lemma 11

Let P = (D,I,G) be a planning problem instance, δ be an a-state and p be a plan.

If Φ̂(p, δ) |= G then Φ̂(reductδ(p), δ) |= G.
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Proof

Let us prove the lemma by structural induction on p.

1. p = [].

The proof is trivial since reductδ(p) = p = [].

2. Assume that p = [a; q], where q is a conditional plan and a is a non-sensing

action and the lemma is true for q.

Suppose Φ̂(p, δ) |= G. We need to show that Φ̂(reductδ(p), δ) |= G.

If δ |= G then

Φ̂(reductδ(p), δ) = Φ̂([], δ) = {δ} |= G
Now consider the case that δ �|= G.

Clearly, we have Φ(a, δ) �= ⊥. Therefore, Φ(a, δ) = {δ′} for some δ′. Hence, by

the definition of reduct, we have

reductδ(p) = a; reductδ′ (q)

Thus,

Φ̂(reductδ(p), δ) = Φ̂(reductδ′ (q), δ
′)

On the other hand, we have

Φ̂(p, δ) = Φ̂(q, δ′)

Because Φ̂(p, δ) |= G, we have

Φ̂(q, δ′) |= G

By inductive hypothesis, we have

Φ̂(reductδ′ (q), δ
′) |= G

Hence,

Φ̂(reductδ(p), δ) |= G
3. Assume that p = [a; cases({gj → pj}nj=1)], where a is a sensing action that

senses g1, . . . , gn, and the lemma for pj ’s.

Suppose Φ̂(p, δ) |= G. We need to show that Φ̂(reductδ(p), δ) |= G.

If δ |= G then

Φ̂(reductδ(p), δ) = Φ̂([], δ) = {δ} |= G
Now consider the case that δ �|= G. There are two possibilities.

a) there exists gk such that gk ∈ δ. By the definition of reduct, we have

reductδ(p) = reductδ(pk)

By the definition of the Φ̂-function, it is easy to see that

Φ̂(p, δ) = Φ̂(pk, δ)

Since Φ̂(p, δ) |= G, we have Φ̂(pk, δ) |= G. By the inductive hypothesis, we

have

Φ̂(reductδ(pk), δ) |= G

https://doi.org/10.1017/S1471068406002948 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068406002948


ASP with sensing actions, incomplete information, and static causal laws 433

Hence, we have

Φ̂(reductδ(p), δ) |= G
a) for every 1 � j � n, gj �∈ δ. By the definition of reduct, we have

reductδ(p) = a; cases({gj → qj}nj=1)

where

qj =

{
[] if ClD(δ ∪ {gj}) is inconsistent

reductClD(δ∪{gj})(pj) otherwise

For every 1 � j � n, let δj = ClD(δ ∪ {gj}). Let J = {j | δj is consistent}.
It is easy to see that

Φ̂(p, δ) =
⋃
j∈J

Φ(pj , δj)

because gj holds in δj but for every k �= j, gk does not hold in δj .

Because Φ̂(p, δ) |= G, we have

Φ(pj , δj) |= G

for every j ∈ J .
On the other hand, we have

qj =

{
[] if j �∈ J
reductδj (pj) otherwise

Thus,

Φ̂(reductδ(p), δ) =
⋃
j∈J

Φ(qj , δj) =
⋃
j∈J

Φ(reductδj (pj), δj)

By the inductive hypothesis, for every j ∈ J , as Φ(pj , δj) |= G, we have

Φ(reductδj (pj), δj) |= G. As a result, we have

Φ̂(reductδ(p), δ) |= G

�

We now prove Proposition 5. Let p be a solution to P. From the construction of

reduct, it is easy to see that reductδ(p) is unique.

By Lemma 11, we have that Φ̂(reductδ(p), δ) |= G. Thus, reductδ(p) is also a

solution to P.

So, we can conclude the proposition.

