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Linear stability of a viscoelastic liquid on an oscillating plane is studied for
disturbances of arbitrary wavenumbers. The main aim is to extend the earlier
study of Dandapat & Gupta (J. Fluid Mech., vol. 72, 1975, pp. 425–432) to the
finite wavenumber regime, which has not been attempted so far in the literature.
The Orr–Sommerfeld boundary value problem is formulated for an unsteady base
flow, and it is resolved numerically based on the Chebyshev spectral collocation
method along with the Floquet theory. The analytical solution predicts that U-shaped
unstable regions appear in the separated bandwidths of the imposed frequency, and
the dominant mode of the long-wave instability intensifies in the presence of the
viscoelastic parameter. The numerical solution shows that oblique neutral curves come
out from the branch points of the U-shaped neutral curves at finite wavenumber and
continue with the imposed frequency until the curves cross the next U-shaped neutral
curve. As a consequence, in the finite wavenumber regime, no stable bandwidth
of the imposed frequency is predicted by the long-wavelength analysis. Further, in
some frequency ranges, the finite wavenumber instability is more dangerous than the
long-wave instability.

Key words: non-Newtonian flows, parametric instability, viscoelasticity

1. Introduction
During the last few decades, studies of viscoelastic liquid flow have been of

special interest in the chemical industry due to its drag reduction property (Savins
1967). Further, such liquids are common in coating technology due to their different
mechanical properties (Dávalos-Orozco 2013). On the other hand, the instabilities
of a viscoelastic liquid occur in a wide variety of applications including lubrication,
coating and various types of polymer processing operations (Larson 1992; Shaqfeh
1996). In this context, Dandapat & Gupta (1975) first initiated the present model as
an extension of the unsteady Newtonian flow on an oscillatory plane (Yih 1968) to
understand the dynamic behaviour of viscoelasticity when the base flow is unsteady.
In particular, the unsteady base flow makes the problem troublesome to deal with
even numerically. Besides, the present model is relevant in physiological applications
for understanding the viscoelastic blood flow through vessels and arterial stenosis in
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Linear stability of a viscoelastic liquid flow on an oscillating plane 171

detail, which may lead to early detection and prevention of cardiovascular diseases
(Grotberg & Jensen 2004; Ikbal 2012). These facts have motivated us to explore the
present problem.

The study of the Newtonian liquid flow on a horizontal oscillating plane was
pioneered by Yih (1968) to take into account the effect of unsteady base flow on
the long-wave modes. The regular perturbation method based on the Floquet theory
was used to resolve the time-dependent Orr–Sommerfeld boundary value problem.
As discussed by Yih (1968), the long-wave mode can be unstable at a sufficiently
large amplitude of oscillation. Later, the same problem was tackled by Or (1997) to
decipher the finite wavelength instability for infinitesimal disturbances with arbitrary
wavenumbers. It was shown that long-wavelength unstable regions appear in the
separated bandwidths of the imposed frequency, and the finite wavelength instability
appears through the branch points of the long-wave neutral curves. Moreover, Or
(1997) showed that the finite wavenumber mode is more unstable than the long-wave
mode in a few regimes of the imposed frequency. Recently, Yih’s model was extended
by Gao & Lu (2006, 2008) to investigate the effect of insoluble surfactants on the
long-wave modes and the finite wavenumber modes. As reported by Gao & Lu (2006,
2008), the long-wave mode can be stabilized by using an insoluble surface surfactant.
Owing to the destabilizing property of an electric field on the long-wave mode, the
joint effect of an insoluble surfactant and an electric field on the long-wave instability
for an oscillatory flow was investigated by Samanta (2009). It was shown the growth
rate of the long-wave mode increases in the presence of an electric field but decreases
with the presence of an insoluble surfactant. Unlike a horizontal oscillation of a plane,
the instability of a Newtonian liquid layer flowing down a vibrating inclined plane was
studied by Woods & Lin (1995), Lin, Chen & Woods (1996) and Burya & Shkadov
(2001). In fact, in that model, the horizontal plane performs an oscillatory motion
perpendicular to its own plane, and the resulting acceleration has two components
in the streamwise flow and cross-streamwise flow directions. As a consequence,
Faraday waves develop on the surface due to an effective modulation of gravity. Both
subharmonic and synchronous solutions occur. However, in the present model, no
subharmonic solution exists.

Motivated by Yih’s work (Yih 1968), the model of unsteady Newtonian flow was
extended to the model of unsteady non-Newtonian viscoelastic flow by Dandapat
& Gupta (1975) to perform linear stability analysis in the long-wave regime. As
reported by these authors, the viscoelastic parameter exhibits a destabilizing effect on
the long-wave mode. However, in some frequency ranges, the viscoelastic parameter
exhibits a stabilizing effect on the long-wave mode. However, so far no attempt has
been made to decipher the finite wavenumber linear stability analysis corresponding
to viscoelastic liquid.

