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Let S be a set of n points in R
2 contained in an algebraic curve C of degree d. We prove that the

number of distinct distances determined by S is at least cdn4/3, unless C contains a line or a circle.

We also prove the lower bound c′d min{m2/3n2/3,m2,n2} for the number of distinct distances
between m points on one irreducible plane algebraic curve and n points on another, unless the
two curves are parallel lines, orthogonal lines, or concentric circles. This generalizes a result on
distances between lines of Sharir, Sheffer and Solymosi in [19].
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1. Introduction

A famous conjecture of Erdős, first mentioned in [9], states that any set of n points in R
2

determines at least Ω(n/
√

logn) distinct distances. Over the years this has been a central problem
in combinatorial geometry, with many successive improvements of the best-known lower bound
(see [3, Section 5.3]). In [11], Guth and Katz established an almost complete solution, proving
the lower bound Ω(n/ logn). A new element in their proof was the use of tools from algebraic
geometry.

A related problem posed by Purdy (see [3, Section 5.5]) is to determine the least number
of distances that can occur between two collinear point sets, say n points on a line l1 and n
points on a line l2. If l1 and l2 are parallel or orthogonal, then O(n) distances are possible, but
otherwise there should be substantially more. This was proved by Elekes and Rónyai in [7],
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where they derived it from a more general result about polynomials, which they proved using a
combination of combinatorial and algebraic methods. In [6], Elekes specialized these methods
to Purdy’s question, resulting in a lower bound of Ω(n5/4) on the number of distances, if the two
lines are not parallel or orthogonal. Recently, Sharir, Sheffer and Solymosi improved this bound
to Ω(n4/3) in [19], again using algebraic methods. In [18], Schwartz, Solymosi and de Zeeuw
extended the general result of Elekes and Rónyai in several ways, one of which resulted in an
unbalanced version of Purdy’s problem, where one line contains m points and the other n. This
was also strengthened for Purdy’s problem in [19], to a lower bound Ω(min{m2/3n2/3,m2,n2}).

The aim of this paper is to extend the result of [19] from lines to arbitrary plane algebraic
curves (see Section 2.1 for definitions). The results take several forms; perhaps the most interest-
ing of them is the following.

Theorem 1.1. Let C be a plane algebraic curve of degree d that does not contain a line or a
circle. Then any set of n points on C determines at least cdn4/3 distinct distances, for some cd > 0
depending only on d.

Note that if the curve is a line or a circle, O(n) distances are possible for certain point sets,
including any sequence of equidistant points. With the current proof, the constant cd roughly
comes out to cd−7 for an absolute constant c. We have not made a serious effort to optimize it,
but in a remark at the end of Section 3 we suggest some improvements.

Theorem 1.1 is a direct consequence of the proof of the following Theorem.

Theorem 1.2. Let C1,C2 be two irreducible plane algebraic curves of degree at most d which
are not parallel lines, orthogonal lines, or concentric circles. Then for any m points on C1 and n
points on C2, the number of distinct distances between the two sets is at least

c′d ·min{m2/3n2/3,m2,n2},

for some c′d > 0 depending only on d.

In the excluded cases, O(n) distances are again possible for certain point sets. One can also
deduce a result for two curves that are not necessarily irreducible, but it would be more incon-
venient to state as follows: The curves should not both contain a line, such that the two lines are
parallel or orthogonal, and they should not both contain a circle, such that the two circles are
concentric.

During the finalization of this paper, a number of related results have been made public. In
[4], Charalambides establishes a version of Theorem 1.1 with the weaker lower bound cdn5/4.
He combines the technique of [6] with analytic as well as algebraic tools, and even extends it to
higher dimensions, with a more complicated set of exceptions. In [20], Sharir and Solymosi show,
using a method based on that of [19], that between three non-collinear points and n other points
there are Ω(n6/11) distinct distances. In [21], Sheffer, Zahl and de Zeeuw extend the method
of [19] to the case where one set of points in R

2 is constrained to a line, while the other is
unconstrained. Finally, in [17], Raz, Sharir and Solymosi use the approach of [19] to improve the
bounds in the more general problem about polynomials of [7].
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We say a few words about our proofs compared to those of the similar results mentioned
above. Both [6] and [19] derive their bound by constructing a set of new curves and applying an
incidence bound to them. The way these curves are constructed relies heavily on the fact that lines
can be parametrized. This makes it possible to extend their methods to parametrizable curves, but
makes it harder to extend to general algebraic curves, which are defined by an implicit equation.
In [4], this is overcome using the Implicit Function Theorem, which allows implicit curves to
be ‘parametrized’ analytically. One important new element of our proofs is that we construct
the new curves in an implicit and algebraic way (see in particular (3.1) in Section 3), making
parametrization unnecessary.

To apply the incidence bound to the constructed curves, one needs to show that the curves
have small intersection, and in particular that they are distinct. In [6] and [19], this is relatively
easy because the curves have low degree. In [4], it is done using concepts from the theory of
rigidity. We observe instead that, if some of the constructed curves have large intersection, this
must be due to some kind of symmetry of the original curve. The only curves that have too
many symmetries are lines and circles, which is why these are the exceptions in Theorem 1.1. In
Theorem 1.2, the exceptions are those pairs of curves that have too many symmetries in common.

In Section 2.1, we define algebraic curves and state several results from algebraic geometry,
in a way that we hope is accessible to readers that are not familiar with algebraic geometry. In
Section 2.2 we introduce the incidence bound that is central to our proof, and in Section 2.3 we
prove two elementary results about symmetries of curves. In Section 3, we give the proof of our
two main theorems, up to the more delicate proof of one lemma, which we give separately in
Section 4.

2. Preliminaries

2.1. Definitions and tools from algebraic geometry
We define a set C ⊂ R

2 to be a (plane) algebraic curve if there is a polynomial f ∈ R[x,y]\{0}
such that

C = Z
R
( f ) = {(a,b) ∈ R

2 : f (a,b) = 0}.

Note that in our definition, an algebraic curve can also be a finite set, e.g., Z
R
((x(x−1))2 + y2).

Fortunately, the size of this finite set is bounded in terms of the degree of the polynomial (by
Theorem 2.2 below), so this is not a problem in our main theorem, since for finite sets of bounded
size the statement is trivial. We define the degree of a curve C to be the degree of a minimum-
degree polynomial f such that C = Z

R
( f ). We call a curve a conic if it has degree two, it is not a

union of two lines, and it is not a finite set of points.
We say that a plane algebraic curve C is irreducible if we can write C = Z

R
( f ) with a poly-

nomial f ∈ R[x,y] that is irreducible over R. By an irreducible component of an algebraic curve
Z

R
( f ) we mean an irreducible algebraic curve Z

R
(h) for some non-constant h ∈ R[x,y] that

divides f ; it then follows that Z
R
(h) ⊂ Z

R
( f ). We say that two curves Z

R
( f ) and Z

R
(g) have a

common component if there is a non-constant polynomial h ∈ R[x,y] that divides f and g; it then
follows that Z

R
(h) ⊂ Z

R
( f )∩Z

R
(g).

