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Abstract

We construct a Baum–Connes assembly map localised at the unit element of a discrete
group Γ. This morphism, called μτ , is defined in KK-theory with coefficients in R

by means of the action of the idempotent [τ ] ∈ KKΓ
R
(C, C) canonically associated to

the group trace of Γ. We show that the corresponding τ -Baum–Connes conjecture is
weaker than the classical version, but still implies the strong Novikov conjecture. The
right-hand side of μτ is functorial with respect to the group Γ.

1. Introduction

The Baum–Connes conjecture [BC00] predicts an isomorphism between two abelian groups
naturally associated with a discrete group Γ. More precisely, an assembly map

μ : Ktop
∗ (Γ) −→ K∗(C∗

r Γ)

is constructed and is conjectured to be an isomorphism. The left-hand side is a topological
object, based on the K-homology of proper Γ-spaces with compact quotient; the right-hand side
is analytic, the K-theory of the reduced C∗-algebra of Γ.

We refer to the vast literature on the subject (see [BC00, BCH93], the book [Val02] and
the recent articles [BGW16, BEW18, GJV19] and the references therein). One of the main
motivations for the conjecture is that the injectivity of μ implies the Novikov conjecture.

In fact, the Novikov conjecture is implied by the rational injectivity of the
Mishchenko–Kasparov assembly map [Kas88, MF80]

μ̃ : K∗(BΓ) −→ K∗(C∗
r Γ)

and the Baum–Connes map incorporates the Mishchenko–Kasparov assembly in the sense that
μ̃ = μ ◦ σ, where σ : K∗(BΓ)→ Ktop

∗ (Γ) is a natural, rationally injective ‘forgetful’ map. When Γ
is torsion free, one simply has μ = μ̃. In general, the left-hand side Ktop

∗ (Γ) of the Baum–Connes
map also contains information coming from finite-order elements of Γ [BCH93].

The more general formulation of the Baum–Connes conjecture is the one called ‘with coef-
ficients’, which involves the action of a discrete group Γ on a C∗-algebra A. In this case, the
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The Baum–Connes conjecture localised at the unit element

conjecture about the bijectivity of the map

μA : Ktop
∗ (Γ; A) −→ K(A �r Γ)

is known to admit counterexamples [HLS02].
In the present paper, we apply the model of KK-theory with real coefficients developed in

[AAS16] to study the properties of the assembly maps. We explain how adding coefficients in
R provides a way to localise at the unit element of Γ. The upshot is a localised form of the
Baum–Connes conjecture that we relate to the classical Baum–Connes and Novikov conjectures.

In [AAS16] we identified a distinguished idempotent element [τ ] of the commutative ring
KKΓ

R
(C, C) that is canonically associated to the group Γ via its group trace. If the group Γ acts

freely and properly on a locally compact space Y , then [τ ] acts as the identity element on the
Γ-algebra of functions C0(Y ), that is, it defines the unit element of the ring KKΓ

R
(C0(Y ), C0(Y )).

Via the action of the idempotent [τ ] we define for Γ-algebras A, B the τ -part of KKΓ
R
(A, B)

to be the subgroup

KKΓ
R(A, B)τ := {x⊗ [τ ]; x ∈ KKΓ

R(A, B)} = {x ∈ KKΓ
R(A, B) : x⊗ [τ ] = x}

on which [τ ] acts as the identity.
The map μτ that we construct is defined on KK-theory with real coefficients and relates the

τ -parts of the left- and right-hand side of the Baum–Connes assembly map.

(i) The left-hand side of the τ -assembly morphism will be Ktop
∗,R(Γ; A)τ .

(ii) For the right-hand side, it is natural to define the τ -part of KR(A �r Γ) letting [τ ] act via
descent, that is, by right multiplication with the idempotent element JΓ

r (1A ⊗ [τ ]) of the
ring KKR(A �r Γ, A �r Γ). We thus set

K∗,R(A �r Γ)τ := {ξ ∈ K∗,R(A �r Γ) : ξ ⊗ JΓ
r (1A ⊗ [τ ]) = ξ}.

(iii) The assembly morphism defines a map

μτ : Ktop
∗,R(Γ; A)τ −→ KR(A �r Γ)τ .

The τ -form of the Baum–Connes conjecture with coefficients in a Γ-algebra A is then the
statement that μτ is an isomorphism.

We show that the τ -form of the Baum–Connes conjecture is weaker than the Baum–Connes
conjecture, in the sense that, if the Baum–Connes assembly map is injective (respectively, sur-
jective) for A⊗N for every II1-factor N , then μτ is injective (respectively, surjective) for A

(Theorem 3.10).
Moreover, the τ -form of Baum–Connes is ‘closer’ to the Novikov conjecture, because it is

only concerned with the part of Ktop
∗ (Γ) corresponding to free and proper actions. We show the

following result.

Theorem 6.2. If μτ : Ktop
∗,R(Γ)τ −→ KR(C∗

r Γ)τ is injective, then the Mishchenko–Kasparov

assembly map K∗(BΓ)→ K∗(C∗
r Γ) is rationally injective.

To do so, exploiting the properties of KK-theory with real coefficients, we prove (Theorem
5.4) that the τ -part of Ktop

∗,R(Γ) identifies with K∗,R(BΓ) and, more generally, the τ -part of
Ktop

∗,R(Γ; A) identifies with KΓ
∗,R(EΓ; A).

We already know from [AAS16] that the idempotent [τ ] acts as the identity on KΓ
∗,R(EΓ; A).
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To show that the τ -part of Ktop
∗,R(Γ; A) is contained in KΓ

∗,R(EΓ; A), we construct a compact
Γ-space X with an invariant probability measure on which each torsion subgroup of Γ acts freely.
In particular, this provides an inverse t to the map σ : K∗,R(BΓ)→ Ktop

∗,R(Γ)τ on the τ -part.
The relation between the localised Baum–Connes assembly map μτ and the

Mishchenko–Kasparov assembly μ̃ is summarised by the following commutative diagram (Remark
6.3).

Ktop
∗,R(Γ)τ

μτ
��

t��

�
�

��

K∗,R(C∗
r Γ)τ

� �

��
K∗,R(BΓ)

σ∗
������������

K∗,R(C∗
r Γ)

K∗(BΓ)⊗ R

∼=
��

μ̃⊗1

�� K∗(C∗
r Γ)⊗ R

β

��

This also provides information about the image of the assembly map μ̃⊗ 1. More precisely,
applying the natural map β, the image of μ̃⊗ 1 is in the τ -part of K∗,R(C∗

r Γ).
Let us also mention some other potentially important features of our construction. First, the

localised map μτ does not distinguish between full and reduced group C∗-algebra: in fact, we
observe (Proposition 3.3) that

K∗,R(C∗Γ)τ � K∗,R(C∗
r Γ)τ .

The second feature is related to functoriality. It is known that the reduced C∗-algebra of groups is
not functorial with respect to (non-injective) morphisms Γ1 → Γ2 of countable groups, unlike the
left-hand side of Ktop

∗ (Γ). On the other hand, we show that the group K∗,R(C∗Γ)τ is functorial
(see § 3.2).

From the properties given previously, arguing that the Baum–Connes conjecture holds for
hyperbolic groups [Laf12], one could hope to be able to establish bijectivity of μτ in a great
generality.

For the case with coefficients in a Γ-algebra this is unfortunately not the case: in § 7 we show
that the construction of [HLS02] for group actions using the ‘Gromov monster’ still provides
counterexamples to the bijectivity of the localised Baum–Connes assembly μτ : Ktop

∗,R(Γ; A)τ −→
KR(A �r Γ)τ for a suitable choice of coefficients A. Again the failure of exactness is the source
of counterexamples. In fact, using the properties of a Gromov monster group Γ [AD08, Gro03],
and letting A := �∞(N; c0(Γ)) we show that the sequence of the τ -parts

K0,R(c0(N× Γ) �r Γ)τ
�� K0,R(A �r Γ)τ

�� K0,R((A/c0(N× Γ)) �r Γ)τ

is not exact in the middle. This proves that μτ cannot be an isomorphism for every Γ-algebra.

1.0.1 On the terminology
Let us say in what sense the element τ localises at the unit element.

(i) Naively, τ really takes the value of a function at the unit element.
(ii) In a more sophisticated sense, we know from [BCH93] that the left-hand side Ktop

∗ (Γ) ratio-
nally breaks into contributions of the various conjugacy classes of Γ. In the same way, it is
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known from [Bur85] that the cyclic cohomology of the group algebra CΓ breaks into contri-
butions of the various conjugacy classes of the group; the one associated to the unit element
is equal to the cohomology group H∗(Γ; C) = H∗(BΓ; C). The idempotent [τ ] isolates this
component at the level of the ‘right-hand side’ K∗(C∗

r Γ).

