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We introduce the notion of a viscosity solution for the first-order Hamilton–Jacobi
equation, in the more general setting of manifolds, to obtain a weak KAM theory
using only tools from partial differential equations. This work should be accessible to
people with no prior knowledge of the subject.

We introduce the notion of viscosity solutions for the Hamilton–Jacobi equation
(HJE), which is a first-order partial differential equation (PDE). There is also an
extensive literature on viscosity solutions of second-order PDEs, but we do not
cover this topic at all (see, for example, [8]).

The notion of a viscosity solution is due to Crandall and Lions (see [6]). There
are two excellent books on the subject: one by Barles [3] and another by Bardi
and Capuzzo-Dolceta [2]. An introduction to viscosity solutions can be found in
Evans [9]. Our treatment has been significantly influenced by the content of these
three books. Although many things are standard, we will cover the theory on general
manifolds since this is the right setting for weak KAM theory. This is probably
the first time that a general introduction on viscosity solutions on manifolds has
appeared in print. Anything that cannot be found in the standard references is the
result of joint work with Antonio Siconolfi (see [11, 12]). Of course, our treatment
follows some unpublished notes [10]. We hardly touch the dynamical implications
of the theory, and refer the interested reader to Bernard’s companion notes [4].

We would like to apologize for the small number of references. Nowadays, for
a work of this size, giving a full set of references on this subject is an impossible
task. A look at the references in [2] shows that doing so 15 years ago would have
been very difficult. However, a larger set of references can be easily found on the
Internet.

We denote by M a connected, paracompact C∞ manifold without boundary. For
any x ∈ M , the tangent and cotangent spaces of M at x are TxM and T ∗

x M ,
respectively. The tangent and cotangent bundle are TM and T ∗M , respectively.

∗This paper is a late addition to the papers surveying active areas in partial differential equa-
tions, published in issue 141.2, which were based on a series of mini-courses held in the Interna-
tional Centre for Mathematical Sciences (ICMS) in Edinburgh during 2010.
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1194 A. Fathi

A point in TM (respectively, T ∗M) will be denoted by (x, v) (respectively, (x, p))
where x ∈ M , and v ∈ TxM (respectively, p ∈ T ∗

x M). With this notation the
canonical projection π : TM → M (respectively, π∗ : T ∗M → M) is nothing but
(x, v) �→ x (respectively, (x, p) �→ x).

We will assume in what follows that M is endowed with a C∞ Riemannian metric
g. For v ∈ TxM , we will set ‖v‖x = (gx(v, v))1/2. We will also denote by ‖ · ‖x the
norm on T ∗

x M dual to ‖ · ‖x on TxM .

1. The different forms of the Hamilton–Jacobi equation

We will suppose that M is a fixed manifold, and that H : T ∗M → R is a continuous
function, which we will call the Hamiltonian.

Definition 1.1 (stationary HJE). The HJE associated to H is the equation

H(x, dxu) = c,

where c is some constant.
A first good example to keep in mind is

H(x, p) = 1
2‖p‖2

x + V (x),

where the norm comes from the Riemannian metric on the manifold M , and where
V : M → R is a continuous (even C∞-function). An even better example is to
modify H in the following way. Consider a continuous vector field X : M → TM ,
and define H as

H(x, p) = 1
2‖p‖2

x + V (x) + p(X(x)).

A classical solution of the HJE H(x, dxu) = c on the open subset U of M is a C1

map u : U → R such that H(x, dxu) = c for each x ∈ U .

We will usually deal only with the case H(x, dxu) = 0, since we can reduce the
general case to that particular case by replacing the Hamiltonian H by Hc defined
as Hc(x, p) = H(x, p) − c.

Definition 1.2 (evolutionary HJE). The evolutionary HJE associated to the
Hamiltonian H is the equation

∂u

∂t
(t, x) + H

(
x,

∂u

∂x
(t, x)

)
= 0.