In this article, the main purpose is to fill the gap that remained in the previous study
(Dandapat & Gupta 1975), i.e. to explore infinitesimal disturbances with arbitrary
wavenumbers on the surface of a viscoelastic liquid on an oscillating plane. It is
observed that a long-wave unstable region appears in the separated bandwidths of the
imposed frequency. Outside of these frequency bandwidths, the long-wave disturbances
are stable. In fact, the stabilizing effect of viscoelasticity on the long-wave mode was
found by Dandapat & Gupta (1975) in these stable frequency bandwidths. However,
in the finite wavenumber regime, no stable frequency bandwidth exists, because finite
wavenumber modes appear in these stable frequency bandwidths, as predicted by
the long-wavelength analysis. In the presence of the viscoelastic parameter, the most
unstable mode becomes stronger than that of Newtonian liquid.
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FIGURE 1. Schematic diagram of a viscoelastic liquid on an oscillating plane.

2. Mathematical formulation
Consider an incompressible two-dimensional viscoelastic liquid film flow with

density ρ, limiting viscosity µ and surface tension σ on a horizontal plane, where
the motion of the viscoelastic liquid starts due to an oscillation of the plane in
the horizontal direction with a velocity îU0 cos ωt, where î is a unit vector in the
streamwise direction. Figure 1 shows a schematic diagram of the present model, where
the origin is located at the free surface, and the x and y axes are directed along the
streamwise flow and the cross-streamwise flow respectively. Walter’s liquid B′′, which
is an approximation to the first order in elasticity from the Newtonian behaviour and
possesses a short or rapidly fading memory, is considered in the current study. The
liquid B′′ satisfies the following constitutive equation of state (Beard & Walters 1964;
Andersson & Dahl 1999):

τij =−pδij + τ
′

ij, (2.1)

where τij is the stress tensor, δij is the Kronecker delta, p is the pressure and τ ′ij is
defined by

τ ′ij = 2µeij − 2M0
δ

δt
eij, (2.2)

where 2µeij is the Newtonian viscous stress contribution, 2M0(δ/δt)eij is the elastic
stress contribution, M0 is the viscoelastic coefficient, eij = (∂iuj + ∂jui)/2 is the strain
rate tensor and the co-rotational derivative of the strain rate tensor eij is defined by

δ

δt
eij = ∂teij + uk∂keij − ∂kujeik − ∂kuiekj. (2.3)

Obviously, the constitutive equation (2.1) recovers the Newtonian behaviour when
the viscoelastic coefficient M0 is set to zero. The general form of the constitutive
equation can be found in Oldroyd (1950), Beard & Walters (1964), Bird et al. (1987)
and Barnes, Hutton & Walters (1989). The rheological model given in the constitutive
equation (2.1) is obtained by removing the relaxation time parameter, and the reduced
model is referred to as Walter’s liquid B′′ (Beard & Walters 1964; Andersson &
Dahl 1999). A mixture of polymethyl methacrylate in pyridine with density ρ =
0.98× 103 kg m−3, limiting viscosity µ = 0.79 N s m−2 and viscoelastic coefficient
M0 = 0.04 N s2 m−2 is an example of Walter’s liquid B′′ (Walters 1960; Andersson
& Dahl 1999).

The mass and momentum conservation equations that govern the flow are

∂iui = 0, (2.4)
ρ(∂tui + uj∂jui) = ρgi + ∂jτij, (2.5)
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where gx= 0 and gy=−g, g is the gravitational acceleration. The associated boundary
conditions are as follows. (i) At the plane y=−d,

ux = u=U0 cosωt, uy = v = 0. (2.6a,b)

(ii) At the free surface y= h(x, t), the balances of tangential and normal stresses,

τijnjti = 0, τijninj = σ∂xxh/[1+ (∂xh)2]3/2, (2.7a,b)

where n = (nx î + ny ĵ) is the unit normal vector, t = (tx î + ty ĵ) is the unit tangent
vector and ĵ is a unit vector in the cross-streamwise direction. (iii) The kinematic
boundary condition at the free surface y= h(x, t) is given by

∂tf + ui∂if = 0, (2.8)

where f (x, t) = h(x, t) − y. Since the present study is an unsteady flow problem
and the primary flow occurs due to the horizontal oscillation of the plane, an
appropriate scale for time is the inverse of imposed frequency. Next, the velocity
scale is obtained from the balance of the inertia term and the viscous friction term.
Accordingly, the governing equations (2.4)–(2.8) are normalized by choosing d as
the length scale, ν/d as the velocity scale, 1/ω as the time scale and ρν2/d2 as
the pressure scale. The proposed characteristic scales lead to a set of dimensionless
parameters: the Reynolds number, Re = U0d/ν, shows the effect of the oscillation
amplitude, the Galileo number, χ = gd3/(2ν2), shows the effect of gravity, the
capillary number, ζ = ρν2/(σd) = µ(ν/d)/σ , shows the effect of surface tension,
the viscoelastic parameter, M = M0/(ρd2), shows the effect of viscoelasticity and
the Womersley number, β =

√
ωd2/(2ν), shows the effect of the imposed frequency.

The dimensionless viscoelastic parameter M compares the square of the elastic length
M0/ρ with the square of the mean film thickness d2, while the dimensionless imposed
frequency 2β2 compares the square of the mean film thickness d2 with the square of
the Stokes layer thickness ν/ω, or, equivalently, it compares the viscous time scale
d2/ν with the frequency time scale 1/ω.

