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We present a series of analytically solvable axisymmetric flows on the torus geometry.
For the single-component flows, we describe the propagation of sound waves for perfect
fluids, as well as the viscous damping of shear and longitudinal waves for isothermal
and thermal fluids. Unlike the case of planar geometry, the non-uniform curvature on a
torus necessitates a distinct spectrum of eigenfrequencies and their corresponding basis
functions. This has several interesting consequences, including breaking the degeneracy
between even and odd modes, a lack of periodicity even in the flows of perfect fluids
and the loss of Galilean invariance for flows with velocity components in the poloidal
direction. For the multi-component flows, we study the equilibrium configurations and
relaxation dynamics of axisymmetric fluid stripes, described using the Cahn–Hilliard
equation. We find a second-order phase transition in the equilibrium location of the stripe
as a function of its area ΔA. This phase transition leads to a complex dependence of
the Laplace pressure on ΔA. We also derive the underdamped oscillatory dynamics as the
stripes approach equilibrium. Furthermore, relaxing the assumption of axial symmetry, we
derive the conditions under which the stripes become unstable. In all cases, the analytical
results are confirmed numerically using a finite-difference Navier–Stokes solver.

Key words: general fluid mechanics, multiphase flow

1. Introduction

In recent years there has been a growing interest in studying and understanding
hydrodynamic flows on curved surfaces, supported by increasing evidence for their
relevance in a wide range of problems in nature and engineering. Examples include
phenomena in materials science, such as the motion of electrons in graphene (Giordanelli,
Mendoza & Herrmann 2018), interface rheology in foams (Cox, Weaire & Glazier 2004)
and the dynamics of confined active matter (Keber et al. 2014; Janssen, Kaiser & Löwen
2017; Henkes, Marchetti & Sknepnek 2018; Pearce et al. 2019); in biophysics, such as
flows on curved biomembranes (Arroyo & Desimone 2009; Henle & Levine 2010; Al-Izzi,
Sens & Turner 2018; Fonda et al. 2018) or fluid deformable surfaces (Torres-Sánchez,
Millán & Arroyo 2019; Voigt 2019); in fusion technology, such as plasma motion under
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toroidal confinement (Boozer 2005); and in geophysics, such as zonal flows on planets and
the Sun (Sasaki, Takehiro & Yamada 2015).

In this work, we consider a series of axisymmetric flows on the torus geometry (i.e. flows
which are homogeneous with respect to the azimuthal torus coordinate) for which analytic
solutions can be derived. The torus is chosen as it represents one of the simplest geometries
with non-uniform curvature. On the one hand, these flows allow us to identify novel flow
phenomena arising from the presence of non-uniform curvature, which are absent on
planar geometries. Importantly, our analytical calculations allow us to identify the key
ingredients for observing these phenomena. On the other hand, this work can provide
several non-trivial benchmark problems suitable for developing computational methods for
flows on curved surfaces. To date, a number of numerical approaches have been developed
to solve the fluid equations of motion on curved manifolds, including using finite-element
(Dziuk & Elliott 2007, 2013), level set (Bertalmío et al. 2001), phase-field (Rätz & Voigt
2006), closest point (Macdonald & Ruuth 2010) and lattice Boltzmann (Ambruş et al.
2019) methods. Recently, interest has been shown also for fluid systems on evolving
curved manifolds both for incompressible (Koba, Liu & Giga 2017; Nitschke, Reuther &
Voigt 2019) and compressible (Koba 2018) fluids. However, despite the availability of
these various methods, to date there is still a lack of systematic comparisons to assess
and compare their accuracy and robustness. Here, we directly compare all the analytical
derivations against numerical simulations obtained using a finite-difference Navier–Stokes
solver.

In total we discuss five problems with increasing complexity. First, we start with the
propagation of sound waves for a perfect fluid on a torus. Then, we consider viscous
damping. We study shear wave damping, where the fluid velocity is in the azimuthal
direction of the torus, as well as the damping of longitudinal waves, where the fluid
velocity is in the poloidal direction. These three problems have been regularly studied
for the planar geometry, and they are popular benchmark case studies for Navier–Stokes
solvers (Sofonea & Sekerka 2003; Rembiasz et al. 2017; Sofonea et al. 2018; Busuioc
et al. 2020). Here, for their torus equivalent, we analyse the flows by deriving their
distinct discrete spectrum of eigenfrequencies and corresponding basis functions. We
carry out these studies for isothermal and thermal single-component fluids, as well as
for multicomponent fluids described by the Cahn–Hilliard equation. Interestingly, we find
that the degeneracy between odd and even modes is broken, which can be observed both
in the oscillation frequencies and decay rates of those modes. Due to the non-uniform
curvature, we will also show that Galilean invariance and flow periodicity, as commonly
observed in the planar geometry, can be lost.

Next, we focus on an axisymmetric fluid stripe embedded on a torus. Focussing on
the static configurations, the spatial symmetry is broken in the poloidal direction and we
find a second-order phase transition in the location of the minimum energy configurations
depending on the area of the fluid stripes. We further derive the equivalent of a Laplace
pressure on a torus geometry, where additional terms are present due to the underlying
curved metric. As a consequence of the phase transition, the Laplace pressure of a fluid
stripe in equilibrium has a complex dependence on its area. For completeness, we also
discuss other configurations, available when the axisymmetry restriction is lifted, which
may have lower energy compared to the stripe configuration under certain conditions.
Furthermore, we derive the regime of stability of the stripe configurations under small
azimuthal perturbations. We then study the relaxation dynamics of the fluid stripes. When
the Cahn–Hilliard equation is coupled with hydrodynamics, we find an underdamped
oscillatory motion for the stripe dynamics. We derive the oscillation frequency and the
exponential decay rate. The case in the absence of hydrodynamics, where the stripes
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Axisymmetric flows on the torus geometry 901 A9-3

simply relax exponentially to their equilibrium position, is discussed in § SM:2.4 of the
supplementary material available at https://doi.org/10.1017/jfm.2020.440.

The paper is structured as follows. Section 2 describes the hydrodynamic equations for
flows on general curved surfaces, which are then specialised to the case of axisymmetric
flows on the torus geometry. The five axisymmetric flow problems are introduced and
presented in §§ 3–7. Taken together, our series of axisymmetric flows cover single- and
multi-component flows, static and dynamic aspects, instabilities under small perturbations,
perfect and viscous fluids, isothermal and thermal cases and motion in the azimuthal and
poloidal directions of the torus. A summary of the work and concluding remarks are
finally presented in § 8. The paper also includes two appendices. Appendix A presents
a convergence order analysis of the solver employed in this paper with respect to the
first three benchmark tests, discussed in §§ 3–5. Appendix B discusses the perturbative
procedure that we use to obtain the mode solutions necessary for the spatial part of the
linearised hydrodynamic equations, which are employed in the main text.

The supplementary material (SM) contains three sections. Section SM:1 provides
details on the implementation of our numerical scheme. Section SM:2 contains
mathematical complements for the analysis of the Cahn–Hilliard model on the torus
geometry. Finally, § SM:3 applies the procedure described in appendix B to derive
expansions of the mode functions and related quantities up to ninth order with
respect to the torus aspect ratio, 0 < a = r/R < 1. These expansions are available
for download as gnuplot files (funcs-inv.gpl and funcs-shear.gpl) and Mathematica
notebooks (funcs_inv.nb and funcs_shear.nb) in the supplementary material. In addition,
two animations of the development of the instability of fluid stripes due to azimuthal
perturbations, discussed in § 6.2, are also provided in the supplementary material.

2. Hydrodynamics on curved surfaces

Over the past decades, there have been several attempts to formulate the hydrodynamic
equations on curved surfaces (Serrin 1959; Marsden & Hughes 1994; Taylor 2011).
In this paper, we take the strategy of first writing the fluid equations with respect to
curvilinear coordinates in covariant form. Employing the orthonormal vielbein vector
field {eα̂, α = 1, 2, 3}, we then take the first two vectors, eı̂ (i = 1, 2) to be tangent to
the manifold and enforce that no dynamics occurs along the third vector, e3̂. This approach
allows the fundamental conservation equations for mass, momentum and energy for fluids
on a curved surface to be written in covariant form as follows:

Dρ
Dt

+ ρ∇ı̂ uı̂ = 0, (2.1a)

ρ
Duı̂

Dt
+ ∇ĵT

ı̂ ĵ = ρf ı̂ , (2.1b)

ρ
De
Dt

+ T ı̂ ĵ∇ı̂ uĵ = −∇ı̂ qı̂ , (2.1c)

where 1 ≤ i, j ≤ 2 cover the tensor components along the directions which are tangent to
the surface. In the above, ρ is the fluid mass density, u = uı̂ eı̂ is the fluid velocity, ∇ı̂ is the
covariant derivative, D/Dt = ∂t + uĵ∇ĵ is the material (convective) derivative, T ı̂ ĵ is the
pressure tensor, f ı̂ is the external force per unit mass (which we neglect for the remainder
of this paper), e = cvT is the internal energy per unit mass, cv is the specific heat capacity,
T is the fluid temperature and qı̂ is the heat flux. The set of relations (2.1a)–(2.1c) are
compatible with those derived from kinetic theory in curvilinear coordinates (Busuioc &
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Ambruş 2019) or on curved manifolds (Ambruş et al. 2019). Furthermore, the computation
of the divergence of the stress tensor in a covariant way ensures the compatibility with
the approaches currently taken in the literature (Arroyo & Desimone 2009; Taylor 2011;
Nitschke, Reuther & Voigt 2017; Gross & Atzberger 2018).

The hydrodynamic equations, (2.1), are not closed unless the pressure tensor T ı̂ ĵ and
heat flux qı̂ are known. The specific models employed in this paper for these quantities
are discussed below in §§ 2.1 and 2.2, respectively. After briefly introducing the relevant
differential operators in § 2.3, we explicitly write the equations of motion for axisymmetric
flows on the torus geometry in § 2.4.

2.1. Models for the pressure tensor
We restrict our analysis to the case of Newtonian fluids, for which the pressure tensor can
be decomposed as

T ı̂ ĵ = Pbδ
ı̂ ĵ + P ı̂ ĵ

κ − τ ı̂ ĵ . (2.2)

The dissipative part τ ı̂ ĵ = τ
ı̂ ĵ
dyn + τ

ı̂ ĵ
bulk of the pressure tensor for a two-dimensional

Newtonian fluid reads

τ
ı̂ ĵ
dyn = η

(
∇ ı̂ uĵ + ∇ ĵuı̂ − δ ı̂ ĵ∇k̂u

k̂
)
, τ

ı̂ ĵ
bulk = ηvδ

ı̂ ĵ∇k̂u
k̂, (2.3a,b)

where η and ηv are the dynamic and bulk (volumetric) viscosity coefficients, respectively.
For the applications considered in this work, the dependence of the transport coefficients
on the flow properties is not important. Hence, we adopt the usual model in which the
kinematic viscosities ν and νv are constant, such that η and ηv are computed using

η = νρ, ηv = νvρ. (2.4a,b)

For the first two terms in (2.2), Pb is the isotropic bulk pressure and P ı̂ ĵ
κ is responsible

for the surface tension, which is relevant in the case of multicomponent systems. For ideal
single-component fluids, the bulk pressure is the ideal gas pressure and the surface tension
part vanishes

Pb = Pi = ρkBT
m

, P ı̂ ĵ
κ = 0, (2.5a,b)

where m is the average particle mass. In this paper, we always use units such that m = 1.
For multicomponent flows, we consider a binary mixture of fluids A and B,

characterised by an order parameter φ, such that φ = 1 corresponds to a bulk A fluid
and φ = −1 to a bulk B fluid. The coexistence of these two bulk fluids can be realised by
using a simple form for the Helmholtz free energy Ψ

Ψ =
∫

V
dV(ψb + ψg), (2.6)

where the bulk ψb and the gradient ψg free energy densities are (Briant & Yeomans 2004;
Krüger et al. 2017)

ψb = A
4
(1 − φ2)2, ψg = κ

2
(∇φ)2. (2.7a,b)

Here, A and κ are free parameters, which are related to the interface width ξ and surface
tension σ through

ξ =
√
κ

A
, σ =

√
8κA

9
. (2.8a,b)
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Axisymmetric flows on the torus geometry 901 A9-5

For simplicity, we consider the case when A and κ have constant values throughout the
fluid. The chemical potential can be derived by taking the functional derivative of the free
energy with respect to the order parameter, giving

μ = δΨ

δφ
= μb + μg, μb = −Aφ(1 − φ2), μg = −κΔφ. (2.9a–c)

The additional contributions to the pressure tensor arising from this free energy model
can be found by imposing

∇ĵ [PCHδ
ı̂ ĵ + P ı̂ ĵ

CH;κ] = φ∇ ı̂μ, (2.10)

which leads to

Pb = Pi + PCH = ρkBT
m

− A
(
φ2

2
− 3φ4

4

)
,

P ı̂ ĵ
κ = P ı̂ ĵ

CH;κ = κ∇ ı̂φ∇ ĵ φ − κδ ı̂ ĵ

[
φΔφ + 1

2
(∇φ)2

]
.

⎫⎪⎪⎬⎪⎪⎭ (2.11)

For multicomponent flows, in addition to the hydrodynamic equations in (2.1), another
equation of motion is needed to capture the evolution of the order parameter φ. Here, it is
governed by the Cahn–Hilliard equation

Dφ
Dt

+ φ∇ı̂ uı̂ = ∇ı̂(M∇ ı̂μ), (2.12)

where M is the mobility parameter, D/Dt = ∂t + uı̂∇ı̂ is the material derivative and the
fluid velocity u is a solution of the hydrodynamic equations (2.1). For simplicity, we
assume that M takes a constant value throughout the fluid.

2.2. Model for the heat flux
We consider fluids for which the heat flux is given via Fourier’s law

qı̂ = −k∇ ı̂ T. (2.13)

The heat conductivity k is related to the dynamic viscosity through the Prandtl number Pr

Pr = cp
η

k
= cv

γ η

k
, (2.14)

where cp is the specific heat at constant pressure and γ is the adiabatic index. For
definiteness, we assume that Pr is a constant number in this work.

When considering isothermal flows, the temperature is assumed to remain constant and
the heat flux vanishes

T = TIso = const, qı̂
Iso = 0. (2.15a,b)

In this case, the energy equation is no longer taken into consideration.
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R r
ϕ

θ

FIGURE 1. Spatial discretisation of the torus geometry.

2.3. Differential operators on the torus geometry
In this subsection we provide a brief introduction to the differential geometry approach we
have used to analyse the fluid flows. For concreteness, we consider the parametrisation of
a torus of outer radius R and inner radius r using the coordinates qi ∈ {ϕ, θ} (i represents
a coordinate index) as follows:

x = (R + r cos θ) cosϕ,
y = (R + r cos θ) sinϕ,

z = r sin θ.

⎫⎬⎭ (2.16)

Here, ϕ and θ are the azimuthal and the poloidal angles, respectively, and the system is
periodic with respect to both angles with period of 2π. Figure 1 depicts the coordinates
and the equidistant spatial discretisation in ϕ and θ .

The line element on the torus can be written with respect to θ and ϕ as follows:

ds2 = (R + r cos θ)2 dϕ2 + r2 dθ 2. (2.17)

The metric tensor associated with the above line element has the following non-vanishing
components:

gϕϕ = (R + r cos θ)2, gθθ = r2. (2.18a,b)

Similar to the approach taken by other authors (Nitschke, Voigt & Wensch 2012;
Reuther & Voigt 2018), it is convenient to introduce the vielbein vector frame {eϕ̂ , eθ̂ },
where eı̂ = ei

ı̂∂ i is the notation for a vector tangent to the surface. The components ei
ı̂

satisfy

gije
i
ı̂ e

j
ĵ

= δı̂ ĵ . (2.19)

The natural choice for the vielbein on the torus geometry is

eϕ̂ = ∂ϕ

R(1 + a cos θ)
, eθ̂ = ∂θ

r
, (2.20a,b)

where the following notation was introduced for future convenience:

a = r
R
. (2.21)
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Axisymmetric flows on the torus geometry 901 A9-7

The corresponding vielbein co-frame, comprised of the one-forms ωı̂ = ωı̂
i dqi, is given by

ωϕ̂ = R(1 + a cos θ)dϕ, ωθ̂ = rdθ , (2.22a,b)

such that
ωı̂

i e
i
ĵ = δ ı̂

ĵ , δı̂ ĵω
ı̂
iω

ĵ

j = gij. (2.23a,b)

The algebraic rules to compute the terms appearing in (2.1) are described below. The
gradient ∇ı̂ F = ei

ı̂∂iF of a scalar function F has the following components:

∇ϕ̂F = ∂ϕF
R(1 + a cos θ)

, ∇θ̂F = 1
r
∂θF. (2.24a,b)

For a vector field Aı̂ , the covariant derivative is

∇ĵAı̂ = e j
ĵ
∂jAı̂ + Γ ı̂

k̂ĵA
k̂, (2.25)

and when the vector index is lowered, it becomes

∇ĵAı̂ = e j
ĵ
∂jAı̂ − Γ k̂

ı̂ ĵAk̂. (2.26)

For the computation of the covariant derivatives, the connection coefficients Γ ı̂
k̂ĵ =

δ ı̂ �̂Γ�̂k̂ĵ are defined as

Γ�̂k̂ĵ = 1
2(c�̂k̂ĵ + c�̂ĵ k̂ − ck̂ĵ �̂), (2.27)

with the Cartan coefficients cı̂ ĵ
k̂ = δk̂�̂cı̂ ĵ �̂ to be computed from the commutator of the

vectors of the vielbein field

[eı̂ , eĵ ] = cı̂ ĵ
k̂ek̂, (2.28)

where the components of the commutator are ([eı̂ , eĵ ])d = ek
ı̂ ∂ked

ĵ
− ek

ĵ
∂ked

ı̂ . We can also
invert the above relation to get

cı̂ ĵ
k̂ = 〈[eı̂ , eĵ ],ωk̂〉 = (ed

ı̂ ek
ĵ − ed

ĵe
k
ı̂ )∂kω

k̂
d, (2.29)

where 〈u,w〉 = uı̂ wı̂ is the inner product between a vector field u = uı̂ eı̂ and a one-form
w = wı̂ω