We frequently use Bézout’s inequality in the plane, which is an upper bound on the number of
intersection points of algebraic curves. It is in fact an equality (Bézout’s theorem) if one defines
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multiplicities of intersection points and works in the complex projective plane, but for us the
inequality suffices. See [10, Lemma 14.4] for exactly the statement below, or [5, Theorem 8.7.10]
for the complex version.

Theorem 2.1 (Bézout’s inequality). Two algebraic curves in R
2 with degrees d1 and d2 have

at most d1 ·d2 intersection points, unless they have a common component.

Although our objects of study are curves in the plane, our proofs involve curves in higher
dimensions. Specifically, we encounter curves in R

4 that are zero sets of three polynomials. To
analyse these real curves, we also consider complex zero sets.

Given polynomials f1, . . . , fk ∈ R[x1, . . . ,xD], we define the (real) zero set

Z
R
( f1, . . . , fk) = {p ∈ R

D : ∀i fi(p) = 0},

and given polynomials f1, . . . , fk ∈ C[x1, . . . ,xD], we define the (complex) zero set

Z
C
( f1, . . . , fk) = {p ∈ C

D : ∀i fi(p) = 0}.

We also refer to zero sets as varieties. Given a real zero set Z
R
( f1, . . . , fk), we may consider the

corresponding complex zero set Z
C
( f1, . . . , fk); note that this complex zero set depends on the

choice of polynomials defining the real zero set. For a complex zero set X ⊂ C
D we define its

real part to be X ∩R
D (where we view R

D as a subset of C
D in the usual way).

For the definitions of the dimension and degree of a complex zero set we refer to [12]. For real
zero sets, these notions can be problematic, so we will avoid them by relying on the complex
versions (except in R

2). For a real zero set Z
R
( f1, . . . , fk) and a choice of defining polynomials

f1, . . . , fk, we define the complex dimension to be the dimension of Z
C
( f1, . . . , fk). If a complex

zero set has dimension one, then we call it a complex (algebraic) curve; note that a complex
curve may contain zero-dimensional components (a complex zero set may have components of
different dimension, and its dimension is the maximum). If a real zero set with a given choice of
defining polynomials has complex dimension one, we call it a real (algebraic) curve. Note that
a real curve may be a finite set. In R

2, the zero set of a single (non-zero) polynomial always has
complex dimension one, so our definitions of plane curves and real curves coincide.

The degree of a complex zero set Z
C
( f1, . . . , fk) is bounded above by the product of the degrees

of the polynomials fi, by the generalized Bézout’s inequality (see for instance [13]). By our
definition, a complex curve C in C

2 of degree d can be written as Z
C
( f )∪S for a single f ∈C[x,y]

of degree at most d, and a finite set S of size at most d. We claim that the real part C∩R
2 is then

a real curve of degree at most 4d. To prove this, we use that the complex polynomial f can be
split into real polynomials Re f and Im f of degree d as in

f (x1 + ix2,y1 + iy2) = (Re f )(x1,x2,y1,y2)+ i (Im f )(x1,x2,y1,y2).

If C = Z
C
( f )∪S, then Z

C
( f )∩R

2 is the zero set of (Re f (x1,0,y1,0))2 +(Im f (x1,0,y1,0))2, and
S∩R

2 is the zero set of at most d polynomials of the form (x− x0)
2 +(y− y0)

2. Thus C∩R
2 is

the zero set of a polynomial of degree at most 4d.
A complex curve in C

D is irreducible if it is not the union of two proper subsets which are
curves; an irreducible component is a subset which is an irreducible curve; and two curves have
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a common component if there is a curve which is a subset of both. The number of irreducible
components of a curve is bounded above by its degree.

We also need a version of Bézout’s inequality for R
D. Over C, there are far-reaching general-

izations of Bézout’s inequality, like the one from [13] mentioned above. But over R some such
generalizations may fail. For instance, when a real zero set is finite, the size of the set need not
be bounded above by the product of the degrees of the polynomials defining it: take in R

3 the
intersection of the plane z = 0 with the zero set of the polynomial (x(x− 1)(x− 2))2 +(y(y−
1)(y−2))2, which is a set of 9 points, while the product of the degrees of the polynomials is 6.

To overcome this complication, one could carefully use the complex version of Bézout’s
inequality, but we instead rely on a bound on the number of connected components of a real
zero set. The bound that we use is due to Oleinik and Petrovskii, Milnor, and Thom; for an
exposition see [2, Chapter 7]. A connected component of an algebraic curve in R

D is a connected
component in the Euclidean topology on R

D. Note that this is not the same as an irreducible
component; for instance, the curve y2 = x3 − x in R

2 has one irreducible component, but two
connected components.

Theorem 2.2. A zero set in R
D defined by polynomials of degree at most d has at most (2d)D

connected components.

2.2. Incidence bound
We will use an incidence bound from combinatorial geometry, due to Pach and Sharir [15, 16];
the version in Theorem 2.3 below is proved in [14].

Let P ⊂ R
D and let Γ be a set of curves R

D. We define I(P,Γ ) to be the set of incidences,
that is, the set of pairs (p,γ) ∈ P×Γ such that p ∈ γ . We say that P and Γ form a system with k
degrees of freedom if there is a multiplicity M such that any two curves in Γ intersect in at most
M points of P, and any k points of P belong to at most M curves in Γ .

Theorem 2.3 (Pach–Sharir). If a set P of points in R
2 and a set Γ of algebraic curves in R

2

of degree at most d form a system with two degrees of freedom and multiplicity M, then

|I(P,Γ )| � Cd,M ·max{|P|2/3|Γ |2/3, |P|, |Γ |},

where Cd,M is a constant depending only on d and M.

We will deduce a version for curves in higher dimensions, using a ‘generic projection trick’ as
used by Solymosi and Tao in [22, Section 5.1].