Consider a unidirectional time periodic parallel flow with constant film thickness.
Consequently, the governing equations (2.4)–(2.8) are simplified to the following
dimensionless form:

2β2∂tUx =−∂xP+ ∂yyUx − 2β2M∂yytUx, ∂yP+ 2χ = 0, (2.9a,b)

Ux = Re cos t, at y=−1, ∂yUx − 2β2M∂ytUx = 0, P= 0, at y= 0. (2.10a,b)

The base flow solution can be expressed as

Ux =U(y, t)=Re
[

Re cosh[Ω(1+ iS)y]eit

cosh[Ω(1+ iS)]

]
, Uy = V(y, t)= 0, P(y)=−2χy,

(2.11a−c)
where S = [(1 + 4M2β4)1/2 + 2Mβ2

] and Ω = β[{(1 + 4M2β4)1/2 − 2Mβ2
}/(1 +

4M2β4)]1/2. Here, Re[· · ·] represents the real part of that complex function. It should
be noted that the base flow is strongly dependent on the viscoelastic parameter M. In
the absence of the viscoelastic parameter (M = 0), the base flow velocity is identical
to that of Or (1997). Moreover, the base velocity coincides with that of Dandapat &
Gupta (1975) when the characteristic scales are the same.
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3. Orr–Sommerfeld boundary value problem

The primary instability is studied by considering a two-dimensional infinitesimal
disturbance q = Q + q̃ on the base flow, where q represents the flow variables,
Q represents the basic quantities and q̃ represents the perturbation quantities. By
substituting q in the dimensionless form of the governing equations (2.4)–(2.8)
and linearizing with respect to the base state, we obtain the following linearized
perturbation equations:

∂xũ+ ∂yṽ = 0, (3.1)

2β2∂tũ+ (U∂xũ+ ṽ∂yU)=−∂xp̃+ (∂xxũ+ ∂yyũ)− 2β2M(∂xxtũ+ ∂yytũ)
− M[U(∂xxxũ+ ∂xyyũ)− ∂yU(∂xyũ+ ∂xxṽ)+ ṽ∂yyyU − ∂yṽ∂yyU], (3.2)

2β2∂tṽ +U∂xṽ =−∂yp̃+ (∂xxṽ + ∂yyṽ)− 2β2M(∂xxtṽ + ∂yytṽ)

− M[U(∂xxxṽ + ∂xyyṽ)− 2∂yU∂xyṽ − ∂yyU∂xṽ], (3.3)

ũ= 0, ṽ = 0, at y=−1, (3.4)

∂yũ+ ∂xṽ + h̃∂yyU − 2β2M(∂ytũ+ ∂xtṽ + h̃∂yytU)
− M[U(∂xxṽ + ∂xyũ)+ ṽ∂yyU] = 0, at y= 0, (3.5)

−p̃+ 2χ h̃+ 2∂yṽ − 4β2M∂tyṽ − 2MU∂xyṽ = (1/ζ )∂xxh̃, at y= 0, (3.6)

2β2∂th̃+U∂xh̃= ṽ, at y= 0. (3.7)

Now, the stream function ψ̃ is introduced by using the relations ũ= ∂yψ̃ and ṽ=−∂xψ̃ .
Next, the solution of the perturbation equations (3.1)–(3.7) is assumed in the normal
mode form ψ̃(x, y, t) = φ(y, t) exp(ikx) and h̃(x, t) = η(t) exp(ikx), where φ and η

are respectively the amplitude of the perturbation stream function and the deformed
free surface. Here, k is the wavenumber. By inserting ψ̃ and h̃ into the perturbation
equations (3.1)–(3.7) and eliminating the pressure term from the momentum equations,
we obtain the following time-dependent Orr–Sommerfeld boundary value problem (OS
BVP) for a viscoelastic liquid:

2β2(L+ML2)∂tφ =L2φ − ik[U(L+ML2)− (D2U +MD4U)]φ, (3.8)
φ =Dφ = 0, at y=−1, (3.9)

2β2M(L+ 2k2)∂tφ = (L+ 2k2)φ −Mik[U(L+ 2k2)−D2U]φ
+ [D2U − 2β2MD2∂tU]η, at y= 0, (3.10)

2β2
[D+M(L− 2k2)D]∂tφ = (L− 2k2)Dφ − 2ik

(
χ +

k2

2ζ

)
η

− ik[U{D+M(L− 2k2)D} +M(D2UD−D3U)]φ, at y= 0, (3.11)
2β2∂tη=−ikφ − ikUη, at y= 0, (3.12)

where D = ∂y and L = ∂yy − k2 are differential operators. When the viscoelastic
parameter M vanishes, the present OS BVP (3.8)–(3.12) reduces to the time-dependent
OS BVP for a Newtonian liquid (Or 1997). The difference in the coefficients from
the OS BVP obtained by Dandapat & Gupta (1975) is attributed to the choice of
various characteristic scales.
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4. Long-wavelength expansion
The time-dependent OS BVP (3.8)–(3.12) with periodic coefficients is resolved

based on the long-wavelength expansion (k → 0) along with the Floquet theory
proposed by Yih (1968). Consequently, the solution is assumed in the following form:[

