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Self-organisation, as manifest, for example, by swarms,
flocks, herds and other collectives, is a powerful natural
force, capable of generating large and sustained structures.
Yet the individuals who participate in these social groups may
not even be aware of the structures that they are creating.
Almost certainly, these structures emerge through the
application of simple, local interactions. Improvised music is
an uncertain activity, characterised by a lack of top-down
organisation and busy, local activity between improvisers.
Emerging structures may only be perceivable at a (temporal)
distance. The development of higher-level musical structure
arises from interactions at lower levels, and we propose here
that the self-organisation of social animals provides a very
suggestive analogy. This paper builds a model of interactivity
based on stigmergy, the process by which social insects
communicate indirectly by environment modification. The
improvisational element of our model arises from the
dynamics of a particle swarm. A process called interpretation
extracts musical parameters from the aural environment, and
uses these parameters to place attractors in the environment
of the swarm, after which stigmergy can take place. The
particle positions are reinterpreted as parameterised audio
events. This paper describes this model and two applications,
Swarm Music and Swarm Granulator.

1. INTRODUCTION

Many animals exhibit remarkable collective behavi-
our. Social insects gather in large numbers – swarms –
to forage and build nests. The ability of flocking birds
to coordinate their motion in order to avoid obstacles
and to rapidly change direction of flight is well known
to us all. Surprisingly, this collective behaviour does
not necessarily derive from central organisational
control or leadership, but arises from the local
behaviour and interaction of (relatively) simple organ-
isms. Indeed, the ability of swarms, flocks, etc., to
shrink and grow in population (there appears to be no
upper limit to population size), suggests that their
computational complexity is linear. In other words,
each swarm member is only aware of other members
in its immediate neighbourhood. A dramatic example
is to be found with the huge shoals of migrating
herring, sometimes up to seventeen miles long and
with millions of members; it is hard to conceive of
any centralised method of communication that can
account for this collective behaviour (Reynolds 1987).

Indeed, Reynolds demonstrated that the behaviour of
flocks, schools and swarms can arise merely from local
interactions between the entities. There is no need for
global coordination. The rules for an individual in a
flock or school can be summarised as: try to move
close to your neighbours, avoid collisions, and try to
match your velocity (i.e. speed and direction) with
your immediate neighbours. (The rules for swarms
are even simpler since the requirement for velocity
matching is dropped.)

Compelling evidence that entities that are interact-
ing through local rules can self-organise into large
spatio-temporal structures comes from computer
animations of animal behaviour (Reynolds 1987;
Bonabeau, Dorigo and Theraulaz 1999). A common
theme of these investigations is the desirability of
decentralised organisation, from the perspective of
stability and adaptability. Theories of global forms
emerging from local interactions have also been
applied to the study of human systems such as econo-
mics and traffic flow (Resnick 1997). Self-organisation
is believed to be based on four components: positive
feedback, negative feedback, amplification of fluc-
tuations and multiple interactions (Bonabeau et al.
1999). In addition, an important mechanism for self-
organisation, known as stigmergy was proposed by
Grassé (1959) to account for the nest building activity
of termites. This mechanism has subsequently shown
to be of a more general nature and many examples are
explored in Bonabeau et al. (1999). A stigmergetic
interaction is a form of indirect interaction, occurring
when one individual modifies a feature in the environ-
ment that another individual responds to at a later
time. In Grassé’s example, the nest building of termites
is coordinated by the structure of the nest and not
by the workers themselves; a new configuration is
produced when the activity of one worker stimulates
another (possibly different) activity by another
worker. Latterly, these ideas have been applied to
various systems, including cooperative transport by a
swarm of robots (Kube and Zhang 1994).

Natural systems interact with an uncertain, chang-
ing, complex environment. The result of this interac-
tion is the high degree of diversity found in the natural
world; one design does not suit all. A top-down, rigid
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design may achieve good results in a certain context,
but it may struggle if the environment changes. Flex-
ible, dynamic and adaptable systems, however, change
with the environment, developing novel solutions to
problems; they form an interesting model of human
creativity (Bentley and Corne 2001). It is pertinent,
therefore, to view another system – the organised
sounds produced by human groups, commonly known
as music – from this perspective. The analogy can be
made at a formal level. If we consider, for example,
musical tones to be simple individuals interacting
with neighbouring tones through simple rules, then the
question is: can self-organisation lead to higher-level
structures (which in this case would correspond to
melodies and rhythms)? This idea was tested in early
versions of Swarm Music, a MIDI-based system where
sound events are represented as interacting particles
moving in a three-dimensional Euclidean space. The
coordinates of each particle position correspond to
pitch, amplitude and time interval between events.
The swarming behaviour of these particles leads to
melodies that are not structured according to familiar
musical rules, but are nevertheless neither random nor
unpleasant (Blackwell 2001, and section 5.2.2).

An analogy can also be found in freely improvised
performance. An uncertain and complex musical envi-
ronment may itself stimulate innovation where a more
controlled environment of preconceived ideas (i.e.
top-down design) may falter. Structure arises from the
temporally local interaction of individuals who con-
tinuously alter the environment, perhaps without prior
knowledge or clear intention. The analogy with the
natural systems of social animals is immediate. The
group dynamic is, at least in part, stigmergetic.

The point here is not that musicians are simple
organisms but that it is possible, at some level of
description, to explain complex collective behaviour
from the assumption of relatively simple interactions
(Bonabeau et al. 1999). It is entirely possible, there-
fore, that computer systems can take part in free
improvisations, contributing and responding to the
musical environment: all we need do is to define suit-
able interactions between machine and humans, and
ensure that the system implements the components of
self-organisation referred to above. In the following,
we shall call such a system an ‘artificial improviser’.
This does not imply that an artificial improviser would
operate as a human might but merely that it is
engaging in low-level stigmergetic interactions with a
dynamic musical environment.

In order to build an artificial improviser, a mecha-
nism for stigmergy must be found. A very transparent
mechanism was used in Swarm Music. The external
environment consists of MIDI events (including audio
events that have been parsed to MIDI parameters)
emanating from external performers (humans or other
swarms). These events are placed as attractors in the

Euclidean space of the swarm. Particles are drawn
towards these attractors, and the ensuing organisation
of the swarm around the attractors produces a melodic
stream influenced but not wholly determined by these
events. The process of attractor placement and
conversion of particle positions into output events is
called interpretation.