1.0.2 Notation
All the tensor products considered here are minimal tensor products and will be just written
with the sign ‘⊗’.

We use the sign ‘⊗D’ for the Kasparov product of KK-elements over a C∗-algebra D in
the sense of [Kas81, Kas88]. When x ∈ KK(A, D) and y ∈ KK(D, B) we sometimes drop the
subscript D and write x⊗ y instead of x⊗D y.

Throughout the paper, when dealing with classifying spaces EΓ and BΓ, we always use the
notation K∗(BΓ) and or KΓ∗ (EΓ) to mean the K-homology with compact supports (or Γ-compact
supports), which are often denoted by RK∗ and RKΓ∗ in the literature.

2. KK-theory with real coefficients

In this section we briefly recall some constructions we will need later.

2.1 Non-separable C∗-algebras and K-theory
Let us recall some material from [Ska85b]. One shows that, when A is a separable C∗-algebra,
then for every C∗-algebra B, the group KK(A, B) is the inductive limit over all the separable
subalgebras of B. Based on this, one constructs a new group KKsep(A, B) for not-necessarily
separable A and B; it is defined as the projective limit of the groups KK(A1, B) where A1 runs
over all the separable subalgebras A1 ⊂ A. It enjoys two important properties:

(i) the familiar Kasparov group maps to this new KK(A, B);
(ii) in the new KK(A, B), the Kasparov product

⊗D : KKsep(A1, B1 ⊗D)×KKsep(D ⊗A2, B2) −→ KKsep(A1 ⊗A2, B1 ⊗B2)

is always defined without separability assumptions; this follows from the naturality of the
Kasparov product in the separable case.

One may note that all these facts can immediately be extended to the equivariant case: with
respect to a second countable group Γ.

We have the following result.

Lemma 2.1. Let Γ be a countable discrete group, and B a Γ-algebra.

(i) For every separable Γ algebra A, the group KKΓ(A, B) is the inductive limit of KKΓ(A, B1)
where B1 runs over separable Γ-subalgebras B1 ⊂ B.

(ii) For every separable algebra A, the group KK(A; B �r Γ) is the inductive limit of

KK(A, B1 �r Γ) where B1 runs over separable Γ-subalgebras B1 ⊂ B.

The proof of statement (i) goes as in [Ska85b, Remark 3.2], by using that Γ is a countable
group.

Statement (ii) follows from the fact that every separable subalgebra of B �r Γ is contained
in a B1 �r Γ.
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Note that the same remarks hold also for full crossed products.

2.2 KK-theory with real coefficients
In [AAS16], we constructed the functor KKG

R
by taking an inductive limit over II1-factors.

More precisely, given a locally compact group(oid) and two G-algebras A and B, we defined
KKG

R
(A, B) as the limit of KKG(A, B ⊗M) where M runs over II1-factors with trivial G action

and unital embeddings.
An equivalent definition of KKG

R
(A, B) can be given by taking limits of KKG

R
(A, B ⊗D)

over pairs (D, λ) where D is a unital C∗-algebra with trivial G-action, and λ is a tracial state
on D [AAS16, Remarks 1.6].

2.3 The Kasparov product in KKG
R

Let x1 ∈ KKG
R

(A1, B1 ⊗D) and x2 ∈ KKG
R

(D ⊗A2, B2); represent them as elements y1 ∈
KKG

R
(A1, B1 ⊗M1 ⊗D) and y2 ∈ KKG(D ⊗A2, M2 ⊗B2) where M1 and M2 are II1-factors.

The Kasparov product (y1 ⊗ 1A2)⊗D (1B1⊗M1 ⊗ y2) is an element in KKG(A1 ⊗A2, B1 ⊗M1 ⊗
M2 ⊗B2). Finally, using the canonical morphism M1 ⊗M2 →M1⊗̄M2 to the von Neumann
tensor product, we obtain an element x1 ⊗D x2 ∈ KKG

R
(A1 ⊗A2, B1 ⊗B2).

The Kasparov product in KKG
R

has all the usual properties (bilinearity, associativity,
functoriality, etc.). In particular, we have the following result.

Lemma 2.2. The exterior product in KKG
R

is commutative.

Proof. Let A1, A2, B1, B2 be G-algebras, xi ∈ KKG
R

(Ai, Bi). There exist II1-factors M1, M2 with
trivial G-action such that xi are images of yi ∈ KKG(Ai, Bi ⊗Mi). By [Kas88, Theorem 2.14
(8)], the exterior Kasparov products y1 ⊗C y2 and y2 ⊗C y1 coincide (under the natural flip
isomorphisms) in KKG(A1 ⊗A2, B1 ⊗M1 ⊗B2 ⊗M2). The Kasparov products x1 ⊗C x2 and
x2 ⊗C x1 are, by definition, the images of y1 ⊗C y2 and y2 ⊗C y1, respectively, in the group
KKG

R
(A1 ⊗A2, B1 ⊗B2) through a morphism from M1 ⊗M2 to a II1-factor (e.g. their von

Neumann tensor product) and then passing to the inductive limit. They coincide. �

As a direct consequence, we find the following.

Proposition 2.3. For every pair (A, B) of G-algebras, KKG
R

(A, B) is a module over the ring

KKG
R

(C, C) and the Kasparov product is KKG
R

(C, C)-bilinear. In particular, KKG
R

(A, A) is an

algebra over this ring.

Remarks 2.4. (i) Note also that using the group morphism G→ {1}, we obtain a ring morphism
R = KKR(C, C)→ KKG

R
(C, C) and it follows that the groups KKG

R
(A, B) are real vector spaces

and KKG
R

(A, A) is an algebra over R (see also [AAS16, Remark 1.9]).
(ii) Let M be a II1-factor with trivial G-action. The identity of M defines an element [idM ] ∈

KKG
R

(M, C). We have a canonical map KKG
R

(A, B ⊗M)→ KKG
R

(A, B) by Kasparov product
with this element. Let us describe it.

Let N be a II1-factor and x ∈ KKG(A, B ⊗M ⊗N) representing in the limit an element
in KKG

R
(A, B ⊗M). Denote by M⊗̄N the von Neumann tensor product of M and N . Using

the embedding B ⊗M ⊗N → B ⊗ (M⊗̄N) we obtain a morphism KKG(A, B ⊗M ⊗N)→
KKG

R
(A, B).
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Let ι : C→M denote the unital inclusion. The element ι∗[idM ] is the unit element of the
ring KKG

R
(C, C). The element ι∗[idM ] is therefore an idempotent in KKG

R
(M, M). It is not clear

what this idempotent is.
(iii) The exterior product map KKG(A, B)×KKG(C, D ⊗M)→ KKG(A⊗ C, B ⊗D ⊗

M) induces an ‘inhomogeneous product’ map

⊗ : KKG(A, B)⊗KKG
R (C, D) −→ KKG

R (A⊗ C, B ⊗D). (1)

Clearly this is the same as computing the product in KKR after applying the change of coefficient
map KKG(A, B)→ KKG

R
(A, B) (see also [AAS16, § 1.5]).

(iv) Real KK for non-separable algebras. We adapt the discussion given in § 2.1 to define
KKG

R
(A, B) when G is second countable locally compact, and A, B are generally non-separable

C∗-algebras.

(a) To begin with let us take A as separable, B as any C∗-algebra and G as any locally compact
group. Then there exists the inductive limit lim−→

N

KKG(A, B ⊗N) with N running over the

space of all II1-factors (acting on a fixed separable Hilbert space) with tracial embeddings
as morphisms. The existence of the limit is given by exactly the same proof in [AAS16]
where only the general properties of the space of II1-factors are used and there is no need
for separability assumptions on B. We can thus put

KKG
R (A, B) := lim−→

N

KKG(A, B ⊗N).

(b) Assume A is separable; start with any element in KKG
R

(A, B) represented by some x ∈
KKG(A, B ⊗N), then we can find a separable subalgebra D ⊂ B ⊗N whose image in
KKG(A, B ⊗N) is x. We can then also find a separable C∗-subalgebra B1 ⊂ B and an
element x1 ∈ KKG(A, B1 ⊗N) representing x. This implies

KKG
R (A, B) = lim−→

B′⊂B
B′separable

KKG
R (A, B).