Corollary 2.4. If a set P of points in R
D and a set Γ of real algebraic curves in R

D, each
defined by e polynomials of degree at most d, form a system with two degrees of freedom and
multiplicity M, then

|I(P,Γ )| � CD,e,d,M ·max{|P|2/3|Γ |2/3, |P|, |Γ |},

where CD,e,d,M is a constant depending only on D, e, d and M.
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Proof. We will use a generic projection from R
D to R

2 and then apply Theorem 2.3. We have
to face the technical complication that the projection of a real algebraic curve need not be a real
algebraic curve; for instance, a circle may be projected down to a line segment. To deal with this,
we partly have to work with the complex versions of the curves. Given γ ∈ Γ and its defining
polynomials f1, . . . , fe, we set γC = Z

C
( f1, . . . , fe), which is a complex curve of degree at most

de (here we use the fact that by our definition, the real curves in Γ have complex dimension
one with respect to the given defining polynomials). We write Γ C for the set {γC : γ ∈ Γ }. We
consider P ⊂ R

D as a subset of C
D in the natural way, and for any real linear transformation we

consider the corresponding complex linear transformation (i.e., the one given by the same real
matrix); we abuse notation slightly and use the same symbol for the real transformation and the
complex transformation.

Let us make explicit what we mean by ‘generic’. We first apply a suitable linear transformation
ϕ to R

D, and then we apply the standard projection ψ : R
D → R

2 defined by (x1, . . . ,xD) �→
(x1,x2). We claim that ϕ can be chosen so that π = ψ ◦ϕ has the two properties below. If this is
true, then we will be able to apply Theorem 2.3 to the projected points and curves, which proves
the required bound.

(1) The map π is bijective on P and induces a bijection from I(P,Γ C) to I(π(P),π(Γ C)).
(2) For distinct γ,γ ′ ∈ Γ , π(γC) and π(γ ′C) are distinct algebraic curves in C

2 of degree at
most d.

We show that the complex linear transformations ϕ for which π fails to have these properties
lie in a lower-dimensional subvariety of the D2-dimensional space MD(C) of (matrices of) linear
transformations of C

D. This will then imply that there is a real matrix with these properties,
because MD(R) cannot lie within a proper subvariety of MD(C).1 Thus our final map π will be a
real transformation, even though we argue via complex transformations.

First we treat property (1). For p = p′ ∈ P, the complex linear transformations for which
π(p) = π(p′) are in a lower-dimensional subspace of MD(C), since the entries of their matrices
satisfy a common linear equation. Taking the union of these subspaces for all pairs of distinct
points in P, we still get a lower-dimensional subspace.

For the second part of property (1), note that if (p,γC) ∈ I(P,Γ C), then obviously

(π(p),π(γC)) ∈ I(π(P),π(Γ C)).

Furthermore, we can choose ϕ so that if p ∈ P and p ∈ γ , then π(p) ∈ π(γ). To see this, we note
that W = ψ−1(π(p)) is a linear subspace of dimension D−2 in C

D. For fixed points q ∈ γC and
r ∈W , the ϕ ∈ MD(C) such that ϕ(q) = r lie in a subspace of codimension D. Letting r vary in W
gives a subspace of codimension two, and letting q vary in γC gives a subvariety of codimension
one. In other words, for any ϕ outside this subvariety of MD(C) we have ϕ(γC)∩W = /0, which
means that π(p) ∈ π(γC).

For property (2), we first ensure that π(γC) is a complex algebraic curve in C
2. To prove that

this is possible we use the Extension Theorem of [5, Chapter 3, Theorem 1.3 and Corollary 1.4],
which says that if every defining polynomial of γC has cxN

D as its leading term in xD, then the
projection onto the first D− 1 coordinates is an algebraic curve. The ϕ ∈ MD(C) that do not

1 This follows from the fact that the only subvariety of C
E that contains R

E is C
E itself.
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put the polynomials of γC into this form lie in a lower-dimensional subvariety. Repeating the
same argument D−3 times for the projection that removes the last coordinate, each time further
restricting the choice of ϕ , we prove the claim for the projection onto the first two coordinates.
The fact that the degree of π(γC) is at most the degree of γC follows from [13, Lemma 2].

By the same argument used for property (1), we can also ensure that distinct curves are mapped
to distinct curves, thereby finishing property (2). Indeed, given distinct γC,γ ′C, we can choose any
point p ∈ γC\γ ′C, and ensure that π(p) ∈ γ ′C, which implies that π(γC) and π(γ ′C) are distinct;
doing this for all pairs of curves from Γ C ensures that no two image curves coincide.

We have established that there is a π : R
D → R

2 satisfying properties (1) and (2). Let Γ ′ =
{γC ∩R

2 : γ ∈ Γ }, which is a set of distinct real algebraic curves of degree at most 4d (as
observed in Section 2.1). We have established bijections between I(π(P),Γ ′), I(π(P),π(γC)),
I(P,Γ C), and I(P,Γ ), which implies that π(P) and Γ ′ have two degrees of freedom. Therefore,
we can apply Theorem 2.3 to them, which finishes the proof.

2.3. Symmetries of curves
We need two elementary results about linear transformations that fix plane algebraic curves.
Given a set S ⊂ R

2 and a transformation T : R
2 → R

2, we say that T fixes S if T (S) = S. We say
that a transformation T is a symmetry of a plane algebraic curve C if T is an isometry of R

2 and
fixes C. Recall that an isometry of R

2 is either a rotation, a translation, or a glide reflection (a
reflection combined with a translation).

In Section 4, we will use the following bound on the number of symmetries of a plane algebraic
curve.

Lemma 2.5. An irreducible plane algebraic curve of degree d has at most 4d symmetries,
unless it is a line or a circle.

Proof. Suppose the curve C has a translation symmetry T . Let l be a line in the direction of
T that contains some point p of C. Then l ∩C must contain the entire trajectory under T of p,
which consists of infinitely many points on l. By Theorem 2.1, this implies that C equals l.

Suppose C has two rotation symmetries Ra,Rb with distinct centres a,b and rotation angles
α,β . We claim that then C must also have a translation symmetry, hence equals a line. Indeed,
consider the composition Rb ◦Ra, and note that a composition of two rotations is either a trans-
lation or a rotation. If Rb ◦Ra is a translation, then we are done; otherwise it is a rotation Rc with
a centre c distinct from a and b, and with angle α + β . Similarly, R−1

b ◦R−1
a is a rotation around

a distinct centre with angle −α −β . It follows that R−1
b ◦R−1

a ◦Rb ◦Ra is a translation, because it
cannot be a rotation. Indeed, it would have angle 0, so equal the identity, but it is easily checked
that, for instance, it does not fix a.

Hence, if C has a rotation symmetry with centre c, then every other rotation symmetry has
the same centre c. Let p be any point on C that is not c. The image of p under any rotation
symmetry then lies on a circle around c, and no two rotation symmetries give the same point. By
Theorem 2.1, either C equals this circle, or it intersects it in at most 2d points. Therefore, C is a
circle or has at most 2d rotation symmetries.