Proof of Theorem 3

The idea of the proof is as follows. Let q be reductδ(p), where δ is the initial a-state

of P, and let Tq be the labeled tree for q numbered according to the principles

described in Section 3. Let h and w denote the height and width of Tq respectively.

For 1 � i � h + 1, 1 � k � w, we define δi,k to be the a-state at node (i, k)13 of

13 That is, the node numbered with (i, k) in Tq .
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Tq if such a node exists and ⊥ otherwise. Based on Tq and δi,k , we construct the

set Yi,k of atoms that hold at node (i, k). Then we prove that the union of these

sets, denoted by S ′0, is an answer set for π0 (rules (65)-(82)) by showing that each

Yi,k is an answer set for a part of π0, denoted by π′ki . Furthermore, a set S ′ can be

constructed from S ′0 in such a way that it is an answer set for π∗h,w(P). Moreover, S ′

does not violate any constraints in πch,w (rules (83)-(91)). As such, it is an answer set

for πh,w(P). Moreover, q = p1
1(S
′).

Given the numbered tree Tq , by 〈a, i, k〉 we mean the node labeled with a and

numbered with (i, k) in Tq; by 〈g, i, k, k′〉 ∈ Tq we mean the link, whose label is g,

between the nodes (i, k) and (i+ 1, k′) in Tq .

For 1 � i � h+ 1, 1 � k � w, we define the a-state δi,k as follows.

i. if i = 1

δi,k =

{
ClD({l | initially(l) ∈ I}) if k = 1

⊥ if k > 1
(119)

ii. if i > 1

δi,k =

⎧⎪⎪⎨
⎪⎪⎩

ClD(e(a, δi−1,k) ∪ (δi−1,k \ pc(a, δi−1,k))) if 〈a, i−1, k〉 ∈ Tq for

a non-sensing action a

ClD(δi−1,k′ ∪ {g}) if 〈g, i−1, k′, k〉 ∈ Tq
δi−1,k otherwise

(120)

Note that given (i, k), there exists at most one action a such that 〈a, i−1, k〉 ∈ Tq ,
and furthermore, at most one pair 〈g, k′〉 such that 〈g, i−1, k′, k〉 ∈ Tq . In addition,

the conditions in Equation (120) do not overlap each other. Thus, δi,k is uniquely

defined for 1 � i � h+ 1 and 1 � k � w. In what follows, the undefined situation ⊥
can sometimes be thought of as ∅, depending the context in which it is used.

Let us construct the set Yi,k of atoms based on δi,k as follows.

1. used(1, 1) ∈ Y1,1

2. holds(l, i, k) ∈ Yi,k iif l ∈ δi,k
3. poss(a, i, k) ∈ Yi,k iif there exists a proposition of the form (2) s.t. ψ ⊆ δi,k
4. occ(a, i, k) ∈ Yi,k iif 〈a, i, k〉 ∈ Tq
5. br(g, i, k, k′) ∈ Yi,k iif 〈g, i, k, k′〉 ∈ Tq for some g, k′

6. e(l, i, k) ∈ Yi,k iif 〈a, i, k〉 ∈ Tq and l ∈ e(a, δi,k) for some non-sensing action a

7. pc(l, i, k) ∈ Yi,k iif 〈a, i, k〉 ∈ Tq and l ∈ pc(a, δi,k) for some non-sensing action a

8. For i > 1, used(i, k) ∈ Yi,k iif either

(a) used(i−1, k) ∈ Yi−1,k; or

(b) there exists 〈g, k′〉 s.t. 〈g, i−1, k′, k〉 ∈ Yi−1,k′

9. goal(i, k) ∈ Yi,k iff δi,k |= G or δi,k is inconsistent

10. Nothing else in Yi,k

Clearly, Yi,k ’s are uniquely defined. Furthermore, they are disjoint from each other.