φ(y, t)
η(t)

]
= eδt

[
φ0(y, t)+ kφ1(y, t)+ · · ·
η0(t)+ kη1(t)+ · · ·

]
, (4.1)

where the Floquet exponent δ is of the form

δ = δ0 + kδ1 + k2δ2 + · · · . (4.2)

To take into account the effect of surface tension in the first-order formulation, we
consider the capillary number ζ ∼O(k2). By inserting (4.1) and (4.2) into the OS BVP
(3.8)–(3.12) and collecting the leading-order O(k0) terms, we obtain the following set
of equations:

2β2(D2
+MD4)(∂tφ0 + δ0φ0)=D4φ0, (4.3)

φ0 =Dφ0 = 0, at y=−1, (4.4)
2β2MD2(∂tφ0 + δ0φ0)=D2φ0 + (D2U − 2β2MD2∂tU)η0, at y= 0, (4.5)

2β2(D+MD3)(∂tφ0 + δ0φ0)=D3φ0, at y= 0, (4.6)
2β2(∂tη0 + δ0η0)= 0, at y= 0. (4.7)

Since η0(t) is a periodic function of t, the kinematic boundary condition (4.7) leads to
an admissible solution δ0= 0. Without loss of generality, we choose η0= 1. Otherwise,
δ0 6= 0 supplies a damped Floquet mode demonstrated by Yih (1968), and that damped
mode is not of interest here. By substituting the values of δ0 and η0 and solving (4.3)–
(4.6), the leading-order solution can be expressed as

φ0(y, t)=Re
[

Re
{1− cosh[Ω(1+ iS)(y+ 1)]}eit

cosh2
[Ω(1+ iS)]

]
. (4.8)

Obviously, φ0 relies on the viscoelastic parameter M. In the limit M→ 0, the reduced
solution (4.8) is identical to that of Yih (1968) when the characteristic scales are the
same. For the first-order O(k) approximation, we have the following set of equations:

2β2(D2
+MD4)(∂tφ1 + δ1φ0 + δ0φ1)=D4φ1 − i [U(D2

+MD4)

− (D2U +MD4U) ] φ0, (4.9)
φ1 =Dφ1 = 0, at y=−1, (4.10)

2β2MD2(∂tφ1 + δ1φ0 + δ0φ1)=D2φ1 −Mi(UD2
−D2U)φ0

+ (D2U − 2β2MD2∂tU)η1, at y= 0, (4.11)

2β2(D+MD3)(∂tφ1 + δ1φ0 + δ0φ1)=D3φ1 − 2i
(
χ +

k2

2ζ

)
η0

− i[U(D+MD3)+M(D2UD−D3U)]φ0, at y= 0, (4.12)
2β2(∂tη1 + δ1η0 + δ0η1)=−iφ0 − iUη0, at y= 0. (4.13)

Since φ0(y, t), U(y, t) and η0(t) are all periodic functions of time, to obtain a
periodic solution η1(t) from the kinematic boundary condition (4.13), we must have
δ1 = 0. As a result, (4.13) reduces to the following form:

2β2∂tη1 =−i(φ0 +U), (4.14)
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which yields a periodic solution

η1(t)=−
iRe
2β2

Im
[

eit

cosh2
[Ω(1+ iS)]

]
, (4.15)

where Im[· · ·] represents the imaginary part of that complex function. Indeed, the
first-order equations (4.9)–(4.12) possess steady and unsteady terms. As the Floquet
exponent is independent of time, the solution of only first-order steady equations is
sufficient to compute the next-order Floquet exponent δ2. Therefore, we shall focus
solely on the steady equations in the subsequent calculations. After some mathematical
manipulation, the solution of the first-order steady equations can be expressed as

φS
1 (y)= a1 + b1y+ c1y2

+ d1y3
− 2i Re2Re[I0] + 2i Re2Re[I1], (4.16)

where superscript ‘S’ denotes the steady solution and

I0 =
iA2(1+ γ 2)(1− 4M2β4)

8β2S2
tanh[Ω(1+ iS)]{S4 sinh(2Ωy)+ i sin(2ΩSy)}, (4.17)

I1 =
iA2(1+ γ 2)

2β2

cosh[Ω(1+ iS)y]
cosh[Ω(1− iS)]

, (4.18)

A=
cos(ΩS) coshΩ

2[cos2(ΩS)+ sinh2 Ω]
, γ = tan(ΩS) tanhΩ,

d1 = i[χ/3+ k2/(6ζ )], c1 = 0,

 (4.19)

b1 =−3d1 +
i Re2A2(1+ γ 2)

β2
R2, a1 =−2d1 +

i Re2A2(1+ γ 2)

β2
(R2 − R1), (4.20a,b)

where R1 and R2 are of the form

R1 =Re
[

i
4S2

tanh[Ω(1+ iS)][S4 sinh 2Ω

+ i sin(2ΩS)](1− 4M2β4)+ i
cosh[Ω(1+ iS)]
cosh[Ω(1− iS)]

]
, (4.21)

R2 =Re
[

iΩ
2S

tanh[Ω(1+ iS)][S3 cosh 2Ω + i cos(2ΩS)](1− 4M2β4)