ı̂ .
Let us now apply these definitions for the case of a torus. The commutator of the vielbein

vectors eθ̂ and eϕ̂ is

[eθ̂ , eϕ̂] = −[eϕ̂ , eθ̂ ] = sin θ
R(1 + a cos θ)

eϕ̂ . (2.30)

Substituting these relations into the definition of the Cartan coefficients, we find that the
only non-vanishing Cartan coefficients are

cθ̂ ϕ̂
ϕ̂ = −cϕ̂θ̂

ϕ̂ = sin θ
R(1 + a cos θ)

, (2.31)

and the ensuing connection coefficients read

Γθ̂ϕ̂ϕ̂ = −Γϕ̂θ̂ϕ̂ = sin θ
R(1 + a cos θ)

. (2.32)
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Another important operator is the divergence of a vector field, where the following
relation applies:

∇ı̂ Aı̂ = 1√
g
∂i(

√
gei

ı̂ A
ı̂) = ∂ϕAϕ̂

R(1 + a cos θ)
+ ∂θ [Aθ̂ (1 + a cos θ)]

r(1 + a cos θ)
. (2.33)

For the special case where Aı̂ = ∇ ı̂ F is the gradient of a scalar function, the following
relation may be employed:

ΔF = ∇ı̂∇ ı̂ F = 1√
g
∂i(

√
ggij∂jF) = ∂2

ϕA

R2(1 + a cos θ)2
+ ∂θ [(1 + a cos θ)∂θF]

r2(1 + a cos θ)
. (2.34)

Finally, the action of the covariant derivative on a tensor with two indices can be computed
using

∇ı̂M
ĵ k̂ = ei

ı̂∂iM
ĵ k̂ + Γ ĵ

�̂ı̂M
�̂k̂ + Γ k̂

�̂ı̂M
ĵ �̂
. (2.35)

2.4. Equations of motion for axisymmetric flows on the torus geometry
In this paper, we focus on axisymmetric flows, for which all fluid quantities are
independent of the ϕ angular coordinate. In this case, the continuity equation (2.1a)
becomes

∂ρ

∂t
+ ∂θ [ρuθ̂ (1 + a cos θ)]

r(1 + a cos θ)
= 0. (2.36)

To derive the Cauchy equation (2.1b), let us first consider the viscous contributions to
the pressure tensor. Taking the covariant derivatives in (2.3), the following expressions are
obtained for the components of τ ı̂ ĵ

dyn:

τ θ̂ θ̂dyn = −τ ϕ̂ϕ̂dyn = η

r
(1 + a cos θ)

∂

∂θ

(
uθ̂

1 + a cos θ

)
,

τ
θ̂ϕ̂

dyn = τ
ϕ̂θ̂

dyn = η

r
(1 + a cos θ)

∂

∂θ

(
uϕ̂

1 + a cos θ

)
,

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (2.37)

while the volumetric parts are

τ θ̂ θ̂bulk = τ
ϕ̂ϕ̂

bulk = ηv∇k̂u
k̂ = ηv

r(1 + a cos θ)
∂

∂θ
[uθ̂ (1 + a cos θ)], (2.38)

with τ θ̂ϕ̂bulk = τ
ϕ̂θ̂

bulk = 0. The divergence of τ ı̂ ĵ is then

∇ĵτ
θ̂ ĵ = ∂θ {η(1 + a cos θ)3∂θ [uθ̂ /(1 + a cos θ)]}

r2(1 + a cos θ)2

+ 1
r2

∂

∂θ

ηv∂θ [uθ̂ (1 + a cos θ)]
1 + a cos θ

,

∇ĵτ
ϕ̂ĵ = ∂θ {η(1 + a cos θ)3∂θ [uϕ̂/(1 + a cos θ)]}

r2(1 + a cos θ)2
.

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
(2.39)
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Axisymmetric flows on the torus geometry 901 A9-9

For the non-dissipative contributions to the pressure tensor, the divergence ∇ĵP
ı̂ ĵ
κ of the

term involving surface tension can be evaluated using

∇ĵP
ı̂ ĵ
κ = −φκ∇ ı̂Δφ. (2.40)

Thus, the ϕ̂ component of the Cauchy equation reads as

ρ

{
∂uϕ̂

∂t
+ uθ̂

∂θ [uϕ̂(1 + a cos θ)]
r(1 + a cos θ)

}
= ∂θ {η(1 + a cos θ)3∂θ [uϕ̂/(1 + a cos θ)]}

r2(1 + a cos θ)2
, (2.41a)

while the θ̂ component can be written as

ρ

[
∂uθ̂

∂t
+ uθ̂

r
∂uθ̂

∂θ
+ (uϕ̂)2 sin θ

R(1 + a cos θ)

]
+ 1

r
∂Pb

∂θ
= φκ

r3

∂

∂θ

{
∂θ [(1 + a cos θ)∂θφ]

1 + a cos θ

}

+ ∂θ {η(1 + a cos θ)3∂θ [uθ̂ /(1 + a cos θ)]}
r2(1 + a cos θ)2

+ 1
r2

∂

∂θ

{
ηv
∂θ [uθ̂ (1 + a cos θ)]

1 + a cos θ

}
.

(2.41b)

To derive the energy equation (2.1c), the following contraction is useful:

τ ı̂ ĵ∇ı̂ uĵ = 1
2η
τ

ı̂ ĵ
dynτ

dyn
ı̂ ĵ + 1

2ηv
τ

ı̂ ĵ
bulkτ

bulk
ı̂ ĵ

= 1
η

[
(τ θ̂ θ̂dyn)

2 + (τ
ϕ̂θ̂

dyn)
2
]

+ 1
ηv
(τ θ̂ θ̂bulk)

2, (2.42)

where the properties τ ϕ̂ϕ̂dyn = −τ θ̂ θ̂dyn and τ θ̂ θ̂bulk = τ
ϕ̂ϕ̂

bulk have been used. Thus, the energy
equation can be written as

ρ

(
∂e
∂t

+ uθ̂

r
∂e
∂θ

)
+ Pb∂θ [uθ̂ (1 + a cos θ)]

r(1 + a cos θ)

= 1
r2

∂θ [(1 + a cos θ)k∂θT]
1 + a cos θ

+ 1
η

[
(τ θ̂ θ̂dyn)

2 + (τ
ϕ̂θ̂

dyn)
2
]

+ 1
ηv
(τ θ̂ θ̂bulk)

2. (2.43)

Finally, on the torus, the Cahn–Hilliard equation, (2.12), reduces to

∂φ

∂t
+ ∂θ [φuθ̂ (1 + a cos θ)]

r(1 + a cos θ)
= M

r2

∂θ [(1 + a cos θ)∂θμ]
1 + a cos θ

, (2.44)

where the chemical potential is computed using

μ = −Aφ(1 − φ2)− κ

r2

∂θ [(1 + a cos θ)∂θφ]
1 + a cos θ

. (2.45)
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3. Sound speed for perfect fluids

The first problem we study in this work is sound wave propagation for perfect
fluids on the torus geometry. In fluids, sound waves provide the basic mechanism
of information propagation. Many interesting phenomena involving the properties of
sound wave propagation form the object of focus in acoustics. In addition, due to
their fundamental importance, sound wave propagation should be considered as a first
benchmark for any hydrodynamics solver. For perfect fluids, we neglect dissipative effects,
such that the dynamic viscosity η and the heat conductivity k can be taken to be zero. For
simplicity, we will also set the surface tension parameter κ and the mobility M in the
Cahn–Hilliard equation to zero.

Focussing on sound wave propagation along the poloidal (θ ) direction of the torus,
we will show that the sound waves exhibit a discrete spectrum of harmonics. The
eigenfrequencies corresponding to these harmonics can be related to those of the
standard Fourier harmonics for periodic domains, but, surprisingly, the eigenfrequencies
corresponding to odd and even modes have different values, unlike for a planar
geometry (Rieutord 2015; Busuioc et al. 2020). The eigenfunctions describing the spatial
dependence also generalise from the usual harmonic sine and cosine basis to more
complex odd and even functions. We determine the eigenfunctions using a perturbative
approach, starting with the harmonic functions at zeroth order.

This section is structured as follows. The general solution for the propagation of
longitudinal waves is presented in § 3.1. Then, two benchmark problems are proposed
in §§ 3.2 and 3.3.

3.1. General solution
Let us consider small perturbations around a stationary, background state at density ρ0,
internal energy e0 and order parameter φ0, having bulk pressure P0 ≡ Pb(ρ0, e0, φ0)

ρ = ρ0(1 + δρ), e = e0(1 + δe), Pb = P0(1 + δP), φ = φ0 + δφ. (3.1a–d)

The perturbations in the pressure δP can be expressed as

δP = ρ0Pρ,0
P0

δρ + e0Pe,0

P0
δe + Pφ,0

P0
δφ, (3.2)

where for brevity the following notation is introduced:

Pρ = ∂Pb

∂ρ
, Pe = ∂Pb

∂e
, Pφ = ∂Pb

∂φ
. (3.3a–c)

The subscripts 0 in (3.2) indicate that the derivatives of the pressure are computed for the
background state.

Assuming that the velocity components uθ̂ and uϕ̂ are small, and neglecting all
second-order terms of the perturbations introduced, the continuity (2.36), Cauchy (2.41)
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energy (2.43) and Cahn–Hilliard (2.44) equations reduce to

∂δρ

∂t
+ ∂θU

r(1 + a cos θ)
= 0,

∂U
∂t

+ P0(1 + a cos θ)
ρ0r

∂δP
∂θ

= 0,

∂δφ

∂t
+ φ0∂θU

r(1 + a cos θ)
= 0,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
(3.4)

while ∂tuϕ̂ = 0. Note that, in the above, we introduced the following notation:

U = uθ̂ (1 + a cos θ). (3.5)

Taking the time derivative of the second relation in (3.4) and replacing δP with (3.2) gives

∂2U
∂t2

− c2
s,0

r2
(1 + a cos θ)

∂

∂θ

(
1

1 + a cos θ
∂U
∂θ

)
= 0. (3.6)

Equation (3.6) represents the generalisation of the sound wave equation for axisymmetric
flows on the torus geometry. We can recognise cs,0 as the sound speed corresponding to
the background fluid parameters. In general, c2

s can be computed using

c2
s = Pρ + Pb

ρ2
Pe + φ

ρ
Pφ. (3.7)

For the ideal gas, Pb = ρkBT/m and cs = √
γPb/ρ, where γ = 1 + kB/mcv is the

adiabatic index (e.g. γ = 2 for a monoatomic ideal gas with 2 translational degrees of
freedom). The isothermal regime can be recovered by setting cv → ∞ and γ → 1. For
the isothermal ideal fluid, we recover cs = √

kBT/m.
Equation (3.6) can be solved using the method of separation of variables with the

following ansatz:

U(t, θ) → Un(t, θ) = Un(t)Ψn(θ). (3.8)

The index n reflects the fact that there are more than one possible solutions, corresponding
to a discrete set of eigenvalues λn . The temporal function corresponds to simple harmonic
oscillations of the form

Ün = −λ2
n

c2
s,0

r2
Un. (3.9)

The angular functions satisfy the differential equation

(1 + a cos θ)
d

dθ

(
1

1 + a cos θ
dΨn

dθ

)
+ λ2

nΨn = 0. (3.10)

The functions Ψn are twice differentiable periodic solutions with a discrete set of
eigenvalues λn . Equation (3.10) has even and odd solutions, which we denote by fn(θ)
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and gn(θ). It can be shown that these functions are orthogonal with respect to the inner
product, which is defined below for two functions ψ(θ) and χ(θ)

〈ψ, χ〉 =
∫ 2π

0

dθ
2π

ψ(θ)χ(θ)

1 + a cos θ
. (3.11)

We seek solutions of unit norm, such that

〈 fn, fn′ 〉 = δn,n′, 〈gn, gn′ 〉 = δn,n′, 〈 fn, gn′ 〉 = 0. (3.12a–c)

The zeroth mode solution, corresponding to n = 0 and λ0 = 0, is straightforward to
identify. The solution is a constant. Exploiting the condition of unit norm, we can use the
following integral

1
2π

∫ 2π

0

dθ
1 + a cos θ

= 1√
1 − a2

(3.13)

to obtain that
f0(θ) = (1 − a2)1/4. (3.14)

There is no antisymmetric solution corresponding to n = 0 and λ0 = 0.
We will now discuss the subsequent values of λc;n and λs;n , the eigenvalues of the even

( fn) and odd (gn) solutions. More specifically, the pairs ( fn, λc;n) and (gn, λs;n) satisfy
(3.10):

(1 + a cos θ)
d

dθ

(
1

1 + a cos θ
dfn

dθ

)
+ λ2

c;n fn = 0, fn(θ) = fn(2π − θ),

(1 + a cos θ)
d

dθ

(
1

1 + a cos θ
dgn

dθ

)
+ λ2

s;ngn = 0, gn(θ) = −gn(2π − θ).

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (3.15)

We index the solutions incrementally such that fn+1 has an eigenvalue λc;n+1 > λc;n, and
similarly for the odd solutions.

Equation (3.10) can be solved analytically in the limit case a = 0 (corresponding to
an infinitely wide torus, R → ∞). In this case, when n > 0, (3.10) yields the usual
(normalised) harmonic basis encountered on a system with periodic coordinate θ

fn =
√

2 cos nθ, gn =
√

2 sin nθ. (3.16a,b)

Here, λc;n = λs;n = n. For n = 0, (3.14) reduces to f0(θ) = 1.
Another limit where the analytical solution is available is when a = 1. In this case, the

eigenfrequency spectrum is derived in SM:3.13 and SM:3.17 and is reproduced below, for
convenience

λ2
c;n = n2 − 1

4
, λ2

s;n = n(n + 1). (3.17a,b)

The derivation and explicit form of the eigenfunctions for a = 1 are given in § SM:3.2.1
of the supplementary material.

For intermediate values of a (i.e. for 0 < a < 1) and λ2
n > 0, there is no known analytic

solution of (3.10). However, given that a < 1, it is reasonable to seek for the solutions
in a perturbative manner. Starting from the a = 0 solution in (3.16), for a given value of
n, we expect that the perturbation procedure will bring in harmonics corresponding to
n ± 1, n ± 2, and so forth. The eigenvalues λc;n and λs;n travel along a continuous path
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a = 0.4 a = 0.8
n λc;n λs;n λc;n λs;n
1 0.99283837 1.03615819 0.96123389 1.19709137
2 2.00528264 2.00700233 2.01720533 2.07891859
3 3.00388532 3.00395489 3.02259288 3.03709989
4 4.00289664 4.00289952 4.01992604 4.02335307
5 5.00230332 5.00230344 5.01664927 5.01747046
6 6.00191275 6.00191276 6.01401146 6.01421028
7 7.00163605 7.00163605 7.01201841 7.01206689
8 8.00142960 8.00142960 8.01050233 8.01051420
9 9.00126957 9.00126957 9.00932177 9.00932469
10 10.00114185 10.00114185 10.00837943 10.00838015

TABLE 1. Eigenvalues λc;n and λs;n corresponding to the even ( fn) and odd (gn) solutions
of (3.10) with a = 0.4 (left) and a = 0.8 (right), for 0 < n ≤ 10. The eigenvalue λc;0 = 0,
corresponding to (3.14), is not shown here.

from λc;n = n to λc;n =
√

n2 − 1
4 , and from λs;n = n to λs;n = √

n(n + 1), respectively, as
a goes from 0 to 1. The perturbative procedure is discussed in appendix B and the results
for 1 ≤ n ≤ 4 are given up to O(a9) in SM:3.3 of the supplementary material.

In general, the eigenvalues λc;n and λs;n for the even and odd modes of the same order
n are not equal. As discussed in appendix B, the difference between λc;n and λs;n appears
via terms of order O(a2n). Table 1 shows the values of λc;n and λs;n obtained using high
precision numerical integration for the cases a = 0.4 and a = 0.8. It can be seen that the
difference between λc;n and λs;n decreases as n is increased and a is kept fixed, or as n is
kept fixed and a is decreased. This is in contrast to the flat geometry, where the eigenvalues
for the even and odd modes of the same order n are always identical.

The dependence of λc;n and λs;n on a is revealed in figures 2(a)–2(c) for n = 1, 2 and 3.
It can be seen that, as a → 1, λc;n also has a strong variation with a. However, overall
the variation of λc;n with a is significantly milder than that of λs;n. For comparison, the
dotted lines corresponding to the perturbative approximations up to O(a9), and the limits

lima→1 λc;n =
√

n2 − 1
4 and lima→1 λs;n = √

n(n + 1) are also shown.
Figures 3(a) and 3(b) show the even and odd eigenfunctions fn and gn corresponding to

1 ≤ n ≤ 4 over the half-domain 0 ≤ θ ≤ π with a = 0.4. Similarly, figures 3(c) and 3(d)
show fn and gn when a = 0.8. It can be seen that the amplitudes for the even harmonics
fn become weaker towards θ = π as a is increased, while the amplitudes of the odd
harmonics gn become weaker towards θ = 0.