Let

Yi =

w⋃
k=1

Yi,k and S ′0 =

h+1⋃
i=1

Yi
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Lemma 12

For 1 � i � h and 1 � k � w, let M = Y
{holds,poss,goal,used,occ}
i,k and let Π be the

following program:

e(l, i, k) ←
(occ(a, i, k) ∈M, causes(a, l, φ) ∈ D, holds(φ, i, k) ⊆M)

pc(l, i, k) ←
(occ(a, i, k) ∈M, causes(a, l, φ) ∈ D,
holds(l, i, k) �∈M, holds(¬φ, i, k) ∩M = ∅)

br(g, i, k, k) | . . .
br(g, i, k, w) ←

(occ(a, i, k) ∈M, determines(a, θ) ∈ D, g ∈ θ)
pc(l, i, k) ← pc(l′, i, k), not e(¬ϕ, i, k)

(if(l, ϕ) ∈ D, holds(l, i, k) �∈M, l′ ∈ ϕ)

e(l, i, k) ← e(ϕ, i, k)

(if(l, ϕ) ∈ D)

Then, N = Y
{e,pc,br}
i,k is an answer set for Π.

Proof

Given (i, k), there are three cases that may happen at node (i, k).

• there exists a non-sensing action a such that 〈a, i, k〉 ∈ Tq;
• there exists a sensing action a such that 〈a, i, k〉 ∈ Tq;
• 〈a, i, k〉 �∈ Tq for every action a

Let us consider each of those in turn.

1. there exists a non-sensing action a such that 〈a, i, k〉 ∈ Tq .
From the construction of Yi,k , we know that occ(a, i, k) ∈ M and there is no

b �= a such that occ(b, i, k) ∈ M. Furthermore, due to the fact that N does

not contain any atom of the form holds(l, i, k), we have holds(l, i, k) ∈ M iff

holds(l, i, k) ∈ Yi,k . That means holds(l, i, k) ∈M iff l ∈ δi,k .
Hence, Π can be rewritten to:

e(l, i, k) ←
(l ∈ e(a, δi,k))

pc(l, i, k) ←
(l ∈ pc0(a, δi,k))

pc(l, i, k) ← pc(l′, i, k), not e(¬ϕ, i, k)
(if(l, ϕ) ∈ D, l �∈ δi,k, l′ ∈ ϕ)

e(l, i, k) ← e(ϕ, i, k)

(if(l, ϕ) ∈ D)

https://doi.org/10.1017/S1471068406002948 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068406002948


436 P. H. Tu et al.

As have been seen in the proof of Theorem 2 (see the proof of Lemma 8,

Item 1), the only answer set for this program is {e(l, i, k) | l ∈ e(a, δi,k)} ∪
{pc(l, i, k) | l ∈ pc(a, δi,k)} = N.

2. there exists a sensing action a such that 〈a, i, k〉 ∈ Tq .
We have occ(a, i, k) ∈ M and there is no non-sensing action b such that

occ(b, i, k) ∈M. As a result, Π is

br(g, i, k, k) | . . .
br(g, i, k, w) ←

(occ(a, i, k) ∈M, determines(a, θ) ∈ D, g ∈ θ)
pc(l, i, k) ← pc(l′, i, k), not e(¬ϕ, i, k)

(if(l, ϕ) ∈ D, holds(l, i, k) �∈M, l′ ∈ ϕ)

e(l, i, k) ← e(ϕ, i, k)

(if(l, ϕ) ∈ D)

It is easy that an answer set for Π is also an answer set for

br(g, i, k, k) | . . .
br(g, i, k, w) ←

(occ(a, i, k) ∈M, determines(a, θ) ∈ D, g ∈ θ)

and vice versa. On the other hand,

N = Y
{e,pc,br}
i,k = {br(g, i, k, k′) | 〈g, i, k, k′〉 ∈ Tq}

is an answer set for the latter program. As a result, N is also an answer set

for Π.

3. 〈a, i, k〉 �∈ Tq for every action a.