The innumerable timbral qualities of the musical
environment are, however, missed in a MIDI para-
meterisation, and these qualities are also likely to be
important for humans. This paper addresses this issue
by presenting a generalised scheme for an artificial
improviser, abstracted from Swarm Music, but with
far wider application. One application of this general
scheme is Swarm Granulator, where swarms of inter-
acting sound grains produce self-organising timbres
and textures.

It is the purpose of this paper to present a working
model of creative interaction with an artificial
improviser. The model is split into two fundamental
processes: interpretation and swarming. Our interpre-
tative model for interaction is proposed in section 3.
Interpretation is a multiple stage process of para-
meterisation that determines the whole mechanism
for performance interaction. An overview of swarm-
ing and how swarm events are generated is presented
in section 4. This section presents a detailed specifica-
tion, through a number of particle update rules, for the
implementation of a particle swarm. Practical imple-
mentation of the two applications already mentioned
(Swarm Music and Swarm Granulator) is explained in
section 5. However, it is first worth considering briefly
the very wide topics of improvisation, interaction and
musical organisation, and how their complexities can
be addressed.

2. IMPROVISATION, INTERACTION AND
MUSICAL ORGANISATION

2.1. Improvisation and emergence

Uncertainty surrounds any improvised performance.
The extent of this uncertainty is contingent on the
presence (or absence) of a priori agreements, whether
explicit or tacit. This is expressed as the ‘degree of
improvisationality’ by Sawyer (2003). ‘Ritualised’ or
highly controlled improvised performance can be
distinguished from freer creative music-making in
a number of ways, not least by the cultural value
ascribed to its practice, and the extent of its apparent
‘ossification’. Aspects of performance practice are
highly significant: an emphasis upon collective (rather
than individual) improvisation suggests a less control-
ling approach, as does the avoidance of recourse to
notation or other pre-existing materials. Such factors
constrain or afford opportunities for creative input.

Freely improvised music is concerned only with
the creative contribution of participants, and is
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deliberately and self-consciously uncertain. Inevitably,
performers will contribute according to their own
experiences, prior learning, practices and habits
(whether individual or culturally determined), but in a
group setting they may well have little idea of what will
proceed before the first sound begins. The listeners’
experience is comparable. Such music-making is
in marked contrast to ‘ritualised’ genres such as
Indonesian gamelan or Indian classical music. (Jazz, in
all its diverse idioms, is harder to classify.) In existing
freely improvised repertory, from Stockhausen’s Aus
den Sieben Tagen to the diverse work of AMM, the
emphasis is not upon the top-down organisational
strategies of Western classical music but upon collec-
tive acts; interactional processes take precedence.
Creative input is constrained chiefly by the social
experience of participants. These experiences are
explored within the context of jazz (and all its stylistic
and technical precepts) by Berliner (1994). A much
more general theory of interactive behaviour is offered
by Katovitch (1986) and further explored by Bastien
and Hostager (1992). This theory of social interaction
within a group is described as ‘becoming situated’.
Shared goals are recognised and pursued by group
members, who both assume and cast roles. This might
result from knowledge of ‘suprapersonal social facts’
(Katovitch), that is, shared historical assumptions.
More interestingly, a brand new shared history evolves
as the cooperative experience develops; as players may
become aware of the appropriateness of their response
to others’ contributions, they may also appraise their
own ability to initiate behaviour from others.

Comparable issues are explored in Sawyer’s ‘inter-
actional semiotics’ of group improvisation. This is
predicated on the notion that ensemble behaviour is
greater than the sum of its parts. During a collective
performance, any appropriate individual contribution
is pragmatic, meaning that it can be assumed to
embody the tacit agreements established by other
contributions made up to that point. This is known as
‘indexical presupposition’, a term used by Silverstein
(1993). The same contribution projects; it invites con-
sequences; it has an indexical relationship to future
possible interactions (that is, it represents ‘indexical
entailment’). An emphasis upon entailment helps
again to distinguish free improvisation from more
restricted or ritualised idioms.

At the core of these ideas is the notion of emergent
structure as proposed by Meade (1932). Here emer-
gence describes the spontaneous evolution of structure
and meaning in social activities, such as conversation
or improvised music-making. Meade writes, ‘The
emergent when it appears is always found to follow
from the past, but before it appears it does not, by
definition, follow from the past’ (quoted in Sawyer
2003: 12). This is an eloquent description of free
improvisation, which can only cultivate structure

from the ‘bottom-up’. Viewed as a whole, an ensemble
can be seen to evolve self-organising behaviours,
creating the illusion of certainty. Emergent organi-
sation might even be found in the generalised struc-
tural functions of composed music, for example the
‘complementary, counteractive and cofunctioning
relationships’ identified by Berry (1976: 7).

Such theories offer comparably convincing and
complex models of interactive improvisation, at least
in so far as humans experience it. However, they can
only serve as metaphors for interaction that are com-
plicated by a proactive artificial improviser. A precise
algorithmic model is needed. Computer–human inte-
gration has often been modelled using the prosaic
language of parameter mapping. This describes how
human inputs can be parameterised, transformed and
mapped onto control functions for a synthesizer, for
example. The synthesizer produces a response; the
human might listen and decide what to do next. Per-
formance (gestural) behaviour is frequently the source
of parameter information; alternatively, data can be
obtained from the analysis/processing of live audio.

The theoretical categories of parameter mapping
have been widely considered (Hunt et al. 2000; Arfib
et al. 2002). Our system described below could possi-
bly be likened to an implicit or generative mapping
mechanism in which only general mapping behaviours
can be anticipated, not real output values. However,
the terminology of ‘mapping’ cannot adequately
describe the integration of an artificial improviser
into an ensemble that is becoming socially ‘situated’.
The artificial voice is as provocative and enabling
as any other; it directly participates in the emergence
of group organisation. In our performance model, the
computer’s contributions are as significant indexically
as any act of a human performer. The machine
must therefore possess strategies for interaction with
real-life musicians.