If C had two reflection symmetries with parallel axes of symmetry, then C would have a trans-
lation symmetry, hence would be a line. If C has two reflection symmetries with axes intersecting
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in c, then it has a rotation symmetry around c, so by the above all axes of reflection symmetries
must intersect in the same point. Suppose C has k such reflection symmetries. Pick one of them
and combine it with each of the k reflections; this gives k distinct rotation symmetries, including
the identity. This proves that k � 2d.

Finally, suppose C has a glide reflection symmetry G which is not a reflection. Then G◦G is a
non-trivial translation, so C must be a line.

Altogether, if C is not a line or a circle, then it has at most 2d rotation symmetries and at most
2d reflection symmetries.

Next we consider the same question for affine transformations (linear transformations com-
bined with translations), but only in the case where the curve is a conic.

Lemma 2.6. Let T be an affine transformation that fixes a conic C. Then, up to a rotation or a
translation, the only possibilities are the following.

(1) C is a hyperbola of the form y2 + sxy = t, with s, t = 0, and for some real r = 0

T (x,y) =
(

rx+
r2 −1

rs
y,

1
r

y

)
or

T (x,y) =
(
−rx− r2 −1

rs
y, rsx+ ry

)
.

(2) C is an ellipse of the form s2x2 + t2y2 = 1, with s, t = 0, and for some θ ∈ [0,2π)

T (x,y) =
(

(cosθ)x± t
s
(sinθ)y,

s
t
(sinθ)x∓ (cosθ)y

)
.

(3) C is a parabola of the form y = sx2, with s = 0, and for some c ∈ R

T (x,y) = (±x+ c,±2scx+ y+ sc2).

Proof. Suppose C is a hyperbola. After a rotation or a translation we can assume that one of
the asymptotes is the x-axis, and the other asymptote goes through the origin, so the hyperbola
is of the form y2 + sxy = t. Applying the shear transformation T1(x,y) = (sx + y,y) turns it into
a hyperbola of the form xy = t. Suppose T2(x,y) = (ax + by + c,dx + ey + f ) fixes xy = t. Then
the equation of the image, t = (ax + by + c)(dx + ey + f ), should be the same equation (or a
scalar multiple, but the constant term excludes that). This gives six equations, which one can
solve to get either T2(x,y) = (rx,y/r), or T2(x,y) = (y/r,rx). Then it follows that the only affine
transformations fixing the original hyperbola are of the form T−1

1 ◦T2 ◦T1, which gives the two
forms in the lemma.

We leave it to the reader to check the other two cases in detail. For C an ellipse, we similarly
apply a rotation to put it in the given form, then apply an expansion T1(x,y) = (sx, ty) to make it
a circle. Then we check that rotations around the origin, possibly combined with a reflection in
a line through the origin, are the only affine transformations that fix a circle around the origin.
For C a parabola, a rotation puts it in the given form, and then one can check directly from the
equations that the two given forms are the only ones.
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3. Proof of Theorems 1.1 and 1.2

We focus on the proof of Theorem 1.2, since Theorem 1.1 will follow directly by noting that
the proof of Theorem 1.2 allows the curves C1 and C2 to be identical. Note that, as observed in
Section 2.1, by our definition these curves may be finite sets. In that case, the size of this set is
bounded in terms of d by Theorem 2.2, and then our theorems follow trivially by choosing cd

and c′d large enough. Thus, we can assume throughout that C1 and C2 are infinite.
First we define suitable sets of points and curves, and we prove several lemmas about them

(one of which, Lemma 3.2, is more involved, and we defer its proof to the next section). Together
these lemmas will enable us to conclude that the points and curves essentially form a system with
two degrees of freedom, so that the incidence bound from Corollary 2.4 can be applied to them.
This leads to an upper bound on the number of certain quadruples of points. On the other hand, a
standard argument due to Elekes gives a lower bound on the same quantity, inversely proportional
to the number of distinct distances. Comparing these two bounds at the end of the section, we
obtain the lower bounds on the number of distinct distances stated in Theorems 1.1 and 1.2.

We have irreducible plane algebraic curves C1 and C2 of degree at most d, given by polynomial
equations (of minimum degree)

C1 : f1(x,y) = 0, C2 : f2(x,y) = 0.

We also have sets S1 on C1 and S2 on C2 with |S1| = m and |S2| = n; we write S1 = {p1, . . . , pm}
and S2 = {q1, . . . ,qn}. We allow C1 and C2 to be the same curve, a possibility that will be crucial
to the proof of Theorem 1.1. We make the following assumptions, which will be justified later.

Assumption 3.1. We assume that the following hold.

(1) Neither C1 nor C2 is a vertical line.
(2) The sets S1 and S2 are disjoint.
(3) If C1 (resp. C2) is a circle, then its centre is not in S2 (resp. S1).
(4) If C1 (resp. C2) is a circle, any concentric circle contains at most one point of S2 (resp. S1).
(5) If C1 (resp. C2) is a line, there is at most one point of S2 (resp. S1) on any union of a line

parallel to C1 (resp. C2) with its reflection in C1 (resp. C2).
(6) If C1 (resp. C2) is a line, any orthogonal line contains at most one point of S2 (resp. S1).

We will define a new curve Ci j in R
4 for each pair of points pi, p j ∈ S1, written as

pi = (ai,bi), p j = (a j,b j).

Let q and q′ be points on C2 (not necessarily in S2), written as

q = (x,y), q′ = (x′,y′).

We think of q and q′ as varying along C2, while pi and p j are kept fixed on C1. For 1 � i, j � m,
we define Ci j to be the algebraic curve in R

4 consisting of all points (q,q′) = (x,y,x′,y′) satisfying

f2(x,y) = 0, f2(x
′,y′) = 0,

(x−ai)
2 +(y−bi)

2 = (x′ −a j)
2 +(y′ −b j)

2.
(3.1)
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In Lemma 3.3 we will prove that Ci j, with the given defining polynomials, has complex dimen-
sion one, which implies that it is indeed a real algebraic curve (by our definition, see Section 2.1).

Let P be the set of points (qs,qt) = (xs,ys,xt ,yt) ∈ R
4 for any qs,qt ∈ S2. Note that (qs,qt) ∈ P

lies on Ci j if and only if

d(pi,qs) = d(p j,qt),

so a point on Ci j corresponds to points qs,qt ∈ S2 that are equidistant from pi and p j, respect-
ively. Therefore, an incidence of Ci j with P corresponds to a quadruple (pi, p j,qs,qt) such that
d(pi,qs) = d(p j,qt). These are the quadruples that we will find upper and lower bounds for.