(c) By the above remark we can define KKG
R

(A, B) for not necessarily separable A and B and
countable G. It is analogous to KKG

sep(A, B) of § 2.1:

KKG
sep,R(A, B) := lim←−

A′⊂A
A′separable

KKG
R (A′, B) = lim←−

A′⊂A
A′separable

lim−→
N

KKG(A′, B ⊗N), (2)

and is also given with a well-defined Kasparov product.

2.4 KK-elements associated with traces
If D is a C∗-algebra (with trivial G-action) and λ is a tracial state on D, we may map D in
a trace-preserving way into a II1-factor and, thus, λ gives rise to a natural KK-class with real
coefficients [λ] ∈ KKR(D, C).

Let us make some remarks.

Remarks 2.5. Let D be a G-algebra and λ a tracial state on D.
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(i) If the action of G on D is inner, that is, through a continuous morphism of G into the set
of unitary elements of D, then D with the G action is Morita equivalent to the algebra D with
trivial G action and, thus, [λ] ∈ KKG

R
(D, C) is still well defined.

(ii) Recall that when G is discrete and acts trivially on B the groups KKG(A, B) and
KK(A � G, B) coincide (the crossed product A � G is the maximal one). The same isomorphism
holds at the KKG

R
level.

(iii) If G is discrete and λ is invariant, then the crossed product algebra D � G carries the
natural (dual) trace associated with λ. We have an equivariant inclusion D → D � G where the
action of G is now inner on D � G. We thus still obtain an element [λ] ∈ KKG

R
(D, C).

(iv) Let Γ be a discrete group. Then by the previous discussion, every tracial state on C∗Γ
defines an element of KKR(C∗Γ, C) = KKΓ

R
(C, C). Let σ, σ′ be tracial states on C∗Γ. Let δ :

C∗Γ −→ C∗Γ⊗ C∗Γ denote the coproduct; then we can write [σ]⊗ [σ′] = [σ.σ′] where σ.σ′ is the
tracial state σ.σ′ := (σ ⊗ σ′) ◦ δ. We have σ.σ′(g) = σ(g)σ′(g) on every g ∈ Γ.

In particular, the canonical group trace trΓ that satisfies trΓ(e) = 1 and trΓ(g) = g for g 	= e

absorbs every tracial state: [σ]⊗ [trΓ] = [trΓ].

2.5 Descent morphism
Let us describe the descent morphism in KKR.

Let Γ be a discrete group, then there is a descent map

JΓ : KKΓ
R(A, B) −→ KKR(A � Γ, B � Γ), (3)

with respect to the maximal crossed product, which is induced by the classical Kasparov descent
map on KKΓ. It is natural with respect to the Kasparov product and satisfies JΓ(1A) = 1A�Γ.

Indeed let M → N be a morphism of C∗-algebras, both with trivial Γ action, and let B a
Γ-algebra; we have a commutative diagram

(B ⊗M) � Γ

��

�� (B ⊗N) � Γ

��
(B � Γ)⊗M �� (B � Γ)⊗N

(4)

which follows from the universal properties of the full crossed product and the fact that Γ acts
trivially on M and N . When M ↪→ N is a unital embedding of II1-factors, applying the KK

functor and the Kasparov descent map before passing to the limit defines (3).
We have a commutative diagram similar to (4) involving reduced crossed products. Actually,

when taking reduced crossed products (and minimal tensor products) the vertical arrows are
isomorphisms: let B be acting faithfully on the Hilbert space H1 and M on the Hilbert space
H2; then both (B ⊗M) �r Γ and (B �r Γ)⊗M are canonically and faithfully represented in the
Hilbert space H1 ⊗H2 ⊗ �2Γ, and the same with N instead of M .

Therefore, in the same way, we define a reduced descent morphism

JΓ
r : KKΓ

R(A, B) −→ KKR(A �r Γ, B �r Γ). (5)
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3. The τ -element and the τ -part

Let Γ be a discrete group; the τ -element of Γ is associated to Γ by means of its canonical trace
trΓ : C∗Γ→ C. Indeed applying point (iv) of Remark 2.5 to trΓ we obtain a natural class that
we call [τ ] ∈ KKΓ

R
(C, C).

Two algebraic properties of [τ ] are immediate to check: [τ ] is an idempotent, that is, [τ ]⊗
[τ ] = [τ ] (see [AAS16]); furthermore, [τ ] is central in KKΓ

R
, that is, for any Γ-algebras A, B and

any [x] ∈ KKΓ
R
(A; B), then [x]⊗ [τ ] = [τ ]⊗ [x], as follows by Lemma 2.2.

As τ is fundamental for what follows, it is worth giving a more detailed description.

(i) One starts with any trace-preserving morphism ϕN : C∗Γ −→ N to a II1-factor that defines
a class in KK(C∗Γ, N) and in the limit a class [ϕN ] ∈ KKR(C∗Γ; C).

(ii) Consider Γ acting trivially on C and apply the canonical isomorphism KKR(C∗Γ, C) �
KKΓ

R
(C, C) to the class [ϕN ]. The element we obtain is [τ ].

(iii) Concretely [τ ] is represented in the limit by the class in KKΓ(C, N) of the Γ-(C, N) bimodule
that is N (considered as a Hilbert N -module) with the Γ-action γ · n = ϕN (γ)n. If Γ is an
infinite conjugacy class (i.c.c.) group, one can take N = LΓ to be the group von Neumann
algebra of Γ. More generally, one can, for instance, embed Γ in an i.c.c. group Γ′ and take
N to be the group von Neumann algebra of Γ′.

3.1 The τ -part of K-theory
3.1.1 The τ -part of KKΓ

R
and of crossed products. The action of the idempotent [τ ] suggests

the following definition.

Definition 3.1. We denote by KKΓ
R
(A, B)τ the image of the idempotent [τ ] acting on

KKΓ
R
(A, B) and call it the τ -part of KKΓ

R
(A, B).

It is natural to define the τ -part also for the K-theory of group C∗-algebras (or, more
generally, crossed products). To do so, we consider the action of the element JΓ([τ ]) obtained by
applying the descent morphisms, as follows.

Definition 3.2 (τ -part of crossed products). Let JΓ and JΓ
r be the descent maps defined in (3)

and (5). Let A be a Γ-C∗-algebra. Let 1A denote the unit of KKΓ(A, A). We set

[τA]max := JΓ(1A ⊗ [τ ]) ∈ KKR(A � Γ, A � Γ) (6)

[τA]r := JΓ
r (1A ⊗ [τ ]) ∈ KKR(A �r Γ, A �r Γ). (7)

When A = C we simply write [τ ]max and [τ ]r.
Let now D be any C∗-algebra. We call the τ -part of KKR(D, A �r Γ) the image of the

idempotent [τA]r acting by right multiplication on KKR(D, A �r Γ):

KKR(D, A �r Γ)τ := Image
{ · ⊗[τA]r : KKR(D, A �r Γ) −→ KKR(D, A �r Γ)

}
.

Analogously, the τ -part of KKR(D, A � Γ), denoted by KKR(D, A � Γ)τ , is the image of [τA]max

acting by left multiplication on KKR(D, A � Γ). When D = C we abbreviate with K∗,R(C∗Γ)τ

and K∗,R(C∗
r Γ)τ .
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3.1.2 Reduced versus maximal crossed products. The name τ -part is unambiguous; indeed
the following proposition shows that KKR(D, A � Γ)τ and KKR(D, A �r Γ)τ are canonically
isomorphic.

Let λA : A � Γ→ A �r Γ be the natural morphism and denote by [λA] ∈ KK(A � Γ, A �r Γ)
its class.

There is also a natural morphism ΔA : A �r Γ→ (A � Γ)⊗ C∗
r Γ induced by the

coproduct. Indeed, the coproduct gives a morphism ΔA
max : A � Γ→ (A � Γ)⊗ C∗

r (Γ) defined
by the covariant morphism a 
→ a⊗ 1 and g 
→ g ⊗ λg. Let A � Γ be faithfully represented on a
Hilbert space H. Then we obtain a faithful representation π of (A � Γ)⊗ C∗

r (Γ) on H ⊗ �2(Γ).
The composition π ◦ΔA

max is the canonical faithful representation of the reduced crossed prod-
uct. It follows that the morphism ΔA

max factors through A �r Γ: there is a (faithful) morphism
ΔA : A �r Γ→ (A � Γ)⊗ C∗

r Γ such that ΔA
max = ΔA ◦ λA.

Composing with a trace-preserving embedding of C∗
r Γ in a II1-factor N , we thus obtain a

class [ΔA
τ ] = [ΔA]⊗C∗

r Γ [τ ] ∈ KKR(A �r Γ, A � Γ).