Assuming that the functions { fn, gn} form a complete set, the fluid velocity can in
general be written as

uθ̂ (t, θ) = 1
1 + a cos θ

∞∑
n=0

[
Uc;n(t)fn(θ)+ Us;n(t)gn(θ)

]
. (3.18)

Such an expansion is consistent when the inner product, (3.11), is dual to the following
completeness relation:

∞∑
n=0

[ fn(θ)fn(θ
′)+ gn(θ)gn(θ

′)] = 2π(1 + a cos θ)δ(θ − θ ′). (3.19)
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FIGURE 2. The dependence of λc;n and λs;n on a for n = 1 (a), 2 (b) and 3 (c), respectively.
The solid lines with symbols represent the numerically evaluated values of the eigenfrequencies,
while the dotted lines show the perturbative approximations with terms up to O(a9). The
horizontal lines show the a = 1 limits given in (3.17).
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FIGURE 3. The even and odd eigenfunctions fn (a,c) and gn (b,d) of (3.10), with a = 0.4 (a,b)
and a = 0.8 (c,d), for n = 1, 2, 3 and 4. The eigenvalues are summarised in table 1.
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Solving (3.9), it can be seen that the even and odd solutions for the temporal function (for
n > 0) correspond to simple harmonic oscillations

Uc;n(t) = Uc;n;0 cos
(
ωc;nt + ϑc;n

)
, Us;n(t) = Us;n;0 sin

(
ωs;nt + ϑs;n

)
, (3.20a,b)

where ωc;n = λc;ncs/r and ωs;n = λs;ncs/r. The coefficients Uc;n;0 and Us;n;0 and the phases
ϑc;n and ϑs;n can be determined from the initial conditions

uθ̂ (0, θ) = uθ̂0(θ), u̇θ̂ (0, θ) = − P0

ρ0r
∂θδP0(θ), (3.21a,b)

where uθ̂0(θ) represents the initial velocity profile, while δP0(θ) = δP(0, θ) = (Pb(0, θ)−
P0)/P0 represents the initial pressure fluctuations. Projecting the above equations onto fn

and gn yields (
Uc;n;0 cosϑc;n

Us;n;0 sinϑs;n

)
=
∫ 2π

0

dθ
2π

(
fn

gn

)
uθ̂0(θ),(

Uc;n;0 sinϑc;n

−Us;n;0 cosϑs;n

)
= P0

ρ0cs

∫ 2π

0

dθ
2π

(
fn/λc;n

gn/λs;n

)
∂δP0

∂θ
,

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (3.22)

where the last equation applies only for n > 0. It is worth noting that the n = 0 term,
corresponding to the incompressible flow profile

Uc;0 f0(θ)

1 + a cos θ
, (3.23)

is time-independent and its amplitude, Uc;0, is preserved at all times. Thus, numerical
methods developed for hydrodynamics on curved surfaces should ensure the preservation
of the above profile. In the Cartesian geometry, the incompressible flow profile along
a single axis is a constant background velocity, which should be preserved due to the
Galilean invariance of the theory.

For the rest of this work, we employ expansions of up to a9 of the eigenfunctions,
eigenvalues and all related quantities. These expansions are given in SM:3.3 of the
supplementary material. Although some expansions converge faster than the others, for
consistency reasons, we choose to employ the same order of expansion for all quantities
involved.

3.2. First benchmark: constant initial flow
We now formulate a simple numerical experiment that can be used to benchmark
the capabilities of numerical methods to capture sound wave propagation on curved
geometries. The simplest configuration giving rise to sound wave propagation corresponds
to

uθ̂0(θ) = U0, δP0(θ) = 0, (3.24a,b)

with U0 a constant. Since the initial velocity profile is symmetric and the initial pressure is
constant, ϑc;n = 0 and Us;n;0 = 0. To calculate the coefficients of the even modes, we take
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advantage of the projections introduced in (3.22). The fluid velocity can then be written as

uθ̂ (t, θ) = 1
1 + a cos θ

[
U0

√
1 − a2 +

∞∑
n=1

Uc;n(t)fn(θ)

]
,

Uc;n(t) = U0Ic;0;n cos
(

cs,0λc;n
r

t
)
,

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (3.25)

where the eigenvalues λc;n are given up to ninth order with respect to a in SM:3.3, and the
integrals I∗;m;n are defined as

Ic;m;n =
∫ 2π

0

dθ
2π

fn(θ)

(1 + a cos θ)m
, Is;m;n =

∫ 2π

0

dθ
2π

gn(θ) sin θ
(1 + a cos θ)m

. (3.26a,b)

In this section, we only need the case with m = 0, for which Ic;0;0 = (1 − a2)1/4, while the
first integrals (1 ≤ n ≤ 4) are given up to ninth order with respect to a in SM:3.3 of the
supplementary material. The integrals Is;0;n of the odd functions will be employed later, in
§ 3.3.

In order to perform numerical simulations, we consider a non-dimensionalisation of
physical quantities with respect to the background fluid parameters, such that ρ0 = T0 =
P0 = 1. Focussing on the torus with a = r/R = 0.4, we take the reference length scale
such that R = 2. Setting the reference velocity naturally to c0 = √

P0/ρ0, we initialise
the velocity by setting uθ̂0(θ) = U0 = 10−5 in (3.24). Using the aforementioned reference
velocity, the non-dimensional sound speed is cs,0 = 1 for the isothermal case and cs,0 =√

2 for the thermal case when the adiabatic index is γ = 2. In addition, we also consider
an isothermal multicomponent fluid for which the sound speed is given by

c2
s,0 = kBT0

m
− Aφ2

0

ρ0
(1 − 3φ2

0). (3.27)

We choose A = 1; and consider values of φ0 = 1 and φ0 = 0.8, which are outside the
spinodal region, − 1√

3
< φ0 <

1√
3
. The resulting sound speeds are summarised in table 2.

For the four cases above with differing sound speeds, the system is evolved between
0 ≤ t ≤ 18 on a grid with Nθ = 320 equidistant nodes and a time step δt = 5 × 10−4. The
velocity profile is projected onto the basis functions f1, f2 and f3, as given in SM:3.3a,
SM:3.3b and SM:3.3c of the supplementary material, respectively. The simulation results
are shown using dashed lines and symbols in figure 4. For comparison, the corresponding
analytical solutions in (3.25) are shown in solid lines in figure 4. The angular frequencies,
ωn = cs,0λc;n/r, for the first three harmonics are reported for convenience in table 2. The
agreement between the analytical and numerical results is excellent. It is also worth noting
that the angular frequencies on the torus differ from those for the flat geometry, and the
deviations become more significant with increasing a.

3.3. Second benchmark test: even and odd initial conditions
The purpose of the second test is to highlight the difference in the period corresponding to
the propagation of even and odd perturbations. As highlighted in figure 2, the difference
in the frequencies for the even and odd modes increases as a is increased. For this reason,
in this example we consider a = 0.8. According to table 1, the ratio λs;1/λc;1 
 1.25,
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Fluid type Regime cs,0 ω1 ω2 ω3

Ideal gas Iso 1 1.24104796 2.50660330 3.75485665
Th

√
2 1.75510686 3.54487238 5.31016920

Cahn–Hilliard φ0 = 0.8 1.26047610 1.56431130 3.15951355 4.73290707
Multicomponent φ0 = 1.0 1.73205081 2.14955813 4.34156426 6.50360249

TABLE 2. Sound speed and angular frequencies ωn = cs,0λc;n/r for the first three harmonics of
the oscillatory motion on the torus with a = 0.4, considered in figure 4.
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FIGURE 4. Comparison between the numerical results (symbols) and analytical predictions
(solid lines) for the evolution of Uc;n(t)/U0, as given in (3.25). The first row (a–c) is for
isothermal (Iso) and thermal (Th) ideal fluids, while the second row (d–f ) is for Cahn–Hilliard
multicomponent fluid. The integrals Ic;0;n given in SM:3.3 have the values of Ic;0;1 
 0.288
(a,d); Ic;0;2 
 −0.0195 (b,e); and Ic;0;3 
 0.00216 (c, f ).

therefore the n = 1 odd mode should exhibit 5 periods for every 4 periods of the n = 1
even mode.

We consider two initial conditions, corresponding to even and odd initial velocity
profiles

uθ̂0;even(θ) = U0 cos θ, uθ̂0;odd(θ) = U0 sin θ, (3.28a,b)

where U0 is the (constant) initial amplitude. As before, the initial pressure perturbation
is assumed to vanish, i.e. δP0;even(θ) = δP0;odd(θ) = 0. According to (3.22), this implies
that the offset angles can be taken as ϑc;n = 0 and ϑs;n = π/2. Furthermore, since
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n Ueven
c;n;0/U0 Uodd

s;n;0/U0

1 0.67162788 0.55445076
2 0.21755576 −0.09426691
3 −0.03806432 −0.01672761
4 0.01098141 −0.00461361

TABLE 3. Values of the normalised amplitudes Ueven
c;n;0/U0 and Uodd

s;n;0/U0 defined in (3.30) for
a = 0.8 and 1 ≤ n ≤ 4.

∫ 2π

0 dθ cos θ = 0, the coefficient Ueven
c;n;0 of the zeroth mode (corresponding to n = 0)

vanishes. This allows the velocity to be expanded in the two cases as follows:

uθ̂even(t, θ) =
∞∑

n=1

Ueven
c;n;0 fn(θ)

1 + a cos θ
cos(ωc;n;0t),

uθ̂odd(t, θ) =
∞∑

n=1

Uodd
s;n;0gn(θ)

1 + a cos θ
cos(ωs;n;0t),

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (3.29)

where Ueven
s;n;0 = Uodd

c;n;0 = 0, while

Ueven
c;n;0 = U0

∫ 2π

0

dθ
2π

fn(θ) cos θ = U0
λ2

c;n
a(2 − λ2

c;n)
Ic;0,n,

Uodd
s;n;0 = U0

∫ 2π

0

dθ
2π

gn(θ) sin θ = U0Is;0;n,

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (3.30)

where the first relation follows from noting that cos θ = a−1(1 + a cos θ)− a−1, while the
integral Ic;−1;n can be expressed in terms of Ic;0;n by multiplying the first line of (3.15) with
(1 + a cos θ)/2π and integrating with respect to θ

Ic;−1;n =
∫ 2π

0

dθ
2π
(1 + a cos θ)fn(θ) = 2

2 − λ2
c;n

Ic;0;n. (3.31)

As can be seen from table 3, at a = 0.8, the coefficient of the n = 1 mode is dominant.
For the even initial conditions, the amplitude of the n = 2 mode is almost a third of the
amplitude of the n = 1 mode, thus it can be expected that a modulation due to this mode
will show up in the solution. This is less important for the odd initial conditions, since
Uodd

s;2;0 is almost 6 times smaller in magnitude than Uodd
s;1;0.

We now consider an ideal perfect thermal fluid with γ = 2 and employ the
non-dimensionalisation according to which ρ0 = T0 = P0 = 1, R = 2 (r = 1.6 such that
a = 0.8), and c0 = √

P0/ρ0. The constant in (3.28) is set to U0 = 10−5. In this case, the
angular frequency for the first even mode is ωc;1 = cs;0λc;1/r 
 0.85 and the time required
for 4 periods for this mode is 8π/ωc;1 
 29.58. The angular frequency for the first odd
mode is ωs;1 = cs;0λs;1/r 
 1.06 and the time required for 5 periods for this mode is
10π/ωs;1 
 29.69. We thus perform simulations covering the time domain 0 ≤ t ≤ 30,
using Nθ = 320 nodes distributed equidistantly along the θ direction and a time step
δt = 10−3. The velocity configuration is saved every 100 time steps, yielding a total of
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FIGURE 5. Time evolution of uθ̂even/U0 (a) and uθ̂odd/U0 (b), defined in (3.29) on the torus with
a = 0.8. The horizontal axis represents the angular coordinate along the poloidal direction,
normalised with respect to π. The vertical axis shows the time coordinate t, normalised with
respect to t0 = R/2c0, where c0 = √

P0/ρ0 is the reference speed. The colour map represents
the value of uθ̂ /U0 and is truncated to the interval [−1, 1].

300 snapshots, which are arranged in time lapses, as shown in figures 5(a) and 5(b). The
ratio uθ̂ /U0 is represented using a colour map, which is truncated to the values [−1, 1]
for better visibility. It can be seen that the number of (quasi-)periods for the even and odd
initial conditions are 4 and 5, as predicted based on the values of λc;1 and λs;1, respectively.

Finally, we discuss the emergence of the apparent periodicity breakdown observed in
figures 5(a) and 5(b) for the even and odd initial conditions considered in this section.
Figure 6 shows the analytic solutions for uθ̂even (a) and uθ̂odd (b) derived in (3.29), truncated
at n = 1 (left), 2 (middle) and 3 (right). We note that the amplitude of the zeroth-order
harmonic vanishes when the initial state is prepared according to (3.28). The resulting
configurations for different truncations are separated using dashed vertical green lines. It
can be seen that the first-order harmonic exhibits the fundamental periodicity observed
also in figure 5. Adding the second harmonic produces a visible disturbance since
the amplitude ratios Uc;2;0/Uc;1;0 
 0.324 and Us;2;0/Us;1;0 
 −0.170 are non-negligible.
Because the ratios ωc;2/ωc;1 
 2.099 and ωs;2/ωs;1 
 1.737 are irrational numbers, the
resulting configurations become pseudo-periodic. This is different from the flat geometry
case where the ratios are integers, thereby conserving the periodicity of the solution.
The addition of the third-order harmonic has a significantly milder effect, since the
ratios Uc;3;0/Uc;1;0 
 −0.057 and Us;3;0/Us;1;0 
 −0.030 are small. Therefore, the middle
configuration presented in figure 6 already provides a reasonable approximation of the
configurations observed in figure 5.
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FIGURE 6. Analytic solutions for uθ̂even(t, θ)/U0 (a) and uθ̂odd(t, θ)/U0 (b), reconstituted via
(3.29) using the harmonics up to n = 1 (left of each panel), 2 (middle of each panel) and 3
(right of each panel).

4. Viscous fluid: shear wave damping

In this section, we address the equivalent on the torus of a standard benchmark problem
for viscous flow solvers. On the flat geometry, the shear wave set-up typically consists
of a system which is homogeneous in two directions, say the y and z axes. However,
the fluid velocity in one of the directions, say the y component, varies with respect
to the x axis. Due to this dependence, layers which are adjacent with respect to the x
direction travel at different velocities along the y direction. Due to friction, the velocity
difference between two such adjacent layers experiences a damping which is controlled
by the kinematic viscosity of the fluid and is induced via the viscous part of the stress
tensor. In the present case of the torus geometry, we consider that the poloidal component
uθ̂ of the fluid velocity vanishes, while its azimuthal component uϕ̂ varies in magnitude as
a function of the poloidal angle θ .
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This section is structured as follows. In § 4.1, the general solution for the shear wave
damping problem on the torus is obtained. Sections 4.2 and 4.3 discuss two benchmark
problems proposed in this context.

4.1. General solution
For the torus geometry, we consider the axisymmetric flow of an ideal, single-component
fluid with vanishing poloidal velocity (uθ̂ = 0). In this case, the linearised limit of the ϕ
component of the Cauchy equation (2.41a) reads

∂tuϕ̂ = ν

r2(1 + a cos θ)2
∂

∂θ

[
(1 + a cos θ)3

∂

∂θ

(
uϕ̂

1 + a cos θ

)]
, (4.1)

with ρ 
 ρ0 = const and P 
 P0 = const. In the above, ν represents the kinematic
viscosity, which we assume to be constant. The above equation can be solved using
separation of variables by letting

uϕ̂(t, θ) → uϕ̂n (t, θ) = Vn(t)Λn(θ)(1 + a cos θ). (4.2)

Under this separation, the time-dependent amplitude satisfies the equation

∂tVn(t) = −νχ
2
n

r2
Vn(t) ⇒ Vn(t) = Vn,0 e−νχ2

n t/r2
, (4.3)

where χ 2
n is a constant. The spatial component in (4.2), Λn(θ), satisfies

1
(1 + a cos θ)3

∂

∂θ

[
(1 + a cos θ)3

∂Λn

∂θ

]
+ χ 2

nΛn = 0. (4.4)

Similar to the problem discussed in the previous section, the above equation admits even
and odd solutions, which we denote via Fn(θ) and Gn(θ), respectively. The index n labels
the discrete eigenmodes of (4.4). We label the eigenvalues χc;n and χs;n for the even and
odd modes, such that

1
(1 + a cos θ)3

∂

∂θ

[
(1 + a cos θ)3

∂Fn

∂θ

]
+ χ 2

c;nFn = 0,

1
(1 + a cos θ)3

∂

∂θ

[
(1 + a cos θ)3

∂Gn

∂θ

]
+ χ 2

s;nGn = 0.

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (4.5)

It can be shown that the modes corresponding to different indices n and n′ are orthogonal.
We choose the overall normalisation constants by imposing unit norm with respect to
the inner product, 〈Fn,Fn′ 〉 = 〈Gn,Gn′ 〉 = δn,n′ . For two arbitrary functions Ψ and Φ,
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the inner product is defined as

〈Ψ,Φ〉 = 1
2π

∫ 2π

0
dθ(1 + a cos θ)3Ψ (θ)Φ(θ). (4.6)

The solution of (4.4) corresponding to n = 0 and χ = 0 is even, being given by

F0 =
[

1 + 3a2

2

]−1/2

. (4.7)

When a = 0, the eigenvalues are χ 2
c;n = χ 2

s;n = n2, while the eigenmodes are given through

Fn(θ) =
√

2 cos(nθ), Gn(θ) =
√

2 sin(nθ), (4.8a,b)

as was the case in § 3. When a = 1, the eigenvalues are derived in SM:3.20 and are
reproduced below, for convenience

χc;n =
√

n(n + 3), χs;n =
√
(n + 5

2)(n − 1
2). (4.9a,b)

The eigenfunctions and the detailed procedure used to obtain them are given in § SM:3.2.2
of the supplementary material.

When 0 < a < 1, the eigenmodes can be obtained as power series with respect to a,
as detailed in appendix B. The eigenfunctions Fn and Gn are depicted graphically in
figure 7 for a = 0.4 and 1 ≤ n ≤ 4. The eigenvalues χ 2

n can be obtained following the
same perturbative procedure as described in the previous section. As in the inviscid case,
the difference between the eigenvalues corresponding to the nth odd and even modes
appear at O(a2n), as further discussed in appendix B. The dependence of χ∗;n (∗ ∈ {c, s},
1 ≤ n ≤ 3) on a is shown in figure 8, obtained using high precision numerical integration.
It can be seen that all eigenvalues exhibit a monotonic increase with respect to a and
the eigenvalues χc;n corresponding to the even modes become significantly larger than
those corresponding to the odd modes as a → 1, as indicated in (4.9). The dotted lines
correspond to the perturbative approximations up to O(a9). This behaviour is contrary
to that of the eigenvalues seen in the inviscid case, shown in figure 2. In the inviscid
case, the eigenvalues corresponding to the odd modes, λs;n, are generally larger than
those corresponding to the even modes. Moreover, λc;n has a non-monotonic behaviour,
increasing with a at small a (for n > 1) and decreasing as a → 1.

Combining the solutions for the time and angular dependences, the general solution can
be written as

uϕ̂(t, θ) = (1 + a cos θ)
∞∑

n=0

[
Vc;n(t)Fn(θ)+ Vs;n(t)Gn(θ)

]
,

Vc;n(t) = Vc;n;0 e−νχ2
c;n t/r2

, Vs;n(t) = Vs;n;0 e−νχ2
s;n t/r2

.

