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We derive a limit on energy savings in controlled channel flow. For flow in a channel driven
by pressure, shear or any combination of the two, and controlled via wall transpiration
or spanwise wall motion, the uncontrolled laminar state requires the least net energy
(accounting for the energetic cost of control). Thus, the optimal control solution is
to laminarize the flow. Additionally, we raise the possibility of beating this limit. By
simultaneously applying wall transpiration and spanwise wall motion, we show that it
may be possible to attain sustained sub-laminar energy expenditure in a controlled flow.
We provide a necessary design criterion for net energy savings.
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1. Introduction

In many flows of practical interest, a common goal is to reduce drag. This is because
frictional drag is the main culprit constraining speed and efficiency, and also contributes
to wear. Notable victims of drag include airplanes, ships and fluid-carrying pipelines.
Accordingly, significant effort has been — and is being — put forth to develop flow control
strategies to reduce drag.

Among the many forms of flow control, here we focus on two: transpiration
(blowing/suction) and spanwise wall motion. A number of prior studies have demonstrated
the ability to achieve drag reduction when using transpiration (Choi, Moin & Kim 1994;
Lee et al. 1997; Bewley, Moin & Temam 2001; Min et al. 2006; Quadrio, Floryan &
Luchini 2007; Lieu, Moarref & Jovanovi¢ 2010; Mamori, Iwamoto & Murata 2014; Gémez
et al. 2016; Koganezawa et al. 2019; Han & Huang 2020; Park & Choi 2020; Jiao &
Floryan 2021a,b) or spanwise wall oscillations (Jung, Mangiavacchi & Akhavan 1992;
Choi & Graham 1998; Choi, Xu & Sung 2002; Quadrio & Ricco 2004; Ricco & Quadrio
2008; Quadrio, Ricco & Viotti 2009; Viotti, Quadrio & Luchini 2009; Auteri et al. 2010;
Yakeno, Hasegawa & Kasagi 2014; Gatti & Quadrio 2016; Meysonnat et al. 2016; Bird,
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Santer & Morrison 2018; Skote, Mishra & Wu 2019; Yao, Chen & Hussain 2019; Marusic
et al. 2021; Ricco, Skote & Leschziner 2021), even attaining sustained sub-laminar levels
of drag (Min et al. 2006; Jiao & Floryan 2021a,b). Reducing drag saves energy that would
otherwise be lost to friction, but the control input requires energy. Thus, despite reducing
drag, controlling a flow may increase the energy expenditure on balance.

It is worthwhile asking whether controlling a flow can confer a net energetic benefit, and
whether there are any fundamental limits to how much one stands to gain. Bewley (2009)
and Fukagata, Sugiyama & Kasagi (2009) provide a partial answer. In their work, they
prove that for pressure-driven flow, the energetic cost of transpiration is always greater
than or equal to the energy saved due to drag reduction below the laminar level, for any
distribution of transpiration (Bewley showed this for channel flow, while Fukagata et al.
showed this for a duct with arbitrary constant-shape cross-section and also included the
effects of an arbitrary body force). In other words, no matter the spatiotemporal pattern
of transpiration used, or level of drag reduction attained — even if sub-laminar — the
uncontrolled laminar flow requires the least net energy. This is an important result: it
rigorously establishes that the optimal control solution, from an energetic standpoint,
is to laminarize the flow. (As an exception, Fukagata e al. (2009) raise the possibility
that transpiration in a duct with varying cross-sectional shape may reduce net energy
requirements, although it has not yet been demonstrated.)

In this work, we generalize the result of Bewley (2009) and Fukagata et al. (2009),
showing that the same fundamental limit on energy holds not only for pressure-driven
flows, but also for shear-driven and mixed pressure- and shear-driven flows. We also
show that the same fundamental limit exists when the control takes the form of arbitrary
spanwise wall motion instead of transpiration. Finally, and perhaps most interestingly,
we raise the possibility of beating this fundamental limit by combining transpiration
with spanwise wall motion. That is, we show that it may be possible to attain sustained
sub-laminar energy expenditure in a controlled flow.