A classical solution to this evolutionary HJE on the open subset W of R × T ∗M
is a C1 map u : W → R such that

∂u

∂t
(t, x) + H

(
x,

∂u

∂x
(t, x)

)
= 0

for each (t, x) ∈ W .

The evolutionary form can be reduced to the stationary form by introducing the
Hamiltonian Ĥ : T ∗(R × M) defined as

Ĥ(t, x, s, p) = s + H(x, p),

where (t, x) ∈ R × M , and (s, p) ∈ T ∗
(t,x)(R × M) = R × T ∗

x M .
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It is also possible to consider a time-dependent Hamiltonian defined on an open
subset of R × M . Consider, for example, a Hamiltonian H : R × TM∗ → R. The
evolutionary form of the HJE for that Hamiltonian is

∂u

∂t
(t, x) + H

(
t, x,

∂u

∂x
(t, x)

)
= 0.

A classical solution of that equation on the open subset W of R × M is, of course,
a C1 map u : W → R such that

∂u

∂t
(t, x) + H

(
t, x,

∂u

∂x
(t, x)

)
= 0

for each (t, x) ∈ W . This form of the HJE can also be reduced to the stationary
form by introducing the Hamiltonian H̃ : T ∗(R × M) → R defined as

H̃(t, x, s, p) = s + H(t, x, p).

It is usually impossible to find global C1 solutions of the HJE H(x, dxu) = c. For
example, if the Hamiltonian is of the form

H(x, p) = 1
2‖p‖2

x + V (x),

and u is a classical solution of H(x, dxu) = c, we get c = 1
2‖dxu‖2

x + V (x) � V (x),
hence c � supM V . If we assume that M is compact, then u has at least two
distinct critical points (minimum and maximum) x1, x2. At these critical points we
get c = H(x, dxiu) = V (xi), since dxiu = 0. Therefore, on the compact manifold
M , a classical solution of H(x, du) = c for such a Hamiltonian can only occur
at c = max V . Moreover, if this equation has a classical solution, then V must
necessarily achieve its maximum at two distinct points. In particular, if we choose
V such that its maximum on the compact manifold M is achieved at a single point,
then the HJE does not have classical solutions.

2. Viscosity solutions

We will suppose in this section that M is a manifold and H : T ∗M → M is a
Hamiltonian.

Since it is generally impossible to find C1-solutions to the HJE, one has to admit
more general functions. A first attempt is to consider Lipschitz functions.

Definition 2.1 (very weak solution). We say that u : M → R is a very weak solu-
tion of H(x, dxu) = c if it is Lipschitz, and it satisfies H(x, dxu) = c almost
everywhere (this makes sense since the derivative of u exists almost everywhere
by Rademacher’s theorem).

This is too general because it gives too many solutions. The notion of a weak
solution is useful if it gives a unique or, at least, a small number of solutions. This is
not satisfied by this notion of a very weak solution, as can be seen in the following
example.
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Example 2.2. We suppose that M = R, so T ∗M = R × R, and we take H(x, p) =
p2 −1. Then any continuous piecewise C1-function u with derivative taking only the
values ±1 is a very weak solution of H(x, dxu) = 0. This is already too large, but
there are even weaker solutions. In fact, if A is any measurable subset of R, then
the function

fA(x) =
∫ x

0
2χA(t) − 1 dt,

where χA is the characteristic function of A, is Lipschitz with derivative ±1 almost
everywhere.

Therefore, we have to define a more stringent notion of solutions. Crandall and
Lions introduced the notion of viscosity solutions (see [6, 7]).

Definition 2.3 (viscosity solution). A function u : V → R is a viscosity subso-
lution of H(x, dxu) = c on the open subset V ⊂ M if, for every C1-function
φ : V → R and every point x0 ∈ V such that u − φ has a maximum at x0, we
have H(x0, dx0φ) � c.