⎫⎪⎬⎪⎭ (4.10)
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FIGURE 7. The even and odd eigenfunctions Fn (a) and Gn (b) of (4.5), summarised in SM:3.4,
with a = 0.4 for n = 1, 2, 3 and 4. The eigenvalues corresponding to n = 1, 2, 3 and 4 are
χc;n 
 1.185, 2.055, 3.035 and 4.026 for the even modes, and χs;n 
 1.060, 2.054, 3.035 and
4.026 for the odd modes.
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FIGURE 8. The dependence of χc;n and χs;n on a for (a) n = 1, (b) n = 2 and (c) n = 3. The
dotted lines show the perturbative approximations in SM:3.4 with terms up to O(a9).

The amplitudes Vc;n;0 and Vs;n;0 can be computed by integrating over the velocity profile
at initial time, uϕ̂0 (θ) ≡ uϕ̂(0, θ)(

Vc;n;0
Vs;n;0

)
=
∫ 2π

0

dθ
2π
(1 + a cos θ)2uϕ̂0 (θ)

(
Fn(θ)
Gn(θ)

)
. (4.11)

4.2. First benchmark: constant initial flow
To verify the analytical theory developed in this section and to allow comparisons against
our numerical solutions, we consider a specific example where the fluid on the torus has
an initially constant velocity profile

uϕ̂0 (θ) = V0. (4.12)
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In this case, it can be seen that the odd coefficients Vs;n;0 vanish, while the even coefficients
can be computed as follows:

Vc;n;0 = V0

∫ 2π

0

dθ
2π
(1 + a cos θ)2Fn(θ)

= V0

[
6

(2 + χ 2
c;n)2

− 1 − a2

2 + χ 2
c;n

]
Ic;n. (4.13)

The second line in (4.13) is obtained by multiplying the first line in (4.5) with (1 +
a cos θ)2/2π and integrating with respect to θ . For convenience, we also introduced

Ic;n =
∫ 2π

0

dθ
2π

Fn(θ), Is;n =
∫ 2π

0

dθ
2π

sin θGn(θ). (4.14a,b)

The result for n = 0 is exact: Ic;0 = (1 + 3a2/2)−1/2 and Vc;0;0 = V0(1 + a2/2)/√
1 + 3a2/2. For 1 ≤ n ≤ 4, the power series approximations of the Ic;n integrals can

be found in SM:3.4 of the supplementary material.
Figure 9(a) shows the numerical solution (dotted lines and points) and the analytic

results obtained above (solid lines) for the fluid velocity in the azimuthal direction at four
different values of the time coordinate. The agreement is excellent. We used an ideal,
isothermal fluid with initial constant density ρ0 = 1 and constant temperature T0 = 1, on
a grid with Nθ = 320 equidistant points and a time step of δt = 5 × 10−3. The reference
speed is taken as c0 = √

P0/ρ0, where P0 = ρ0kBT0/m is the reference pressure and m
is the particle mass. The kinematic viscosity is taken to be ν = 2.5 × 10−3 with respect
to the reference value ν0 = c0L0, where L0 = R/2 is the reference length. With this
convention, the non-dimensional torus parameters are R = 2 and r = 0.8, while the initial
velocity amplitude in (4.12) is V0 = 10−5. Since the damping in (4.3) depends only on
the fluid viscosity, the same results can be obtained when considering the thermal or the
Cahn–Hilliard non-ideal fluids.

The amplitudes of the harmonics are extracted from the numerical solution by means
of the orthogonality relation, (4.6), using the expansions of Fn(θ) given in SM:3.4 of
the supplementary material. The analytic solution is that in (4.10), with Vs;n;0 = 0 and
Vc;n;0 given in (4.13). The eigenvalues χc;n controlling the damping of the amplitude
Vc;n(t), as well as the integrals Ic;n (1 ≤ n ≤ 4) required to compute the initial amplitudes
Vc;n;0 via (4.13), are constructed using the mode expansions also found in SM:3.4 of the
supplementary material.

4.3. Second benchmark test: even and odd harmonics
In this second benchmark test, we aim to highlight the difference between the rates of
decay for the even and odd harmonics corresponding to the same order n. To this end, we
consider initial conditions which are neither even nor odd, defined as a combination of
harmonic functions

uϕ̂0 (θ) = V0

(1 + a cos θ)2
√

2
(cos θ + sin θ), (4.15)
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FIGURE 9. (a) Time evolution of the ratio uϕ̂/V0 of the azimuthal velocity uϕ̂ initialised
according to (4.12), where V0 is the initial amplitude. (b) Time evolution of the amplitudes
Vc;n(t) (1 ≤ n ≤ 4). The numerical results are shown with dotted lines and points, while the
analytic prediction is summing only the terms with 0 ≤ n ≤ 4 in (4.10). The torus radii ratio is
a = 0.4.

where the overall (1 + a cos θ)−2 was added to inhibit the development of the n = 0
harmonic. The initial amplitudes for the modes Vc;n(t) and Vs;n(t) are

Vc;n;0 = − V0χ
2
c;n

a
√

2(2 + χ 2
c;n)

Ic;n, Vs;n;0 = V0√
2
Is;n, (4.16a,b)

where the notation I∗;n (∗ ∈ {c, s}) was introduced in (4.14). The amplitudes Vc;n(t) and
Vs;n(t) undergo exponential damping with their respective damping coefficients, νχ 2

c;n/r
2

and νχ 2
s;n/r

2, respectively. The general solution can be written as

uϕ̂(t, θ) = V0√
2
(1 + a cos θ)

∞∑
n=1

[
− χ 2

c;n
a(2 + χ 2

c;n)
Ic;n e−νχ2

c;n t/r2
Fn(θ)

+ Is;n e−νχ2
s;n t/r2

Gn(θ)

]
. (4.17)

Figure 10 shows the time dependence of the amplitudes Vc;n(t) (dashed lines and empty
symbols) and Vs;n(t) (dotted lines and filled symbols) for n = 1 (purple upper triangles),
2 (green lower triangles) and 3 (orange rhombi). As expected from figure 8, Vc;1(t) decays
at a faster rate than Vs;1(t). However, at a = 0.4, the eigenvalues χc;n and χs;n have roughly
the same values when n ≥ 2. Therefore, the decay rates of Vc;2(t) and Vc;3(t) are very
similar to those of Vs;2(t) and Vs;3(t), respectively. In this benchmark test, the fluid and
simulation parameters are the same as those employed in § 4.2.

5. Viscous fluid: sound wave damping

In the previous sections, we considered the propagation of sound waves in the perfect
fluid and the equivalent of shear wave damping in a viscous fluid. This section presents an
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FIGURE 10. Time evolution of the amplitudes Vc;n(t) (dashed lines and empty symbols) and
Vs;n(t) (dotted lines and filled symbols) for n = 1 (upper purple triangles), 2 (lower green
triangles) and 3 (orange rhombi) on the torus with a = 0.4. The analytic prediction, (4.17), is
shown with solid lines.

analysis of the damping of longitudinal waves propagating along the poloidal direction
through a viscous fluid. For simplicity, we assume that the fluid velocity along the
azimuthal direction vanishes.

This section is structured as follows. The general solution for the damping of
longitudinal waves propagating along the poloidal direction is presented in § 5.1. Then,
a benchmark test is proposed in § 5.2.

5.1. General solution
The starting point of the analysis in this section is the Cauchy equation in the poloidal
direction, (2.41b), which can be linearised as follows:

∂uθ̂

∂t
+ P0

ρ0r
∂δP
∂θ

= κφ0

ρ0r3

∂

∂θ

{
∂θ [(1 + a cos θ)∂θδφ]

1 + a cos θ

}

+ ν

r2(1 + a cos θ)2
∂

∂θ

[
(1 + a cos θ)3

∂

∂θ

(
uθ̂

1 + a cos θ

)]

+ νv

r2

∂

∂θ

{
∂θ [uθ̂ (1 + a cos θ)]

1 + a cos θ

}
. (5.1)

The left-hand side of the above equation is similar to that encountered in the inviscid case,
in (3.4). On the right-hand side, one can see that the differential operator with respect to
θ acting on (1 + a cos θ)∂θδφ and in the term proportional to νv is the one encountered
in the inviscid case, defined in (3.10). In the term proportional to ν, one can recognise
the operator encountered in the damping of the shear wave problem, presented in (4.4).
In principle, the normal modes analysis must be made with respect to the complete set of
eigenfunctions and eigenvalues of only one operator. The set of eigenfunctions { fn, gn} of
the inviscid operator differs in general from the set {Fn,Gn} corresponding to the viscous
operator (they coincide only in the limit when a → 0). Since the dominant phenomenon
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in the present set-up is the wave propagation, it is natural to work with the basis given by
the inviscid operator and to treat the viscous operator as a perturbative effect. To this end,
we take advantage of the identity

1
(1 + a cos θ)2

∂

∂θ

[
(1 + a cos θ)3

∂

∂θ

(
uθ̂

1 + a cos θ

)]

= ∂

∂θ

{
∂θ [uθ̂ (1 + a cos θ)]

1 + a cos θ

}
+ 2a cos θ

1 + a cos θ
uθ̂ , (5.2)

which allows (5.1) to be written as

∂uθ̂

∂t
+ P0

ρ0r
∂θδP = κφ0

ρ0r3

∂

∂θ

{
∂θ [(1 + a cos θ)∂θδφ]

1 + a cos θ

}

+ ν + νv

r2
∂θ

{
∂θ [uθ̂ (1 + a cos θ)]

1 + a cos θ

}
+ ν

r2

2a cos θ
1 + a cos θ

uθ̂ . (5.3)

In principle, as was the case for the inviscid fluid, the sound wave equation can be
obtained by taking the time derivative of (5.3). However, this approach is not insightful.
Instead, starting from (3.2), the time derivative of the pressure deviation can be replaced
using the continuity, energy and Cahn–Hilliard equations, reproduced below in the
linearised limit

∂δρ

∂t
+ ∂θU

r(1 + a cos θ)
= 0,

∂δe
∂t

+ P0

ρ0e0

∂θU
r(1 + a cos θ)

= k0

ρ0cv

∂θ [(1 + a cos θ)∂θδe]
r2(1 + a cos θ)

,

∂δφ

∂t
+ φ0

∂θU
r(1 + a cos θ)

= M
r2

∂θ [(1 + a cos θ)∂θδμ]
1 + a cos θ

.

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
(5.4)

We remind the readers that we consider small perturbations around a stationary,
background state, which we denote by the subscript 0. We also introduced the notation
U = uθ̂ (1 + a cos θ) and the deviation of the chemical potential from the background state
δμ = μ(φ)− μ(φ0) is given by

δμ = −A(1 − 3φ2
0)δφ − κ

r2

∂θ [(1 + a cos θ)∂θδφ]
1 + a cos θ

. (5.5)

To solve the partial differential equations in (5.4), we seek normal solutions defined with
respect to the complete set of modes { fn, gn} introduced in § 3. We introduce the following
expansions: (

uθ̂ ∂θ δρ ∂θδe
∂θδφ ∂θδμ ∂θδP

)
=

∞∑
n=0

fn(θ)

1 + a cos θ

(
Uc;n Rc;n Ec;n
Φc;n Mc;n Pc;n

)
, (5.6)

where for simplicity we assume that the flow parameters are even with respect to θ ,
such that the coefficients of the odd eigenfunctions gn(θ) vanish. The amplitudes Ac;n(t)
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(A ∈ {U,R,E, Φ,M,P}) have the following time dependence:

Ac;n(t) = Ac;n;0 e−αc;n t. (5.7)

The real part of αc;n controls the damping of the corresponding mode, while its imaginary
part is responsible for its propagation. The extension to the case of odd or general flow
configurations is straightforward, but will not be discussed here for brevity.

In order to find the normal frequencies αc;n , we multiply (5.3) by fn(θ) and integrate it
with respect to θ between 0 and 2π. We obtain

−αc;nUc;n;0 + P0

ρ0r
Pc;n;0 = −κφ0λ

2
c;n

ρ0r3
Φc;n;0 − ν + νv

r2
λ2

c;nUc;n;0

− 2ν
r2

∞∑
�=0

Mn,�Uc;�;0, (5.8)

where λ2
c;n is defined in (3.15). The infinite matrix M mixes the normal modes due to the

last term in (5.3). Its components can be obtained as

Mn,� = −
∫

dθ
2π

a cos θ
(1 + a cos θ)2

fn(θ)f�(θ)

=
∫

dθ
2π

[
1

(1 + a cos θ)2
− 1

1 + a cos θ

]
fn(θ)f�(θ). (5.9)

In the case n = � = 0, we find an analytic result

M0,0 = a2

1 − a2
. (5.10)

When � = 0 and n > 0, the second term in the square brackets in (5.9) does not contribute
due to the orthogonality relation given in (3.11). Comparing the first term with the
definition of Im;n in (3.26) for m = 2 and noting that f0(θ) = (1 − a2)1/4 is a constant,
Mn,0 can be written as

Mn,0 = (1 − a2)1/4Ic;2;n − δn,0. (5.11)

The integral Ic;2;n (n > 0) can be obtained in terms of Ic;0;n by integrating (3.15) with
respect to θ and using integration by parts

Ic;0;n = − 1
λ2

c;n

∫ 2π

0

dθ
2π
(1 + a cos θ)

d
dθ

(
dfn/dθ

1 + a cos θ

)
= 1
λ2

c;n

∫ 2π

0

dθ
2π

fn(θ)

[
1

1 + a cos θ
− 1 − a2

(1 + a cos θ)2

]
. (5.12)

The first term in the square brackets on the last line of the above equation vanishes for
n > 0. Setting m = 2 in (3.26), it can be seen that the second term can be expressed in
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terms of Ic;2;n , such that the following relation can be established:

Ic;2;n = − λ2
c;n

1 − a2
Ic;0;n + δn,0

(1 − a2)5/4
. (5.13)

Putting together (5.10), (5.11) and (5.13) allows Mn,0 to be expressed in the following form:

Mn,0 = δn,0a2

1 − a2
− λ2

c;n
(1 − a2)3/4

I0;n, (5.14)

which is also valid at n = 0 since the second term does not contribute due to the
fact that λc;0 = 0. Later in this section, the diagonal elements Mn,n with 1 ≤ n ≤ 3 will
be necessary for the computation of the acoustic damping coefficient. Their analytic
approximations up to O(a9) are given in SM:3.3i of the supplementary material.

The next step is to find expressions for the quantities Pc;n;0 and Φc;n;0 in (5.8). To this
end, we insert the decompositions in (5.6) into (5.4) and find

Rc;n;0 = − λ
2
c;n

αc;nr
Uc;n;0,

Ec;n;0 = − P0

ρ0e0

λ2
c;n

αc;nr
Uc;n;0
Ẽc;n;0

,

Mc;n;0 =
[
λ2

c;nκ

r2
− A(1 − 3φ2

0)

]
Φc;n;0,

Φc;n;0 = −φ0
λ2

c;n
αc;nr

Uc;n;0
Φ̃c;n;0

,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.15)

where we introduced the following dimensionless quantities:

Ẽc;n;0 = 1 − γ νλ2
c;n

Pr r2αc;n
, Φ̃c;n;0 = 1 + Mλ2

c;n
r2αc;n

[
A(1 − 3φ2

0)− κλ2
c;n

r2

]
. (5.16a,b)

The pressure amplitude Pc;n;0 can be obtained by combining the above results in
conjunction with (3.2) via

Pc;n;0 = ρ0Pρ,0
P0

Rc;n;0 + e0Pe,0

P0
Ec;n;0 + Pφ,0

P0
Φc;n;0

= −λ
2
c;nUc;n;0
αc;nr

P̃c;n;0. (5.17)

The dimensionless quantity P̃c;n;0 was introduced for notational brevity, being given by

P̃c;n;0 = ρ0Pρ,0
P0

+ Pe,0

ρ0Ẽc;n;0
+ φ0Pφ,0

P0Φ̃c;n;0
. (5.18)

Using the expression for Pc;n;0 given in (5.17), (5.8) can be rearranged as a matrix
equation

AU = 0, (5.19)
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where the column vector U has elements Un = Uc;n;0, while the (infinite-dimensional)
matrix A has the following components:

An,m = −δn,m

αc;n

[
α2

c;n + λ
2
c;nP0

r2ρ0
P̃c;n;0 + κλ4

c;nφ
2
0

ρ0r4Φ̃c;n;0
− αc;nλ2

c;n
r2

(ν + νv)

]
+ 2ν

r2
Mn,m.

(5.20)

Equation (5.19) has non-trivial solutions when the determinant of the matrix A vanishes.
This condition selects a discrete set of values for the coefficients αc;n . In order to find these
values, we make the assumption that the dissipative terms are small on their respective
dimensional scale, i.e. ν, νv � cs,0/r, κ � r2, M � rcs,0. To this end, we introduce the
small parameter ε, which allows us to write

ν = εν̄, νv = εν̄v, κ = εκ̄, M = εM̄. (5.21a–d)

We keep terms up to first order in ε for the rest of the section. We further assume that αc;n
can be written as

αc;n = ±iωc;n + εᾱc;n;d, (5.22)

where ωc;n is the angular velocity and αc;n;d = εᾱc;n;d is the damping factor.
It can be seen that the off-diagonal elements of the matrix A are at least one order higher

with respect to ε than the diagonal elements, being proportional to εν. When computing
the determinant, the leading order contribution comes from the diagonal elements, while
any off-diagonal contribution comes with an O(ε2) penalty, such that

det A = A11 × A22 × A33 × · · · + O(ε2). (5.23)

Thus, up to first order in ε, the eigenvalues αc;n can be found by requiring that each
diagonal element Ann vanishes. We further note that there are typically multiple solutions
stemming from Ann = 0. The acoustic modes correspond to complex solutions for αc;n ,
allowing the corresponding modes to propagate. There are also real solutions for αc;n , such
that the respective modes decay exponentially. In the case of the ideal thermal fluid, there
is only one such solution, corresponding to the thermal mode. There is also one such mode
corresponding to the Cahn–Hilliard equation, which we will refer to as the Cahn–Hilliard
mode. For simplicity, when we use the Cahn–Hilliard equation, we assume that the fluid
is isothermal.