2. Derivation of a fundamental limit on energy savings

Consider constant-density flow in a straight channel bounded at the top and bottom by
walls. The bottom wall moves with a constant velocity Up,i, the top wall moves with a
constant velocity Uy,i, and we impose a pressure gradient Pyi, where i is the unit vector
in the streamwise direction. The flow satisfies the continuity and Navier—Stokes equations:

V.u=0, @2.1)

du 5 .
p(§+u-Vu> = —Vp+ uViu — Py, (2.2)
on the domain 2 = {(x,y, z) € [0, Ly] x [—h, h] x [0, L]} with boundary 952, sketched
in figure 1. Above, u = (u, v, w) is the velocity field, p is the pressure field, p is the density
and u is the dynamic viscosity. The pressure gradient is constant in space but may depend
on time, adjusted such that the bulk velocity

1 Ly prh L,
Up = / / f udxdydz (2.3)
2LhL; Jo o J-n Jo

is constant. The flow is periodic in the streamwise (x) and spanwise (z) directions.
When Upyr = Uspp = 0, we have pressure-driven Poiseuille flow. When P, = 0, we have
shear-driven Couette flow. Otherwise, we have a mixed Couette—Poiseuille flow driven by
shear and pressure.
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Figure 1. Sketch of domain and uncontrolled laminar flow.

At the walls, located at y = +h, we apply control in two forms: transpiration and
spanwise wall motion. We allow these controls to have arbitrary spatial and temporal
distributions. An implication of the flow being periodic in x and z is that the net mass
flux through the walls must be zero.

The uncontrolled laminar flow has a velocity field

Px(y2 - hz) + (Ut()p - Ubot)y + Utop + Ubut:| i (2.4)

"L:””:[ 20 2h 2

and a total pressure field P,x. Work is done to maintain the bulk velocity and to move the
walls against forces. The question we address is whether net energy can be saved relative
to the uncontrolled laminar flow by controlling the flow at the walls, accounting for the
energy expenditure of the control.

Starting from (2.2), take an inner product with the velocity vector and integrate over the
domain to arrive at

0
2w wavs [ ueevaav
2 Jo ot Ie)

:—/ u-VpdV-i—,u/ u-VzudV—/ uP,dv. (2.5)
2 2 2

The convective, pressure and viscous terms can all be simplified, and we proceed to do so
one by one.

By applying vector identities, continuity and the divergence theorem, the convective
term can be rewritten as

/u-(u-Vu)de% l(u-u)(u-n)dA. (2.6)
2 952 2

By applying a vector identity, continuity and the divergence theorem, the pressure term

can be rewritten as
/ u-VpdV:f pu-ndA. 2.7)
Q EYe)

By applying vector identities and the divergence theorem, the viscous term can be
rewritten as

/u-vzudv:yf u-(n-Vu)dA—/ Vu:Vudv. (2.8)
2 082 2
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With these simplifications, (2.5) becomes

P d P
Pl Zw-wav+ £ . .n)dA
> /Q 8t(u u) + zfém(u u)(u-n)
=—f pu-ndA—i—;L% u-(n-Vu)dA—,u/ Vu:VudV—/qudV,
EYe) R Q Q
(2.9)
which can be written as
dp, 2 2 P
— —|lul|” + nl|Vul||© + p+ zu-ulu-ndA+ 2LhL,UpPy
dr 2 90 2
= ,uy§ u-(n-Vu)da, (2.10)
R

with the norms for vector and tensor fields defined implicitly. Due to the periodic boundary
conditions, only the quantities at the walls contribute to the integrals along the boundary
052. Therefore, (2.10) simplifies to

dp 2 2 /
L v
d;z””” + ul|Vull” +

wa

(p + gu - u) u-ndA + 2L AL, UpPy
lls

= ,u/ u-(n-Vu)dA. (2.11)
walls

In order to maintain the motion of the walls, forces must be applied to them to balance
friction and momentum flux due to transpiration. Performing a control volume analysis on
the top and bottom walls reveals that the required force on each wall is

Fiop/por = / pu(u-n;)dA — nw(Vu + VuT) -n;dA. (2.12)
top/bot top/bot

Note that we have written the unit normal as n; to distinguish it from the unit normal used
previously; they are related by n; = —n. The first term is due to momentum flux from
transpiration, and the second term is due to viscous forces.

Next, we define an effective traction vector:

t:=pu(u-n;)—nuVu+ VuT) - n;. (2.13)

We rewrite the forces on the walls as

Ft()p/b()t == / tdA (214)
top/bot

The rate of work done in order to move the walls is
Wtop/bot = / Uyl + LA, (2.15)
top/bot

Note that u,,,; differs from the fluid velocity at the walls by
Uy = U — (u - n)n. (2.16)