A function u : V → R is a viscosity supersolution of H(x, dxu) = c on the open
subset V ⊂ M if, for every C1-function ψ : V → R and every point y0 ∈ V such
that u − ψ has a minimum at y0, we have H(y0, dy0ψ) � c.

A function u : V → R is a viscosity solution of H(x, dxu) = c on the open subset
V ⊂ M if it is both a subsolution and a supersolution.

This definition is reminiscent of the definition of distributions: since we cannot
restrict to differentiable functions, we use test functions (namely, φ or ψ) which are
smooth and on which we can test the condition. We first see that this is indeed a
generalization of classical solutions.

Theorem 2.4. A C1-function u : V → R is a viscosity solution of H(x, dxu) = c
on V if and only if it is a classical solution.

In fact, the C1-function u is a viscosity subsolution (respectively, supersolution)
of H(x, dxu) = c on V if and only if H(x, dxu) � c (respectively, H(x, dxu) � c)
for each x ∈ V .

Proof. We will prove the statement about the subsolution case. Suppose that the
C1-function u is a viscosity subsolution. Since u is C1, we can use it as a test function.
But u − u = 0, therefore every x ∈ V is a maximum, hence H(x, dxu) � c for each
x ∈ V .

Conversely, suppose H(x, dxu) � c for each x ∈ V . If φ : V → R is C1 and u − φ
has a maximum at x0, then the differentiable function u−φ must have derivative 0
at the maximum x0. Therefore, dx0φ = dx0u, and H(x, dx0φ) = H(x, dx0u) � c.

To get a feeling for these viscosity notions, it is better to restate the definitions
slightly. We first note that the condition imposed on the test functions (φ or ψ)
in the definition above is on the derivative. Therefore, to check the condition, we
can change our test function by a constant. Suppose now that φ (respectively, ψ)
is C1 and u − φ (respectively, u − ψ) has a maximum (respectively, minimum) at
x0 (respectively, y0). This means that u(x0) − φ(x0) � u(x) − φ(x) (respectively,
u(y0) − ψ(y0) � u(x) − ψ(x)). As we said, since we can add to φ (respectively, ψ)
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(x0, u(x0))

graph (u)

graph (  )φ

Figure 1. Subsolution: φ � u, u(x0) = φ(x0) ⇒ H(x0, dx0φ) � c.

(x0, u(x0)) graph (u)

graph (  )φ

Figure 2. Supersolution: ψ � u, u(x0) = ψ(x0) ⇒ H(x0, dx0ψ) � c.

the constant u(x0) − φ(x0) (respectively, u(y0) − ψ(y0)), these conditions can be
replaced by φ � u (respectively, ψ � u) and u(x0) = φ(x0) (respectively, u(y0) =
ψ(y0)). Therefore, we obtain an equivalent definition for the subsolution and the
supersolution.

Definition 2.5 (viscosity solution). A function u : V → R is a viscosity subsolu-
tion of H(x, dxu) = c on the open subset V ⊂ M if, for every C1-function φ : V → R,
with φ � u everywhere, at every point x0 ∈ V where u(x0) = φ(x0), we have
H(x0, dx0φ) � c (see figure 1).

A function u : V → R is a viscosity supersolution of H(x, dxu) = c on the open
subset V ⊂ M if, for every C1-function ψ : V → R, with u � ψ everywhere, at every
point y0 ∈ V where u(y0) = ψ(y0), we have H(y0, dy0ψ) � c (see figure 2).

To see what the viscosity conditions mean, we test them on example 2.2.

Example 2.6. We suppose M = R, so T ∗M = R×R, and we take H(x, p) = p2−1.
Any Lipschitz function u : R → R with Lipschitz constant � 1 is in fact a viscosity
subsolution of H(x, dxu) = 0. To check this, consider φ a C1-function and x0 ∈ R

such that φ(x0) = u(x0) and φ(x) � u(x), for x ∈ R. We can write

φ(x) − φ(x0) � u(x) − u(x0) � −|x − x0|.