2.2. Organisational levels

If self-organisation is possible within a musical con-
text, it raises the question: organisation at what level?
Music is often described in terms of layers of structure;
for instance, building up from fundamental param-
eters (pitch, duration, loudness) to the composite and
conceptual (melody, texture, form). Here we present
merely a working method of organisational levels,
leaving aside many complex issues.

Levels can be understood in terms of perceptual
time scales (Roads 2001). The lowest relevant time-
scale pertains to the micro(structural)-level. Grains
are measured in milliseconds; heard individually,
they may sound like clicks or fragments from a
recognisable source. Gabor’s theories posit the funda-
mental nature of grains (Gabor 1947). We may on
occasion be aware that sound comprises discreet
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events. However, there is no direct analogy between
micro-level analysis (e.g. FFT or wavelet analysis) and
the parameters of granular synthesis.

The time-scale closest to our immediate experience
is the sound event level or mini-(structural) level
(Xenakis 1981); a time-scale measured from a few
seconds down to perhaps 1/10th second. Such events
might be considered to have static elements, in other
words, fixed characteristics suggestive of the ‘musical
note’. This traditional view of the sound event has
been attacked by Wishart, who criticises the hege-
monic three-dimensional ‘lattice’ of pitch, duration
and fixed instrumental timbre (1996). His criticism
highlights the conceptual confinement of music when
represented by Western notation. Often, sounds are
much more complex, because they result from a phy-
sical agency or are heard to signify such an agency
(Smalley 1992). So, although sounds may have identi-
fiable static elements, they also contain properties that
evolve over time. The term ‘dynamic morphology’
(Wishart 1996) emphasises the gestural nature of a
sound event, which could be determined by attack/
decay characteristics, fluctuations in amplitude, pitch
and timbre. Granulation tends to produce such mate-
rial, so the alternative vocabulary of ‘sound mass’
(Varèse 1971) and ‘cloud’ (Roads 2001) is particularly
relevant.

The third relevant time-scale is the meso(structural)-
level; the level at which sound events are experienced
in relation to one another, rather than individually.
Mesostructure arises from permutations at the lower
sound-event level. For example, our attention might
be drawn to particular aspects of the mini-level,
overall pitch or loudness of events.

Perhaps less usefully, the meso-level can be thought
to divide up the higher macrostructural level. This
latter scale encompasses an entire piece or perfor-
mance, and its characteristics determine overall musi-
cal form. In improvised music, the macro-level can
only be described with the benefit of hindsight and
reflection, once the complex interactions that cause
structure to emerge are complete. In fact, structure
may be thought to emanate upwards through all these
levels: the character and behaviour of grains deter-
mines the timbral qualities (dynamic morphology) of
sound events. In turn, significant aspects of sound
events recur and evolve to form structural patterns
at the meso-level, and so on. A self-organising system
might wish to emulate this upwards progression, and
a swarming improviser using granular synthesis has
the potential to do this. One difficulty arises because
the horizons between these time-scale/structural levels
are rarely clear in practice, and are especially prob-
lematic in the idioms of electroacoustic and freely
improvised music (i.e. when timbre and gesture are
especially significant concerns). Wishart’s discussion
of the differences between a ‘sequence’ (i.e. a complex

pattern of events) and ‘texture’ (a single event with
complex characteristics) illustrates the point (Wishart
1994).

In order to create a useful working model we must
first imagine a scenario in which real-life musicians
work with a machine improviser. At any given
moment in a performance, musician A will be aware
of the sounds making up the musical environment, and
(s)he may be aware of the source of those sounds
(resulting from performers A, B, C . . ., etc., and our
computer improviser). Musician A must decide, con-
sciously or otherwise, how to listen analytically. Such
listening can refer to perceived sources, structural
levels, or to indexical properties, perhaps. Does the
sound have prominent timbral features? Is it interest-
ing because it is higher in pitch, or quieter than earlier
sounds? Is the group as a whole gradually becoming
less rhythmically active? Listening techniques would
not be objective; musician A will have a whole set of
personal and cultural values that affect his/her judge-
ment. Musicians A and B may have had a heated argu-
ment just before the performance started. In any case,
the musician is entirely free to respond accordingly,
and (s)he may wish to complement or contradict the
perceived qualities or direction of the music. Unlike
the human players, the artificial improviser is not
subjective, but behaves according to its hidden algo-
rithmic design. To resolve these complex differences,
we need a simple algorithmic model that allows us to
design a workable system.

3. INTERPRETATION

3.1. Motivation

A simple process known as interpretation was pro-
posed in the first version of Swarm Music (Blackwell
2001, 2003) which integrates all group contributors,
whether carbon or silicon-based. This process has now
been integrated into a more general model of inter-
action. This interpretative model forms the theoretical
basis of our current implementations (a new version of
Swarm Music and Swarm Granulator).

3.2. The interpretative model

Figure 1 depicts interaction between two systems
(human or machine-based) A and B. System A is listen-
ing to audio Y emanating from B. A is also producing
an audio output X. If A is interacting with B, then X
must in some way depend on Y and this influence is
denoted X(Y). A similar meaning is attached to Y(X).

This picture, however, hides much. Human systems
will be quite selective about which parts of the audio
environment they will use to inform their own output,
and this is desirable for silicon improvisers too.
Interactivity merely implies that A is influenced by B,
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and this influence can be quite weak. In general, we
can say that A’s musical output will depend strongly
on many personal, hidden variables hA. For humans,
hA would correspond not only to operational rules but
also to variables not easily quantifiable such as instru-
mental training, previous improvisational encounters
and stylistic influences. For silicon-based improvisers,
hA corresponds to the details of internal generative
algorithms. Even without interaction, then, A would
still produce an output, so the notation can be
extended: X=X(Y, hA).

Looking now at how Y can influence X, it is clear
that A must attach meaning (interpret) the input Y.
Then a response can be prepared based on the useful
information that A has inferred. The complexities
surrounding the many hidden processes (experience,
volition, aural ability, ideology . . .) will be ignored.
Interpretation by A of the aural environment will here
be represented simply as P: Ydp, where p represents
some of the information that A can infer from Y. In
this mathematical notation, P is a function, mapping
audio input Y to an internal representation p. How-
ever, to use the language of the section 2.1, P embodies
the meanings that can be understood to emerge from
presupposition and entailment.