We let Γ be the set of curves Ci j for 1 � i, j � m. Some pairs of these curves may coincide as
sets of points, but we will consider them as different curves, so |Γ | = m2. We would like P and
Γ to form a system with two degrees of freedom, but this is false if some pairs of curves have a
common component, which would mean they have infinite intersection. This can in fact occur for
certain curves C1 and C2, even if they are not lines or circles. To overcome this obstacle, we will
analyse when exactly the curves Ci j can have infinite intersection, which leads to the following
lemma, stating that this obstacle is relatively rare. We will defer the longer proof of this lemma to
the next section and the appendix, and first use it to complete the proof of Theorems 1.2 and 1.1.

Lemma 3.2. If C1 and C2 are not parallel lines, orthogonal lines, or concentric circles, then
there is a subset Γ0 ⊂ Γ with |Γ0| � 4dm such that no three curves in Γ \Γ0 have infinite intersec-
tion.

Next we show that when two curves have finite intersection, the number of their intersection
points is bounded in terms of d. This essentially follows from Bézout’s inequality in C

4, but we
will deduce it from the bound in Theorem 2.2 on the number of connected components of a real
zero set.

In the proof we make use of the fact that the curves Ci j have two defining equations in common,
or in other words, they lie on a common surface. We define S to be this surface, i.e., the set of
(x,y,x′,y′)∈R

4 for which f2(x,y) = 0 and f2(x
′,y′) = 0. It is in fact the Cartesian product of two

copies of C2, which implies that it does indeed have complex dimension two (with respect to the
given defining polynomials).

Lemma 3.3. Each zero set Ci j, with the three defining polynomials given in (3.1), has complex
dimension one. If |Ci j ∩Ckl | is finite, then |Ci j ∩Ckl | � 16d4. For any curve Ci j ∈ Γ \Γ0, there are
at most 2d2 curves Ckl ∈ Γ \Γ0 such that |Ci j ∩Ckl | is infinite.

Proof. Let SC be the complex variety defined by the two defining polynomials of S, and let CC
i j

be the complex variety defined by the three polynomials in (3.1). Note that CC
i j = SC ∩ Z

C
(F)

for F = (x − ai)
2 + (y − bi)

2 − (x′ − a j)
2 − (y′ − b j)

2. To prove that CC
i j has dimension one,

we use the following fact (see [12, Exercise 11.6]): If X is an irreducible variety in C
n, and

F is any polynomial in C[x1, . . . ,xn] that does not vanish on all of X , then dim(X ∩ Z
C
(F)) =

dim(X)− 1. We observe that SC is two-dimensional and irreducible because it is a product of
two one-dimensional irreducible varieties (see [12, Exercise 5.9] and the remark before [12,
Theorem 11.12]). Then all we have to show is that F does not vanish on all of SC. But if
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it did, then every point qs would be at the same distance from pi, which is not the case by
Assumption 3.1.3. This proves the first claim of the lemma.

The intersection points (x,y,x′,y′) ∈Ci j ∩Ckl satisfy the four equations

(x−ai)
2 +(y−bi)

2 = (x′ −a j)
2 +(y′ −b j)

2,

(x−ak)
2 +(y−bk)

2 = (x′ −al)
2 +(y′ −bl)

2,

f2(x,y) = 0, f2(x
′,y′) = 0,

each of which has degree at most d. By Theorem 2.2, it follows that Ci j ∩Ckl has at most (2d)4

connected components. If this intersection is finite, every point is a connected component, so the
number of points is at most 16d4, proving the second claim.

For the last claim, observe that if |Ci j ∩Ckl | is infinite, then so is |CC
i j ∩CC

kl |, which implies that
CC

i j and CC

kl have a common component. No three curves Ci j ∈Γ \Γ0 have infinite real intersection
by Lemma 3.2, so no three of the corresponding CC

i j share a component that contains infinitely
many real points. Fix a curve Ci j ∈Γ \Γ0. Then an irreducible component of CC

i j that has infinitely
many real points is shared with at most one other CC

kl . The curve CC
i j has degree at most 2d2 and

thus at most 2d2 irreducible components. It follows that at most d2 curves CC

kl share with CC
i j a

component that contains infinitely many real points, which implies that there are at most 2d2

curves Ckl with which Ci j has infinite real intersection.

The two lemmas above let us conclude that, although P and Γ need not have two degrees of
freedom, we can partition them into subsets that do. For each of these subsets we can then bound
the number of incidences.

Lemma 3.4. Let L = 2d2 +1. There are partitions of P into P0, . . . ,PL and Γ into Γ0, . . . ,ΓL such
that |Γ0|� 4dm and |P0|� 4dn, and such that for all 1 � α,β � L, the pair Pα ,Γβ forms a system

with two degrees of freedom, with multiplicity M = 16d4.

Proof. Let Γ0 be the subset given by Lemma 3.2, so |Γ0| � 4dm. We define a graph G with
vertex set Γ \Γ0, connecting two vertices by an edge if the corresponding curves have infinite
intersection. By Lemma 3.3, a curve in Γ \Γ0 has infinite intersection with at most 2d2 = L− 1
other curves, so the graph has maximum degree L−1. It follows that the chromatic number of G
is bounded by L, which means that we can partition the vertices into L independent sets. In other
words, we can partition Γ \Γ0 into L subsets Γ1, . . . ,ΓL so that no two curves in the same Γβ have

infinite intersection. Lemma 3.3 then implies that they intersect in at most 16d4 points.
To show that a bounded number of curves passes through two points, we can reverse the roles

of C1 and C2. We let C̃st be the resulting curves in R
4, defined analogously to equation (3.1). So,

given (xs,ys),(xt ,yt) ∈C2, C̃st is the set of all points (ai,bi,a j,b j) satisfying

f1(ai,bi) = 0, f1(a j,b j) = 0,

(xs −ai)
2 +(ys −bi)

2 = (xt −a j)
2 +(yt −b j)

2.

By the statement analogous to Lemma 3.2, there is a subset Γ̃0 of 4dn of these curves C̃st such that
in the remainder no three curves have infinite intersection. Let P0 be the set of points (qs,qt)∈R

4

corresponding to the curves C̃st in Γ̃0.
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We define a graph H with vertex set P\P0, connecting two points (qs,qt),(qs′ ,qt ′) if the
corresponding curves C̃st and C̃s′t ′ have infinite intersection. As in the case of G, we can partition
P\P0 into subsets P1, . . . ,PL so that for any two points (qs,qt),(qs′ ,qt ′) in the same Pα with α � 1,
the curves C̃st and C̃s′t ′ do not have infinite intersection. It follows that there are at most 16d4

curves from Γ passing through any two points from the same Pα .
This establishes, for all α,β � 1, that Pα and Γβ form a system with two degrees of freedom,

with M = 16d4.

Applying Corollary 2.4 now gives an incidence bound for each combination of a point set and
a curve set from the partitions.