−
(1+ S2)Ω sinh[Ω(1+ iS)]
(S+ i) cosh[Ω(1− iS)]

]
. (4.22)

Now, in order to compute the Floquet exponent δ2, we consider the second-order O(k2)
approximation of the kinematic boundary condition at y= 0,

2β2(∂tη2 + δ2η0 + δ1η1 + δ0η2)=−iφ1 − iUη1. (4.23)

Again, δ2 is independent of time, so we must have

δ2 =−
i

2β2
[φS

1 + (Uη1)
S
] =

1
2β2

[
2id1 −

Re2A2(1+ γ 2)

β2
(R1 − R2)

]
. (4.24)
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Inserting the values of δ0, δ1 and δ2, the Floquet exponent δ can be written as

δ = k2δ2 +O(k3)=
k2

2β2

[
2id1 −

A2Re2(1+ γ 2)

β2
(R1 − R2)

]
+O(k3)

=
k2

2β2

A2Re2(1+ γ 2)

β2
(R2 − R1)︸ ︷︷ ︸

VECT

−
2χ
3︸︷︷︸

GT

−
k2

3ζ︸︷︷︸
ST

+O(k3), (4.25)

where VECT, GT and ST represent the viscoelastic coupling term, gravity term
and surface tension term respectively. Equation (4.25) demonstrates that the Floquet
exponent δ is simply a combination of three terms VECT, GT and ST , and its
magnitude will reduce in the presence of gravity and surface tension. In other words,
gravity and surface tension exhibit a stabilizing effect on the long-wave mode.

We have noticed that the leading- and first-order solutions of the kinematic boundary
condition (3.12) yield δ0 = 0 and δ1 = 0. Hence, in the long-wavelength limit k→ 0,
the amplitude [∝ eδt = ek2δ2+O(k3)] of an infinitesimal disturbance will grow or decay
exponentially with time if δ2 > or < 0, or, equivalently, if the following criterion is
satisfied:

2χ
Re2

< or>
[

3A2(1+ γ 2)

β2
(R2 − R1)−

k2

ζRe2

]
= L(β). (4.26)

Therefore, one can conclude that the long-wavelength disturbance will be stable if δ2<
0; otherwise, it will be unstable if δ2 > 0. In the absence of elasticity and for a low
magnitude of surface tension, equation (4.26) coincides with that of Yih (1968) and
Or (1997), where 2χ/Re2

= Fr−2
= gd/U2

0 , and L(β)= [3A2(1+ γ 2)/β2
](R2 − R1) in

Yih’s notation. In addition, the expression (4.26) is identical to that of Dandapat &
Gupta (1975) when the characteristic scales are the same.

In order to analyse the effect of surface tension on the long-wave mode indepen-
dently, a new parameter is introduced: ζ ∗ = k2/ζ represents the effect of surface
tension. The neutral stability criterion δ2 = 0 leads to an analytical expression of the
Reynolds number as a function of the dimensionless imposed frequency 2β2,

Re=
[
(2χ + ζ ∗)

/{
6A2(1+ γ 2)

2β2
(R2 − R1)

}]1/2

. (4.27)

Figure 2(a) shows that U-shaped neutral curves appear in the separated bandwidths of
the imposed frequency when k→ 0. Therefore, the long-wavelength instability prevails
only in these frequency bandwidths. Outside of these bandwidths, all infinitesimal
disturbances are stable. This result is completely consistent with that of Dandapat
& Gupta (1975). For this reason, the stabilizing effect of the viscoelastic parameter
was found by Dandapat & Gupta (1975) in these stable bandwidths of the imposed
frequency. Moreover, in each unstable frequency bandwidth, there exists a critical
Reynolds number (Re=U0d/ν), or, equivalently, a critical amplitude of the horizontal
oscillation above which the long-wave modes are unstable. The interesting result is
that the number of unstable bandwidths decreases with increasing value of the
viscoelastic parameter. However, in the different unstable frequency bandwidths, the
dominant mode of instability intensifies with increasing value of the viscoelastic
parameter. Figure 2(b) demonstrates the variation of 10×L(β) with β when M= 0.01
is fixed. If the surface tension is incorporated into the O(k) approximation of the
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FIGURE 2. (a) The neutral curves in the (β, Re) plane for different values of the
viscoelastic parameter when χ = 1 and ζ ∗= 0. Here, the thick solid, dashed and thin solid
lines stand for M = 0.01, M = 0.005 and M = 0.0 respectively. (b) The variation of L(β)
as a function of β when χ = 1 and M= 0.01. Here, the thick solid, dashed and thin solid
lines stand for ζ ∗ = 0, ζ ∗ = 0.5 and ζ ∗ = 1 respectively. The points stand for the result
of Dandapat & Gupta (1975). (c) The variation of (VECT +GT + ST) as a function of β
when Re= 10, χ = 1 and ζ ∗ = 1. Here, the thick solid, dashed and thin solid lines stand
for M = 0.01, M = 0.005 and M = 0 respectively.