Proposition 3.3 (Cf. [AAS16, Proof of Remark 2.4]). We have

[λA]⊗ [ΔA
τ ] = [τA]max ∈ KKR(A � Γ, A � Γ),

[ΔA
τ ]⊗ [λA] = [τA]r ∈ KKR(A �r Γ, A �r Γ).

(8)

Then, for every C∗-algebra D, the product with [ΔA
τ ] induces a canonical isomorphism

KKR(D, A �r Γ)τ
� �� KKR(D, A � Γ)τ .

Proof. Represent [τ ] using a trace-preserving morphism ϕ : C∗
r Γ −→ N . Then [τA]max is given

by the composition (id⊗ ϕ) ◦ΔA
max = (id⊗ ϕ) ◦ΔA ◦ λA. The first equality follows.

In the same way, [τA]r is given by the composition (id⊗ ϕ) ◦ΔA
r , where ΔA

r is the usual
coproduct A �r Γ→ (A �r Γ)⊗ C∗

r Γ. The second equality follows because ΔA
r = (λA ⊗ id) ◦ΔA.

�

We can interpret this fact by saying that [τ ] belongs to the ‘K-amenable part of KKΓ
R
(C, C)’

in the spirit of [Cun83].

3.1.3 Functoriality. We remark here a functoriality property of the τ -parts that we need
later.

Let A and B be Γ-algebras and x ∈ KKΓ
R
(A, B).

Proposition 3.4. The map ·⊗Jr(x) : KKR(C, A �r Γ) −→ KKR(C, B �r Γ) preserves the

τ -parts inducing a map KKR(D, A �r Γ)τ −→ KKR(D, B �r Γ)τ . In particular, if f : A→ B is

an equivariant morphism, the induced map f∗ : KKR(C, A �r Γ) −→ KKR(C, B �r Γ) preserves

the τ -parts.

Proof. Let y ∈ KKR(D; A �r Γ)τ . Then y = y ⊗ Jr(1A ⊗ [τ ]) and y ⊗ Jr(x) = y ⊗ Jr([τ ]⊗ x) =
y ⊗ Jr(x⊗ [τ ]) ∈ KKR(D; B �r Γ)τ . �

This discussion holds of course also for the full crossed product.
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3.2 Naturality of the τ -part of KKR(C, C∗
rΓ) with respect to group morphisms

Let ϕ : Γ1 → Γ2 be a morphism of groups. It defines a morphism ϕ : C∗Γ1 → C∗Γ2 and there-
fore an element [ϕ] ∈ KK(C∗Γ1, C

∗Γ2). This morphism is not defined in general at the level
of reduced C∗-algebras (if kerϕ is not amenable) unlike the left-hand side Ktop

∗ (Γ) of the
Baum–Connes assembly map.

Using the τ elements, we can easily bypass this difficulty.
We denote by [τ1] ∈ KKΓ1

R
(C, C) and [τ2] ∈ KKΓ2

R
(C, C) the corresponding τ -elements.

Define [ϕ]r ∈ KKR(C∗
r Γ1, C

∗
r Γ2) by putting [ϕ]r = (λ2 ◦ ϕ)∗[Δτ1 ] where [Δτ1 ] = [ΔC

τ1 ] ∈
KKR(C∗

r Γ1, C
∗Γ1) was defined in § 3.1.2.

By the Kasparov product by [ϕ]r, we obtain a linear map KKR(C, C∗
r Γ1)

⊗[ϕ]r−→
KKR(C, C∗

r Γ2).

Claim 3.5. We have [ϕ]r = JΓ1
r ([τ1])⊗ [ϕ]r ⊗ JΓ2

r ([τ2]). In particular, the map ⊗[ϕ]r preserves

the τ -parts.

Indeed,

(i) [Δτ1 ] = JΓ1
r ([τ1])⊗ [Δτ1 ], and thus [ϕ]r = JΓ1

r ([τ1])⊗ [ϕ]r.
(ii) The element [ϕ]r is the class of a morphism C∗

r (Γ1)→ C∗
r (Γ2)⊗N1 given by δg1 
→ δϕ(g1) ⊗

j1(δg1) (for g1 ∈ Γ1) where N1 is any II1-factor and j1 : C∗
r Γ1 → N1 is any trace-preserving

morphism.
Let j1 : C∗

r Γ1 → N1 and j2 : C∗
r Γ2 → N2 be trace-preserving inclusions into II1-factors.

The element [ϕ]r ⊗ JΓ2
r ([τ2]) corresponds to the morphism C∗

r (Γ1)→ C∗
r (Γ2)⊗N2⊗̄N1,

given by δg1 
→ δϕ(g1) ⊗ j2(δϕ(g1))⊗ j1(δg1). But the map δg1 
→ j2(δϕ(g1))⊗ j1(δg1) is a
trace-preserving inclusion of C∗

r Γ1 into the II1-factor N2⊗̄N1, and thus [ϕ]r ⊗ JΓ2
r ([τ2]) =

[ϕ]r.

Hence, we have shown the following result.

Proposition 3.6. A morphism of discrete groups ϕ : Γ1 → Γ2 naturally induces a linear map

K∗,R(C∗
r Γ1)τ −→ K∗,R(C∗

r Γ2)τ .

3.3 The τ -Baum–Connes map
3.3.1 Classifying spaces. Let Γ be a discrete group and let A be a Γ-algebra. The group

Ktop
∗ (Γ; A) is defined [BCH93] by

Ktop
∗ (Γ; A) = lim−→

Y

KKΓ
∗ (C0(Y ), A).

In this direct limit of Kasparov equivariant homology groups, all the proper cocompact Γ-
invariant subspaces Y ⊂ EΓ of the classifying space for proper actions EΓ are taken into
account.

The universal property of EΓ ensures that every proper Γ-space Z has a Γ-map to EΓ
that is unique up to homotopy. Therefore, KΓ∗ (EΓ; A) is the limit of the inductive system
KKΓ∗ (C0(Z), A) where Z runs over proper and cocompact Γ-spaces. We can therefore use
the following notation: for a pair (Y, y) where Y is a proper and cocompact Γ-space and
y ∈ KKΓ(C0(Y ), A), we denote by [[Y, y ]] its associated class in the inductive limit.
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Concerning real coefficients, we define

Ktop
∗,R(Γ; A) = lim−→

Y ⊂EΓ
Y Γ-compact

KKΓ
∗,R(C0(Y ), A).

Note this is an iterated limit, first over factors, then on subsets Y . It exists because Y 
−→
KKΓ

R
(C0(Y ), A) is a directed system with values groups. In addition, by Remark 1.6 (4) of

[AAS16], the opposite iterated limit

lim−→
N

lim−→
Y ⊂EΓ

Y Γ-compact

KKΓ
∗ (C0(Y ), A⊗N) = lim−→

N

Ktop
∗ (Γ, A⊗N)

exists. Here N ranges over a fixed space of II1-factors acting on a separable Hilbert space and
with morphisms N −→M that are trace-preserving embeddings. We can show that these two
limits coincide and give a well-defined group Ktop

∗,R(Γ; A). Indeed, we are just taking the limits
in the two entries of the covariant bifunctor (Y, N) 
→ KKΓ(C0(Y ), A⊗N) defined on the cor-
responding product category. Generalising the notation given previously, we are thus allowed
to represent elements in Ktop

∗,R(Γ; A) as classes [[ Y, y ]] with Y proper Γ-compact Γ-space and
y ∈ KKΓ(C0(Y ), A⊗N).

3.3.2 The Baum–Connes map with real coefficients. Let A a be Γ-algebra. Recall that the
Baum–Connes assembly map μA : Ktop

∗ (Γ; A) −→ K∗(A �r Γ) assigns to [[ Y, ξ ]] ∈ Ktop
∗ (Γ; A), as

previously, the element
μA([[ Y, ξ ]]) = pY ⊗ jΓ

r (ξ)

where pY ∈ KK(C, C0(Y ) �r Γ) is the Kasparov projector.
The map μA factors through the K-theory of the maximal crossed product K∗(A � Γ).

We sometimes write just μ instead of μA if A = C or when there is no ambiguity on the
Γ-algebra A.

Replacing A with A⊗N for a II1-factor N (with trivial Γ-action), and using the iso-
morphism (A⊗N) �r Γ � (A �r Γ)⊗N defines a collection of assembly maps Ktop

∗ (Γ; A⊗
N) −→ K∗((A �r Γ)⊗N) passing to the limit to an assembly map in KR:

μR : Ktop
∗,R(Γ; A) −→ KR(A �r Γ). (9)

By construction, μR is formally defined by the same recipe as μ.