Lemma 3.5. For all 1 � α,β � L we have

|I(Pα ,Γβ )| � Ad ·max{m4/3n4/3,m2,n2}.

For the relatively few curves and points that we placed in Γ0 and P0, we can easily establish
the following incidence bound.

Lemma 3.6. We have

|I(P,Γ0)| � 8d2mn and |I(P0,Γ )| � 8d2mn.

Proof. Each Ci j ∈Γ0 has at most 2dn incidences with a point (qs,qt)∈ P. This follows from the
fact that there are n choices of qs ∈ S2, and for each of those, the corresponding qt ∈ S2 can be
found by intersecting C2 with a circle around p j of radius d(pi,qs). This gives at most 2d solu-
tions by Theorem 2.1, unless C2 equals that circle, which cannot happen by Assumption 3.1.3.
Therefore, we have |I(P,Γ0)| � 2dn · 4dm = 8d2mn. The second inequality follows by applying
the same argument to the curves C̃st defined in the proof of Lemma 3.4.

Before finally proving the main theorems, we need the following observation about a certain
set of quadruples. This observation is a key element in the ‘Elekes–Sharir transformation’, as in-
troduced in [8] and used in [11, 19]. Let Q be the set of quadruples (pi, p j,qs,qt), with 1 � i, j � m
and 1 � s, t � n, such that d(pi,qs) = d(p j,qt), and let D be the set of distances between S1 and S2.

Lemma 3.7. We have

|Q| � m2n2

|D| .

Proof. Write Ed = {(p,q) ∈ S1 ×S2 : |pq| = d} for d ∈ D. Then we have

|Q| � ∑
d∈D

|Ed |2 � 1
|D|

(
∑
d∈D

|Ed |
)2

=
(mn)2

|D|

by the Cauchy–Schwarz inequality.
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Proof of Theorem 1.2. First we establish Assumption 3.1. We rotate the coordinate axes so
that neither C1 nor C2 is a vertical line. We make S1 and S2 disjoint by arbitrarily removing at
most half the points of each. We remove at most two more points so that if one of C1,C2 is a
circle, then its centre is not in the other set. For the fourth part of the assumption, if C2 is a circle,
we observe that since C1 is not a circle concentric with C2, S1 can contain at most 2d points of any
concentric circle. We remove at most 2d −1 points from S1 from every concentric circle, which
leaves at least a 1/(2d) fraction of the points. We do the same for S2. If C1 or C2 is a line, we
do an analogous removal from every orthogonal line, and from every union of a parallel line and
its reflection. This leaves at least a fraction 1/(2d2) of the points, so that the fifth and sixth parts
of the assumption are satisfied. Altogether these steps leave at least m/(4d2) points in S1 and
n/(4d2) in S2. Now we redefine S1 and S2 to be the point sets resulting from these modifications.

Combining the bounds from Lemmas 3.5 and 3.6, we obtain

|I(P,Γ )| � |I(P0,Γ )|+ |I(P,Γ0)|+ ∑
α,β�1

|I(Pα ,Γβ )|

� 16d2mn+ ∑
α,β�1

Ad ·max{m4/3n4/3,m2,n2}

� Bd ·max{m4/3n4/3,m2,n2},

for the constant Bd = 6d4Ad , noting that the sum has at most L2 � 5d4 terms.
On the other hand, by our definitions, an incidence of a curve in Γ with a point in P corresponds

exactly to a quadruple (pi, p j,qs,qt) satisfying d(pi,qs) = d(p j,qt). Combined with Lemma 3.7,
this gives

m2n2

|D| � |Q| = |I(P,Γ )| � Bd ·max{m4/3n4/3,m2,n2}.

This implies |D| � c′d · min{m2/3n2/3,m2,n2} for the constant c′d = 1/(16d4Bd), which also
accounts for the points removed at the start of this proof.

Proof of Theorem 1.1. We have a curve C of degree d, not containing a line or a circle, with
a set S of n points on it. It has a defining polynomial of degree d, which has at most d factors, so
the curve has at most d irreducible components. Then there must be a component with at least
n/d points; call it C∗ and set S∗ = S∩C∗. Applying the proof above to C1 = C∗, C2 = C∗ shows
that S determines at least cdn4/3 distinct distances.

Remark on the dependence of cd on d. With the proof above, the constant cd in Theorem 1.1
would come out to be cd = cd−20/3 for some absolute constant c. Roughly speaking, we get a
factor d8/3 from the application of Corollary 2.4 (using the more precise Cδ ,M = C · δ 2/3 ·M1/3

in Theorem 2.3, M = 16d4, and the fact that the projected curves have degree δ � 2d2), and a
factor d4 from splitting up P and Γ in Lemma 3.4. This gives cd = c · (d8/3 · d4)−1 = c · d−20/3.
For c′d in Theorem 1.2, we would get another factor d4, to account for the removed points when
C1 or C2 is a circle or a line.

To improve the first factor d8/3, we could replace Theorem 2.2 by a refined bound due to
Barone and Basu [1], which takes into account the fact that the defining polynomials may have
different degrees. This would replace the factor d8/3 by d2. Furthermore, if we could replace
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Lemma 3.2 by a similar statement for double rather than triple intersections (which we expect to
be true), it would make it unnecessary to partition P and Γ as in Lemma 3.4, removing the factor
d4. Together these two improvements would give cd = c ·d−2.

Note that, given an arbitrary set of n points in R
2, one can pass an algebraic curve of degree

roughly
√

n through these points. Therefore, a constant cd on the order of d−2/3 would be the best
one could hope for, because this would imply that n arbitrary points determine Ω(n) distances,
unless many of the points lie on parallel lines or concentric circles.

4. Proof of Lemma 3.2

Our proof of Lemma 3.2 requires four further lemmas that are established in this section. They
will be combined at the very end of the section to deduce Lemma 3.2.

We are going to analyse how two curves Ci j and Ckl could have infinite intersection. The most
clear-cut case is when d(pi, pk) = d(p j, pl), because then, by Lemma 4.1, infinite intersection
implies the existence of a symmetry of C2. This is a real possibility, as will become clear in
the proof of Lemma 4.1, but it cannot happen too often, because the number of symmetries is
bounded if C2 is not a line or circle.

On the other hand, when d(pi, pk) = d(p j, pl), we expect that Ci j and Ckl cannot have infinite
intersection. However, we were only able to prove the weaker statement that no three curves Ci j,
Ckl , and Cqr can have infinite intersection in this case, which suffices for our purposes. We prove
this in Lemma 4.2 when C2 has degree at least 3, and in Lemma 4.3 for C2 a conic. When C2 is a
line, we prove a stronger statement in Lemma 4.4.