It does not include the velocity component normal to the walls so that W,(,p and Wpo;
only account for the rate of work associated with the motion of the walls themselves.
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After some algebraic manipulation, the rate of work done in order to maintain both walls’

motions, Wwalls = Wiop + Wpor, 1s

Wwalls = / Lo (uyair - w)(u + n;) — pun; - (Wyair » V) — by - (n; - Vu)]dA. (2.17)
walls
Subtracting (2.17) from (2.11) and rearranging terms yields

dp o 2 p
— —|lul|” + || Vul|” + p+ <u-u)u-ndA+2LhL,UpPy
dr2 walls 2
=p/ (uwazz-u)(u-n)dA—uf 1~ (Ui + Vit) dA + Wiaiis
walls walls

+ ,u/ (u-n)n-(n-Vu)dA. (2.18)
walls

Note that wyq « U = Wy » Uil
Now take the time-average of (2.18), where the time-average of a function f is defined
by

) = lim —/ f(@®de. (2.19)

T—oo T

Assuming l|lu||? remains bounded, time-averaging yields

(| Val?) + </ (p n gu : u) u- ndA> + 2L, WL, Up(P,)
walls

=p </ i (Wwait * Wya)(u - n) dA> — MK </ ll'n * (uyan + Vu) dA> ( wallv)
+ 1 </ (u-n)n-(n-Vu) dA> . (2.20)
walls

The norm of the velocity gradient can be rewritten. Let u = u; + u/, where uy is
the uncontrolled laminar flow from (2.4), and v’ = (/, v/, w) is the deviation from it.
Substituting this decomposition into the expression for the norm of the velocity gradient
gives

IVul|?> = ||Vur|> + |V ||> + 2/ Vu, : Vi dv. (2.21)
22

Since the uncontrolled laminar flow has only one component, and it is a function of only
v, the last term can be rewritten as

d%u Li g
/VuL:Vu’de ’dV+/ / Sy
Q dy Q2

where we have used integration by parts and the fact that uy is quadratic in y. The first
term is zero since the uncontrolled laminar flow and the controlled flow have the same
bulk flow in the x direction. The second term is zero since 1’ = 0 on the walls (because
the uncontrolled laminar flow and controlled flow have the same boundary condition for
the x component), making the entire expression in (2.22) equal to zero. Thus, the norm of
the velocity gradient is equal to the sum of that of the uncontrolled laminar flow and that of
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the deviation from the uncontrolled laminar flow; in this sense, the two velocity gradients
may be thought of as being orthogonal. Substituting (2.21)—(2.22) into (2.20) gives

P
I Vag | + (Ve |1?) + </ (P + Su u) u- ndA> + 2LhL, Up(Px)
walls

=p <f i (wait * Wya)(u - n) dA> — M </ p n - (Uyqy - Vu) dA> ( walls)
+un </ (u-n)n-(n-Vu) dA> . (2.23)
walls

Applying (2.23) to the uncontrolled laminar flow yields
P Vurl? +2LhL UgPx.1 = Waatis.. (2.24)

where a subscript L denotes laminar quantities. The third, fifth and last terms in (2.23) do
not appear in (2.24) because there is no flow normal to the walls when there is no control;
the sixth term does not appear because the laminar flow is rectilinear. Subtracting (2.24)
from (2.23) gives

,u(||Vu/||2) + </ (p + gu . u) u- ndA> + 2L L Up({Px) — Py.L)
walls

=p </ ll'(uwall  Uya) (U - n) dA> - IL</ p n - (Uyqy - V) dA>

+ (Wwalls> - Wwalls,L +u </ (u-n)n-(n-Vu) dA> . (2.25)

alls

Some of the terms in (2.25) can be simplified. Putting ourselves in the frame of reference
where Upor = —Uspp, it follows that uyqy « tyan = U,zop + w?, where w is the spanwise
component of the velocity, and the integral in the fourth term becomes

Uip/ (u-n)dA+/ w?(u - n)dA = w?(u - n) dA, (2.26)
walls

walls walls

since the net mass flux through the walls must be zero. The fifth term in (2.25) simplifies

to
/ n- (U - Vu)dA = / /
walls 8y

where we have used integration by parts, continuity and periodicity of the flow in x and z.
The last term in (2.25) simplifies to

Ly
/ (u-n)n-(n-Vu)dA = f /
walls 8y

which is the same as in (2.27). These two terms cancel, and (2.25) simplifies to

dxdz, (2.27)
y=—h

dxdz, (2.28)
y=—h

Va1 + </ (p+Su-u)u- ndA> + 2LoLUp({Py) = Pr)
walls

=p </ s w (u n) dA> ( wallv) - Wwalls,L- (2.29)
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Finally, we rearrange terms to arrive at

. Y
— 2L hL U (Py) + (Wyaiis) — </ (p + —u- u) u- ndA>
walls 2
- (_ZLXhLzUBPx,L + Wwalls,L)
= u(IViII?) = p </ w(u - n) dA>. (2.30)
walls

The left-hand side is the difference in power needed to maintain the controlled flow (first
line) and the uncontrolled laminar flow (second line). This includes the power needed to
apply the pressure gradient, the power needed to maintain the motion of the walls, and the
power needed to apply transpiration, which includes the rate of work done against pressure
and the rate of injection of kinetic energy into the flow.