Lemma 3.7. The assembly map μR is given by first applying the real reduced descent map and

then taking the KKR-product with pY ∈ KK(C, C0(Y ) �r Γ) followed by the direct limit on Y :

KKΓ
R
(C0(Y ); A)

JΓ
r �� KKR(C0(Y ) �r Γ; A �r Γ)

pY ⊗·
�� KKR(C; A � Γ).

Proof. We know that we can interchange the limits in our definition of Ktop
R

(Γ; A). Then the
lemma follows immediately by the definition of the descent morphism in KKR (3) and of the
KKR-Kasparov product. Indeed, starting from (9), and with self-explanatory notation:

μR = lim−→
N

μA⊗N = lim−→
N

lim−→
Y

pY ⊗ JΓ
r = lim−→

Y

pY ⊗ lim−→
N

JΓ
r . �
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3.3.3 The τ -Baum–Connes map. We now define a map μτ : Ktop
R,∗(Γ; A)τ −→ KR,∗(A �r Γ)τ

between the corresponding τ -parts of the real K-theory.
Let us remark that if A, B are Γ-algebras, z ∈ Ktop

R,∗(Γ; A) and y ∈ KKΓ
R
(A, B), then we

have μB
R

(z ⊗ y) = μA
R
(z)⊗ JΓ

r (y). Taking B = A, we find that the real assembly map μA
R

is
KKΓ

R
(A, A) linear from the right KKΓ

R
(A, A)-module Ktop

R,∗(Γ; A) to the right KKΓ
R
(A, A)-module

KKR(C, A �r Γ) (where KKΓ
R
(A, A) acts via the ring morphism JΓ

r : KKΓ
R
(A, A)→ KKR(A �r

Γ, A �r Γ). In particular, using the morphism y 
→ 1A ⊗ y from KKΓ
R
(C, C)→ KKΓ

R
(A, A), it

follows that μA
R

is KKΓ
R
(C, C)-linear.

We therefore find a map μτ filling the following commutative diagram.

Ktop
∗,R(Γ; A)

[τ ]

��

μR �� KR(A �r Γ)

[τ ]r

��
Ktop

∗,R(Γ; A)τ

μτ
�� KR(A �r Γ)τ

Here on the right vertical arrow there is the product with [τ ]r := JΓ
r (1A ⊗ [τ ]). It is straight-

forward to check directly the existence of μτ ; indeed using Lemma 3.7 we compute for every
z ∈ Ktop

∗,R(Γ; A) represented as a class [[Y, y]] with y ∈ KKΓ
R
(C0(Y ), A):

μR(z)⊗ [τ ]r = pY ⊗ JΓ
r (y ⊗ [τ ]) = pY ⊗ JΓ

r ([τ ]⊗ y) = μR([τ ]⊗ z).

It follows that μR descends to a map on the τ -parts simply given by

μτ (x⊗ [τ ]) := μR(x)⊗ [τ ]r, x ∈ Ktop
∗,R(Γ; A).

Definition 3.8. We call μτ : Ktop
∗,R(Γ; A)τ −→ K∗,R(A �r Γ)τ the τ -Baum–Connes map.

We can state the following τ -form of the Baum–Connes conjecture with coefficients.

Conjecture 3.9. The map μτ : Ktop
∗,R(Γ; A)τ −→ K∗,R(A �r Γ)τ is bijective.

Theorem 3.10. Fix a Γ-C∗-algebra A; if the Baum–Connes map

μ : Ktop
∗ (Γ; A⊗N) −→ K∗(A �r Γ⊗N)

with coefficients in A⊗N is injective (surjective) for any choice of a II1-factor N , then:

(i) the corresponding μR : Ktop
∗,R(Γ; A) −→ KR(A �r Γ) is injective (surjective);

(ii) the corresponding μτ : Ktop
∗,R(Γ; A)τ −→ KR(A �r Γ)τ is injective (surjective).

Proof. We prove statement (ii). Statement (ii) follows because the morphism μR is KKΓ
R
(C, C)

linear.
To establish the surjectivity statement just note that every element of K∗,R(A �r Γ) is

the image of an element of K∗((A �r Γ)⊗N) = K∗((A⊗N) �r Γ) and, thus, by surjectivity
of μA⊗N , from an element in Ktop

∗ (Γ; A⊗N).
Let us now establish the injectivity statement. Let x ∈ Ktop

∗,R(Γ; A) be such that μA
R
(x) = 0 ∈

K∗,R(A �r Γ).
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The element x comes from an element x0 ∈ Ktop
∗ (Γ; A⊗N0). The fact that x ∈ ker μR means

that μ(x0) is zero in some K∗((A �r Γ)⊗N2), where N1 ⊂ N2. By injectivity of μA⊗N2 it follows
that the image of x0 ∈ Ktop

∗ (Γ; A⊗N2) is 0 and therefore x = 0. �

4. Action of [τ ] on the classifying space

4.1 The group KΓ
∗ (EΓ; A).

Replacing EΓ by the usual classifying space EΓ in the definition of Ktop
∗ (Γ; A) we obtain the

construction of the group KΓ∗ (EΓ; A):

Definition 4.1. The equivariant K-homology with Γ-compact supports of the standard
classifying space for free and proper actions is the group

KΓ
∗ (EΓ; A) = lim−→

Y ⊂EΓ
Y Γ-compact

KKΓ
∗ (C0(Y ), A).

In the same way as for EΓ, the universal property of EΓ ensures that every free and proper
Γ-space Z has a Γ-map to EΓ that is unique up to homotopy. Therefore, KΓ∗ (EΓ; A) is the limit
of the inductive system KKΓ∗ (C0(Y ), A) where Y runs over free, proper and cocompact Γ-spaces.

We denote by 〈〈Y, y〉〉 the class in KΓ∗ (EΓ; A) of a pair (Y, y) where Y is a free proper and
cocompact Γ-space and y ∈ KKΓ(C0(Y ), A).

4.2 Atiyah’s theorem and BΓ
In [AAS14] we proved that Atiyah’s theorem for a covering space Ṽ → V with deck group Γ is
equivalent to the triviality in K-theory of the Mishchenko bundle Ṽ ×Γ N constructed from a
morphism Γ→ U(N) into a II1-factor N (see also the recent article [KP18]). This inspired the
definition of ‘K-theoretically free and proper’ (KFP) algebras as the Γ-algebras where [τ ] acts
as the identity [AAS16].

Definition 4.2. For a Γ-algebra A we say that it has the KFP property if the equation
1Γ

A ⊗ [τ ] = 1Γ
A,R holds in KKΓ

R
(A, A).

Here 1Γ
A and 1Γ

A,R are the units of the rings KKΓ(A, A) and KKΓ
R
(A, A), respectively.

Remark 4.3. Note that A has the KFP property if and only if KKΓ
∗,R(A, A)τ = KKΓ

∗,R(A, A).
In addition, if A has the KFP property, then by Lemma 2.2 we know that [τ ] acts as the unit
element also on KKΓ

R
(A, B) and KKΓ

R
(B, A) for every C∗-algebra B.

The main examples of KFP algebras are the free and proper ones in the language of Kasparov
[Kas88] (see [AAS16, Theorem 3.10]). Of course C0(Y ) for a cocompact free and proper Γ-space
Y is KFP. We can put this in another way as follows.

Proposition 4.4. Let A be any Γ-C∗-algebra. The action of [τ ] on KΓ
∗,R(EΓ; A) is the identity.

In particular,

KΓ
∗,R(EΓ; A)τ = KΓ

∗,R(EΓ; A).

Proof. The K-homology group KΓ
∗,R(EΓ; A) is defined as a limit over all the cocompact Γ-

invariant pieces. It is thus sufficient to prove that for every cocompact free and proper Γ-space

2548

https://doi.org/10.1112/S0010437X20007502 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X20007502


The Baum–Connes conjecture localised at the unit element

Y , the element [τ ] acts as the identity on KKΓ
R
(C0(Y ), A). This is true because C0(Y ) is KFP

and by Remark 4.3. �

5. Comparison between KΓ
∗,R(EΓ; A) and Ktop

∗,R (Γ; A)

In this section we use [τ ] to compare the K-homology of EΓ with the one of EΓ at the level of
real coefficients. In particular, for any Γ-algebra A we show that the natural map σ : EΓ −→ EΓ
induces an isomorphism

KΓ
R
(EΓ; A)

σ∗

�
�� Ktop

∗,R(Γ; A)τ .

In the case A = C this will be used in § 6 and implies an isomorphism

K∗(BΓ)⊗ R �
�� Ktop

∗,R(Γ)τ .