We split the preparation of output into two func-
tions, F and Q. F represents A’s internal processing
activities (i.e. how A processes internal representations
of the environment). Q represents how A uses this
information to actually deliver a sound, for example,
through playing an instrument or via control of
some synthesizer. To be specific, F is the process
F(hA): pdq, where q is an intermediate state. Q takes
the intermediate state and prepares an output
Q: qdX. The model therefore depends on three
functions, P, F and Q, which loosely correspond to
listening, reflecting and responding:

Y
P

p F h q
Q

X →  →  →( ) (1)

P and Q are interpretative functions since they are
responsible for the conversions of external audio Y to

Figure 1. A simple model of interaction. A is depicted here
to be in interaction with another individual, B, but B
could equally well represent a sub-group of the ensemble.
A similar point applies if the diagram is read from B’s

perspective.

the internal representation p, and from the internal
representation q back to audio X. Expression (1) is
very general, since F deals only with internal repre-
sentations p and q. However, if we wish to utilise
stigmergy and self-organisation, F will need to imple-
ment the components of self-organisation referred to
in the introduction (positive and negative feedback,
amplification and multiplicity). One choice for F,
therefore, is to use a swarming function f;

qi= f ({xi}, {p}, c). (2)

In this swarming equation (2), {xi} denotes the posi-
tions of individuals within the swarm and {p} are
features of the environment, e.g. attractors. P there-
fore modifies the internal environment of the swarm in
response to changes in the external audio environ-
ment. Self-organisation of the swarm {xi} around {p}
leads to correlations in output q and hence, via map-
pings Q, to correlations in audio output X. The hidden
variables are h= ({x}, c}, where the behaviour of the
swarm is parameterised by constants c. A full explana-
tion of the swarming equation will be given in the next
section.

Although this formalism requires an internal repre-
sentation p of external sounds, p does not need to
be dynamic. For example, a fixed configuration of
p will lead to non-interactive improvisations in some
fixed region of the space of outputs, corresponding
to the patterns that the swarm makes around p
in N-dimensional Euclidean space. (Such a space,
denoted RN, shares the same properties of the three-
dimensional space that actual swarms move in, but the
dimensionality may be greater or less.) The influence
of Y can also be weak; P can ensure that huge changes
in Y only lead to small changes in p. Or indeed, P could
be highly sensitive to small environmental changes.

From the perspective of interpretation, the internal
processes – swarming – merely transform the input
parameterisation into modulating numbers; the details
(representations and rules) of the transformations
are hidden. Interpretation involves listening at some
structural level (P) and responding at the same, or
different level (Q). The interpretation can be ‘trans-
parent’ with P equal to the inverse of Q, P=Q−1

(implying a like-for-like improvisational strategy),
but this is not the only option. All that matters is that
the interpretative functions P and Q are transparent
enough for interacting humans to grasp and use during
performance – a similar point, of course, applies
to successful human–human interaction (although
interactivity alone is not a necessary condition for a
successful improvisation).

3.3. Dynamic refinements

So far, only a static view of the interpretation has been
presented. For example, the formalism does not depict
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that audio streams X and Y comprise discrete audio
events (on time scales down to the inverse Nyquist
frequency) and that p and q represent a sequence
of internal representations. The term ‘audio event’ is
used here merely formally to indicate windowing of
the audio streams at time scales Dt, and is not meant to
imply any level-dependent semantics. However, the
choice of interpretation functions P and Q certainly is
a level-based activity. Assuming that a musical level
can be parameterised at a time scale Dt, P and Q can
be drawn from a set of level-dependent functions,
labelled by an index a, {Pa (Dt), Qa (Dt)}. Suppose that
an audio event e(t, Dt), commencing at time t and of
duration Dt, is projected out of the stream Y by a pro-
jection operator E(t, Dt), e(t, Dt)=E(t, Dt)Y. Then
the interpretative functions can be decomposed as

Pa (Dt)=Pa E(t, Dt) (3)

where Pa is a member of a suite of interpretative func-
tions which operate on a generic event e. For example,
the extraction of amplitude is a generic function,
applicable to events on any timescale.

Equation (1) is a general statement of stigmergy.
P invokes a change to environmental variables p
experienced by a swarm, and Q embodies the swarm’s
response, which is the output of environment variables
q. However, stigmergy in nature is an indirect

interaction, which means that the swarm’s response
happens after some time delay. Therefore, the rate
of flow of information through equation (1) in the
interpretative model is very important because, for
example, if the attractors in (2) are placed in the
swarm’s environment immediately after events are
projected from Y, then X(Y) is potentially highly
coupled in time, which will almost certainly lead to
stereotyped improvisations. Alternatively, it will be
hard for listeners to perceive any interaction at all if
X(Y) is loosely coupled in time. In practice, a human
improviser will memorise recent information p, and
will be quite selective about what elements of p to use
in the future. The p(t) should therefore be delayed
before being sent to F (i.e. how A processes internal
representations of the environment) by

p(t+tdelay)=Pa E(t, Dt)Y. (4)

Some examples of interpretative schemes are shown in
figure 2.

4. SWARMING

4.1. Overview

This section defines a particle swarm and links the
movement of this swarm to the swarming function of

Figure 2. Possible interpretative schemes. In this example, P interprets at the micro-, mini- or meso-level, sending parameters
to F which is depicted as a swarm of particles. The action of Q can be thought of as projecting particle coordinates onto axes
denoting level-dependent parameters. At the micro-level, these axes might include grain amplitude and grain, at the mini-level

they may include MIDI note number and velocity, and at the meso-level, phrase shape and variance.
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section 3. Particle swarms ultimately derive from
the virtual flocks of Reynolds’ original animations
(Reynolds 1987), but the flapping animated ‘boids’ are
replaced with point-particles in N-dimensional Euclid-
ean space, RN. The particles change their positions by
the application of simple forces or accelerations.
Reynolds established convincing flock animations
with just three accelerations: a spring-like attraction
towards the centroid of neighbouring particles, a colli-
sion-avoiding acceleration and a velocity-matching
acceleration. Typically, particle swarms use similar ac-
celerations, except that a swarm does not implement
velocity matching of near-neighbours. Particle swarms
may also use attractions to special positions in space,
known as targets or attractors (Blackwell 2001, 2003).
For the improvising systems proposed here, the
attractors derive from external audio events, and are
positioned in RN according to the interpretative func-
tion P. The particle accelerations determine the devel-
opment of the swarm in time; they are presented in
some detail in section 4.2. Section 4.3 explains how
particle positions are converted into swarm events.
These swarm events, which reflect the shape of the
swarm in Euclidean space, are mapped to actual audio
events by Q.