In this case, the first three rules of Π do not exist because occ(a, i, k) �∈M for

every a. Thus, Π consists of the last two rules only. It is easy to see that it has

the empty set as its only answer set. On the other hand, from the construction

of Yi,k , we have Y
{e,pc,br}
i,k = ∅. Accordingly, Y

{e,pc,br}
i,k is an answer set for Π.

The proof is done. �

Lemma 13

For 1 � i � h + 1, 1 � k � w, Yi,k is an answer set for π′ki , where π′ki is defined in

the same way as πki except that we replace every occurrence of X in Equation (113)

by Y .

Proof

Let us consider in turn two cases i = 1 and i > 1.

1. i = 1. It is easy to see that the only answer set for π′k1, where k > 1, is

Y1,k = {poss(a, 1, k) | executable(a, ∅) ∈ D}

by using the splitting set A
{holds,occ,br,used,e,pc}
1,k (see (62) for the definition of Ai,k)

and observe that the bottom part has the empty set as its only answer set and

Y1,k is the only answer set for the evaluation of the top part.
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We now prove that Y1,1 is an answer set for π′11 which consists of the rules

of the forms (95)-(104), (110)-(111) where t = 1 and p = 1. If we use the set

Z1 = A
{holds,occ,poss,goal,used}
1,1 to split π′11 then bZ1

(π′11) is

{(95)− (96), (102)− (104), (110), (111) | t = 1, p = 1}

From the definition of Y1,1, we can easily show that M = Y
{holds,occ,poss,goal,used}
1,1

is an answer set for bZ1
(π′11). Furthermore, we have

δ1,1(M) = δ1,1(Y1,1) = δ1,1

The evaluation of the top part, Π1 = eZ1
(π′11 \ bZ1

(π′11),M), is the following set

of rules

e(l, 1, 1) ←
(occ(a, 1, 1) ∈M, causes(a, l, φ) ∈ D,
holds(φ, 1, 1) ⊆M)

pc(l, 1, 1) ←
(occ(a, 1, 1) ∈M, causes(a, l, φ) ∈ D,
holds(l, 1, 1) �∈M, holds(¬φ, 1, 1) ∩M = ∅)

br(g, 1, 1, k) | . . .
br(g, 1, 1, w) ←

(determines(a, θ) ∈ D, g ∈ θ, occ(a, 1, 1) ∈M)

pc(l, 1, 1) ← pc(l′, 1, 1), not e(¬ϕ, 1, 1)

(if(l, ϕ) ∈ D, l′ ∈ ϕ, holds(l, 1, 1) �∈M)

e(l, 1, 1) ← e(ϕ, 1, 1)

(if(l, ϕ) ∈ D)

By Lemma 12, N = Y
{e,pc,br}
1,1 is an answer set for Π1. As a result, Y1,1 = M∪N

is an answer set for π′11.
2. 1 < i � h+ 1.

Using the splitting set Z2 = A
{holds,occ,goal,used,poss}
i,k to split π′ki , we have that the

bottom part Π2 = bZ2
(π′ki ) consists of rules of the forms

• (96), (102)–(110), and (112) if i � h

• (102)–(109), and (112) if i = h+ 1

We now prove that M = Y
{holds,occ,goal,used,poss}
i,k is an answer set for Π2. Let us

further split Π2 by the set Z3 = A
{holds}
i,k . Then, the bottom part bZ3

(Π2) consists

of rules of the forms (102), (105)–(106), (108)–(109) only.

Consider three cases

a. there exists a non-sensing action a such that occ(a, i−1, k) ∈ Yi−1.