For x > x0, this gives
φ(x) − φ(x0)

x − x0
� −1,

thereby passing to the limit φ′(x0) � −1. On the other hand, if x < x0, we obtain

φ(x) − φ(x0)
x − x0

� 1,

hence φ′(x0) � 1. This yields |φ′(x0)| � 1 and, therefore,

H(x0, φ
′(x0)) = |φ′(x0)|2 − 1 � 0.

So, in fact, any very weak subsolution (that is, a Lipschitz function u such that
H(x, dx, u) � 0 almost everywhere) is a viscosity subsolution. This is due to the
fact that, in this example, the Hamiltonian is convex in p (see corollary 10.5).

Of course, the two smooth functions x �→ x and x �→ −x are the only two
classical solutions in that example. It is easy to check that the absolute value
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Figure 3. Graphs of ψ(x) � −|x| with ψ(0) = 0.

function x �→ |x|, which is a subsolution and even a solution on R \ {0} (where it is
smooth and a classical solution), is not a viscosity solution on the whole of R. In
fact the constant function equal to 0 is less than the absolute value everywhere with
equality at 0, but we have H(0, 0) = −1 < 0, and this violates the supersolution
condition.

The function x �→ −|x| is a viscosity solution. It is smooth and a classical solution
on R \ {0}. It is a subsolution everywhere. Moreover, any function φ with φ(0) = 0
and φ(x) � −|x| everywhere cannot be differentiable at 0. This is obvious from
seeing the graphs (see figure 3).

Formally, it results from the fact that both φ(x)−x and φ(x)+x have a maximum
at 0.

Exercise 1. Suppose that H : T ∗M → R is a continuous Hamiltonian on M . For
c ∈ R, define the Hamiltonian Hc : M → R by

Hc(x, p) = H(x, p) − c.

Show that u : M → R is a viscosity subsolution (respectively, supersolution,
solution) of

H(x, dxu) = c

if and only if it is a viscosity subsolution (respectively, supersolution, solution) of

Hc(x, dxu) = 0.

Exercise 2. If we consider an open interval I ⊂ R, then its cotangent space is
canonically identified to I ×R. We consider the Hamiltonian H : I ×R → R defined
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by H(t, p) = p. In this case, for c ∈ R, the HJE H(t, dtu) = c can be written as

u′(t) = c.

(i) Show that u : R → R is a viscosity subsolution (respectively, supersolution) of
u′(t) = c if and only if v(t) = u(t)− ct is a viscosity subsolution (respectively,
supersolution) of v′(t) = 0.

(ii) Show that any non-increasing (respectively, non-decreasing) function u : I →
R is a viscosity subsolution (respectively, supersolution) of u′(t) = 0.

(iii) More generally, for c ∈ R, show that any continuous function ρ : R → R such
that t �→ ρ(t) − ct is non-increasing is a subsolution of u′(t) = c.

(iv) Find the classical subsolutions, supersolutions and solutions of u′(t) = c.

Exercise 3. Suppose H : T ∗M → R is a Hamiltonian, and φ : M → R is a C1-
function. Define the Hamiltonian Hφ : M → R by

Hφ(x, p) = H(x, p + dxφ).

Next, show that v is a subsolution (respectively, supersolution, or solution) of
Hφ(x, dxv) = c if and only if u = v + φ is a subsolution (respectively, superso-
lution, or solution) of H(x, dxu) = c.

Exercise 4. Suppose H : T ∗M → R is a Hamiltonian. Let u : M → R be a con-
tinuous function, and let c ∈ R be a constant. We define U : R × M → R by

U(x, t) = u(x) − ct.

(i) Show that if u is a subsolution (respectively, supersolution or solution) of the
HJE

H(x, dxu) = c, (HJ)

then U is a viscosity subsolution (respectively, supersolution or solution) of
the evolutionary HJE

∂U

∂t
(t, x) + H

(
x,

∂U

∂x
(t, x)

)
= 0 (EHJ)

on R × M .