4.2. Particle swarms

A swarm S of M particles is denoted S={Ptk},
k= 1 . . . M. A particle Ptk is specified by two N-
dimensional vectors, {xk, vk}, where xk and vk are the
particle position and velocity. Additionally, a particle
has access to attractor k at position pkeRN. Two
vectors xrrrrr, prrrrreRN describe global properties of the
swarm and the attractors. The swarm position xrrrrr lies
at the centroid of the particle positions {xk} and the
swarm attractor prrrrr lies at the centroid of the particle
attractors {pk}.

A time development operator U(t-1, t): S(t-1)
dS(t) moves the swarm forward in time, updating
each particle in turn, Ptk (t-1)dPtk (t). A sweep
through the whole swarm, updating each particle in
turn, is counted by an index i. The discrete time
counter t is defined by t=Mi+ k (note that this is
not the same as real time t used in section 3.3 and in
section 4.3 below). U is specified by a set of rules,
equations (5)–(12). Equations (5)–(6) show the general
form of the update. The three accelerations towards
the swarm centroid, the attractor centroid and the
avoidance acceleration are summed. k’s velocity is
updated by adding the total acceleration, ak(i) to the
current velocity of particle k (5 and 6). The position
update for particle k, equation (7), is then performed
by simply adding the updated velocity to the current
position.

ak(i)= aswarm, k+ aattractor, k+ aavoid, k (5)

vk(i)= vk(i-1)+ ak(i) (6)

xk(i)=xk(i-1)+ vk(i) (7)

Five scalar constants c={vclamp, qt, m, dcore, dlimit}
parameterise U. vclamp is a clamping or limiting velocity
which sets an upper limit to the effect of the accelera-
tions. If the result of calculation (6) is to update the
velocity to a magnitude |v| that is larger than vclamp, then

v is rescaled by a factor
vclamp

v  so that its magnitude is

vclamp. qt is a particle charge which sets the scale for the
collision-avoiding accelerations. m is the particle mass;
accelerations are inversely proportional to m. dcore is a
small distance used to shape the inter-particle repul-
sion and dlimit is a perception limit. The perception limit
is defined so that a particle at x is only aware of other
particles and attractors within a box Blimit(x)= [−dlimit,
dlimit]N centred on x.

Equations (8)–(12) explain the calculation of ak in
some detail – the time arguments have been dropped
for simplicity.

aswarm, k=mk
−1 d(xrrrrr , xk) (xrrrrr-xk) (8)

aattractor, k=mk
−1 d(prrrrr , xk) (prrrrr-xk) (9)

aattractor, k=mk
−1 d(pk, xk) (pk-xk) (9a)

aavoid, k=mk
−1 

l l k

M

= ≠
∑
1,

ak,l d(xk, xl) (10)

ak,l=
� �q q

x

x x
x x

x xl k

core

k l

k l
k l2

−
−

−, <dcore (11)

=
� �q q

x x

x x
x x

l k

k l

k l

k l−

−
−2

, otherwise.

d(y, x)= 1 if ykeBlimit(xk) (12)
0, otherwise

Equation (8) is a linear spring-like acceleration
towards the swarm position. Equation (9) is a similar
linear acceleration towards the swarm attractor.
Equation (9a) is an alternative to (9), whereby each
particle is attracted to its own attractor, rather than
the centroid of the attracting group. This increases the
diversity of the swarm for some attractor configura-
tions since a particle may feel conflicting pulls towards
the swarm, and towards an outlying attractor. From a
musical perspective, (9a) will make the swarm as a
whole more responsive to new directions in the musi-
cal environment, so that output X more closely follows
input Y. Equation (10) is a collision-avoiding accelera-
tion between particle k and any other particle within
Blimit-(xk). This repulsion is specified in equation (11).

https://doi.org/10.1017/S1355771804000214 Published online by Cambridge University Press

https://doi.org/10.1017/S1355771804000214


130 Tim Blackwell and Michael Young

The delta function d(y, x) occurring in these equations
is defined by equation (12); it ensures that accelera-
tions between a particle at x and a position y are only
calculated if y is within x’s perception, i.e. is in the box
Blimit(x).

Equation (11) shows that inter-particle repulsions
ak,l are Coulombic repulsions between particles that
are within the perception limit of each other, and are
equal to a constant for separations less than the dcore.
The core distance dcore limits accelerations which could
otherwise become arbitrarily large for very small sepa-
rations in the denominator of the inverse square law.
xrrrrr and prrrrr are always updated immediately before each
particle update.

The particle attractors pk(t) are updated in real time
t in a separate process to the particle update thread.
These attractors do not arise from the swarm, but
are placed in the swarm’s environment in response
to external audio stimulus. Storing the attractors in
a buffer for a time delay tdelay before placing them in
RN can also control the rate of flow of information
through the system.

Equations (8)–(12) differ slightly from earlier
versions of Swarm Music. In particular, the spring
constants determining the strengths of the attractions
have been set at unity because the parameter with the
dominating effect on output is vclamp (Blackwell 2003).
The Coulomb repulsion also differs slightly in this
version because the spatial dimensions are decoupled,
as specified in equation (10). The update rules are
merely N copies of a one-dimensional dynamical
system. In the earlier version, the components were
coupled through the Coulomb repulsion which was
a function of the Euclidean distance |r | between par-
ticles. Dimensional coupling can still take place, but it
must be handled by the interpretative functions (see
section 5.2 for a discussion on the musical effect of
dimensional decoupling).