From the construction of Yi,k ’s, it is easy to see that there exists no 〈g, k′〉
such that br(g, i−1, k′, k) ∈ Yi−1. Thus, bZ3

(Π2) contains rules of the forms

(102), (105)–(106) only. On the other hand, we have

e(l, i−1, k) ∈ Yi−1 iff l ∈ e(a, δi−1,k)

pc(¬l, i−1, k) �∈ Yi−1 iff ¬l �∈ pc(a, δi−1,k)
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Hence, bZ3
(Π2) is the following collection of rules:

holds(l, i, k) ← holds(ϕ, i, k)

(if(l, ϕ) ∈ D)

holds(l, i, k) ←
(l ∈ e(a, δi−1,k))

holds(l, i, k) ←
(l ∈ δi−1,k ,¬l �∈ δi−1,k)

By Lemma 5, it has the only answer set

{holds(l, i, k) | l ∈ ClD(e(a, δi−1,k) ∪ (δi−1,k \ pc(a, δi−1,k)))} = Y
{holds}
i,k

b. ∃〈g, k′〉.br(g, i−1, k′, k) ∈ Yi−1.

From the construction of Y ′i,ks, such 〈g, k′〉 is unique and in addition k′ � k.

Thus, bZ3
(Π2) is

holds(l, i, k) ← holds(ϕ, i, k)

(if(l, ϕ) ∈ D)

holds(l, i, k) ←
((l ∈ δi−1,k) ∨ (k′ < k ∧ l ∈ δi−1,k′ ))

holds(g, i, k) ←

or equivalently,

holds(l, i, k) ← holds(ϕ, i, k)

(if(l, ϕ) ∈ D)

holds(l, i, k) ←
(l ∈ δi−1,k′ ∪ {g})

since if k′ < k then δi−1,k = ∅. By Lemma 5, this program has the only

answer set

{holds(l, i, k) | l ∈ ClD(δi−1,k′ ∪ {g})} = {holds(l, i, k) | l ∈ δi,k}

Hence, Y
{holds}
i,k is the only answer set for bZ3

(Π2).

c. occ(a, i−1, k) �∈ Yi−1 for every non-sensing action a and ∀〈g, k′〉.br(g, i−1, k′, k)

�∈ Yi−1.

From the construction of Yi,k ’s, it follows that e(l, i−1, k) �∈ Yi−1 and

pc(l, i−1, k) �∈ Yi−1 for every l. Hence, bZ3
(Π2) is the following set of rules

holds(l, i, k) ← holds(ϕ, i, k)

(if(l, ϕ) ∈ D)

holds(l, i, k) ←
(l ∈ δi−1,k)
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whose only answer set is

{holds(l, i, k) | l ∈ δi−1,k} = {holds(l, i, k) | l ∈ δi,k} = Y
{holds}
i,k

So, in all three cases, we have Y
{holds}
i,k is an answer set for bZ3

(Π2).

Hence, Π3 = eZ3
(Π2 \ bZ3

(Π2), Y
{holds}
i,k ) is the following set of rules:

poss(a, i, k) ←
(executable(a, ψ) ∈ D, ψ ⊆ δi,k)

used(i, k) ←
(∃〈g, k′〉.k′ < k, br(g, i−1, k′, k) ∈ Yi−1)

goal(i, k) ←
(G ⊆ δi,k)

goal(i, k) ←
(δi,k is inconsistent)

occ(a1, i, k) | . . .
| occ(am, i, k) ← used(i, k), not goal(i, k)

used(i, k) ←
(used(i−1, k) ∈ Yi−1)

It is easy to see that Y
{poss,used,goal,occ}
i,k is an answer set for Π3. Accordingly, we

have M = Y
{holds,poss,used,goal,occ}
i,k is an answer set for Π2.

Π4 = eZ2
(π′ki \Π2,M) is thus the following set of rules:

e(l, i, k) ←
(occ(a, i, k) ∈M, causes(a, l, φ) ∈ D, holds(φ, i, k) ⊆M)

pc(l, i, k) ←
(occ(a, i, k) ∈M, causes(a, l, φ) ∈ D,
holds(l, i, k) �∈M, holds(¬φ, i, k) ∩M = ∅)

br(g, i, k, k) | . . .
br(g, i, k, w) ←

(occ(a, i, k) ∈M, determines(a, θ) ∈ D, g ∈ θ)
pc(l, i, k) ← pc(l′, i, k), not e(¬ϕ, i, k)

(if(l, ϕ) ∈ D, holds(l, i, k) �∈M, l′ ∈ ϕ)

e(l, i, k) ← e(ϕ, i, k)

(if(l, ϕ) ∈ D)

By Lemma 12, N = Y
{e,pc,br}
i,k is an answer set for Π4.