long-wavelength analysis, L(β), or, equivalently, the growth rate of the long-wave
mode, diminishes with increasing value of ζ ∗. Therefore, one can conclude that the
viscoelastic parameter has a destabilizing influence and the surface tension has a
stabilizing influence on the long-wave mode in the unstable frequency bandwidths
for an oscillatory viscoelastic film flow. The stabilizing effect of surface tension also
supports the analytical expression given in (4.25). The variation of 10 × L(β) with
ζ ∗ in the higher-frequency zone (β > 2) can be found as an inset in figure 2(b).
Further, the present result captures the result of Dandapat & Gupta (1975) very well
when the surface tension parameter ζ ∗ is set to zero. In order to provide further
evidence of the destabilizing effect of viscoelasticity on the long-wave mode, the sum
(VECT + GT + ST) of the different terms in the expression of the Floquet exponent
(4.25) is depicted in figure 2(c) for different values of M when the Galileo number
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χ and the modified capillary number ζ ∗ are fixed. Indeed, the sum is enhanced
with increasing value of the viscoelastic parameter, or, equivalently, the magnitude
of the viscoelastic coupling term increases with M because both GT and ST are
constants. This fact results in growth of the Floquet exponent and supports the
destabilizing effect of M. In other words, the destabilizing effect of the viscoelastic
parameter on the long-wave mode can also be described somewhat in the spirit
of Smith (1990), Huang & Khomami (2001) and Wei (2005). If an infinitesimal
disturbance is considered on the unsteady base flow, a perturbation shear stress,
which is a combination of the Newtonian viscous stress and the elastic stress (see
(3.5)), evolves at the free surface to maintain the stress-free surface. As a result, the
energy, which is greater in comparison with the Newtonian case, is transferred from
the base flow to the disturbed surface through the tangential stress balance equation
(3.5). In addition, this perturbation shear stress drives an unsteady advective flow
under the disturbance with non-zero perturbation streamwise and cross-streamwise
velocity components because the leading-order stream function is non-zero (φ0 6= 0).
The energy of this advective flow is supplied by the work done by the perturbation
shear stress. The perturbation cross-streamwise velocity component pushes the fluid
towards the disturbance crest through the elastic and viscous stresses, while the
hydrostatic pressure and the surface tension pull the fluid away from the disturbance
crest. The net force intensifies the growth of an infinitesimal disturbance, and this
yields a destabilizing effect of the viscoelastic parameter.

5. Stability analysis for an arbitrary wavenumber
Numerical solution of the OS BVP (3.8)–(3.12) is carried out for disturbances

of arbitrary wavenumbers. The Chebyshev spectral collocation method (Schmid &
Henningson 2001) is used to recast the OS BVP into a matrix equation (Or 1997;
Or & Kelly 1998),

2β2B∂tΦ =AΦ + (Fc cos t+ Fs sin t)Φ, (5.1)

where Φ =[φ0, φ1, . . . , φm, η]
T is a column matrix and A, B, Fc and Fs are (m+ 1)×

(m+ 1) square matrices. As the Chebyshev polynomials are defined over the domain
[−1, 1], the liquid layer domain y ∈ [−1, 0] is shifted to z ∈ [−1, 1] by applying a
transformation y= (z− 1)/2. Consequently, the corresponding derivatives are replaced
by D→ 2D, D2

→ 4D2, and so on. Next, the matrix equation (5.1) is resolved based
on the Floquet theory along with the Newton–Raphson iterative scheme (Or 1997). In
this method, any disturbance can be expressed in the form of a truncated complex
Fourier series,

Φ(t)=
n=k∑

n=−k

Φn exp[(in+ δ)t], (5.2)

where Φn represents the constant coefficient vectors and δ = δr + iδi is the complex
Floquet exponent. By substituting (5.2) into (5.1) and collecting the coefficients of
Fourier components exp[(in+ δ)t], we obtain a matrix difference equation,

[A− 2β2(δ + in)B]Φn =−[FΦn+1 + F∗Φn−1], (5.3)

where F= (Fc+ iFs)/2 and F∗ is the complex conjugate of F. At n= k, the difference
equation (5.3) is reduced to the following form:

Φk =−[A− 2β2(δ + ik)B]−1F∗Φk−1 =RkΦk−1, (5.4)
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M β Analytical result (10× L(β)) Numerical result (10× L(β)) Yih (1968)

0 1 2.7858 2.7869 2.7859
0.005 1 2.8793 2.8798 —
0.01 1 2.9749 2.9759 —

TABLE 1. Comparison between the long-wavelength analytical result and the numerical
result for β = 1 and ζ ∗ = 0.

where Rk = −[A − 2β2(δ + ik)B]−1F∗. By successive backward substitution, we can
show

Φn =RnΦn−1, where Rn =−[A− 2β2(δ + in)B+ FRn+1]
−1F∗, 1 6 n 6 (k− 1).

(5.5)
At n=−k, the difference equation (5.3) is reduced to the following form:

Φ−k =−[A− 2β2(δ − ik)B]−1FΦ−k+1 =R−kΦ−k+1, (5.6)

where R−k = −[A − 2β2(δ − ik)B]−1F. Similarly, by successive forward substitution,
we can show

Φ−n=R−nΦ−n+1, where R−n=−[A−2β2(δ− in)B+F∗R−(n+1)]
−1F, 16n6 k−1.