4.3. From particles to events

The swarmer is a software module that implements
a particle swarm. The function of the swarmer is to
use a particle swarm to provide a series of ‘swarm
events’ q(t). This is accomplished with two timing
functions which operate on two components of a par-
ticle position vector. The other components of the
position vectors provide event parameters. The timing
information for event start and end is therefore
internally derived from the swarm thus allowing for
temporal organisation of events due to spatial organi-
sation of the particle positions. In order to explain
how the swarmer can do these things it is helpful to
consider the swarming equations (5)–(12) in terms of
a state machine. The state of this machine is the
current swarm configuration S(t) and the transition
function consists of M time-development operators,

U= (U1, U2 . . . UM), where each Uk updates particle k
according to the rules (5)–(12). The swarmer as a state
machine is illustrated in figure 3.

In order to extract temporal information from the
spatial information x, two timing functions are intro-
duced, g1 and g2. The swarmer pauses for a time
dtt= g1(x(t).e1) upon generation of state x(t), where
e1 is the unit vector along direction 1. The required
output from the swarmer is a stream of swarm events
q1, q2, q3 . . ., commencing at times t1, t2, t3 . . . Events,
however, must have a beginning and an end. A second
timing function g2(x(t).e2) extracts an interval dtt, event

from xk, where dtt, event is the duration of event qt, i.e. qt

ends at tt+ dtt, event. The event timing information dtt

and dtt, event is packaged in the N-dimensional event
vector qt= (dti, dti, event, xk.e3, xk.e4 . . . xk.eN). The con-
nection between the real time t and discrete time index
t is

tt= dts
s

s t

.
=

= −

∑
1

1

(13)

Note that the focus on discrete events does not limit
the generality of the swarmer. Event frequencies
can be increased right up to the Nyquist frequency of
the digital-to-analogue converter in order to provide
near-continuous modulation of an output stream.
Any module accepting swarm events is not, of course
obliged to use dtt, dtt, event, although it will certainly
need to store dtt, event if it is to parameterise audio
events, because the module will need to know when to
terminate the audio event triggered by the reception of
qt, and audio events will overlap if dtt, even> dtt.

In summary, the swarmer produces a set of discrete
swarm events qt at times tt. These events are generated
by particle movement which is determined, in turn, by
a set of particle update rules. These rules calculate an
acceleration for each particle due to nearby attractors
and other particles. The strength of these accelerations
is determined by a set of particle update constants.
The swarm attempts to organise itself around the
attractors, which themselves are dynamic. The func-
tionality of the swarmer can be conveniently written
using timing functions Gk= (g1, g2, I3 . . . IN), where

Figure 3. Swarmer as a state machine. The machine has
inputs p(t) and c, an output q(t), and current state S(t).
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each component of Gk acts on component xk.ea of par-
ticle k, and Ia is the identity function. The swarming
equation (2) of section 3.2 can then be expressed as

qt=Gk • U({pk(t)}, c)S(t-1). (14)

4.4. Self-organisation and interpretative swarms

It is worth considering whether particle swarms in
interpretative interaction with external musical sources
(this is the ‘improvising system’) might self-organise.
According to Bonabeau et al. (1999), the necessary in-
gredients are positive and negative feedback, multiple
interactions and the amplification of fluctuations.

The improvising system does have the possibility of
positive feedback; attractors representing external
events Y lead to swarming around p, and a correlated
output X=Q(q). This reinforcement of events in the
audio environment will grow if the external collabora-
tors continue the loop. However, the external impro-
visers may be inclined not to perpetuate this musical
direction, and indeed the inter-particle repulsion has a
similar damping effect, producing swarm events which
will be interpreted at some distance from the musical
attractor. Hence the improvising system contains
negative feedback. In addition, the repulsions and
chaotic motion of the particles introduce fluctuations,
which may be amplified by the external collaborators,
or by the swarm itself through the inter-particle coup-
ling to the swarm centroid. There are multiple direct
interactions between the particles (equations (8) and

(10)) and multiple indirect interactions between the
particles and external events (mediated by stigmergetic
attractor placement, equations (1) and (9)). Further-
more, colonies of swarms known as multi-swarms
(described below) implement multiple stigmergetic
internal interactions. These multiple interactions, in
partnership with the other three ingredients, therefore
have the potential to lead to the self-organisation
of musical events and the spontaneous generation of
structure.

5. APPLICATIONS

5.1. System overview

The working model of self-organising swarm-based
improvisers has been explained in sections 3 and 4.
This section explains how this theoretical scheme can
be fleshed out to provide realisations of self-organising
swarm-based improvisers. Figure 4 is a modular
diagram for our artificial improviser.

One possibility for the implementation of F is
the use of multi-swarms. A multi-swarm is a colony
of particle swarm Si interacting stigmergetically
(Blackwell 2003). Particle positions from one swarm
are added to the attractor buffers of the other swarms,
where they join attractors emanating from the external
audio environment. In order to provide different
external behaviour, swarm events from each swarm
can be interpreted using separate functions Qi.

Each swarm can be thought of as a separate musical
individual. In this case the Qi would be very different,

Figure 4. Modular view of the system. A separate software module, a swarmer and interpreter, is dedicated to each process
(swarming and interpretation).
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leading to quite distinct output streams Xi. This is
almost equivalent to numerous versions of systems
comprising a single swarm, except that inter-swarm
attractor placement in the multi-swarm takes place
before interpretation. The coupling between swarms in
a multi-swarm is therefore stronger than between
separate swarms because swarm events do not have
to compete with audio events from other external
systems or musicians.

Alternatively, the multi-swarm can be compared
to a single musical personality. The swarm events qi

from each swarm can be interpreted and mixed by the
Qi before outputting a single stream X. This is useful
when X can be conceptualised as the superposition of
parameterisations,

Q=SQi, X=SXi . (15)

Another design choice rests with the parameters c
of equations (5)–(12). Although some simplifications
have been made, there are still five free parameters
which determine responsiveness (vmax, m), diversity
(particle charge, dcore) and awareness (dlimit). Addi-
tionally, these parameters can be different for different
swarms in the multi-swarm, and for different direc-
tions in RN.