As a result, Yi,k = M ∪N is an answer set for π′ki .

�
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Lemma 14

We have

1. S ′ =
⋃h+1
i=1 Yi ∪ X0 is an answer set for πh,w(D), where X0 = V is defined in

(64).

2. p1
1(S
′) = q

Proof

1. Since Yi,k is an answer set for π′ki and π′ki ’s are disjoint from each other, we

have Yi is an answer set for π′i, where π′i is defined in the same way as πi
except that every occurrence of X in Equations (93) and (94) is replaced with

Y . From the splitting sequence theorem, it follows that S ′0 =
⋃h+1
i=1 Yi is an

answer set for π0. Thus, S ′ is an answer set for π∗h,w(P).

On the other hand, it is not difficult to show that S ′ satisfies all constraints in

π∗h,w(P) based on the following observations.

• If occ(a, i, k) ∈ Yi,k for some sensing action a which occurs in a k-proposition

of the form (5) then there exists g in θ such that br(g, i, k, k) ∈ Yi,k .

Furthermore, for every g′ ∈ θ, g′ does not in δi,k . The latter property

holds because that q does not contain an action that senses an already

known-to-be-true literal.

• If used(h+ 1, k) ∈ Yh+1,k then δh+1,k |= G.

• δi,k is either ⊥ or an a-state. This means that Y
{holds}
i,k does not contain two

atoms of the forms holds(l, i, k) and holds(l′, i, k), where l and l′ are contrary

literals.

• No two branches come to the same node (i, k).

• If used(i, k) ∈ Yi then br(g, i, k′, k) �∈ Yi for any pair 〈g, k′〉, k′ �= k.

• if 〈a, i, k〉 ∈ Tq then a must be executable in δi,k .

Accordingly, we have S is an answer set for πh,w(P).

2. Immediate from the construction of Yi,k .

�

Theorem 3 follows directly from this lemma.

Appendix C: A sample encoding

This appendix contains the encoding of the planning problem P1 in Example 2. The

first subsection describes the input planning problem. The next subsection presents

the corresponding logic program πh,w(P1). The last two subsections are the outputs

of smodels and cmodels when this logic program is run with the parameters h = 2

and w = 3.

Input Domain

% A possible plan is

% check; cases(open-> [];closed->[flip_lock];locked->[])

% fluents
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fluent(open).

fluent(closed).

fluent(locked).

% actions

action(check).

action(push_up).

action(push_down).

action(flip_lock).

% executability conditions

executable(check,[]).

executable(push_up,[closed]).

executable(push_down,[open]).

executable(flip_lock,[neg(open)]).

% dynamic laws

causes(push_down,closed,[]).

causes(push_up,open,[]).

causes(flip_lock,locked,[closed]).

causes(flip_lock,closed,[locked]).

% knowledge laws

determines(check,[open,closed,locked]).

% static laws

oneof([open,closed,locked]).

% initial state

initially(neg(open)). % window is not open

% goal

goal(locked). % window is locked

Encoding

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Usage:

% lparse -c h=<height> -c w=<width> | smodels

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

#domain fluent(F).

#domain literal(L;L1).

#domain sense(G;G1;G2).

#domain time(T).

#domain time1(T1).

#domain path(P;P1;P2).

#domain action(A).

% Input parameters

time(1..h).

time1(1..h+1).

path(1..w).
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Action declarations

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

action(check).

action(push_up).

action(push_down).

action(flip_lock).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Fluent declarations

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

fluent(open).

fluent(closed).

fluent(locked).

sense(open).

sense(closed).

sense(locked).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% DOMAIN DEPENDENT RULES

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Initial situation

holds(neg(open),1,1).