(ii) Conversely, if a, b ∈ R with a < b, and U is a viscosity subsolution (respec-
tively, supersolution, or solution) of (EHJ) on ]a, b[ ×M , then u is a subsolu-
tion (respectively, supersolution or solution) of (HJ) on M .

3. Lower and upper differentials

We need to introduce the notion of lower and upper differentials.

Definition 3.1. If u : M → R is a map defined on the manifold M , we say that
the linear form p ∈ T ∗

x0
M is a lower (respectively, upper) differential of u at x0 ∈ M

if we can find a neighbourhood V of x0 and a function φ : V → R, differentiable
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at x0, with φ(x0) = u(x0) and dx0φ = p, and such that φ(x) � u(x) (respectively,
φ(x) � u(x)), for every x ∈ V .

We denote by D−u(x0) (respectively, D+u(x0)) the set of lower (respectively,
upper) differentials of u at x0.

Exercise 5. Consider the function u : R → R, x �→ |x|. For each x ∈ R, find
D−u(x) and D+u(x). Do the same for u(x) = −|x|.

Definition 3.1 is not the one usually given for M an open set of a Euclidean space
(see [2, 3, 5]). It is nevertheless equivalent to the usual definition, as we now show.

Proposition 3.2. Let u : U → R be a function defined on the open subset U of
R

n. Then the linear form p is in D−u(x0) if and only if

lim inf
x→x0

u(x) − u(x0) − p(x − x0)
‖x − x0‖

� 0.

In the same way, p ∈ D+u(x0) if and only if

lim sup
x→x0

u(x) − u(x0) − p(x − x0)
‖x − x0‖

� 0.

Proof. Supposing p ∈ D−u(x0), we can find a neighbourhood V of x0 and a function
φ : V → R, differentiable at x0, with φ(x0) = u(x0) and dx0φ = p, and such that
φ(x) � u(x) for every x ∈ V . Therefore, for x ∈ V , we can write

φ(x) − φ(x0) − p(x − x0)
‖x − x0‖

� u(x) − u(x0) − p(x − x0)
‖x − x0‖

.

Since p = dx0φ, the left-hand side tends to 0 when x → x0. Therefore,

lim inf
x→x0

u(x) − u(x0) − p(x − x0)
‖x − x0‖

� 0.

Conversely, suppose that p ∈ R
n∗ satisfies

lim inf
x→x0

u(x) − u(x0) − p(x − x0)
‖x − x0‖

� 0.

We pick r > 0 such that the ball B̊(x0, r) ⊂ U and, for h ∈ R
n such that 0 < ‖h‖ <

r, we set

ε(h) = min
(

0,
u(x0 + h) − u(x0) − p(h)

‖h‖

)
.

It is easy to see that limh→0 ε(h) = 0. We can therefore set ε(0) = 0. The function
φ : B̊(x0, r) → R defined by φ(x) = u(x0) + p(x − x0) + ‖x − x0‖ε(x − x0) is differ-
entiable at x0, with derivative p, it is equal to u at x0 and satisfies φ(x) � u(x) for
every x ∈ B̊(x0, r).

Proposition 3.3. Let u : M → R be a function defined on the manifold M .

(i) For each x in M , we have D+u(x) = −D−(−u)(x) = {−p | p ∈ D−(−u)(x)}
and D−u(x) = −D+(−u)(x).
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(ii) For each x in M , both sets D+u(x), D−u(x) are closed convex subsets of
T ∗

x M .

(iii) If u is differentiable at x, then D+u(x) = D−u(x) = {dxu}.

(iv) If both sets D+u(x), D−u(x) are non-empty, then u is differentiable at x.

(v) If v : M → R is a function with v � u and v(x) = u(x), then D−v(x) ⊂
D−u(x) and D+v(x) ⊃ D+u(x).