Note that σ∗(〈〈Y, y〉〉) = [[Y, y]] for every free, proper cocompact Γ-space Y and every y ∈
KKΓ

∗,R(C0(Y ), A).
We construct the inverse of σ∗ using any compact probability space where Γ acts probability

measure preserving (p.m.p.) and sufficiently freely.

Proposition 5.1. Let (X, m) be any compact p.m.p. Γ-space. The invariant measure m defines

a dual trace tm : C(X) � Γ −→ C, hence an element [tm] ∈ KKΓ
R
(C(X), C). We have i∗X [tm] = [τ ]

where iX : C ↪→ C(X) is the unital inclusion and [tm]⊗ [τ ] = [tm].

Proof. The first point is an immediate consequence of Remark 2.5. By definition of a dual trace,
we have tm ◦ iX = τ . Finally, [tm]⊗ [τ ] is the class of the trace (tm ⊗ τ) ◦ δX on C(X) � Γ, where
δX : C(X) � Γ→ (C(X) � Γ)⊗ C∗Γ is the coaction. Obviously (tm ⊗ τ) ◦ δX = tm because tm
is a dual trace. �

5.1 Property TAF
Definition 5.2. A compact space X with an action of Γ such that every torsion element acts
freely is said to have property torsion acts freely (TAF).

Note that if X is TAF and Y is a proper Γ-space, then Y ×X is free and proper with respect
to the diagonal action. We use this simple remark to map naturally Ktop

∗,R(Γ; A) to the ‘free and
proper part’ KΓ

∗,R(EΓ; A), for every Γ-algebra A.

Proposition 5.3. Let (X, m) be any compact p.m.p. Γ-space with the TAF property, and

[tm] ∈ KKΓ
R
(C(X), C) the class constructed previously.

(i) The product by [tm] induces a well-defined map

t(X,m) : Ktop
∗,R(Γ; A) −→ KΓ

∗,R(EΓ; A), (10)

given at the level of cycles by t(X,m)([[ Y, y ]]) = 〈〈Y ×X, y ⊗ [tm] 〉〉 (where Y is a proper

Γ-compact space and y ∈ KKΓ
R
(C0(Y ), A)).

(ii) The composition t(X,m) ◦ σ∗ is the identity of KΓ
∗,R(EΓ; A).

(iii) The map t(X,m) does not depend on the choice of (X, m). We will denote it by t.
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Proof. Let [[ Y, y ]] ∈ Ktop
∗,R(Γ; A). Then y ⊗ [tm] ∈ KKΓ

R
(C0(Y ×X), A) and Y ×X maps to EΓ

because it is free and proper.
If Z is another proper Γ-compact space and f : Y → Z is a Γ-equivariant map, then

(f × idX)∗(y ⊗ [tm]) = f∗y ⊗ [tm]. This shows that t(X,m) is well defined in the limit.
If the action of Γ on Y is free and proper, using the map of free and proper Γ-spaces q : Y ×

X → Y , it follows that the class 〈〈Y ×X, w 〉〉 in KΓ
∗,R(EΓ; A) of an element w ∈ KKΓ

∗,R(C0(Y ×
X), A) is equal to 〈〈Y, q∗(w) 〉〉. In particular, 〈〈Y ×X, y ⊗ [tm] 〉〉 = 〈〈Y, y ⊗ i∗X [tm] 〉〉 = 〈〈Y, y ⊗
[τ ]〉〉 = 〈〈Y, y〉〉. Thus, statement (ii) follows.

Given (X1, m1) and (X2, m2), put X = X1 ×X2 and m = m1 ×m2. Then, for every cycle
[Y, y], we have 〈〈Y ×X, y ⊗ [tm]〉〉 = t(X2,m2)([[Y ×X1, y ⊗ [tm1 ]]]). As the action of Γ on Y ×X1

is free and proper, it follows that t(X2,m2)([[Y ×X1, y ⊗ [tm1 ]]]) = 〈〈Y ×X1, y ⊗ [tm1 ]〉〉 from part
(ii), that is, t(X,m)([[Y, y]]) = t(X1,m1)([[Y, y]]).

In the same way t(X,m)([[Y, y]]) = t(X2,m2)([[Y, y]]). �

We show in the following (Theorem 5.7) that every discrete countable Γ admits a compact
TAF p.m.p. space. We use this space in the next theorem. Let σ∗ : KΓ

∗,R(EΓ; A)→ Ktop
∗,R(Γ; A)

be induced by the natural map σ : EΓ→ EΓ.

Theorem 5.4. The morphism t is a left inverse of σ∗. More precisely:

(i) t ◦ σ∗ = τ and σ∗ ◦ t = τ , that is, the following diagram commutes.

KΓ
∗,R(EΓ; A)

σ∗ ��

τ=id
��

Ktop
∗,R(Γ; A)

τ

��t�������������

KΓ
∗,R(EΓ; A)

σ∗
�� Ktop

∗,R(Γ; A)

(ii) as a consequence we have an induced isomorphism

σ∗ : KΓ
∗,R(EΓ; A)

� �� Ktop
∗,R(Γ; A)τ . (11)

Proof. We already proved in Proposition 5.3(ii) that t ◦ σ∗ is the identity of KΓ
∗,R(EΓ; A).

Let Y be a free proper and cocompact Γ-space and y ∈ KKΓ(C0(Y ), A). Then

(σ∗ ◦ t)([[Y, y ]]) = σ∗(〈〈Y ×X, y ⊗ [tm] 〉〉) = [[Y ×X, y ⊗ [tm]]]

= [[Y, (y ⊗ iX(tm)) ]] = [τ ][[Y, y ]]

by Proposition 5.1. (iii) Note that the third equality here follows from the defining property of
EΓ as a direct limit over all the proper Γ-spaces. �

A model of TAF space
We construct a natural TAF space associated to the discrete group Γ. Let F ⊂ Γ be a finite
subgroup; define XF to be the space of all the (set-theoretical) sections of the projection
π : Γ −→ Γ/F :

XF := {s : Γ/F −→ Γ, π ◦ s = Id}.
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Note that we can write it as the direct product of all the cosets:

XF =
∏

[g]∈Γ/F

gF.

We give XF the natural topological product structure. In particular, it is a compact (Cantor)
metrisable space. Let us consider on every coset gF the counting measure normalised by #(F )−1.
Then we define mF to be the product measure on XF . Thanks to the normalisation, mF is a
probability measure.

The group Γ naturally acts on the left on Γ and on Γ/F , then also on XF by setting

Γ

�

XF , (γ · s)[x] = γs([γ−1x]), s ∈ XF , x ∈ Γ.

Indeed (because π is equivariant), γ · s is a section.

Lemma 5.5. Properties of XF :

(i) F acts freely on XF ;

(ii) the product measure mF is Γ-invariant.

Proof. (i) If a ∈ F fixes s, because aF = F , s(F ) = s(aF ) = as(F ) and, thus, a = e.
(ii) By definition, mF is the normalised counting measure on every cylindrical set. These

cylindrical sets generate the Borel structure and are in the form CT where for a finite subset
T ⊂ Γ we put

CT = {s ∈ XF ; s(π(x)) = x, for all x ∈ T}.
If CT 	= ∅, that is, if π is injective on T , we have mF (CT ) = #(F )−#(T ). As g(CT ) = Cg(T ),
invariance of mF follows. �

Definition 5.6. We define

XΓ :=
∏

F∈F

XF , F := {finite subgroups F ⊂ Γ},

endowed with the product topology, with the product probability measure m :=
∏

mF and, with
the diagonal action of Γ.

Then XΓ is Hausdorff, compact and second-countable; m is Γ-invariant and, by construction,
every finite subgroup F ⊂ Γ acts freely on one of the components, and thus on XΓ. We have
shown the following.

Theorem 5.7. The compact (Cantor) space XΓ has property TAF and Γ preserves its

probability measure.

Remark 5.8. It is also possible, although not needed in our construction, to construct a free
compact Γ-space with a probability measure preserved.

Indeed, let g ∈ Γ \ {e}, let 〈g〉 be the subgroup of Γ it generates, and let Yg be a free compact
〈g〉-space with a probability measure preserved. Let Xg = (Y Γ

g )g be the subset of Y Γ
g of f : Γ→ Yg

such that f(hg) = g−1f(h) for all h ∈ Γ. The space Xg identifies with Y
Γ/〈g〉
g thanks to any cross-

section s : Γ/〈g〉 → Γ and therefore carries a natural product probability measure (independent
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of this cross-section). In addition, Γ acts on Xg by putting (h.f)(k) = f(h−1k) for every h, k ∈ Γ
and fixes this product measure.