(5.7)
Using (5.5) and (5.7), at n = 0, (5.3) can be recast into a homogeneous algebraic
system,

[A− 2β2δB+ FR1 + F∗R−1]Φ0 = 0. (5.8)

Hence, for a non-trivial solution of Φ0, the determinant must vanish, which implies

det[A− 2β2δB+ FR1 + F∗R−1] = 0. (5.9)

Here, we shall focus solely on the synchronous solutions (δi = 0). In particular,
the matrix equation (5.1) belongs to a class of equations that cannot describe the
subharmonic solutions (Or 1997).

All of the numerical computations are performed for 21 Chebyshev modes (m= 21)
and 28 Fourier modes (k = 14), which is sufficient to achieve accurate numerical
results. Further, if the number of Chebyshev modes is increased by 2, the results
change by less than 0.1 % only in the higher-frequency regime (β > 6). The validation
of the numerical result and the long-wavelength analytical result can be found in table
1. In order to explore the finite wavenumber results and to compare with those for
a Newtonian liquid (Or 1997), the numerical test is carried out for two different
values of the viscoelastic parameter M when χ = 1 and ζ = 0.05 are fixed. Here,
we choose M = 0 and M = 0.005. The results are illustrated in figure 3. Unlike the
long-wave analytical result, the U-shaped neutral curves appear in different frequency
ranges at k→ 0. If the wavenumber is increased gradually, branch points are detected
on the U-shaped neutral curves. This fact indicates that one branch may continue
with the Reynolds number at long wavelength (k→ 0), while another branch may
continue with the frequency at finite wavenumber. Indeed, the new finite-k neutral
curves, indicated by an oblique thick line (M = 0.005) and an oblique thin line
(M = 0), emerge from the branch points and grow monotonically with β until the
curves intersect the next U-shaped neutral curve. In fact, these new finite-k oblique
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FIGURE 3. (a) The neutral curve in the (β, Re) plane when χ = 1 and ζ = 0.05. Here, the
thick and thin lines stand for M = 0.005 and M = 0 respectively. The branch points are
indicated by solid circles (M= 0.005) and stars (M= 0). (b) The variation of the critical
wavenumber as a function of β. Here, the solid and dashed lines stand for M= 0.005 and
M = 0 respectively. The points stand for the result of Or (1997).

neutral curves are no longer confined to the regime of long-wave unstable frequency
bandwidths. Instead, these curves lie in the regime of long-wave stable frequency
bandwidths. Consequently, the long-wave stabilizing effect of viscoelasticity in these
stable frequency bandwidths is no longer valid when the wavenumber is finite. In
particular, in these stable frequency bandwidths, the instability is dominated by the
finite wavenumber modes. In addition, in the long-wave frequency bandwidths, the
most unstable mode is intensified in the presence of the viscoelastic parameter, which
fully agrees with the analytical result discussed in § 4. Obviously, the viscoelastic
parameter has a significant impact on the instability in the higher-frequency zone
β > 3; i.e. the presence of viscoelasticity makes the intensities of the long-wave and
finite wavenumber modes stronger. The separation distance between branch points
corresponding to Newtonian liquid and non-Newtonian liquid grows successively with
increasing value of M. Moreover, the finite-k oblique neutral curves emerging from the
branch points have finite critical wavenumbers kc, which alter with the dimensionless
oscillation frequency β (see figure 3b). It should be noted that the viscoelastic
parameter has a significant influence also on the finite critical wavenumbers kc. It is
observed that the critical wavenumbers corresponding to all of the branches of the
finite-k neutral curves grow monotonically with β, and this fact is in contrast to the
result for Newtonian liquid (Or 1997), where the critical wavenumbers kc associated
with the higher branches of the finite-k neutral boundaries approach a constant value
asymptotically at sufficiently large frequency β.

Now, the neutral curves are analysed thoroughly in the local neighbourhood of the
branch points. The first branch point is detected at β = 2.4925, which is different
from the value of β = 2.563 obtained for a Newtonian liquid (Or 1997). Figure 4(a)
shows the neutral curves in the (k,Re) plane for two different values of β. The lower
solid neutral curve shows a monotonic shape at a slightly lower value, β = 2.4922,
than the branch point. Therefore, this neutral curve has a single minimum at k→ 0,
which signals that the long-wave mode is more unstable than the finite wavenumber
mode. On the contrary, the upper solid neutral curve has a non-monotonic shape
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FIGURE 4. (a) The neutral curves in the local neighbourhood of the first branch point
when χ = 1, M = 0.005 and ζ = 0.05. (b) The neutral curves in the local neighbourhood
of the second branch point. (c) The neutral curves in the local neighbourhood of the third
branch point.