We now discuss the n = 0 mode, corresponding to the incompressible velocity profile.
Since λc;0 = 0, the case n = 0 is degenerate. There is only one eigenvalue corresponding
to this case, which is given by

αc;0 = 2ν
R2 − r2

, (5.24)

where the relation M0,0 = a2/(1 − a2) = r2/(R2 − r2) was employed. There is no
imaginary part to αc;0, showing that the mode corresponding to the incompressible velocity
profile does not propagate. Furthermore, since αc;0 > 0, the amplitude of this mode
decays exponentially through viscous damping. On the flat geometry, the incompressible
one-dimensional flow corresponds to a constant velocity, which cannot suffer viscous
damping due to the Galilean invariance of the theory. In contrast, on the torus, Galilean
invariance is no longer valid. While the inviscid fluid supports (in the linearised regime)
the incompressible flow profile as an exact, time-independent solution, this zeroth-order
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mode with respect to the set { fn, gn} is no longer preserved in the case of the viscous fluid,
since f0(1 + a cos θ) does not provide an eigenfunction of the viscous operator in (4.4).
The damping of the zeroth-order mode, given in (5.24), depends only on the kinematic
viscosity and seems to be independent of the type of fluid considered. Thus, α−1

c;0 provides
a fundamental time scale on which, in the absence of external forcing, the flow on the
poloidal direction becomes quiescent.

For n > 0, the angular frequency ωc;n for the acoustic mode is given by

ωc;n = λc;ncs;κ;c;n
r

, c2
s;κ;c;n = c2

s;0 + κλ2
c;n

ρ0r2
φ0. (5.25a,b)

The acoustic damping coefficient αc;n;a = εᾱc;n;a (as a shorthand, we remove the subscript
d and add a subscript a to describe the acoustic damping coefficient) receives contributions
from the viscous terms, as well as from the energy and Cahn–Hilliard terms

αc;n;a = ν

r2
Mn,n + λ

2
c;n

2r2

[
ν

(
1 + γP0Pe,0

ρ2
0 c2

s;κ;c;nPr

)
+ νv − Mφ0Pφ,0

ρ0c2
s;κ;c;n

A(1 − 3φ2
0)

]
. (5.26)

We remind the reader that αc;n;a together with the angular frequency ωc;n make up the
acoustic mode, αc;n → αc;n;a ± iωc;n . We note that (5.25) and (5.26) are valid for all types
of fluids considered in this paper, namely: the ideal isothermal fluid, the ideal thermal fluid
and the isothermal fluid coupled with the Cahn–Hilliard equation.

The thermal and Cahn–Hilliard modes can be obtained by setting, in (5.20), αc;n to
εᾱc;n;t or εᾱc;n;φ , respectively, while setting the angular frequency ωc;n = 0. The values of
αc;n satisfying the above ansatz are found by solving the following equation:

P̃c;n;0 = 0, (5.27)

which is quadratic in αc;n . In the general case of the thermal flow of a non-ideal
(Cahn–Hilliard) fluid, the solution of this equation is too lengthy to be reproduced here.
In the next section we will specialise the equation to the fluid types introduced in
§ 3, namely an ideal isothermal fluid, an ideal fluid with variable temperature and an
isothermal multicomponent fluid coupled with the Cahn–Hilliard equation, allowing for
simple expressions to be obtained. These solutions are presented in (5.36), (5.37) and
(5.38), respectively.

5.2. Benchmark test
We now focus on a specific example. At initial time, t = 0, we assume that the density,
internal energy and order parameter fields are unperturbed, while the velocity profile is
that of the incompressible fluid

δρ0 = 0, δe0 = 0, δφ0 = 0, uθ̂0 = U0

1 + a cos θ
. (5.28a–d)

The analysis of the normal modes was performed in the limit where the modes become
fully decoupled (the non-diagonal elements of the matrix M were ignored). For the
particular case considered here, we are also interested in finding the time dependence
of the amplitudes Uc;n(t), defined through (5.6). To do this, it is sufficient to employ the
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initial conditions in (5.28) in order to find the full solution. From (5.28) and (5.3), it can
be seen that

Uc;n(0) = U0δn,0

(1 − a2)1/4
, U̇c;n(0) = − 2νU0

r2(1 − a2)1/4
Mn,0. (5.29a,b)

The time dependence of the amplitude of the n = 0 mode is

Uc;0(t) = U0

(1 − a2)1/4
e−2αν t, αν ≡ 1

2
αc;0 = ν

R2 − r2
, (5.30a,b)

where αν is the principal damping coefficient which will be fundamental for discussing
the dynamics of the stripe configurations in § 7.

For the higher-order harmonics, and when the temperature or Cahn–Hilliard equation
is taken into account, a third equation is required to fix the integration constant for the
thermal or Cahn–Hilliard mode. This can be obtained by taking the time derivative of
(5.3), yielding

Üc;n + P0

ρ0r
Ṗc;n + κλ2

c;nφ0

r3
Φ̇c;n + ν + νv

r2
λ2

c;nU̇c;n + 2ν
r2

∞∑
m=0

Mn,mU̇c;m = 0. (5.31)

The time derivative Ṗc;n can be obtained in analogy to (5.17), by differentiating (3.2) with
respect to θ and t, multiplying it by fn(θ) and then integrating it with respect to θ

Ṗc;n = ρ0Pρ,0
P0

Ṙc;n + e0Pe,0

P0
Ėc;n + Pφ,0

P0
Φ̇c;n. (5.32)

The time derivatives Ṙc;n , Ėc;n and Φ̇c;n can be obtained by differentiating all three relations
in (5.4) with respect to θ , multiplying them by fn(θ) and integrating them with respect to θ .
Noting that, at initial time, the perturbations δe, δρ and δφ vanish, the right-hand sides of
the relations in (5.4) cancel, such that the following results are obtained:⎛⎝Ṙc;n(0)

Ėc;n(0)
Φ̇c;n(0)

⎞⎠ = λ
2
c;n
r

δn,0U0

(1 − a2)1/4

⎛⎝ 1
P0/ρ0e0
φ0

⎞⎠ =
⎛⎝0

0
0

⎞⎠ . (5.33)

The latter equality follows after taking into account that λc;0 = 0. Substituting the above
results in (5.32), it can be seen that Ṗc;n(0) = 0. Since Φ̇c;n(0) also cancels by virtue of
(5.33), the second and third terms in (5.31) can be dropped. The fourth and fifth terms in
(5.31) are of second order with respect to the damping coefficients ν and νv, and thus of
order O(ε2) in the language of (5.21). For consistency, we approximate Üc;n(0) = O(ε2) 

0. Thus, the solution which is accurate to first order in ε is

Uc;n(t) = 2νU0λ
2
c;n

ωc;nr2

Ic;0;n
1 − a2

sin(ωc;nt) e−αc;n;at, ∀n > 0. (5.34)

The above solution was obtained under general considerations and therefore it applies to all
types of fluids studied in this paper. The full solution can be constructed via the expansion
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in (5.6)

uθ̂ (t, θ) = 1
1 + a cos θ

∞∑
n=0

Uc;n(t)fn(θ). (5.35)

In the following, we give a set of tests for the ideal isothermal fluid, the ideal fluid
with variable temperature and the isothermal multicomponent fluid. The initial velocity
amplitude is set to U0 = 10−5.

For the isothermal ideal fluid, (5.25) and (5.26) reduce to

c2
s,κ;c;n = c2

s,0 = kBT0

m
,

αc;n;a = ν

r2
Mn,n + λ

2
c;n(ν + νv)

2r2
.

⎫⎪⎪⎬⎪⎪⎭ (5.36)

We set the background density and temperature to ρ0 = 1 and T0 = 1, respectively, and
take units such that cs,0 = 1. The kinematic viscosity is set to ν = 0.01 and we consider
two test cases, corresponding to νv = 0 and 0.02.

In the case of the variable temperature ideal fluid, (5.25) and (5.26) reduce to

c2
s,κ;c;n = c2

s,0 = γKBT0

m
,

αc;n;a = ν

r2
Mn,n + λ

2
c;n

2r2

[
ν

(
1 + γ − 1

Pr

)
+ νv

]
,

αc;n;t = λ
2
c;nν

r2Pr
.

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
(5.37)

We consider the case when cv = kB/m, such that γ = 2. In order to match the sound
speed of the isothermal fluid (cs,0 = 1), the background temperature is set to T0 = 0.5.
The background density is also kept at ρ0 = 1. We further consider the case when the
Prandtl number is Pr = 2/3, such that k0 = 3ν. In order to ensure that αc;n;a matches the
value corresponding to the isothermal case, the kinematic viscosity is set to ν = 0.004,
such that k0 = 0.012. As before, we consider two values for the bulk kinematic viscosity,
namely νv = 0 and 0.02.

In the case of the isothermal multicomponent fluid, (5.25) and (5.26) reduce to

c2
s,κ;c;n = c2

s + κλ2
c;n

ρ0r2
φ2

0 = kBT0

m
− φ2

0

ρ0

[
A(1 − 3φ2

0)− κλ2
c;n

r2

]
,

αc;n;a = ν

r2
Mn,n + λ

2
c;n

2r2

[
ν + νv + MA2

ρ0c2
s;κ;c;n

φ2
0(1 − 3φ2

0)
2

]
,

αc;n;φ = MPρ,0λ2
c;n

r2c2
s,0

A(3φ2
0 − 1) = Mλ2

c;n
r2

kBT0

mc2
s,0

A(3φ2
0 − 1).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(5.38)

It can be seen that within the spinodal region, where − 1√
3
< φ0 <

1√
3
, αc;n;φ < 0

and spontaneous domain decomposition can occur through an exponential growth of
fluctuations. We thus conduct the simulations outside this region, namely for the
background value φ0 = 0.8 of the order parameter. Keeping the density at ρ0 = 1,
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T ν[×10−3] αν[×10−3]

Iso 1 10 2.976
Th 0.5 4 1.190
CH 0.4112 6.486 1.930

TABLE 4. Values for the background temperature T , kinematic viscosity ν and principal
damping coefficient αν defined in (5.30), for the isothermal ideal fluid (Iso), variable temperature
ideal fluid (Th) and isothermal multicomponent fluid (CH) on the torus with a = 0.4. The
background density is in all cases ρ = 1. The heat conductivity and adiabatic index for
the thermal model are k = 0.012 and γ = 2, corresponding to Pr = 2/3. The parameters for the
multicomponent fluid are M = ν 
 6.486 × 10−3, A = 1 and κ = 5 × 10−4. The parameters are
chosen such that c2

s = 1.

n Ic;0;n Mn;n[×10−2] Uc;n;0;a/U0[×10−3] αc;n;a(νv = 0) αc;n;a(νv = 0.02)

1 0.2883 6.015 8.158 8.640 × 10−3 0.02404
2 −0.01949 8.261 −1.163 3.270 × 10−2 0.09554
3 2.156 × 10−3 8.808 0.1926 0.2128 0.2128

TABLE 5. Values of various parameters required to build the solution in (5.34) when a = 0.4.
The bulk kinematic viscosity νv required to compute the coefficient αc;n;a in the last column is
set to νv = 0.02. The amplitudes are computed by dividing the prefactors in (5.34) by the initial
velocity amplitude U0 = 10−5.

the interaction strength A = 1 and the surface tension parameter κ = 5 × 10−4, the
temperature required to match the isothermal sound speed cs;κ;c;n = 1 is T0 
 0.4112 (this
is true only for the zeroth-order mode, when λc;0 = 0). We consider the case when the
mobility parameter M is equal to the kinematic viscosity. In order to obtain the same
acoustic damping coefficients as in the isothermal case, we set M = ν 
 6.486 × 10−3.
As before, νv takes the values 0 and 0.02.

The parameter values discussed above are also summarised in table 4. The other
quantities required to compute the solutions Uc;n (for n > 0), given in (5.34), are
summarised in table 5.

We now discuss the benchmark test results. In figure 11, we validate the analytic solution
using numerical simulations for the 2 × 3 cases discussed above. The simulations were
conducted using Nθ = 320 nodes and a time step δt = 5 × 10−4 on the torus with a = 0.4.
The amplitude of the n = 0 mode is shown in figure 11(a). As predicted by (5.30), the
damping coefficient 2αν of Uc;0 depends only on the kinematic viscosity. This is natural
since the bulk viscosity cannot affect the mode corresponding to the incompressible
velocity profile. Thus, the results for νv = 0 and νv = 0.02 are overlapped and only three
distinct curves can be seen in figure 11(a), corresponding to the differing values of the
background kinematic viscosity ν employed in the three fluids discussed above (these
values are summarised in table 4). The careful choice of parameters discussed above and
summarised in table 4 ensures that the acoustic damping coefficients αc;n;a corresponding
to the higher-order modes have the same values. Thus, only two distinct curves can be seen
in figure 11(b–d), corresponding to νv = 0 (lesser damping, shown with dashed black lines
and empty symbols) and to νv = 0.02 (stronger damping, shown with dotted red lines
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FIGURE 11. Time evolution of the ratio Uc;n(t)/U0 for the initial velocity profile given in (5.28),
for (a) n = 0, (b) n = 1, (c) n = 2 and (d) n = 3, on the torus with a = 0.4. The simulation
results for νv = 0 are shown with dashed black lines and empty symbols, while those for νv =
0.02 are shown with dotted red lines and filled symbols. The analytic predictions for Uc;0 (5.30)
and Uc;n>0 (5.34) are shown with solid blue lines. The results corresponding to the variable
temperature (Th), multicomponent (CH) and isothermal (Iso) fluids are shown using squares,
circles and rhombi, respectively.

and filled symbols). The results for the isothermal (Iso), variable temperature (Th) and
multicomponent fluids (CH), shown with squares, circles and rhombi, are overlapped at
fixed values of νv. In all cases, the analytic predictions are shown with a continuous blue
line and the agreement with the numerical results is excellent.

6. Stripe configurations in equilibrium: Laplace pressure test

This section starts the series of benchmark problems concerning an isothermal
multicomponent fluid in axisymmetric ring-type configurations. We begin this section
by discussing the properties of the equilibrium position in § 6.1. The stability of these
equilibria with respect to non-axisymmetric configurations, as well as with respect to
azimuthal perturbations, is addressed in § 6.2. The benchmark test proposed in § 6.3
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θc

θ−

θ+

θ

ϕ 2ππ

2π

π

0

�θ

(a) (b)

FIGURE 12. The axisymmetric stripe configurations: (a) torus view and (b) (θ, ϕ) view. The
colour maps the value of the order order parameter. The stripe is shown in dark colour.

concerns a generalisation of the Laplace–Young pressure law, giving the difference
between the pressures measured inside and outside of the considered stripe configuration.

6.1. Equilibrium position
Let the stripe interfaces be located at

θ− = θc − Δθ/2, θ+ = θc + Δθ/2, (6.1a,b)

where Δθ is the angular span of the stripe and θc is its centre. The remaining part of the
fluid domain consists of a stripe of width 2π − Δθ , centred on θc + π, which is conjugate
to the main stripe. For consistency, we only refer to the domain for which 0 < Δθ < π
as ‘the stripe’ in what follows. A snapshot of a typical stripe configuration on the torus
is shown figure 12(a). The notation introduced above is highlighted in a (ϕ, θ) plot in
figure 12(b).

Since the torus is not geometrically homogeneous with respect to the θ direction, there
will be preferred locations where the stripe can be in static equilibrium. These locations
are found by imposing the minimisation of the total interface length subject to fixed stripe
area ΔA, which is a universal requirement for all fluids where interfaces are present. The
stripe area can be found by integrating over the domain spanned by the stripe

ΔA = 2πrR
∫ θ+

θ−
dθ(1 + a cos θ) = 2πrR[Δθ + 2a sin(Δθ/2) cos θc]. (6.2)

On the other hand, the total interface length �total can be found by adding the
circumferences �+ and �− corresponding to θ = θ+ and θ = θ−, respectively

�total = �+ + �− = 2πR(1 + a cos θ+)+ 2πR(1 + a cos θ−)

= 4πR
(

1 + a cos
Δθ

2
cos θc

)
. (6.3)

It can be expected that the minimisation of the interface length is required in order for the
free energy, (2.6), to reach a minimum. In § SM:2.3 of the supplementary material, we
show that this is indeed the case to leading order with respect to ξ0. The correction is due
to the fact that the interface shape profile, and hence the line tension, in principle have a
weak dependence on the curvature of the surface.
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In order to derive the equilibrium positions, we impose a fixed area ΔA. Taking the
differential of (6.2) gives

dΔA = 4πrR
[(

1 + a cos
Δθ

2
cos θc

)
d
Δθ

2
− a sin

Δθ

2
sin θc dθc

]
. (6.4)

Setting dΔA = 0 allows infinitesimal changes d(Δθ) in the stripe width to be expressed
in terms of changes in the position of the stripe centre through

d
Δθ

2
=

a sin
Δθ

2
sin θc

1 + a cos
Δθ

2
cos θc

dθc. (6.5)

At equilibrium, the interface length �total [(6.3)] is minimised. Mathematically, this implies

d�total = −4πr
(

sin
Δθ

2
cos θc d

Δθ

2
+ cos

Δθ

2
sin θc dθc

)
= 0. (6.6)

Substituting (6.5) into (6.6) yields(
a cos θc + cos

Δθ

2

)
sin θc = 0, (6.7)

where it is understood that Δθ and θc are measured when the stripe is already at its
equilibrium position.

One possibility for (6.7) to be satisfied is when sin θc = 0. This corresponds to two
potential solutions, θc = 0 and θc = π. From (6.3), it can be seen that θc = 0 corresponds
to an unstable equilibrium for stripes with Δθ < π. Conversely, θc = π is unstable for the
conjugate stripes, having Δθ > π. Thus, for stripes with small areas, the minimum energy
configuration is attained for

θ eq
c = π. (6.8)

We now argue that the above solution is not universally valid for all stripe widths. Since
the conjugate stripe, having width 2π − Δθ , does not equilibrate at θ eq

c = π, it is clear
that increasing the stripe area must change the equilibrium position from θ eq

c = π towards
θ eq

c = 0 (or 2π). To illustrate this point, let us consider the case of a maximally wide stripe
with Δθ = π. In this case, the conjugate stripe also has width 2π − Δθ = π, and should
thus be obtained via a symmetry transformation from the initial stripe. The only symmetry
of the torus geometry is z → −z. Thus, it is clear that the stripe can sit either on the
upper half of the torus (centred on θ eq

c = π/2), or on its bottom half (where θ eq
c = 3π/2).