In general, the coordinate space of the swarmer
itself has design implications. Apart from fixing the
dimensionality of mappings P and Q, the extent of
the coordinate space needs to be decided. Although it
would be possible to allow particles to move without
restrictions in RN, it is more manageable if motion is
restricted to a finite subspace, TN5RN. Furthermore,
the behaviour at the boundaries of TN

 must be speci-
fied for any implementation. In the two applications
discussed below, T= [0, 128] and particles simply
reflect at the boundary of T.

Further important choices have to be made for the
interpretive functions P and Q which in many ways
define the character of the system. Swarm Music,
for example, is MIDI based; Q operates at the
ministructural level, turning swarm events into MIDI
events which are rendered by a synthesizer. Further-
more, Swarm Music is transparent: P=Q−1. On the
other hand, Q for the Swarm Granulator operates
at the microstructural level, mapping swarm events
to grain events which are rendered by a granular
synthesizer.

It has previously been remarked in section 4.2 that
p(t) can be delayed before being placed in TN. This
delay, tdelay, might be fixed, or might depend on the rate
of flow of information into the system. The second
option can be achieved by storing p in a queue of fixed
size. When the queue is full, attractors are taken from
the head of the queue and placed in TN upon arrival
of new attractors at the tail of the queue. tdelay therefore
depends on the length of the queue and the rate of flow
of new attractors to the queue’s tail. The queue is a

simple implementation of a memory buffer, and this is
important for stigmergetic interactions which are not
instantaneous.

5.2. Swarm Music

The current version of Swarm Music is now six-
dimensional. In previous versions, the interpreter
parsed incoming audio/MIDI for interval between
events (component 1), event pitch (component 2)
and loudness (component 3). The same parameters
were used for interpretation back into audio, so the
system operates purely at the mini-structural level.
This version has been extended by adding event dura-
tion (i.e. dti, event, component 4) and two meso-level
parameters, chord number and sequence number.

Attractor component 5, p.e5, corresponds to the
number of pitches sounding within a short (user-
specified) time dtchord. An attractor component is then
placed in this dimension, and a swarm chord number
at the start of each iteration is derived from the swarm
centroid, nchord= xrrrrr.e5. nchord can vary between 1 and M,
the size of the swarm; if nchord> 1, dt’s for the first nchord

swarm events are set to zero.
The number of simultaneous chord tones is a

mesostructural property of the swarm as a whole. The
sequence number nsequence, which can vary between –M
and M, is another meso-level parameter and is deter-
mined by the component of the swarm centroid along
this dimension, xrrrrr.e6. The sequence number has the
effect of forcing the first |nsequence | swarm events at
each iteration particles to be sorted into ascending/
descending pitches for nsequence>(<) 1.

The interpreter extracts another two parameters.
These are mode and tonic. To begin, the interpreter
assumes a mode (major, minor, pentatonic, dimin-
ished, wholetone or chromatic) and tonic. Then, thirds
and fifths of incoming MIDI events are inspected for
agreement. A number of disagreements are tolerated
before change is instigated to a mode that includes
the errant note. A note histogram is also maintained
to determine a tonic. Pitch interpretation of q is then
dependent on the current mode and tonic. This simple
algorithm allows for harmonic interaction and the
results can be quite unpredictable, but emergent
organisation is not produced by swarming. Instead,
the modal and tonic parameters are passed directly to
Q as parameters, Q=Q(ptonic, pmode). The actual pitch
of the interpreted note from particle k is then deter-
mined by splitting the 2 axis into equal intervals based
on the current parameterisation, and finding the inter-
val corresponding to component xk.e2. For example, if
Q is parameterised in C Major, the 2 axis, which runs

from 0 to 128, is split into intervals of width 
12
7

≈ 1.7
so that middle C corresponds to components in the
interval [60, 61.7], D to components in the interval
[61.7, 63.4], and so on.
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It was noted in section 4.2 that the current version of
Swarm Music implements dimensional decoupling.
This is preferable from a musical perspective since
there is no a priori reason to correlate components.
For example, if pitch and loudness components were
correlated, then swarming around a new attractor that
only differed from the previous attractor by a change
in the pitch component would lead to a change in the
dynamic output.

5.2.1. Swarm Music in performance

Swarm Music has performed with human improvisers
at a number of events, including the Music and
the Mind Festival, University College London, 2003
(Taylor 2003) and at The Big Blip Science/Arts Festi-
val 2003 (Garland-Jones 2003) where a five-particle
2-swarm took part in a piano duet with one of the
authors. Some performer feedback on early Swarm
Music performances has been reported in Blackwell
(2003). Young (as pianist at the Big Blip concert)
writes: ‘You were definitely aware of a response, and a
performance loop emerging. Extremes of material
seemed to work best – soft chords played slowly would
soon change the kind of material coming from the
swarm, after fast loud single lines for instance. The
question was how to respond again – join in and rein-
force the conditions the swarm ‘wants’, or always keep
moving on to something new?’

The system can be autonomous in performance, but
an operator may also intervene. The user interface
allows real-time control of each parameter c, the
size of TN

 and the mode/tonic interpretation can be
overridden. The effect on the swarm is not unlike the
conducted improvisation techniques of John Zorn
(Bailey 1992: 75–8) or Butch Morris’ ‘conduction’

(http://www.conduction.us). Some Swarm Music
improvisations, including conductions, can be down-
loaded from the website http://www.timblackwell.
com.

5.2.2. Cooperation amongst swarms

The next three figures illustrate the cooperative effects
between the two swarms in a 2-swarm. Each figure
shows a Cubase edit screen. In these plots, time t
runs from left to right, and pitch vertically, so that the
figures show three parameters of each event, dt, dtevent

and MIDI note number nMIDI. Figure 5 shows the
output of a five-particle 2-swarm, where the particles
are repositioned at random within TN at each particle
update. Figure 5 shows that dt, dtevent and nMIDI vary
uniformly within TN over strips (t, t+Dt). Figures 6
and 7, however, show plots for each swarm where the
particles are interacting through equations (5)–(12).
Correlations between the swarms can be easily seen in
each dimension. Rather than randomness, the plots
show that dt, dtevent and nMIDI occupy smaller regions
of TN for each strip. Two further features of figures 6
and 7 are worthy of comment. The swarms interact
stigmergetically so that the positions of particles in
Swarm A become attractor positions in Swarm B and
vice versa. The result is that a movement of the note
component of the centroids of each swarm show a
similar pattern: over the first 4–5 time units there is
centroid movement down in pitch, followed by a small
fluctuation up and then downwards again. Then, for
time units 5–18, the plots show joint movement up
in pitch with both swarms descending again at t= 12.
It is impossible to say which swarm provoked this
cooperative behaviour, and which swarm followed.