It is worth pointing out where we use that our curves are not parallel lines, orthogonal lines, or
concentric circles. The fact that the curves are not parallel lines allows us to make Assump-
tion 3.1.5, which lets us bound the number of translation symmetries. Similarly, not having
concentric circles allows Assumption 3.1.4, letting us bound the number of rotation symmetries.
Together, these observations imply that an infinite intersection like in Lemma 4.1 cannot occur
too often. Finally, because our curves are not orthogonal lines, we can make Assumption 3.1.6,
which, together with Assumption 3.1.5, lets us exclude large intersections in Lemma 4.4.

Lemma 4.1. If d(pi, pk) = d(p j, pl) and Ci j and Ckl have infinite intersection, then C2 has a
symmetry that maps pi to p j and pk to pl.

Proof. A point (x,y,x′,y′) = (q,q′) ∈ Ci j ∩Ckl corresponds to a pair of points q,q′ ∈ C2 such
that

d(pi,q) = d(p j,q
′) and d(pk,q) = d(pl ,q

′).

It follows that

{(d1,d2) : ∃(q,q′) ∈Ci j ∩Ckl such that d1 = d(pi,q),d2 = d(pk,q)}
= {(d1,d2) : ∃(q,q′) ∈Ci j ∩Ckl such that d1 = d(p j,q

′),d2 = d(pl ,q
′)}.

Call this set of pairs of distances D. Since Ci j and Ckl have infinite intersection, D must be an
infinite set.
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The idea of the proof is to reconstruct the points of C2 using the distance pairs from D, by
finding the points that respectively have those distances from the points pi and pk. The resulting
set of points should consist of an infinite subset of C2, together with its reflection in the line
pi pk. The image of this set under the rotation that maps pi, pk to p j, pl should again have infinite
intersection with C2, because C2 should have points at the same distance pairs from p j, pl . We
will see that this implies that C2 has a symmetry.

To make this more precise, let E be the set of all points that arise in this way from a pair of
distances in D:

E = {q ∈ R
2 : (d(pi,q),d(pk,q)) ∈ D}.

Let M be the reflection in the line pi pk. Set E1 = E ∩C2 and E2 = M(E1); because D is infinite,
so are E1 and E2. Let T be the rotation that maps pi, pk to p j, pl , if it exists; otherwise there is a
translation or glide reflection that maps pi, pk to p j, pl , and we call that T . Then T must place an
infinite subset of E onto C2; call this subset E∗

1 , and set E∗
2 = M(E∗

1 ). We distinguish two cases.

(1) If |E1 ∩E∗
1 | is infinite, then F1 = E1 ∩E∗

1 is an infinite subset of C2 such that T (F1) ⊂C2.
(2) If |E1 ∩E∗

1 | is not infinite, then F2 = |E1 ∩E∗
2 | must be infinite. Then F2 = E1 ∩E∗

2 is an
infinite subset of C2 such that (T ◦M)(F2) ⊂ C2, since M maps F2 into E∗

1 , which T maps
into C2.

In each case we use the following observation to deduce that C2 has a symmetry. If we have an
isometry T of the plane and an infinite subset A of an irreducible algebraic curve C such that
T (A) ⊂ C, then T (C) = C, that is, T is a symmetry of C. This holds because T (C) is also an
irreducible plane algebraic curve, so by Theorem 2.1 it either has finite intersection with C, or
equals it.

If T is a rotation, then in case (1) C2 has the rotation symmetry T , while in case (2) it has the
reflection symmetry T ◦M. If T is a translation, then in case (1) it has the translation symmetry
T , while in case (2) it has the glide reflection symmetry T ◦M.

Lemma 4.2. Suppose we have pi, p j, pk, pl , pq, pr ∈ S1 satisfying

d(pi, pk) = d(p j, pl), d(pi, pq) = d(p j, pr), and d(pk, pq) = d(pl , pr).

Then

|Ci j ∩Ckl ∩Cqr| � 2d,

unless C2 is a conic or a line.

Proof. A point in |Ci j ∩Ckl ∩Cqr| corresponds to two points qs,qt ∈C2 such that the distances
from pi, pk, pq to qs are equal to those from p j, pl , pr to qt . We will show that the set of such
points qt (or qt) is forced to lie on a conic or a line, so by Theorem 2.1 C2 contains at most 2d of
them, unless C2 is a conic or a line.

We can assume after a rotation that pi = (0,0) and pk = (1,0); we think of these points as
lying in the xy-plane, and write pq = (a,b). We think of the points pj, pl as lying in a separate
uv-plane, and there we can assume after a rotation that pj = (0,0) and pl = (L,0), with L = 0,1,
and pr = (c,d).
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Consider the points (x,y) that have distances d1,d2,d3 from respectively pi, pk, pq in the xy-
plane, and the points (u,v) that have the same distances from pj, pl , pr in the uv-plane. Then we
have the equations

x2 + y2 = u2 + v2, (4.1)

(x−1)2 + y2 = (u−L)2 + v2, (4.2)

(x−a)2 +(y−b)2 = (u− c)2 +(v−d)2. (4.3)

Subtracting (4.1) from (4.2) gives

x = Lu+
1
2
(1−L2). (4.4)

Subtracting (4.1) from (4.3), and plugging (4.4) into the result, leads to

by = (c−aL)u+dv+
1
2
(a2 +b2 − c2 −d2 +aL2 −a). (4.5)

Plugging the linear equations (4.4) and (4.5) into (4.1) leads to

(b2L2 +(c−aL)2 −b2)u2 +(d2 −b2)v2 +2d(c−aL)uv+ l(u,v) = 0, (4.6)

where l(u,v) is a linear function of u and v. If this equation is not identically zero, this shows
that (u,v) must lie on a conic or a line, which implies that the original point qt lies on a conic or
line. Since C2 is irreducible and not a conic or line, it follows that there are at most 2d such qt .

This leaves us with the case where (4.6) holds identically. In that case we can see from the
coefficients of the quadratic terms that b = d = 0 and c = aL. Plugging these back into (4.3)
easily leads to a contradiction.

Lemma 4.3. Suppose we have pi, p j, pk, pl , pq, pr ∈ S1 satisfying

d(pi, pk) = d(p j, pl), d(pi, pq) = d(p j, pr), and d(pk, pq) = d(pl , pr).

If C2 is a conic then

|Ci j ∩Ckl ∩Cqr| � 4.