Both configurations are equally stable and it can be seen that (6.7) is satisfied because the
expression between the parentheses vanishes, while the term sin θ eq

c = 1 is non-vanishing.
We expect that the equilibrium positions at θ eq

c = π for small stripes and at θ eq
c =

π ± π/2 are connected smoothly as the area is increased. Thus, θ eq
c must detach from

π when the equilibrium stripe width exceeds a critical value, Δθcrit. We can deduce that
this critical stripe width Δθcrit corresponds to the case where both terms in (6.7) vanish
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FIGURE 13. Interface length �total on a torus with a = 0.4 for various ratios of ΔA/ΔAcrit. For
ΔA/ΔAcrit < 1 the global minimum is located at θc = π, while for ΔA/ΔAcrit > 1 there are two
equivalent minima, as given by (6.11).

simultaneously, leading to

Δθcrit = 2 arccos(a). (6.9)

Substituting the above value into (6.2) yields a critical area,

ΔAcrit = 4πrR(arccos a − a
√

1 − a2). (6.10)

When ΔA > ΔAcrit, the point θc = π corresponds to a local maximum value for �total.
Instead the global minima correspond to the case where only the parenthesis in (6.7) goes
to zero

θ eq
c = π ± arccos

[
1
a

cos
Δθeq

2

]
, (6.11)

where Δθeq ≡ Δθ(θ eq
c ) is the stripe width when it is located at the equilibrium position.

We can further show that the total interface length when θc = θ eq
c is

�total;min = 4πR sin2 Δθeq

2
, (6.12)

with Δθeq satisfying

Δθeq − a sin Δθeq = ΔA
2πrR

= 2ΔA
ΔAcrit

(arccos a − a
√

1 − a2). (6.13)

To better understand the nature of the solutions of (6.7), figure 13 shows the total interface
length �total for various ratios of ΔA/ΔAcrit. For ΔA/ΔAcrit < 1, the global minimum
configuration is unique and corresponds to θ eq

c = π. Then, as we increase ΔA/ΔAcrit
beyond 1, there is a second-order phase transition. The minimum energy configurations
become bistable, as given in (6.11).
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6.2. Stability of stripe configurations
In this section, we consider a relaxation of the axial symmetry constraint in order to
explore the viability of the stripe configurations discussed in the previous subsection in the
context of two-dimensional flows. We first discuss the stability of the stripe configurations
with respect to small perturbations. The main idea is to see the effects of increasing the
amplitude of azimuthal interface perturbations at the level of orthogonal modes. Those
modes whose growth causes the interface length to decrease lead to instability. Our
analysis is limited to the linear growth regime.

Since the upper (θ+) and lower (θ−) interfaces are separated by the stripe domain, it is
reasonable to neglect the back reaction caused by perturbing one interface on the shape
of the other. For definiteness, we focus on the lower interface θ− and assume that it is
perturbed according to

θ−(ϕ) = θ−;0 + δθ−(ϕ), (6.14)

where θ−;0 is the average value of θ−(ϕ), while δθ−(ϕ) is a small position-dependent
fluctuation, which admits the following Fourier decomposition:

δθ−(ϕ) = δ

π

∞∑
n=1

An cos(nϕ + ϕn;0), (6.15)

where δ > 0 is an overall positive infinitesimal factor, while the coefficients An = O(1)
are not necessarily small. We assume that θ−;0 changes under the perturbation such that
the domain area,

ΔA = rR
∫ 2π

0
dϕ
∫ θ+

θ−(ϕ)
dθ (1 + a cos θ)

= 2πrR

[
θ+ − θ−;0 + a sin θ+ − a sin θ−;0

(
1 − δ2

4π2

∞∑
n=1

A2
n

)
+ O(δ3)

]
, (6.16)

remains constant. Keeping in mind that the back reaction on θ+ is negligible, imposing
dΔA/dδ = 0 implies that

dθ−;0
dδ

= δ

2π2

a sin θ−;0
1 + a cos θ−;0

∞∑
n=1

A2
n. (6.17)

Let us now compute the length �− of the lower interface

�− =
∫ 2π

0
dϕ

√
R2[1 + a cos θ(ϕ)]2 + r2

(
dθ−
dϕ

)2

= 2πR(1 + a cos θ−;0)+ rδ2

2π

∞∑
n=1

(
an2

1 + a cos θ−;0
− cos θ−;0

)
A2

n + O(δ3). (6.18)

Taking the differential of �− with respect to δ while imposing (6.17) yields

d�−
dδ

= rδ
π

∞∑
n=1

a(n2 − 1)− cos θ−;0
1 + a cos θ−;0

A2
n. (6.19)
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The first term in the numerator has a stabilising effect, acting only on the Fourier modes
with n > 1. The second term can be related to the Gaussian curvature K, given by

K ≡ K(θ) = cos θ
rR(1 + a cos θ)

. (6.20)

The n = 1 mode becomes unstable when K > 0 and �− decreases when δ is increased, i.e.
in the region of the torus given by −π/2 < θ−;0 < π/2. The higher-order modes become
unstable deeper in the region of positive K, i.e. when cos θ−;0 exceeds a(n2 − 1). An
equivalent analysis can be performed for the upper interface, located at θ+ = θc + Δθ/2.
Focussing now only on the onset of instability due to the first mode, (6.19) can be written
as (

d�±
dδ

)
n=1

= −r2RA2
1δ

π
K(θ±;0). (6.21)

Equation (6.21) indicates that the upper and lower interfaces can become unstable
simultaneously only when the stripe is completely contained in the region where K > 0
(i.e. on the outer side of the torus).

We now discuss the stability of stripes with equilibrium position characterised by (6.7),
as derived in the previous subsection. Essentially, instability occurs when θ eq

− = θ eq
c −

Δθeq/2 < π/2 or θ eq
+ = θ eq

c + Δθeq/2 > 3π/2. The subcritical stripes (having ΔA <
ΔAcrit, which stabilise at π) do not suffer from the instability described by (6.21). For the
critical stripe, as described by (6.9), it can be seen that the instability condition on both the
upper and lower interfaces reduces to arccos a > π/2, which is marginally satisfied only
in the case a → 0. Next, supercritical stripes (having ΔA > ΔAcrit, which stabilise away
from π) are stable only when

θ inst
c,t < θ eq

c < θ inst
c,b , Δθeq < Δθinst,

θ inst
c,t = π − arctan a, θ inst

c,b = π + arctan a, Δθinst = 2 arctan
1
a
.

}
(6.22)

The interface length and area of the stripe, corresponding to the instability condition in
(6.22), are given by

�inst = 4πR
1 + a2

, ΔAinst = 4πrR
(

arctan
1
a

− a
1 + a2

)
. (6.23)

Figure 14(a) shows a separation of the (a,Δθeq) plane into 3 regions: The subcritical
region (where the stripes stabilise at π), shown in blue in the bottom left part of the plot;
the super-critical region (where the stripes stabilise away from π), shown with yellow; and
the unstable region (where stripes destabilise under small perturbations), shown with red
in the top right part of the plot. The line separating the red and yellow regions is defined
by (6.22), while the line between the yellow and blue regions is given by (6.9).

To verify the validity of (6.22), we perform some numerical experiments on the
torus with R = 1 and r = 0.4 (a = 0.4). The stripes become unstable when θc < θ inst

c 

0.8788π, therefore we consider three stripes initialised at θ eq

c = 0.86π, 0.87π and 0.88π,
with their corresponding equilibrium widths Δθeq = {0.764, 0.761, 0.757}π. The order
parameter is initialised with the hyperbolic tangent profile given in (6.30), but the
stripe width Δθ(ϕ) = Δθ0 + ε(ϕ) is allowed to vary with respect to the ϕ coordinate.
The perturbation ε(ϕ) is taken as a random distribution with amplitude 0.001π. The
system is discretised using Nθ = 192 and Nϕ = 288 equidistant values for the θ and
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FIGURE 14. (a) Phase diagram showing the regions where the stripe is unstable (top right),
as given by (6.22), and where it is stable (or at least metastable). The latter region is further
divided into two subregions, where the stripes are subcritical (ΔA < ΔAcrit, bottom left) and
supercritical (ΔA > ΔAcrit, central right). (b) Time evolution of the root mean square of the
perturbations on the lower interfaces (θ− = θc − Δθ/2), as given by (6.24), for stripes centred
on θeq

c = 0.86π, 0.87π and 0.88π, on the torus with a = 0.4.

ϕ coordinates. After generating the values εq = ε(ϕq), where 1 ≤ q ≤ Nϕ , the base width
Δθ0 is computed such that the perturbed stripe has the area ΔA corresponding to the
axisymmetric stripe with the given values for θ eq

c and Δθeq. The numerical simulations
indicate that the perturbations on the upper interface, located at θ+ = θc, are quickly
suppressed for all stripes, confirming the prediction of the analysis presented above. On
the lower interface (θ−), we quantify the growth of the perturbation at the level of the
root-mean-square deviation, computed via

( ¯δθ 2)1/2 =
√√√√ 1

Nϕ

Nϕ∑
q=1

|θ q
− − θ

avg
− |2, (6.24)

where θ avg
− is the average position of the lower interface. The results are presented in

figure 14(b). It can be seen that, in the case of the stripes located at 0.86π and 0.87π,
the perturbations grow exponentially with time, while in the case of the stripe centred
on 0.88π, the perturbations are suppressed, confirming that the onset of the instability is
given by (6.22).

The instability invariably causes the stripe to break. The final configuration must
correspond to a smaller value of the total free energy. Figure 15 presents snapshots of the
evolution of two unstable fluid stripes, initialised at (a) θc = 0.86π and (b) θc = 0.65π,
on the torus with a = 0.4. For convenience, the order parameter φ is shown using a
colour map in a two-dimensional representation (top rows) and in the three-dimensional
representation, on the torus (bottom rows). The stripe widths are set to the equilibrium
values, Δθ = 0.764236π and 0.883748π, respectively, while the interfaces are perturbed
as described in the previous paragraphs, with initial perturbation amplitude ε = 0.02π.
The initial states are shown in panels (ai,bi). Panels (aii,bii) and (aiii,biii) show
intermediate stages in the development of the perturbations. From figure 15(aii,bii), it
can be seen that the perturbations are dominated by the first Fourier mode, corresponding
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FIGURE 15. Time evolution of two unstable stripes on the torus with a = 0.4. (a) The stripe
is initialised at θeq

c = 0.86π and leads after breaking into a droplet configuration equilibrated
on the outer side of the torus (animation available as supplementary movie 1). (b) The stripe
is initialised at θeq

c = 0.65π and merges in the poloidal direction after breaking to form a band
configuration (animation available as supplementary movie 2). In (a,b), (i) shows the initial
conditions, with perturbations along the ϕ direction on both interfaces; (ii) and (iii) contain
intermediate snapshots of the configurations; and (iv) shows the final equilibrium configurations.

to cos(ϕ + ϕ1;0), thus confirming that the higher-order modes are suppressed compared to
the first-order one. Panels (aiii,biii) depict the configurations just before the stripes break.
Finally, column (iv) shows the equilibrium configurations, which are a drop for the smaller
stripe and a band, wrapping around the torus along the θ coordinate, for the larger one.
Animations of the time development of the instability for the 2 cases shown in figure 15
are available as supplementary movies 1 and 2.
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The fact that the stripe configurations lead to droplets or bands indicates that these
latter configurations correspond to lower values of the free energy. Under the assumption
that the free energy is related to the interface length, we note that, according to (6.3),
the interface length for the stripe configuration can vary as the stripe area grows between
�min

stripe = 4π(R − r) for infinitesimally small stripes (the two interfaces are at θ = π) and
�max

stripe = 4πR for the largest stripe, covering half of the torus and having the interfaces
at θ = 0 and π. (We note that, as revealed in § SM:2.3, the free energy for the stripe
configurations is just Ψ = σ�total + O(ξ 2). This simple relation may not hold for more
general domain shapes.)

For sufficiently small domain areas, the interface length of a droplet configuration grows
with the domain area roughly as �drop ∼ √

ΔA, vanishing as ΔA → 0. Thus, at sufficiently
small domain areas, the droplet is energetically preferred.

The band configuration has a domain area-independent interface length, given by the
two boundary circles located at constant ϕ, �band = 4πr. For sufficiently large domain
areas, �band will be smaller than �stripe, since �max

stripe = 4πR > 4πr. In fact, the band
configuration can be energetically preferable to the stripe configurations for any domain
size when �band < �min

stripe, which is always satisfied when a < 1
2 .

A more comprehensive analysis of the energy landscape, indicating which
configurations correspond to the minimum of the free energy, would require a detailed
study of the droplet and band configurations, which is beyond the scope of this work.
However, based on the discussion in the previous paragraph, it is safe to conclude that
there are domains of the subcritical and supercritical regions shown in figure 14(a) where
the stripe configurations are actually only metastable.

6.3. Laplace pressure
We now seek for an expression for the pressure difference ΔP between the two fluid
components. For a small increase δΔA of the stripe area, let δ�total be the increase in the
interface length. These two quantities can be related through the equation

ΔPδΔA = σδ�total. (6.25)

The variations δΔA and δ�total can be computed using (6.2) and (6.3)

δΔA = 4πrR
(

1 + a cos θc cos
Δθ

2

)
δ
Δθ

2
, δ�total = −4πr cos θc sin

Δθ

2
δ
Δθ

2
.

(6.26)

Thus, the pressure difference ΔP can be written as

ΔP = −σ
R

cos θc sin(Δθ/2)
1 + a cos θc cos(Δθ/2)

. (6.27)

The above expression is valid regardless of where the stripe is positioned.
Assuming that the stripe is already in its equilibrium position, (6.27) reduces to

ΔP =

⎧⎪⎪⎨⎪⎪⎩
σ

R
sin(Δθeq/2)

1 − a cos(Δθeq/2)
, ΔA < ΔAcrit and θ eq

c = π,

σ

r
cot

Δθeq

2
, ΔA > ΔAcrit and a cos θ eq

c + cos
Δθeq

2
= 0.

(6.28)
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Equation (6.28) loses relevance in the domain of stripe instability discussed in § 6.2, unless
strict axisymmetry is enforced. On the instability line, where (6.22) and (6.23) hold, we
find

ΔPinst = σ

R
, (6.29)

which, remarkably, is independent of a.
We now propose the benchmark test concerning stripe configurations, consisting of the

generalisation of the Laplace–Young pressure test. An alternative derivation of (6.27) in
the context of the Cahn–Hilliard model considered in this paper is provided in § SM:2.1 of
the supplementary material. It is interesting to note that the Laplace pressure is related to
a non-vanishing value of the chemical potential when the stripe is in equilibrium. This in
turn induces an offset in the order parameter, denoted using φ0 and computed in SM:2.21
of the supplementary material.

We perform a series of numerical simulations in the absence of hydrodynamics at three
values of a, namely a = 0.25, 0.4 and 0.5, by fixing the outer radius to R = 2 and setting
the inner radius to r = {0.5, 0.8, 1.0}, while keeping M = 2.5 × 10−3, κ = 5 × 10−4 and
A = 0.5 unchanged. We consider stripes of various areas ΔA. For each value of ΔA, the
equilibrium position θ eq

c is computed and the stripe is initialised using a hyperbolic tangent
profile,

φ = φ0 + tanh ζ, ζ = r

ξ0

√
2

(
|˜θ − θc| − Δθ

2

)
, (6.30a,b)

and centred on θc = θ eq
c − δθ , with δθ = 0.05π. The notation ˜θ − θc indicates that the

angular difference θ − θc takes values between −π and π. The initial width Δθ is obtained
by numerically solving (6.2) for fixed ΔA and θc. The value of φ0 corresponding to the
initial stripe centre θc and initial width Δθ is derived in § SM:2.1 of the supplementary
material. It is given by

φ0 = ξ0

3R
√

2

cos θc sin(Δθ/2)
1 + a cos θc cos(Δθ/2)

. (6.31)

After initialisation, the stripes slowly migrate towards the equilibrium positions, as
discussed in the § SM:2.4 of the supplementary material. In order to reach the stationary
state, we performed 4 × 109 iterations at δt = 0.002. After the stationary state was
reached, we measured the pressure Pbinary = A(− 1

2φ
2 + 3

4φ
4) in the interior and exterior

of the stripe and computed the difference ΔP between these two values. The results are
shown using dotted lines and symbols in figure 16. The shaded region indicates the region
where the stripes become unstable once the axisymmetric assumption is removed in the
model. It is bounded from above by the pressure difference value ΔPinst on the instability
line, given in (6.29). We observe an excellent agreement with the analytic result, (6.28),
which is shown using solid lines.

It is worth noting that the second-order phase transition observed in the stripe
equilibrium positions when ΔA = ΔAcrit is also visible in the dependence of ΔP on ΔA in
figure 16. Its non-monotonic behaviour can be understood as follows. For infinitesimally
small stripes, the torus curvature is negligible and no pressure difference can be seen
across the interface, as is also the case for the Cartesian (flat space) geometry. As the stripe
width Δθ increases, ΔP also increases. In general, a turning point in the Laplace pressure
can be expected. This is because the pressure difference vanishes for infinitesimal stripes
(Δθ → 0), as well as in the opposite case, when the stripe occupies the top or bottom
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FIGURE 16. Comparison of numerical results obtained for a = 0.25 (solid squares), a = 0.4
(solid circles) and a = 0.5 (solid triangles) against the analytic formula (6.28). The system
parameters are A = 0.5, κ = 5 × 10−4 and M = τ = 2.5 × 10−3. The simulations are performed
using Nθ = {200, 320, 400} nodes along the θ direction for r = {0.5, 0.8, 1.0}, while the time
step was set to δt = 2 × 10−3. The shaded region corresponds to the stripes which are unstable
when the axisymmetric assumption is lifted.

halves of the torus (Δθ → π). In the latter case, the conjugate domain can be obtained
from the stripe by employing a symmetry transformation, z ↔ −z, which also changes the
torus into itself. Thus, the configurations corresponding to the stripe and its conjugate
are perfectly equivalent and one can expect there to be no pressure difference across
the interface. When the equilibrium position of the stripe is always centred on θ eq

c = π,
a smooth dependence of ΔP on Δθ can be expected. However, the phase transition at
ΔA = ΔAcrit which causes the stripe to detach form θc = π leads to the sharp change
observed in figure 16.