Figure 5. Particle positions, interpreted as MIDI events, for two five-particle swarms. The particles are randomly distributed
at each update.
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The 2-swarm is acting as a single entity where cause
and effect are not helpful descriptors.

5.3. Swarm granulator

The overall system has three modules; interpreter,
swarmer and granulator. In granulation, or granular

synthesis, grains are generated by multiplying an
envelope (window) of given amplitude, duration and
shape with a waveform. Synthesis is achieved by iterat-
ing grains either synchronously or asynchronously.
The result is a stream of sound with potentially very
diverse timbral characteristics. Many grain-event
level parameters affect these perceptual features; the

Figure 6. Particle positions, interpreted as MIDI events for one swarm (A) in an interacting 2-swarm. The swarms implement
the full update equations (5)–(12).

Figure 7. Particle positions, interpreted as MIDI events, for the second swarm of the interacting 2-swarm depicted in figure 6.
The horizontal time axis is the same in both plots.
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various approaches to this technique are explored in
detail by Roads (2001).

Our implementation uses a dual cross-platform
system; interpretation and granulation on a 500 MHz
Apple G4 and swarming, written in Java, runs on
a 1.7 GHz PC. The two machines communicate using
our own implementation of the Open Sound Control
protocol for Ethernet communication (http://www.
cnmat.berkeley.edu/OpenSoundControl/). Granulator
and interpreter modules (see figure 8) are written in
Max/MSP, with objects from the Granular Toolkit by
Nathan Wolek (http://www.nathanwolek.com) and
analysis objects including Miller Puckette’s fiddle~.

Analysis P operates at the sound-event level (e.g.
with fiddle~) and Q operates at the micro-(grain) level,
and a transparent mapping is made from extracted
parameters to grain parameters. Specifically, P
extracts four sound-event parameters; pitch, ampli-
tude, duration and duration between successive
sound-events. Amplitude data is extracted continu-
ously when events are detected. Q determines audio
buffer transposition (=pitch), amplitude (A), dura-
tion (dTgrain), time between successive grains (dT) and
grain attack and decay time (dTatt and dTdec). The
swarmer, therefore, operates in (N= 6)-dimensional
coordinate space with the attractor components
representing grain attack and decay times fixed.

An incoming sound stream from performers is
repeatedly recorded into a buffer~ object. Grains are
produced by looking up the audio buffer and shaping
the result with a Hanning window. The generation of
grains is not periodic; their start and end points are
controlled by swarm particles. This contrasts to con-
ventional implementations of granular synthesis, such
that dTgrain= dTatt+ dTdec+x, where x is unknown at

the onset of the grain. The grain amplitude window
is often distorted as a result, with an elongation at
the loudest point. The audio buffer entry point is
determined by the operator. Prior to this, the buffer
contents are analysed such that only regions below
an acceptable amplitude level are filtered out. This
procedure moderates the somewhat unpredictable
nature of this type of granular synthesis, more accu-
rately described perhaps as ‘granular reconstruction’
(Wishart 1994).

The result is a stream of audio varying from sparse
and irregular bursts to highly dense clouds of sonic
material, slowly or rapidly evolving in pitch and
amplitude range and in timbre. The characteristics of
this are clearly dependent on the recorded audio. To
widen the potential range of textural density, three
simultaneous grain streams are used, i.e. the swarmer
implements a 3-swarm.

Swarm Granulator has performed with three acous-
tic musicians at The Big Blip. For this event, each
swarm had ten particles and, for additional texture,
each swarm had different parameter settings c. Some
accounts of the performance from the musicians’ per-
spective are reported in Blackwell and Young (2004),
and some excerpts for the concert are available on the
website http://www.timblackwell.com

6. DISCUSSION

The inspiration behind the work presented here is
the compelling analogy between self-organisation in
nature and improvised music. We suggest here that
the emergence of structure in improvised performance
can be understood from the perspective of self-
organisation. The paper outlines a model of how these
ideas can be embodied in an artificial improviser. This
interpretative model uses the idea of indirect environ-
ment-mediated interaction (stigmergy); attractors,
which are parameterisations of external events, are
placed in the environment of a particle swarm. The
organised patterns of the swarm around the attractors
provide parameters which modulate audio output.
Two systems have been implemented, one based on
swarming grains, and one on swarming MIDI events.
These systems have been tested in performance
where they have pro-actively engaged with human
performers.

Both systems are still being developed. In particular,
the interpretative functions, which operate at specific
musical levels, are the subject of ongoing research. The
ultimate aim is for a single-level, unified system which
is transparent to both the performers and the audi-
ence. The ideal form of transparency might begin with
the extraction and mapping of micro-level parameters
(e.g. by wavelet analysis). Currently, parameters
are extracted at mini- and meso-levels. There is a
tantalising possibility that interpretation could take

Figure 8. A modular view of the granulator, showing grain
parameterisation from the swarm events q.
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place only at the smallest perceivable level, the micro-
level, and that musical structure at every level upwards
could arise through self-organisation.

Since organisation at higher and higher levels would
be expected to take place with diminishing frequency,
it could be that a hybrid multi-level approach is
preferable. In which case, interpretation of dynamic
elements such as timbral change, vibrato and attack/
decay characteristics should be added to the static
parameters so far implemented. Spectral characteris-
tics of incoming audio can be explored, for instance
by FFT analysis, enabling the automation and subse-
quent swarming of buffer entry points (which in turn
determine the waveform used for grains).

Ultimately, the integration of Swarm Granulator
and Swarm Music into a single system that listens,
swarms, and modulates output at the micro-, mini-
and meso-levels, could lead to a formidable artificial
improviser.
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