(vi) If U is an open convex subset of a Euclidean space and u : U → R is con-
vex, then D−u(x) is the set of subdifferentials of u at x ∈ U . In particular,
D+u(x) �= ∅ if and only if u is differentiable at x.

(vii) Suppose that d is the distance obtained from the Riemannian metric g on M .
If u : M → R is Lipschitz for d with Lipschitz constant Lip(u), then, for any
p ∈ D±u(x), we have ‖p‖x � Lip(u).

In particular, if M is compact, then the sets

D±u = {(x, p) | p ∈ D±u(x), x ∈ M}

are relatively compact in T ∗M .

Proof. Part (i) and the convexity claim in part (ii) are obvious from definition 3.1.
To prove the fact that D+u(x0) is closed for a given x0 ∈ M , we can assume

that M is an open subset of R
k. We will apply proposition 3.2. If pn ∈ D+u(x0)

converges to p ∈ R
k∗, we can write

u(x) − u(x0) − p(x − x0)
‖x − x0‖

� u(x) − u(x0) − pn(x − x0)
‖x − x0‖

+ ‖pn − p‖.

Fixing n, and letting x → x0, we obtain

lim sup
x→x0

u(x) − u(x0) − p(x − x0)
‖x − x0‖

� ‖pn − p‖.

If we let n → ∞, we see that p ∈ D+u(x0).
We now prove (iii) and (iv) together. If u is differentiable at x0 ∈ M , then obvi-

ously dx0u ∈ D+u(x0) ∩ D−u(x0). Supposing now that both D+u(x0) and D−u(x0)
are not empty, pick p+ ∈ D+u(x0) and p− ∈ D−u(x0). For small h, we have

p−(h) + ‖h‖ε−(h) � u(x0 + h) − u(x0) � p+(h) + ‖h‖ε+(h), (∗)

where both ε−(h) and ε+(h) tend to 0, a h → 0. If v ∈ R
n, for sufficiently small

t > 0, we can replace h by tv in the inequalities (∗) above. Forgetting the middle
term and dividing by t, we obtain

p−(v) + ‖v‖ε−(tv) � p+(v) + ‖v‖ε+(tv).

Letting t tend to 0, we see that p−(v) � p+(v) for every v ∈ R
n. Replacing v

by −v gives the reverse inequality p+(v) � p−(v), and therefore p− = p+. This
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implies that both D+u(x0) and D−u(x0) are reduced to the same singleton {p}.
The inequality (∗) above now gives

p(h) + ‖h‖ε−(h) � u(x0 + h) − u(x0) � p(h) + ‖h‖ε+(h),

which clearly implies that p is the derivative of u at x0.
Part (v) follows routinely from the definition.
To prove (vi), we note that, by convexity, u(x0 + th) � (1 − t)u(x0) + tu(x0 + h).

Therefore, for t > 0, we have

u(x0 + h) − u(x0) � u(x0 + th) − u(x0)
t

.

If p is a linear form, for t > 0 we obtain

u(x0 + h) − u(x0) − p(h)
‖h‖ � u(x0 + th) − u(x0) − p(th)

‖th‖ .

If p ∈ D−u(x0), then the lim inf as t → 0 of the right-hand side is � 0. Therefore,
u(x0 + h) − u(x0) − p(h) � 0, which shows that p is a subdifferential. Conversely,
a subdifferential is clearly a lower differential.

It remains to prove (vii). Suppose, for example, that φ : V → R is defined on some
neighbourhood V of a given x0 ∈ M , that it is differentiable at x0, and that φ � u
on V , with equality at x0. If v ∈ Tx0M is given, we pick a C1 path γ : [0, δ] → V ,
with δ > 0, γ(0) = x0, and γ̇(0) = v. We have, for all t ∈ [0, δ],

|u(γ(t)) − u(x0)| � Lip(u)d(γ(t), x0)

� Lip(u)
∫ t

0
‖γ̇(s)‖ ds.