7. Evolution of fluid stripes in a Cahn–Hilliard multicomponent fluid

In this section we consider the dynamics of the axisymmetric fluid stripes discussed
in § 6. Here, we focus on the case where the Cahn–Hilliard equation is fully coupled
with hydrodynamics, when the stripes undergo underdamped oscillatory motion towards
their equilibrium positions. The relaxation dynamics in the absence of hydrodynamics is
discussed in detail in § SM:2.4 of the supplementary material, where we are able to obtain
a semi-analytical description of how the stripes relax exponentially to their equilibrium
positions. From the perspective of benchmarking Navier–Stokes solver on non-uniform
curved surfaces, this section is a culmination of the various ingredients developed in
§§ 3, 5 and 6. In particular, we find that the dynamics is governed to leading order by the
zeroth-order mode of the velocity derived in (3.23), which corresponds to incompressible
flow. This section is structured as follows. The general solution for the underdamped
oscillatory motion is presented in § 7.1. A benchmark test is proposed in § 7.2.
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7.1. General solution
To derive the stripe dynamics, our starting point is the Cauchy equation in the linearised
regime

∂uθ̂

∂t
= −kBT

mr
∂δρ

∂θ
+ ν

r2(1 + a cos θ)2
∂

∂θ

[
(1 + a cos θ)3

∂

∂θ

(
uθ̂

1 + a cos θ

)]

+ νv

r2

∂

∂θ

{
∂θ [uθ̂ (1 + a cos θ)]

1 + a cos θ

}
− φ

ρ0r
∂μ

∂θ
. (7.1)

As in § 3 and 5, we will employ the decomposition written in (3.18) for uθ̂ . Moreover, we
will also take advantage of the fact that the higher-order terms Uc,n and Us,n (n > 0) are
damped at a significantly higher rate than the fundamental term U0. Then, in order to track
the evolution of U0, we multiply (7.1) with f0/2π = (1 − a2)1/4/2π, and integrate it over
θ between 0 and 2π, to obtain

U̇0 + 2νa2

r2(1 − a2)
U0 + (1 − a2)1/4

2πρ0r
Iμ 
 0, Iμ =

∫ 2π

0
dθφ

∂μ

∂θ
, (7.2 a,b)

where the 
 sign indicates that the nonlinear terms, as well as the components of uθ̂ with
n > 0, have been neglected. Employing integration by parts, Iμ can be written as

Iμ =
∫ 2π

0
dθ

[
A
∂

∂θ

(
φ2

2
− φ4

4

)
+ κ

r2

∂φ

∂θ

∂2φ

∂θ 2
− κ

r2

a sin θ
1 + a cos θ

(
∂φ

∂θ

)2
]
. (7.3)

The first and second terms above do not contribute to the integral. To evaluate the integral
of the third term, we assume that φ is approximately given by the hyperbolic tangent profile
in (6.30) and employ the procedure introduced in § SM:2.1 of the supplementary material,
which we briefly review here. First, the integration variable is changed to ϑ = θ − θc and
the integration domain is shifted to −π < ϑ < π. Then, the flip ϑ → −ϑ is performed
on the negative (ϑ < 0) branch, yielding

Iμ = −πaA
∫ π

0

dϑ
2π

[
sin(θc + ϑ)

1 + a cos(θc + ϑ)
+ sin(θc − ϑ)

1 + a cos(θc − ϑ)

]
1

cosh4 ζ
. (7.4)

Next, the integration variable is changed to ζ = rς/ξ0

√
2, where ς = ϑ − Δθ/2, such that

the integration domain is −rΔθ/ξ0

√
8 < ζ < r(2π − Δθ)/ξ0

√
8. Noting that ξ0 � rΔθ ,

the integration domain can be extended to (−∞,∞) and Iμ becomes

Iμ = −3σ
4R

∫ ∞

−∞

dζ
cosh4 ζ

⎡⎢⎢⎢⎢⎣
sin

(
θ+ + ξ0ζ

√
2

r

)

1 + a cos

(
θ+ + ξ0ζ

√
2

r

) +
sin

(
θ− − ξ0ζ

√
2

r

)

1 + a cos

(
θ− − ξ0ζ

√
2

r

)
⎤⎥⎥⎥⎥⎦ ,
(7.5)

where σ = √
8κA/9 is the line tension and θ± = θc ± Δθ/2. We now consider an

expansion of the integrand with respect to ξ0ζ/r. The dominant contribution comes from
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the zeroth-order term. Since the integration domain is even with respect to ζ , the first-order
term of the expansion does not contribute. Considering that ξ0/r � 1, the higher-order
terms can be discarded and Iμ can be approximated through

Iμ 
 −2σ
R

sin θc[a cos θc + cos(Δθ/2)]
(1 + a cos θ−)(1 + a cos θ+)

. (7.6)

Substituting (7.6) into (7.2), we obtain

U̇0 + 2ανU0 − σ(1 − a2)1/4

πrRρ0

sin θc[cos(Δθ/2)+ a cos θc]
(1 + a cos θ−)(1 + a cos θ+)

= 0, (7.7)

where the viscous damping coefficient αν = ν/(R2 − r2) is introduced in (5.30).
The relation between U0(t) and θc(t) can be established by evaluating the Cahn–Hilliard

equation on the top and bottom interfaces θ = θ±

r

ξ0

√
2

[
−θ̇+ + uθ̂+

r

]
= M(Δμ)+,

r

ξ0

√
2

[
θ̇− − uθ̂−

r

]
= M(Δμ)−, (7.8 a,b)

where we have kept the leading-order term of the time derivative of φ, assuming it takes
the hyperbolic tangent profile in (6.30) and evaluating it on the two interfaces

∂φ

∂t

⌋
θ±


 ∓ rθ̇±
ξ0

√
2
. (7.9)

Subtracting the two equations in (7.8), we obtain

uθ̂+ + uθ̂−
2r

= θ̇c + ξ0M

r
√

2

[
(Δμ)+ − (Δμ)−

]
. (7.10)

On the left-hand side, the velocity profile can be approximated through its zeroth-order
term, corresponding to the velocity profile of an incompressible flow

uθ̂+ 
 U0(t)f0(θ)

1 + a cos θ+
, uθ̂− 
 U0(t)f0(θ)

1 + a cos θ−
, (7.11a,b)

as discussed in (3.23). The function f0(θ) = (1 − a2)1/4 is introduced in (3.14). Thus, the
left-hand side of (7.10) can be written as

uθ̂+ + uθ̂−
2r


 U0(t)(1 − a2)1/4[1 + a cos θc cos(Δθ/2)]
r(1 + a cos θ+)(1 + a cos θ−)

. (7.12)

The right-hand side of (7.10) is identical to the equation for the stripe relaxation
dynamics in the absence of hydrodynamics, as discussed in § SM:2.4 of the supplementary
material. When hydrodynamics is present, which is the case in this section, the term on
the left-hand side dominates over the second term on the right-hand side of (7.10). We will
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also now consider the linearised limit when δθ = θc − θ eq
c is a small quantity. In this case,

(7.10) yields

U0(t) = r(1 + a cos θ eq
+ )(1 + a cos θ eq

− )
(1 − a2)1/4[1 + a cos θ eq

c cos(Δθeq/2)]
δ̇θ . (7.13)

Taking the derivative of (7.13) allows U̇0 to be expressed in the linearised limit as

U̇0(t) = r(1 + a cos θ eq
+ )(1 + a cos θ eq

− )
(1 − a2)1/4[1 + a cos θ eq

c cos(Δθeq/2)]
δ̈θ . (7.14)

Equations (7.13) and (7.14) can be inserted into (7.7) to obtain an equation governing the
evolution of δθ . The last term in (7.7) can be linearised using (7.15) and (7.16), as follows:

sin θc

(
a cos θc + cos

Δθ

2

)

 −δθ ×

{
cos(Δθeq/2)− a, ΔA < ΔAcrit,

2a sin2 θ eq
c , ΔA > ΔAcrit.

, (7.15)

(1 + a cos θ+)(1 + a cos θ−) 

{

[1 − a cos(Δθeq/2)]2, ΔA < ΔAcrit,

(1 − a2) sin2(Δθeq/2), ΔA > ΔAcrit.
(7.16)

After some rearrangements, the following equation is obtained for δθ :

δ̈θ + 2ανδ̇θ + ω2
0δθ = 0. (7.17)

When ΔA < ΔAcrit, θ eq
c = π and ω2

0 is given by

ω2
0 = σ

√
1 − a2

πr2Rρ0

cos(Δθeq/2)− a
[1 − a cos(Δθeq/2)]3

. (7.18)

For ΔA > ΔAcrit, the equilibrium position is at cos(Δθeq/2)+ a cos θ eq
c = 0 and ω2

0 is
given by

ω2
0 = 2σ

πr3ρ0(1 − a2)3/2

a2 − cos2(Δθeq/2)
sin2(Δθeq/2)

. (7.19)

On the instability line, characterised by (6.22) and (6.23), we find

ω2
0 = 2σa

πR3ρ0(1 − a2)3/2
. (7.20)

The general solution of (7.17) is

δθ = δθ0 cos(ω0t + ϑ) e−αν t, (7.21)

where δθ0 and ϑ are integration constants. It is understood that, in the unstable region
given by θc < π − arctan a or θc > π + arctan a, the above solution is valid only for
strictly axisymmetric flows. In principle, there is a correction to the exponential decay
term due to the second term on the right-hand side of (7.10). However, we find that this
correction is approximately one or two orders of magnitude smaller than αν , (a more
detailed analysis of the dynamics of stripes in the absence of hydrodynamics can be found
in § SM:2.4 of the supplementary material).

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

44
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.440


Axisymmetric flows on the torus geometry 901 A9-49

–0.050

–0.025

0

0.025

0.050

t

Numerical
Analytical

−0.010

–0.005

0

0.005

0.010

0 1000 2000 3000 4000 5000
t

0 1000 2000 3000 4000 5000

(θ
c 

  
– 

θ c)
/π

eq
(a) (b)

FIGURE 17. Time evolution of the stripe centre θc for stripes initialised at (a) θ0 = 0.95π with
Δθ0 = 0.280π (equilibrating at θeq

c = π, on the torus with a = 0.4); and (b) θ0 = 0.79π with
Δθ0 = 0.552π (equilibrating at θeq

c = 4π/5, on the torus with a = 0.8). The numerical results
are shown using dotted lines and symbols, while the analytic solution (7.21) is shown with solid
lines.

7.2. Benchmark test
The solution derived in (7.21) can serve as a benchmark for solvers involving interface
dynamics. This benchmark test is particularly difficult since the dynamics of the interface
can be significantly altered by numerical artefacts, such as the spurious velocity at the
interface, which are known to plague numerical solutions (Sofonea et al. 2004; Shan
2006).

In the numerical tests discussed below, the velocity field is initialised with uϕ̂ = 0
and uθ̂ = U0f0(θ)/(1 + a cos θ), where f0(θ) = (1 − a2)1/4 is the zeroth-order harmonic
derived in (3.14) and U0 is computed based on (7.13) using the solution in (7.21) with
ϑ = 0 and δ̇θ = −ανδθ0. The order parameter is initialised with the hyperbolic tangent
profile in (6.30).

In the first test, we consider a stripe equilibrating at θ eq
c = π, on the torus with R = 2

and r = 0.8 (a = 0.4). The stability region for this torus is 0.8789π < θ eq
c < 1.1211π.

We choose an initial amplitude of δθ0 = −0.05π (the initial position is θ0 = 0.95π).
The initial stripe width is set to Δθ0 = 0.280406π (at equilibrium, Δθeq 
 0.282296π 

0.38Δθcrit). The simulation parameters are κ = 2.5 × 10−4, A = 0.5, ν = M = 2.5 ×
10−3, νv = 0 and ρ0 = 20, resulting in ω0 
 0.0152 and αν = 7.44 × 10−4. The number of
nodes and time step are Nθ = 480 and δt = 5 × 10−4. The numerical results, shown with
red dashed lines and empty circles, are shown alongside the analytical curve corresponding
to (7.21) with ϑ = 0 and angular velocityω0 computed using (7.18) in figure 17(a). Without
resorting to any fitting routines, it can be seen that the analytic expression provides an
excellent match to the simulation results.

For the second test, we choose a stripe equilibrating away from π. In order for this
test to be meaningful also when axisymmetry is not strictly imposed, we seek to ensure
that the stripe evolution occurs exclusively in the region of stability. For this reason, we
increase a to 0.8 (R = 2 remains the same as before and r is increased to 1.6), such that the
stability region is now 0.7853π ≤ θ eq

c ≤ 1.2147π. Taking θ eq
c = 0.8π (corresponding to

the equilibrium width Δθeq 
 0.551868π 
 1.98Δθcrit), we choose an initial amplitude of
δθ0 = −0.01π, such that θ0 = 0.79π and Δθ0 = 0.539376π. At larger initial amplitudes,
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FIGURE 18. (a) Comparison between the values of ω0 obtained by fitting (7.21) to the
numerical results, shown with points, and the analytic expressions, (7.18) for Δθ < Δθcrit (on the
descending branch) and (7.19) for Δθ > Δθcrit (on the ascending branch). The radii ratios were
chosen such that Δθcrit = {0.25π, 0.5π, 0.75π}. The shaded area indicates the region where
the stripe configurations are unstable. (b) Colour plot representation of the regularised angular
velocity, ω0, defined in (7.22), with respect to Δθeq/π (horizontal axis) and a = r/R (vertical
axis). The green dashed line separates the stability (bottom left) from the instability (top right)
regions of the parameter space.

the evolution of the stripe becomes visibly asymmetric, due to the inequivalence between
the left and right sides of the equilibrium position. The fluid parameters are set to
κ = 1.25 × 10−4, A = 0.25, ν = M = 6.25 × 10−4, νv = 0 and ρ0 = 20, resulting in ω0 

8.49 × 10−3 and αν 
 4.34 × 10−4. The number of nodes and time step are set to Nθ = 960
and δt = 5 × 10−3. The simulation results, shown using a red dashed line with empty
circles, are shown alongside the analytic result, given by (7.21) with ω0 computed using
(7.19), are in good agreement, as can be seen from figure 17(b).

We now discuss some of the properties of the oscillation frequency, ω0. As can be seen
from (7.18) and (7.19), ω2

0 is proportional to the line tension, σ , and inversely proportional
to the fluid density, ρ0. No explicit dependence can be seen on the viscosities ν and νv.
This is to be expected, since the line tension is responsible for the driving force, while the
local mass density is a measure of the fluid inertia.

Keeping ρ0 and σ fixedand considering fixed values of the torus radii, r and R,
ω0 exhibits a non-monotonic dependence on the stripe width at equilibrium, Δθeq.
Considering that the stripes of negligible width are always subcritical, we have
limΔθeq→0 ω0 = σ

√
1 − a2/πr2Rρ0(1 − a)2. At the other end of the spectrum, stripes

with Δθeq = π have limΔθeq→π ω0 = 2σ/πrR2ρ0(1 − a2)3/2. In between, it can be seen
that ω0 vanishes for critical stripes on both the subcritical [(7.18)] and supercritical
[(7.19)] branches. This is highlighted in figure 18(a), where ω0 is represented as a
function of Δθeq for three values of a = r/R, namely 0.3827 (purple squares), 0.7071
(green circles) and 0.9239 (blue rhombi). These values are chosen such that the critical
stripe width is Δθeq = 3π/4, π/2 and π/4, respectively. The shaded region marks
the instability region, being bounded from below by (7.20). The numerical values of
ω0 are obtained by performing a two-parameter fit of (7.21) with respect to αν and
ω0 (the offset is set to ς = 0) on the numerical data. The other fluid parameters
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are ρ0 = 20, ν = 2.5 × 10−3, νv = 0, κ = 5 × 10−4 and A = 0.5, while R = 2 is kept
fixed. The corresponding analytic results are shown with solid black lines. An excellent
agreement can be seen, even for the nearly critical stripe, for which ω0 is greatly
decreased.

In order to further explore the properties of ω0, we focus on its dependence on the
stripe width at equilibrium, Δθeq, and on the torus aspect ratio a = r/R. From (7.18),
it is clear that ω0 diverges as r−1 = (aR)−1 when a → 0. This is to be expected, since
ω0 is proportional to the number of oscillations per unit time, which increases as r
is decreased. Furthermore, (7.19) shows that when a → 1, ω0 diverges as (1 − a2)−3/4.
From the above discussion, it is instructive to introduce the dimensionless, regularised
oscillation frequency, ω0, through

ω2
0 ≡ πρ0

4σ
r2R(1 − a2)3/2ω2

0 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
[cos(Δθeq/2)− a](1 − a2)2

4[1 − a cos(Δθeq/2)]3
, Δθeq < Δθcrit,

[a2 − cos2(Δθeq/2)]
2a sin2(Δθeq/2)

, Δθeq > Δθcrit,

(7.22)

where the factor π/4 was introduced for normalisation purposes. It can be seen that ω0
attains the maximum value with respect to Δθeq when Δθeq → 0. This value is

lim
Δθeq→0

ω0 = 1 + a
2

. (7.23)

The regularised angular velocity ω0 is represented in figure 18(b) as a function of the
stripe width Δθeq/π (on the horizontal axis) and the radii ratio a = r/R (on the vertical
axis). Due to the chosen normalisation, the colour map spans [0, 1]. The dark line
joining the bottom right and top left corners corresponds to the parameters of the critical
stripe. The green dashed line delimits the regions of stability (bottom left) and instability
(top right).

8. Conclusions

In this work, we focussed on a series of axisymmetric flows on the torus geometry
which are solvable analytically. The analytical results are also directly and systematically
compared against numerical results obtained using a finite-difference Navier–Stokes
solver.

Starting with perfect fluids, we first investigated the propagation of sound waves,
identifying the discrete set of frequencies allowed on the torus geometry. In contrast to
the planar geometry, the even and odd modes are no longer degenerate. Moreover, since
the ratios of the eigenfrequencies are not integers, the periodicity in the fluid flows is
lost. We also showed that the sound speed can be altered when changing the equation of
state by considering isothermal and thermal ideal fluids, as well as multicomponent flows
described via the Cahn–Hilliard equation.