Proof. Suppose that |Ci j ∩Ckl ∩Cqr| � 5. Then, similarly to the previous proof, we have three
equations of the form

(x−aα)2 +(y−bα)2 = (u− cα)2 +(v−dα)2, (4.7)

satisfied by at least five pairs of points (x,y),(u,v) on C2. Subtracting the first equation from the
second and third gives two linear equations, which we can view as an affine transformation T
sending (u,v) to (x,y). Because T sends five points on C2 to five points on C2, it must fix C2, since
the image of C2 must be a conic, which could only intersect C2 four times if it was a different
conic. Lemma 2.6 then tells us which forms T could have. We will show that in each case we get
a contradiction.

Suppose that C2 is a hyperbola. We can apply a rotation to make it of the form y2 + sxy = t
(note that the rotation moves the points (aα ,bα) and (cα ,dα), but does not change the form
of the equations, or the condition of the lemma). By Lemma 2.6, T must have the form (u,v) =
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T (x,y) = (rx+(r2−1)y/r,y/r) (or the second form, which we will leave to the reader). Plugging
this into (4.7) gives

(x−aα)2 +(y−bα)2 =
(

rx+
r2 −1

r
y− cα

)2

+
(

1
r

y−dα

)2

.

This equation has a term x2 with coefficient r2 − 1. If r = ±1, then this equation describes a
different hyperbola than C2, so cannot be satisfied by more than four points of C2. If r = 1, then
T is the identity, which would mean that we can put u = x,v = y in (4.7). That would lead to aα =
cα ,bα = dα for each α , contradicting the assumption of the lemma on the distances between the
points. Finally, if r =−1, we could similarly put u =−x,v =−y, leading to aα =−cα ,bα =−dα
for each α , contradicting the same assumption.

Suppose now that C2 is an ellipse; without loss of generality we can assume that it is of the
form s2x2 + t2y2 = 1. By Lemma 2.6, T must have the form

(u,v) = T (x,y) =
(

(cosθ)x± t
s
(sinθ)y,

s
t
(sinθ)x∓ (cosθ)y

)
.

Plugging this into (4.7) gives

(x−aα)2 +(y−bα)2 =
(

(cosθ)x± t
s
(sinθ)y− cα

)2

+
(

s
t
(sinθ)x∓ (cosθ)y−dα

)2

,

which rearranges to(
s2

t2
sin2 θ + cos2 θ −1

)
· x2 +

(
t2

s2
sin2 θ + cos2 θ −1

)
· y2

±2sinθ cosθ
(

t
s
− s

t

)
· xy+ l(x,y) = 0.

For this to be an ellipse, the coefficient of xy must be zero, so (t/s − s/t)sinθ cosθ = 0. If
cosθ = 0, then the equation takes the form (s2/t2 − 1)x2 + (t2/s2 − 1)y2 + l(x,y) = 0. Unless
s =±t (a case we will consider separately), the x2 and y2 terms have opposite signs, so this cannot
be the equation of an ellipse. If sinθ = 0, then T is the identity, which leads to a contradiction as
in the hyperbola case. It follows that we must have s = ±t. This implies that the coefficients of
x2 and y2 are also zero, so in fact the polynomial must vanish identically. The coefficients of the
linear terms then give, after some rearranging, that for each α

aα = (cosθ)cα +(sinθ)dα , bα = ±(sinθ)cα ∓ (cosθ)dα .

This says exactly that each (aα ,bα) is the image of (cα ,dα) under a rotation, or a rotation
and a reflection. Both are isometries, so the distances between the points are preserved, again
contradicting the assumption of the lemma.

Finally, if C2 is parabola y = cx2 and T (x,y) = (±x+ c,±2scx+ y+ sc2), we get

(x−aα)2 +(y−bα)2 = (±x+ c− cα)2 +(±2scx+ y+ sc2 −dα)2.

This equation has an xy term with coefficient ±4sc, which implies c = 0, leaving only T (x,y) =
(−x,y). This is an isometry, which again contradicts the assumption of the lemma.
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The remaining case, where C2 is a line, is considerably easier. The proof is reminiscent of the
proofs in [19] and [21].

Lemma 4.4. Suppose that d(pi, pk) = d(p j, pl). If C2 is a line, then

|Ci j ∩Ckl | � 4.

Proof. We can assume within the proof of this lemma that C2 is the x-axis. Then C2 ×C2 ⊂ R
4

is the plane consisting of points of the form (x,0,x′,0), which we can think of as the xx′-plane.
In that plane, Ci j is the curve defined by the equation

(x−ai)
2 − (x′ −a j)

2 = b2
j −b2

i .

Because d(pi, pk) = d(p j, pl), we do not have both i = j and k = l, and by Assumption 3.1.5, we
have b2

j −b2
i = 0 when i = j and b2

l −b2
k = 0 when k = l. This implies that at least one of Ci j and

Ckl is a non-degenerate hyperbola. By Assumption 3.1.6, we have ai = ak, which implies that Ci j

and Ckl are distinct. It follows that they intersect in at most four points.

Finally, we put together the four lemmas in this section to obtain Lemma 3.2.

Proof of Lemma 3.2. If there is a symmetry T of C2 that maps pi to p j, we will say (just within
this proof) that T respects Ci j. Suppose that the curves Ci j and Ckl have infinite intersection and
d(pi, pk) = d(p j, pl). By Lemma 4.1, there is a symmetry T of C2 that respects Ci j and Ckl .

If C2 is not a line or a circle, it has at most 4d symmetries, by Lemma 2.5. Given a fixed
symmetry T , each pi is sent to a unique point p j, so T respects at most m curves Ci j. Therefore,
there are in total at most 4dm curves Ci j that are respected by some symmetry. We let Γ0, the set to
be excluded, contain all curves Ci j that are respected by some symmetry of C2. Then |Γ0| � 4dm.

If C2 is a line or a circle, it does have many symmetries, but by Assumption 3.1, there are no
pi, p j ∈ S1 such that such a symmetry maps pi to p j as in Lemma 4.1, so we can take Γ0 to be the
empty set. Indeed, suppose C2 is a circle and T is a symmetry of C2 with T (pi) = p j. If pi = p j,
then they would have to lie on a concentric circle (see the proof of Lemma 2.5), which is excluded
by Assumption 3.1.4. If pi = p j, then C2 would have to be the circle around pi, contradicting
Assumption 3.1.3. A similar argument applies if C2 is a line, using Assumption 3.1.5.

With Γ0 chosen as above, it follows that if Ci j,Ckl ∈ Γ \Γ0 have infinite intersection, then
d(pi, pk) = d(p j, pl). Then Lemmas 4.2, 4.3, and 4.4 (together with Assumptions 3.1.5 and 3.1.6)
allow us to conclude that there are no three curves in Γ \Γ0 that have infinite intersection.

Applying the argument above to the dual curves C̃st (defined in the proof of Lemma 3.3) gives
the set P0. This finishes the proof of Lemma 3.2.
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