% Executability conditions

poss(check,T,P).

poss(push_up,T,P) :-

holds(closed,T,P).

poss(push_down,T,P) :-

holds(open,T,P).

poss(flip_lock,T,P) :-

holds(neg(open),T,P).

% Effects of non-sensing actions

e(closed,T+1,P) :-

occ(push_down,T,P).

pc(closed,T+1,P) :-

occ(push_down,T,P).

e(open,T+1,P) :-

occ(push_up,T,P).

pc(open,T+1,P) :-

occ(push_up,T,P).

e(locked,T+1,P) :-

occ(flip_lock,T,P),

holds(closed,T,P).

pc(locked,T+1,P) :-

occ(flip_lock,T,P),

not holds(neg(closed),T,P).

e(closed,T+1,P) :-

occ(flip_lock,T,P),

holds(locked,T,P).
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pc(closed,T+1,P) :-

occ(flip_lock,T,P),

not holds(neg(locked),T,P).

% Effects of sensing actions

:- occ(check,T,P),

not br(open,T,P,P),

not br(closed,T,P,P),

not br(locked,T,P,P).

1{br(open,T,P,X):new_br(P,X)}1 :-

occ(check,T,P).

1{br(closed,T,P,X):new_br(P,X)}1 :-

occ(check,T,P).

1{br(locked,T,P,X):new_br(P,X)}1 :-

occ(check,T,P).

:- occ(check,T,P),

holds(open,T,P).

:- occ(check,T,P),

holds(closed,T,P).

:- occ(check,T,P),

holds(locked,T,P).

% Static laws

holds(neg(open),T1,P) :-

holds(closed,T1,P).

e(neg(open),T+1,P) :-

e(closed,T+1,P).

pc(neg(open),T+1,P) :-

pc(closed,T+1,P),

not holds(neg(open),T,P),

not e(neg(closed),T+1,P).

holds(neg(open),T1,P) :-

holds(locked,T1,P).

e(neg(open),T+1,P) :-

e(locked,T+1,P).

pc(neg(open),T+1,P) :-

pc(locked,T+1,P),

not holds(neg(open),T,P),

not e(neg(locked),T+1,P).

holds(open,T1,P) :-

holds(neg(closed),T1,P),

holds(neg(locked),T1,P).

e(open,T+1,P) :-

e(neg(closed),T+1,P),

e(neg(locked),T+1,P).
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pc(open,T+1,P) :-

pc(neg(closed),T+1,P),

not holds(open,T,P),

not e(closed,T+1,P),

not e(locked,T+1,P).

pc(open,T+1,P) :-

pc(neg(locked),T+1,P),

not holds(open,T,P),

not e(closed,T+1,P),

not e(locked,T+1,P).

holds(neg(closed),T1,P) :-

holds(open,T1,P).

e(neg(closed),T+1,P) :-

e(open,T+1,P).

pc(neg(closed),T+1,P) :-

pc(open,T+1,P),

not holds(neg(closed),T,P),

not e(neg(open),T+1,P).

holds(neg(closed),T1,P) :-

holds(locked,T1,P).

e(neg(closed),T+1,P) :-

e(locked,T+1,P).

pc(neg(closed),T+1,P) :-

pc(locked,T+1,P),

not holds(neg(closed),T,P),

not e(neg(locked),T+1,P).

holds(closed,T1,P) :-

holds(neg(open),T1,P),

holds(neg(locked),T1,P).

e(closed,T+1,P) :-

e(neg(open),T+1,P),

e(neg(locked),T+1,P).

pc(closed,T+1,P) :-

pc(neg(open),T+1,P),

not holds(closed,T,P),

not e(open,T+1,P),

not e(locked,T+1,P).