Note that the map f 
→ f(e) is 〈g〉-equivariant from Xg to Yg, and therefore Xg has no g

fixed points.
The product

∏
g Xg is the desired space.

6. Relation with the Novikov conjecture

In this section we prove that the injectivity of μτ implies the rational injectivity of the
Mishchenko–Kasparov assembly map μ̃ : K∗(BΓ) −→ K∗(C∗

r Γ) and a fortiori the Novikov
conjecture. First, we need a simple observation.

Remark 6.1. We use the fact that for BΓ, at the level of K-homology, adding real coefficients
only discards torsion. In other words there is a canonical isomorphism

KΓ
∗,R(EΓ) � K∗,R(BΓ) � K∗(BΓ)⊗ R. (12)

This identification follows immediately starting from the definition of the compactly supported
K-homology of BΓ as a direct limit of K-homology groups of finite complexes Z. For each of these
compact pieces, the group KK(C(Z), C) is finitely generated and the analogous isomorphism
KKR(C(Z), C) � KK(C(Z), C)⊗ R holds. By the flatness of R, the isomorphism is preserved
by the direct limit.

The Mishchenko–Kasparov assembly map is denoted μ̃ : KΓ∗ (EΓ) −→ K∗(C∗
r Γ). It is given

by μ̃ = μ ◦ σ∗. The corresponding map with values in K∗(C∗Γ) is denoted μ̃max : KΓ∗ (EΓ) −→
K∗(C∗Γ).

Theorem 6.2. If μτ : Ktop
∗,R(Γ)τ −→ KR(C∗

r Γ)τ is injective, then the Mishchenko–Kasparov

assembly map μ̃ : KΓ∗ (EΓ) −→ K∗(C∗
r Γ) is rationally injective.

Proof. It is enough to show that, under the assumption of injectivity of μτ , the kernel of μ̃

consists only of torsion elements. Let x ∈ KΓ∗ (EΓ) such that μ(σ∗(x)) = 0 in K∗(C∗
r Γ). By the

definition of μτ , we deduce that the element σ∗(x) = σ∗(x)⊗ [τ ] is in the kernel of μτ , so that
σ∗(x)⊗ [τ ] = 0 in Ktop

∗,R(Γ)τ . Applying the map t and using that by Theorem 5.4 t ◦ σ = τ , we
have

0 = t(σ∗(x)⊗ [τ ]) = t(σ∗(x)) = x⊗ [τ ] in KΓ
∗,R(EΓ).

By Remark 6.1, we conclude that x is torsion in KΓ∗ (EΓ). �

Remark 6.3. For every C∗-algebra A there is a map β : K∗(A)⊗ R −→ K∗,R(A) induced by the
exterior Kasparov product.
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The relation between μτ and μ̃⊗ 1 used in the proof is summarised in the following
commutative diagram.

Ktop
∗,R(Γ)τ

μτ
��

t��

�
�

��

K∗,R(C∗
r Γ)τ

� �

��
KΓ

∗,R(EΓ)

σ∗
������������

K∗,R(C∗
r Γ)

KΓ∗ (EΓ)⊗ R

∼=
��

μ̃⊗1

�� K∗(C∗
r Γ)⊗ R.

β

��

The injectivity of the map σ∗ : KΓ
∗,R(EΓ) −→ Ktop

∗,R(Γ) (Theorem 5.4) has recently been used
in [GWY18] to show that the Novikov conjecture holds for any discrete group admitting an
isometric and metrically proper action on an admissible Hilbert–Hadamard space.

7. Exactness and monster-based counterexamples

We show that the construction of the counterexamples for group actions in [HLS02] still provides
a counterexample to the bijectivity of the τ -Baum–Connes map μτ .

We know from § 3.1.3 that the τ -parts are functorial. In particular, an exact sequence
I → A→ Q of Γ-C∗-algebras induces a sequence

KKR(C, I �r Γ)τ
�� KKR(C, A �r Γ)τ

�� KKR(C, Q �r Γ)τ . (13)

We show that with exactly the same Gromov’s group Γ and the same C∗-algebras A and I as in
[HLS02], this is not exact. This is in spite of the fact that the τ -parts for the maximal and the
reduced algebras are the same, and that we could think of (13) as induced by the full crossed
product exact sequence

I � Γ −→ A � Γ −→ Q � Γ.

In fact, we show that taking the minimal tensor product with a II1-factor destroys exactness
and this is why the sequence (13) fails exactness.

We briefly recall the construction of [HLS02].
Let Γ be a Gromov monster group (see [AD08, Gro03] and, more recently, [Cou14, Osa14]).

This is a finitely generated, discrete group and one can map (in the sense of Cayley graphs) an
expanding sequence of finite graphs Xn to Γ in a controlled and ‘essentially injective’ way. Call
ϕn : X0

n −→ Γ such a collection of maps from the corresponding object spaces X0
n.

Given that, one can find a compact metrisable Γ-space Z such that the Baum–Connes map
with coefficients in C(Z) �r Γ is not an isomorphism. To do so, two passages are needed.

(i) The construction of a sequence of C∗-algebras (involving non-separable ones) that is not
exact in the middle. This is done by considering Γ acting by translation on the (non-
separable) C∗-algebra A := �∞(N; c0(Γ)): then the sequence

c0(N× Γ) �r Γ �� A �r Γ �� (A/c0(N× Γ)) �r Γ (14)
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is non-exact in the middle. This happens even at level of K-theory. We recall later why the
sequence:

K0(c0(N× Γ) �r Γ) �� K0(A �r Γ) �� K0((A/c0(N× Γ)) �r Γ) (15)

is not exact in the middle.
(ii) Building on A, an argument of direct limits and Gel’fand duality produces the compact

Γ-space Z. This is the separable counterexample.

The middle non-exactness of (15) is shown directly: there is a class [ p] ∈ K0(A �r Γ) mapping
to zero that cannot come from K0(c0(N× Γ) �r Γ). The projection

p ∈ A �r Γ ⊂ �∞(N; K(�2(Γ))

is constructed using the spectral properties of the expander. First, one represents faithfully
A �r Γ on �2(N× Γ), then using the maps ϕn and the graph Laplacians on each Xn, a bounded

operator D ∈ ˜Cc(Γ; A) (unitalisation) is constructed. Zero is isolated in the spectrum of D and
[ p] is exactly the projection on the kernel. Seeing p as a sequence of infinite matrices pn, it is
easy to check that

pn,y,z =

√
#(ϕ−1

n (y))#(ϕ−1
n (z))

#(X0
n)

, y, z ∈ Γ, n ∈ N.

By the essential injectivity of the maps ϕn, the coefficients of pn tend to 0 when n→∞. It
then follows that the image of p ∈ (A/c0(N× Γ)) �r Γ is 0.

The evaluation morphisms πn : �∞(N; c0(Γ)) �r Γ −→ c0(Γ) � Γ induce maps

πn : K0(A �r Γ) −→ K0(c0(Γ) �r Γ) ∼= Z

such that πn([ p]) = [ pn] = 1 because pn is a rank-one projection. It follows immediately that [ p]
cannot be the image of an element in K0(c0(N× Γ) �r Γ) (15) because this is isomorphic to an
algebraic direct sum

⊕
n∈N

Z.
Let us now pass to the τ -parts.

Theorem 7.1. Let Γ, A be as in (14). The sequence

K0,R(c0(N× Γ) �r Γ)τ
�� K0,R(A �r Γ)τ

�� K0,R((A/c0(N× Γ)) �r Γ)τ (16)

fails to be exact in the middle.

Proof. Let [ p]R ∈ K0,R(A �r Γ) be the image of the class [ p] of the projection given previously
via the change of coefficients. We show that the element P := [ p]R ⊗ [τA]r = [ p]R ⊗ JΓ

r (1A ⊗ [τ ])
in the middle group of the sequence is mapped to zero but does not come from the first group.

As the image of p vanishes already in (A/c0(N× Γ)) �r Γ the first assertion follows
immediately.