at a slightly higher value, β = 2.4935, than the branch point. The local minimum
is detected at k = 0.22, which signals that the finite wavenumber mode is more
dangerous than the long-wave mode. Obviously, the long-wave instability switches to
the finite wavenumber instability exactly at the branch point. In fact, this switching
process proceeds in a continuous fashion, which is illustrated by a dash-dotted line
in figure 4(a). The variation of the neutral curves in the local neighbourhood of the
second branch point, β = 5.1590, is shown in figure 4(b). It should be noted that
both curves show a non-monotonic shape, which is in contrast to the previous result.
When β = 5.1586, the neutral curve has a local minimum at k→ 0, which indicates
the dominant effect of the long-wave mode. On the other hand, the local minimum
shifts to k = 0.46 at β = 5.1610, which indicates the dominant effect of the finite
wavenumber mode. Again, the long-wave instability switches to the finite wavenumber
instability through the second branch point, but in a discontinuous fashion. It seems
that a competition occurs between the long-wave mode and the finite wavenumber
mode in the vicinity of the branch points. Figure 4(c) illustrates the resulting neutral
curves in the local neighbourhood of the third branch point at β = 7.72. In this
case, the lower solid neutral curve shows a monotonic shape at a slightly lower
value, β = 7.7165, than the branch point. Therefore, this neutral curve has a single
minimum at k→ 0, which signals that the long-wave mode is more unstable than
the finite wavenumber mode. On the contrary, the upper solid neutral curve has a
non-monotonic shape at a slightly higher value, β = 7.725, than the branch point. The
local minimum appears at k= 0.073, which is a small value in comparison with the
previous two cases. However, the dash-dotted curve representing the stability limit
grows monotonically with wavenumber k. Therefore, in this case also, the long-wave
instability switches to the finite wavenumber instability through the third branch point.
However, this switching process proceeds in a continuous fashion as in the first case.

Now, the numerical test is performed for a comparatively large value of the
viscoelastic parameter, M = 0.01, as proposed by Dandapat & Gupta (1975). The
associated results are depicted in figure 5(a). Here, we shall focus only on the
third U-shaped neutral curve because the finite wavenumber neutral curve emerging
from the branch point of the third U-shaped neutral curve is no longer an oblique
line. Therefore, the finite wavenumber neutral curve requires thorough investigation
close to the third branch point in the (k, Re) plane. To do this, the numerical test
is performed with β = 7.94, a value on the long-wave neutral curve. Figure 5(b)
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FIGURE 5. (a) The neutral curves in the (β, Re) plane when M=0.01, χ =1 and ζ =0.05.
Here, the thick and thin lines represent the results corresponding to the long-wavelength
and finite wavelength analyses. The branch points are indicated by solid circles. (b) The
scenario of neutral curves in the (k, Re) plane for different values of β.

shows the associated neutral curve whose local minimum appears at k→ 0, and this
fact indicates the dominant effect of the long-wave mode on the instability. If β
continues to increase gradually along the finite wavenumber neutral curve through the
branch point, the local minimum shifts to the finite wavenumber region, and this fact
indicates the dominant effect of the finite wavenumber mode on the instability. Again,
the long-wave instability switches to the finite wavenumber instability. The associated
neutral curves exhibit a tongue-like shape. In this case, there exists a stable bandwidth
because the finite wavenumber neutral curve emerging from the branch point of the
third U-shaped long-wave neutral curve never intersects the next U-shaped long-wave
neutral curve.

6. Conclusions
A linear stability analysis of a viscoelastic liquid film on an oscillating plane is

carried out for disturbances of arbitrary wavenumbers. The Orr–Sommerfeld equation
is derived for an unsteady base flow. In the long-wave regime, the analytical solution
of the time-dependent Orr–Sommerfeld equation is supplied by using the Floquet
theory along with the normal mode decomposition. It is noticed that the long-wave
modes can grow only in the separated unstable bandwidths of the imposed frequency.
In these unstable frequency bandwidths, the most unstable mode becomes stronger
in the presence of the viscoelastic parameter. Outside these unstable frequency
bandwidths, all infinitesimal disturbances will decay, i.e. the long-wavelength analysis
predicts some stable bandwidths of the imposed frequency. Further, in each unstable
frequency bandwidth, the long-wave modes are unstable only if the associated
Reynolds number exceeds a critical value, or, equivalently, if the amplitude of
the horizontal oscillation exceeds a critical value. In addition, the long-wave unstable
mode is attenuated in the presence of surface tension.

The Chebyshev spectral collocation method is used to resolve the OS BVP for
disturbances of arbitrary wavenumbers. It is observed that branch points appear on
the long-wave neutral curves when the wavenumber continues to increase. The finite
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wavenumber neutral curves emerging from the branch points of the long-wave neutral
curves are no longer confined to the separated unstable bandwidths of the imposed
frequency. Instead, these curves extend into the entire regime of the long-wave
stable bandwidths of the imposed frequency. Therefore, there does not exist any
stable frequency bandwidth in the finite wavenumber regime where the viscoelastic
parameter shows a stabilizing effect. This fact is in contrast to the result in the
long-wave regime, where instability occurs only in the separated unstable bandwidths
of the imposed frequency. However, at M = 0.01, a stable frequency bandwidth is
still found in the large-frequency regime when the wavenumber is finite. Moreover, it
is shown that the long-wave instability switches to the finite wavenumber instability
through the branch points in either a continuous or a discontinuous fashion. Therefore,
one can conclude that the finite wavenumber instability is more dangerous than the
long-wave instability in some frequency ranges.
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