We next looked at the equivalent of the popular shear wave damping problem in
Cartesian coordinates. Here, we considered a fluid flowing along the azimuthal direction,
with vanishing poloidal velocity. Under the assumption of axial symmetry, we showed
that the velocity can be expanded with respect to a discrete set of basis functions
which are the eigenfunctions of a second-order differential operator with respect to the
poloidal coordinate θ . The eigenvalues corresponding to these eigenfunctions control
the damping rate of the associated velocity components. In particular, we highlighted the
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relaxation of an initially constant velocity profile towards the zeroth order eigenfunction,
corresponding to a vanishing eigenvalue, which corresponds to a non-dissipative
flow.

The third problem concerns the damping of sound waves. Here, we discussed the effect
of the various dissipative terms appearing in the Navier–Stokes, energy and Cahn–Hilliard
equations. Generally, the fluid flow can be decomposed into acoustic modes, which
propagate, and thermal/Cahn–Hilliard modes, which simply decay exponentially. The
extension of the methodology to other types of fluids is straightforward.

The fourth and fifth phenomena we have studied concern multicomponent flows
governed by the Cahn–Hilliard equation. The typical multicomponent axisymmetric
configuration that we considered is the stripe, centred on poloidal coordinate θc and having
angular span Δθ .

We showed that, for a general class of multiphase and multicomponent models,
the requirement of minimisation of interface length while preserving the stripe area
determines the equilibrium position of the stripe. For stripes having a total area less than
a critical area ΔAcrit, the equilibrium position is on the inside of the torus (θ eq

c = π).
As the stripe area is increased above ΔAcrit, two equilibrium positions become possible,
highlighting a second-order phase transition in this class of systems. We also generalise
the Laplace pressure law. Our analysis gives an exact expression for the difference between
the pressure inside of the (minority phase) stripe and the pressure outside of the stripe (i.e.
in the majority phase), for both subcritical (ΔA < ΔAcrit) and supercritical (ΔA > ΔAcrit)
stripes.

We have also shown that the stripe configurations are not always stable, or
even metastable, when axisymmetry is not strictly enforced. For example, the
droplet configuration is energetically favoured at small domain areas, while the band
configurations, which wrap around the torus along the θ direction, are favoured at large
domain areas. Moreover, we highlighted that the stripe configurations become unstable
to small perturbations when either one of their interfaces crosses the boundary from the
region of negative Gaussian curvature (π/2 < θ < 3π/2) towards the region of positive
Gaussian curvature (−π/2 < θ < π/2).

Finally, we considered the dynamics of stripes in the presence of hydrodynamics, when
the approach to equilibrium of the stripes is achieved through underdamped harmonic
oscillations. Using analytical techniques, we find expressions for both the angular velocity
and damping coefficient. This is in contrast to the case in the absence of hydrodynamics
(detailed in § SM:2.4 of the supplementary material), where the approach to equilibrium
is an exponential relaxation.

We believe that the results presented here provide non-trivial problems for developing
computational methods for flows on curved surfaces (including the torus), and for
benchmarking their accuracy and performance. For instance, the first three flow
phenomena in this paper can be used for convergence testing of numerical codes
implementing hydrodynamics on curved surfaces. To this end, we present a recipe for
performing such tests in appendix A, where we perform a convergence analysis for the
numerical scheme employed in this paper. The multicomponent flow phenomena also
provide a good example for cases where the Navier–Stokes equation is coupled to other
equations capturing more complex physics. For instance, this approach can be adapted to
study complex flows on lipid membranes, or to investigate passive and active liquid crystal
flows on curved surfaces. Here, the analytical results are limited to the torus geometry and
primarily for axisymmetric flows. In the future, it would be interesting to apply and extend
the methodology employed here to non-symmetric flow configurations, as well as to other
manifolds.
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Appendix A. Convergence test

This section of the appendix illustrates a procedure for using the benchmark problems
introduced in §§ 3, 4 and 5 for convergence tests of numerical codes designed for
hydrodynamics on curved surfaces. The validation is done against the analytic solutions
derived in the aforementioned sections, which are constructed using expansions of the
mode functions { f�, g�} (for longitudinal waves) and {F�,G�} (for the shear waves)
including terms up to order n (3 ≤ n ≤ 8) with respect to the torus radii ratio, a = r/R. For
definiteness, we restrict our convergence study to the amplitudes of the first even harmonic,
Uc;1(t) and Vc;1(t).

In the first part of this section, we present the validation of our numerical scheme with
respect to the spatial resolution. We consider the three benchmark tests described in §§ 3.2,
4.2 and 5.2. Unless otherwise stated, the fluid parameters and initial state are identical to
those described in these sections. The numerical values of the amplitudes Uc;1(t) and
Vc;1(t) are obtained as follows. The total simulation time, tmax, is divided into S intervals
Δt = tmax/S, numbered using 0 ≤ s ≤ S. At each time ts = sΔt, the numerical solution for
the profile of uθ̂ or uϕ̂ (for the longitudinal or shear wave benchmarks) are projected onto
the basis functions f1(θ) and F1(θ) using rectangle integration

Unum
c;1 (ts) = 1

Nθ

Nθ∑
i=1

uθ̂num(ts, θi)f1(θi)

1 + a cos θi
,

Vnum
c;1 (ts) = 1

Nθ

Nθ∑
i=1

uϕ̂num(ts, θi)F1(θi)

(1 + a cos θi)−2
,

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (A 1)
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FIGURE 19. (a) The relative error of ωc;1 in the context of the inviscid propagation of
longitudinal waves, for an isothermal ideal fluid (Iso), an ideal fluid with variable temperature
(Th) and an isothermal Cahn–Hilliard multicomponent fluid (CH). (b) The relative error of the
damping coefficient νχ2

c;1/r
2 in the context of shear wave damping. (c) The relative error of

αc;1;a in the context of the viscous damping of longitudinal waves, for the same 3 fluid described
in (a). Each panel contains a dashed line indicating fifth-order convergence.

where ‘num’ indicates that the amplitudes are determined numerically. The mode
functions f1(θ) and F1(θ) are computed via the eighth-order expansions with respect to
a given in SM:3.3a and SM3.4a.

In the context of the propagation of longitudinal waves along the poloidal (θ ) direction
through a perfect fluid, figure 19(a) shows the relative error of the angular frequency
|ωnum

c;1 /ω
an
c;1 − 1|, where ωan

c;1 = csλc;1/r is computed using the eighth-order expansion of
λc;1 in SM:3.3b, while the numerical value ωnum

c;1 is obtained using a two-parameter fit of
the numerical amplitudes Unum

c;1 (ts) to the analytic prediction in (3.25), i.e.

Uc;1(t) = A cos(ωnum
c;1 t), (A 2)

where A and ωnum
c;1 are free parameters. The time interval and total simulation time

are taken as Δt = 0.05 (corresponding to 100 simulation steps at δt = 5 × 10−4) and
tmax = 18, such that the total number of intervals is S = 360. For completeness, we present
the results for the isothermal and thermal ideal fluid cases, as well as for the isothermal
Cahn–Hilliard multicomponent fluid with background order parameter φ0 = 0.8. The
values of the parameters are identical to those considered in § 3.2. It can be seen that
all curves are parallel to the slope −5 dashed line, indicating that our numerical scheme
has fifth-order accuracy.

We now consider the benchmark problem presented in § 4.2 concerning the damping
of shear waves. Figure 19(b) shows the decrease in the relative error of the damping
coefficient ν(χ num

c;1 )
2/r2 for the amplitude of the first mode, Vc;1(t), as a function of the

number of grid points. The numerical values for the damping coefficient are obtained by
fitting the numerical data using the analytic formula obtained by combining (4.13) and
(4.10), i.e.

Vc;1(t) = A e−αt, (A 3)

where A and α are free parameters. The time interval and total simulation time are taken as
Δt = 5 (corresponding to 1000 simulation steps at δt = 5 × 10−3) and tmax = 1800, such
that the total number of intervals is S = 360. The analytic prediction for α is νχ 2

c;1/r
2. In

the log–log plot of figure 19(b), the relative error of the damping coefficient follows the
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slope −5 dashed line, also indicating the scheme is fifth-order accurate. The simulation
parameters are identical to those considered in § 4.2.

Finally, we consider the sound waves damping benchmark problem introduced in
§ 5.2. Figure 19(c) presents the relative error for the acoustic damping coefficient
|1 − αnum

c;1;a/α
an
c;1;a|, where αan

c;1;a is listed in § 5.2 for the various fluid types considered.
Considering the three types of fluids discussed in the first paragraph, these relative errors
are plotted with respect to Nθ . The values αnum

c;1;a are obtained by fitting the numerical data
using the analytic formula, given in (5.34)

Uc;1(t) = A e−αnum
c;1;at sin(ωnum

c;1 t), (A 4)

where A, αnum
c;1;a and ωnum

c;1 are free parameters. The parameters used in this benchmark test
are identical to those in § 5.2 and for definiteness, we focus only on the case when the
volumetric kinematic viscosity νv = 0.02 (the other transport coefficients change from
one type of fluid to the other, as described in § 5.2). The time interval and total simulation
time are taken as Δt = 0.05 (corresponding to 100 simulation steps at δt = 5 × 10−4) and
tmax = 48, such that the total number of intervals is S = 960. It can be seen that the relative
error |1 − αnum

c;1;a/α
an
c;1;a| in the acoustic damping coefficient generally follows the slope −5

dashed line.
In the second part of this section, we consider the effect of varying the expansion order n

of the eigenfunctions, eigenfrequencies and all derived quantities. This study is performed
at the level of the L2 norms of the errors [Uan

c;1(t)− Unum
c;1 (t)]/U0 and 1 − Vnum

c;1 (t)/V
an
c;1(t)

between the numerical values and analytic predictions for the amplitudes of the first
even mode. These norms are computed by integrating over the simulation time using the
trapezoidal rule

Llong
2 =

{
1
S

S∑
s=0

fs

[
Unum

c;1 (ts)− Uan
c;1(ts)

U0

]2
}1/2

,

Lshear
2 =

{
1
S

S∑
s=0

fs

[
Vnum

c;1 (ts)

Van
c;1(ts)

− 1
]2
}1/2

,

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(A 5)

where fs = 1/2 when s = 0 or s = S and 1 otherwise. The reason why Llong
2 is computed

using absolute [Unum
c;1 (ts)− Uan

c;1(ts)] rather than relative [Unum
c;1 (ts)/Uan

c;1(ts)− 1] differences
is that due to the oscillatory nature of Uan

c;1(ts), there are in principle values of ts
where Uan

c;1(ts) is arbitrarily close to 0. For such values of ts, the relative error could be
disproportionally large, producing meaningless results. Instead, the relative difference
is preferred for Vc;1(ts) since Van

c;1(ts) exhibits an exponential decay with respect to ts.
Thus, the absolute differences Vnum

c;1 (ts)− Van
c;1(ts) would contribute with an exponentially

decreasing amplitude at large times and the result of an L2 norm based on the absolute
differences would therefore be biased towards the early time properties of Vc;1(t). The
analytical predictions Uan

c;1(t) and Van
c;1 can be obtained from (3.25) and (4.10). The

numerical amplitudes Unum
c;1 (ts) and Vnum

c;1 (ts) are obtained by projecting uθ̂num(ts, θ) and
uϕ̂num(ts, θ) onto the basis functions f1(θ) and F1(θ), as described in (A 1). Both the basis
functions and the analytic solutions are obtained using the expansions in SM:3.3a and
SM3.4a, truncated at power n of the radii ratio a.
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FIGURE 20. The L2 norm computed using (A 5) in the context of (a) propagation of inviscid
longitudinal waves; (b) damping of shear wave; and (c) damping of longitudinal waves. In (a,c),
we consider the cases of the isothermal ideal fluid (Iso), ideal fluid with variable temperature
(Th) and isothermal Cahn–Hilliard multicomponent fluid (CH). In (b), only the isothermal fluid
is considered.

We begin with the benchmark problem introduced in § 3.2, concerning the propagation
of longitudinal waves through a perfect fluid. Figure 20(a) shows the variation of Llong

2 with
respect to the truncation order of the expansion, which is varied between 3 ≤ n ≤ 8, for
the isothermal and thermal ideal fluid cases, as well as for the isothermal Cahn–Hilliard
multicomponent fluid. The simulation parameters are identical to those presented in § 3.2,
as well as earlier in this section. In general, an exponential decay of Llong

2 with respect to
n can be observed for all fluid types considered. A sharper decrease in the L2 error norm
can be observed when n is increased from an odd value to an even one.

In the context of the shear wave damping benchmark introduced in § 4.2, the analytical
expression Van

c;1(t) is obtained by combining (4.13) and (4.10). As before, Vnum
c;1 (t) is

obtained by projecting the velocity profile onto the basis functions F1, given in SM3.4a,
truncated at order n. The same order n is used to evaluated the analytic prediction Van

c;1(t).
The results are presented in figure 20(b), up to order n = 8. The Lshear

2 decays exponentially
and again sharper drops are seen when the expansion order is increased from an odd to an
even value. The simulation parameters are identical to those employed in § 4.2. A total of
S = 360 time intervals of length Δt = 1000δt = 5 were saved (tmax = 1800).

Lastly, we investigate the convergence of the first harmonic in the context of viscous
damping of longitudinal waves. The Lvisc

2 norm is computed using (A 5), where the
analytical prediction for Uan

c;1(t) is given in (5.34). This prediction is evaluated using
the values for ωan

1 and the integral Ic;0;1 truncated at nth order. The velocity profile is
projected using (A 1) onto the basis function f1, computed using a truncation of SM:3.3a
at the same order n, obtaining Unum

c;1 . The results for the isothermal and thermal ideal fluid
cases, as well as for the isothermal Cahn–Hilliard multicomponent fluid are summarised
in figure 20(c). Since the linearised theory introduces errors of order O(U0, ε

2), in order
to reveal the error induced by the expansion order, we decrease the kinematic viscosities
employed in § 5.2 for each type of fluid by two orders of magnitude, namely νIso = 10−4,
νTh = 4 × 10−5 and νCH = M ≈ 6.486 × 10−5, while the volumetric kinematic viscosity
is set to νv = 2 × 10−4 for all fluid types. The rest of the simulation parameters are:
Nθ = 320, R = 2 and r = 0.8 (a = 0.4), U0 = 10−5 and δt = 5 × 10−4. A total of S = 500
time intervals of length Δt = 1 were saved (tmax = 500). The exponential decay of the Lvisc

2
can be clearly seen, and again, a larger decrease can be seen when n is increased from an
odd to an even value.
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Appendix B. Eigenfunctions on the torus

This section of the appendix presents a perturbative procedure for constructing solutions
of (3.10) and (4.4) in powers of a = r/R, where r and R are the inner and outer radii of the
torus. Multiplying (3.10) and (4.4) by 1 + a cos θ yields:

(1 + a cos θ)
(
∂2Ψn

∂θ 2
+ λ2

nΨn

)
+ αa sin θ

∂Ψn

∂θ
= 0, (B 1)

where α = 1 and −3 for (3.10) and (4.4), respectively. We seek solutions of the form

Ψn = Nn(1 + a cos θ)αψn, ψn = ψ(0)
n + aψ(1)

n + a2ψ(2)
n + . . . ,

λ2
n = λ2

n;0 + aλ2
n;1 + a2λ2

n;2 + · · · ,
}

(B 2)

where the normalisation constant Nn ensures that Ψn retains unit norm. The prefactor (1 +
a cos θ)α ensures that all solutionsΨn with n > 0 are exactly orthogonal to the zeroth-order
solution as long as they do not contain any free terms. Taking into account this prefactor,
(B 1) becomes

(1 + a cos θ)2(ψ ′′
n + λ2

nψn)− αa sin θ(1 + a cos θ)ψ ′
n − αa(a + cos θ)ψn = 0. (B 3)

Demanding that the coefficient of each power of a vanishes, at zeroth order the harmonic
equation is recovered

ψ ′′
n;0 + λ2

n;0ψn;0 = 0. (B 4)

Furthermore, demanding that the solution at each level of the perturbative analysis be
periodic with respect to θ , the general solution of (B 4) can be written as

ψn;0 = einθ , λ2
n;0 = n2. (B 5a,b)

where the real and imaginary parts correspond to the even and odd solutions, respectively.
Taking into account (B 4), the first-order contribution to (B 1) is

ψ ′′
n;1 + n2ψn;1 + λ2

n;1 einθ − α

2

[
(n + 1) ei(n+1)θ − (n − 1) ei(n−1)θ] = 0. (B 6)

Since the solution of the homogeneous version of the above equation is proportional to
ψn;0, it can be seen that λ2

n;1 = 0, while ψn;1 can be found as

ψn;1 = −α
2

[
n + 1

2n + 1
ei(n+1)θ + n − 1

2n − 1
ei(n−1)θ

]
. (B 7)

At second order, the following equation is obtained:

ψ ′′
n;2 + n2ψn;2 +

[
λ2

n;2 − α2n2

2(4n2 − 1)

]
einθ + α(n + 2)

4

[
1 + α(n + 1)

2n + 1

]
ei(n+2)θ

− α(n − 2)
4

[
1 + α(n − 1)

2n − 1

]
ei(n−2)θ = 0. (B 8)

As before, the coefficient of einθ must vanish. At this point, we note that in the case when
n = 1, ei(n−2)θ = e−iθ and is thus not independent ofψ1;0 = eiθ . Moreover, there is no value
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for λ2
1;2 which ensures that the coefficients of cos θ and sin θ vanish simultaneously. Thus,

at n = 1, the solution is

ψ1;2 = α(3 + 2α)
32

e3iθ , λ2
1;c/s;2 = α2

6
∓ α

4
, (B 9a,b)

where the upper and lower signs refer to the even and odd solutions, respectively. For
n > 1, the solution is

ψn;2 = α

16

[
(n − 2)

(
1

n − 1
+ α

2n − 1

)
ei(n−2)θ

+ (n + 2)
(

1
n + 1

+ α

2n + 1

)
ei(n+2)θ

]
,

λ2
n;2 = α2n2

2(4n2 − 1)
.

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
(B 10)

Keeping into account that at order O(an+1), the corrections to the eigenvectors of
orders up to n must be computed as outlined above for n = 1, the above procedure can
be continued to higher orders. Explicit expressions for the mode functions for α = 1
( fn and gn) and for α = −3 (Fn and Gn) are given in §§ SM:3.1.1 and SM:3.1.2 of the
supplementary material.
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