pc(closed,T+1,P) :-

pc(neg(locked),T+1,P),

not holds(closed,T,P),

not e(open,T+1,P),

not e(locked,T+1,P).
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holds(neg(locked),T1,P) :-

holds(open,T1,P).

e(neg(locked),T+1,P) :-

e(open,T+1,P).

pc(neg(locked),T+1,P) :-

pc(open,T+1,P),

not holds(neg(locked),T,P),

not e(neg(open),T+1,P).

holds(neg(locked),T1,P) :-

holds(closed,T1,P).

e(neg(locked),T+1,P) :-

e(closed,T+1,P).

pc(neg(locked),T+1,P) :-

pc(closed,T+1,P),

not holds(neg(locked),T,P),

not e(neg(closed),T+1,P).

holds(locked,T1,P) :-

holds(neg(open),T1,P),

holds(neg(closed),T1,P).

e(locked,T+1,P) :-

e(neg(open),T+1,P),

e(neg(closed),T+1,P).

pc(locked,T+1,P) :-

pc(neg(open),T+1,P),

not holds(locked,T,P),

not e(open,T+1,P),

not e(closed,T+1,P).

pc(locked,T+1,P) :-

pc(neg(closed),T+1,P),

not holds(locked,T,P),

not e(open,T+1,P),

not e(closed,T+1,P).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% GOAL REPRESENTATION

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

goal(T1,P) :-

holds(locked,T1,P).

goal(T1,P) :-

contrary(L,L1),

holds(L,T1,P),

holds(L1,T1,P).
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:- used(h+1,P),

not goal(h+1,P).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% DOMAIN INDEPENDENT RULES

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Rules encoding the effects of non-sensing actions

holds(L,T+1,P) :-

e(L,T+1,P).

holds(L,T+1,P) :-

holds(L,T,P),

contrary(L,L1),

not pc(L1,T+1,P).

% Inertial rules for sensing actions

% Cannot branch to the same path

:- P1 < P2,

P2 < P,

br(G1,T,P1,P),

br(G2,T,P2,P).

:- G1 != G2,

P1 <= P,

br(G1,T,P1,P),

br(G2,T,P1,P).

:- P1 < P,

br(G,T,P1,P),

used(T,P).

used(T+1,P) :-

P1 < P,

br(G,T,P1,P).

holds(G,T+1,P) :-

P1 <= P,

br(G,T,P1,P).

holds(L,T+1,P) :-

P1 < P,

br(G,T,P1,P),

holds(L,T,P1).

% Rules for generating action occurrences

1{occ(X,T,P):action(X)}1 :-

used(T,P),

not goal(T,P).

:- occ(A,T,P),

not poss(A,T,P).

% Auxiliary Rules
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literal(F).

literal(neg(F)).

contrary(F,neg(F)).

contrary(neg(F),F).

new_br(P,P1) :-

P <= P1.

used(1,1).

used(T+1,P) :-

used(T,P).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% HIDE/SHOW ATOMS

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

hide.

show occ(A,T,P).

show br(G,T,P,P1).

Smodels Output

$ lparse -c h=2 -c w=3 examples/ex2.smo | smodels

smodels version 2.28. Reading...done

Answer: 1

Stable Model:

br(open,1,1,2) occ(check,1,1) br(closed,1,1,1)

br(locked,1,1,3) occ(flip_lock,2,1)

True

Duration: 0.020

Number of choice points: 2

Number of wrong choices: 0

Number of atoms: 313

Number of rules: 893

Number of picked atoms: 257

Number of forced atoms: 31

Number of truth assignments: 4052

Size of searchspace (removed): 12 (65)

Cmodels Output

$ lparse -c h=2 -c w=3 examples/ex2.smo | cmodels

cmodels

cmodels version 3.01 Reading...done

Program is not tight.

Calling SAT solver mChaff...

Answer: 1

Answer set: br(open,1,1,3) occ(check,1,1) br(closed,1,1,1)

br(locked,1,1,2) occ(flip_lock,2,1)

Number of Loop Formulas 6
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