Note that (2.30) also holds for open channel flow, as in the simulations by Marusic et al.
(2021), so our ensuing discussion may also hold some relevance for boundary-layer flows,
as in the accompanying experiments of Marusic et al. (2021). However, we have not proven
that such a relation holds for boundary-layer flows. Indeed, the relevance to boundary-layer
flows is complicated by the fact that they are spatially developing (see Ricco & Skote
(2022) for an example of how spatially developing flows may fundamentally differ in this
type of study).

3. Discussion

Suppose we use only transpiration for control, as in the analyses of Bewley (2009) and
Fukagata et al. (2009). Then w = 0 at the walls, and the right-hand side of (2.30) is equal
to (| Ve %) > 0. Thus, the left-hand side, which is the difference in power needed
to maintain the controlled flow and the uncontrolled laminar flow, is non-negative. In
other words, the uncontrolled laminar flow requires the least net energy no matter the
spatiotemporal distribution of the control. From an energetic standpoint, the optimal
solution is to laminarize the flow. This holds whether the flow is driven by pressure, shear
or any combination of the two, recovering the result of Bewley (2009) and Fukagata et al.
(2009) as a special case.

Now suppose that we use only spanwise wall motion for control. Then u - n = 0 at the
walls, and the right-hand side of (2.30) is equal to (|| V&/'||?) > 0. We conclude again that
the uncontrolled laminar flow requires the least net energy no matter the spatiotemporal
distribution of the control.

Finally, consider the case where we simultaneously apply transpiration and spanwise
motion at the walls. In this case, the last term in (2.30) is non-zero. We may interpret this
term as the covariance between the square of the spanwise speed and the transpiration
speed, that is, as the covariance between the two forms of control. Physically, this term
originates from the work done on the walls to maintain their motions. Specifically, it
is the work associated with the component of the external force that arises due to the
momentum flux across the walls (the first terms on the right-hand sides of (2.12) and
(2.13)). If this covariance is greater than the increase in the norm of the velocity gradient
due to the controlled flow, then the controlled flow requires less net power than the
uncontrolled laminar flow. Mathematically, the criterion for net energy savings relative
to the uncontrolled laminar flow is

p</ . w2<u-n)dA> > u(|IVa'|%). 3.1)
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Physically, this criterion states that if the negative of the average work arising due to
momentum flux is greater than the average additional spatial variation in the flow induced
by control, then the sustained net energy expenditure is sub-laminar.

Sustained sub-laminar drag has previously been attained by passive means (Mohammadi
& Floryan 2013), implying sub-laminar energy expenditure. We are unaware, however,
of any results demonstrating net energy savings relative to the uncontrolled laminar
flow when using active flow control, making this possibility rather interesting (Fukagata
et al. (2009) raised the possibility of doing so by applying transpiration around a bump
on a channel wall, but it was never demonstrated). Moreover, the criterion in (3.1) is
constructive since the covariance term can be completely specified as it only contains
control terms. For example, this criterion reveals a necessary condition for net energy
savings: spanwise wall motion and transpiration must have spatiotemporal overlap. In
particular, the spanwise wall motion must, on average, be greater in regions of suction than
in regions of blowing. This condition is not sufficient, however, since it is unknown a priori
whether the designed control induces additional dissipation greater than the covariance
term.

Nevertheless, the criterion provides some insight. The increase in the norm of the
velocity gradient induced by control contributes to increased dissipation relative to
the uncontrolled flow. Since dissipation tends to be greatest near walls, the additional
dissipation induced by the control will be dominated by contributions in the vicinity of the
control. With both terms in (3.1) depending on near-wall or wall quantities, the criterion
provides a path forward for rational design of the control.

It is important to note that the criterion in (3.1) is ideal in the sense that it considers all
of the negative work to be recoverable. In a real system, the amount of negative work that
can be recovered depends on the devices used to implement control. This is an important
consideration in any physical flow control system. Nevertheless, our theoretical findings
open the possibility of sustained sub-laminar energy expenditure, an important first step.
Pursuing this possibility is certainly worthy of future work.
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