Note that K0,R(c0(Γ) �r Γ) ∼= R: indeed c0(Γ) �r Γ and C are Morita equivalent (before ten-
soring with a II1-factor). In the same way, one sees that K0,R(c0(N× Γ) �r Γ) is the algebraic
direct sum

⊕
n∈N

R.
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Now for every n ∈ N, the morphism induced by the evaluation πn on the τ -parts acts on P

as

πn(P ) = πn([ p]R ⊗ [τA]r) = [ pn]R ⊗ [τC0(Γ)]r = [ pn]R

where we have applied that [τ ] acts as the identity on the KFP algebra C0(Γ). In particular,
πn(P ) is non-zero for every n ∈ N. This implies that P does not come from K0,R(c0(N× Γ) =⊕

n∈N
R. �

Proposition 7.2. Let A = �∞(N, c0(Γ)) and I = c0(N× Γ). Consider the exact sequence of

Γ-algebras I → A→ A/I. Then the corresponding sequence

Ktop
0,R(Γ, I)τ

�� Ktop
0,R(Γ, A)τ

�� Ktop
0,R(Γ, A/I)τ

is exact.

To show Proposition 7.2, first recall that by (11) the isomorphism Ktop
∗,R(Γ; A)τ � KΓ

∗,R(EΓ; A)
holds true and commutes with the morphisms induced by the sequence I → A→ A/I, so that
it is enough to show the following.

Lemma 7.3. Let Y be a free and proper, cocompact Γ-space. Let I → A→ A/I be the exact

sequence of Γ-algebras appearing in (14). Then the sequence

KKΓ
R
(C0(Y ), I) �� KKΓ

R
(C0(Y ), A) �� KKΓ

R
(C0(Y ), A/I)

is exact.

To show Lemma 7.3, let N be any II1-factor with trivial Γ-action. Nuclearity of A and I

implies that the sequence

I ⊗N −→ A⊗N −→ (A/I)⊗N (17)

is still exact. A completely positive cross-section of A −→ A/I induces a completely positive
cross-section of (17), which thus remains semi-split. We now show the following fact in the
slightly more general case of any proper Γ-algebra D. In our application it will be D = C0(Y ),
which is free and proper.

Lemma 7.4. Let D be a separable proper Γ-algebra. Let J
j

�� B
q

�� B/J be a semi-split

exact sequence of (possibly non-separable) Γ-C∗-algebras. Then the sequence

KKΓ(D, J)
j∗

�� KKΓ(D, B)
q∗

�� KKΓ(D, B/J) (18)

is exact.

Once Lemma 7.4 is proved, we shall apply it to D = C0(Y ) and to the exact sequence
I ⊗N → A⊗N → (A/I)⊗N . The exactness of

KKΓ(C0(Y ), I ⊗N) �� KKΓ(C0(Y ), A⊗N) �� KKΓ(C0(Y ), (A/I)⊗N)

will follow. Finally, taking the limit over N of the groups in the exact sequence given previously,
we prove Lemma 7.3. We are hence left with the following proof.
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Proof of Lemma 7.4. If B and J are separable, the statement is proved in [EM06, Proposition
2.3]. Let us discuss the generalisation to the non-separable case, for which we follow closely
[Ska85b, Proof of Proposition 3.1]. More precisely, we assume that (18) is middle exact in the
separable case and we show that it is middle exact in full generality.

Let x ∈ KKΓ(D, B) such that q∗(x) = 0 in KKΓ(D, B/J). As KKΓ(D, B) is the inductive
limit over separable subalgebras of B (cf. [Ska85b] and Lemma 2.1), there exists a separable
Γ-invariant subalgebra B1 of B and an element x1 ∈ KKΓ(D, B1) whose image by the inclusion
j1 : B1 → B is x. Let q1 : B1 → q(B1) be the restriction of q to B1 and �1 : q(B1)→ B/J be the
inclusion. As q ◦ j1 = �1 ◦ q1, we find that (�1)∗((q1)∗(x)) = 0.

As KKΓ(D, B/J) is the inductive limit over separable Γ-invariant subalgebras of B/J , there
exists a separable Γ-invariant subalgebra Q2 ⊂ B/J , containing q(B1), such that the image of
(q1)∗(x) in Q2 through the inclusion � : q(B1)→ Q2 is the 0 element of KKΓ(D, Q2). Let s be
a completely positive section of q and then let B2 be the (separable) Γ-invariant subalgebra of
B generated by s(Q2), its Γ-translates, and B1. Denote by j : B1 → B2 the inclusion. Note that
q(B2) = Q2 and put q2 : B2 → Q2. We then have (q2)∗(j∗(x1)) = �∗((q1)∗(x1)) = 0.

Now set x2 = j∗(x1) and let j2 : B2 → B and �2 : Q2 → B/J be the inclusions.
As j1 = j2 ◦ j, we have (j2)∗(x2) = (j1)∗(x1).
Applying [EM06, Proposition 2.3] to the exact sequence of separable Γ-algebras

0→ J ∩B2 → B2 → Q2 → 0,

we find that x2 is the image of an element y2 ∈ KKΓ(D, J ∩B2) whose image in B2 is x2, whence
its image in B is x. �

This argument provides a (non-separable) counterexample to the bijectivity of μτ , as stated
more precisely in the following.

Proposition 7.5. Let A = �∞(N, c0(Γ)), I = c0(N× Γ) as before. If μ
A/I
τ is injective, then μA

τ

is not surjective.

Proof. Let x ∈ K0,R(A �r Γ)τ be the element that fails exactness in the second line of the
following commutative diagram.

Ktop
0,R(Γ, I)τ

��

μI
τ

��

Ktop
0,R(Γ, A)τ

μA
τ

��

�� Ktop
0,R(Γ, A/I)τ

μ
A/I
τ

��
K0,R(I �r Γ)τ

�� K0,R(A �r Γ)τ
�� K0,R((A/I) �r Γ)τ

Suppose μ
A/I
τ is injective and by contradiction that μA

τ is surjective. Then the preimage y ∈
Ktop

0,R(Γ, A)τ of x is mapped to zero in Ktop
0,R(Γ, A/I) by the injectiviy assumption. As the second

line is exact, y comes from an element in Ktop
0,R(Γ, I)τ , which then provides the contradiction. �

Remarks 7.6. (i) Using the argument in [HLS02, Remark 12] based on double mapping cones,
one may construct an abelian C∗-algebra B such that Ktop

R,∗(Γ; B) = 0 and KR,∗(B � Γ)τ 	= 0,
whence μτ is not surjective.
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(ii) We further show that we can pass to a separable counterexample. Assume that for an
algebra B the map μB

τ is not surjective. Then there exists a (commutative) separable Γ-subalgebra
D ⊂ B such that μD

τ is not surjective.
Indeed, let y ∈ KR,∗(B �r Γ)τ . By functoriality of the assembly μτ , it is enough to show

that there exists a separable Γ-invariant subalgebra B′ ⊂ B and y1 ∈ KR,∗(B′ �r Γ)τ such that
y = i∗(y1), where i : B′ → B is the inclusion. In other words, it is enough to show that

KR,∗(B �r Γ)τ = lim
B′⊂B

B′separable
Γ−invariant

KR,∗(B′ �r Γ)τ . (19)

Let y = [τ ]⊗ w, for w ∈ KR,∗(B �r Γ). Then there exists a II1-factor N such that w ∈ K∗((B �r

Γ)⊗N). We apply now Lemma 2.1: there exists a separable B′ ⊂ B such that w = (i⊗ 1)∗(z1)
for a z1 ∈ K∗((B′ �r Γ)⊗N), and where i : B′ → B is the inclusion. Hence, y = [τ ]⊗ w = [τ ]⊗
(i⊗ 1)∗(z1) = (i⊗ 1)∗([τ ]⊗ z1), which shows (19).

(iii) By Lafforgue’s work [Laf12], the Baum–Connes conjecture with coefficients for hyperbolic
groups holds. Now, Gromov’s monster is an inductive limit of hyperbolic groups. Despite the
functoriality of our μτ , the failure of the bijectivity of μτ of Proposition 7.5 shows that the group
KR(A �r Γ)τ is not compatible with inductive limits of groups. It may be worth noting that the
difficulty comes from the fact that the group morphisms in this inductive limit are onto but not
one-to-one. In other words, passing from one step to the next we add relations, not generators.

Let us finally comment on a possibility of fixing the non-exactness of our construction along
the lines of the recent papers of Baum et al. [BGW16] and of Buss et al. [BEW18].

A modified assembly map involving a minimal exact and Morita compatible crossed product
functor has been proposed in [BGW16], as the ‘right-hand side’ that should be considered in
the Baum–Connes conjecture (see also [ABES20] for some relations with the strong Novikov
conjecture for low degree classes).

One may try to correct the non-exactness in our context by correcting the right-hand side
for the KK-theory with real coefficients. One could, for instance, think of replacing the minimal
tensor product with II1-factors by a tensor product with II1-factors which is minimal exact (and
Morita compatible).
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Val02 A. Valette, Introduction to the Baum–Connes conjecture, Lectures in Mathematics ETH Zürich
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