Therefore,

u(γ(t)) − u(x0) � − Lip(u)
∫ t

0
‖γ̇(s)‖ ds.

Since φ � u on V , with equality at x0, it follows that

φ(γ(t)) − φ(x0) � − Lip(u)
∫ t

0
‖γ̇(s)‖ ds.

Dividing by t > 0, and letting t → 0, we get

dx0φ(v) � − Lip(u)‖v‖.

Since v ∈ Tx0M is arbitrary, we can change v into −v in the inequality above to
conclude that we also have

dx0φ(v) � Lip(u)‖v‖.

It then follows that ‖dx0φ‖ � Lip(u).
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Exercise 6. Suppose V is an open subset of M , and u : V → R is a continuous
function.

(i) Show that we can find a C∞-function φ : V → R such that φ � u (respectively,
φ � u) everywhere. (For an indication, pick a C∞ partition of unity (ϕi)i∈I

such that the support of each ϕi is compact, and consider ci the maximum of
u on the compact support of ϕi.)

(ii) Moreover, supposing that ε : V → ]0, +∞[ is a continuous function, show that
one can find a C∞-function φ : V → R such that u � φ � u + ε.

Lemma 3.4. If u : M → R is continuous and p ∈ D+u(x0) (respectively, p ∈
D−u(x0)), there exists a C1-function φ : M → R, such that φ(x0) = u(x0), dx0φ = p
and φ(x) > u(x) (respectively, φ(x) < u(x)) for x �= x0.

Moreover, if W is any neighbourhood of x0 and C > 0, we can choose φ such
that φ(x) � u(x) + C, for x /∈ W (respectively, φ(x) � u(x) − C).

Proof. Assume first that M = R
k. To simplify notation, we can assume x0 = 0.

Moreover, subtracting from u the affine function x �→ u(0) + p(x). We can assume
u(0) = 0 and p = 0. The fact that 0 ∈ D+u(0) gives

lim sup
x→0

u(x)
‖x‖ � 0.

If we take the non-negative part u+(x) = max(u(x), 0) of u, this gives

lim
x→0

u+(x)
‖x‖ = 0. (♠)

If we set
cn = sup{u+(x) | 2−(n+1) � ‖x‖ � 2−n},

then cn is finite and � 0, because u+ � 0 is continuous. Moreover, using that
2nu+(x) � u+(x)/‖x‖ for ‖x‖ � 2−n, and the limit in (♠) above, we obtain

lim
n→∞

[
sup
m�n

2mcm

]
= 0. (♥)

We now consider θ : R
k → R a C∞ bump function with θ = 1 on the set {x ∈ R

k |
1
2 � ‖x‖ � 1}, and whose support is contained in {x ∈ R

k | 1
4 � ‖x‖ � 2}. We

define the function ψ : R
k → R by

ψ(x) =
∑
n∈Z

(cn + 2−2n)θ(2nx).

This function is well defined at 0 because every term is then 0. For x �= 0 we have
θ(2nx) �= 0 only if 1

4 < ‖2nx‖ < 2. Taking the logarithm in base 2, we see that this
can only happen if −2 − log2 ‖x‖ < n < 1 − log2 ‖x‖. Therefore, this can happen
for at most three consecutive integers n, hence the sum is also well defined for
x �= 0. Moreover, if x �= 0, the set

Vx = {y �= 0 | −1 − log2 ‖x‖ < − log2 ‖y‖ < 1 − log2 ‖x‖}
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is a neighbourhood of x and, for all y ∈ Vy,

ψ(y) =
∑

−3−log2 ‖x‖<n<2−log2 ‖x‖
(cn + 2−2n)θ(2ny). (∗)

This sum is finite with at most five terms. Therefore, θ is C∞ on R
k \ {0}.

We now check that ψ is continuous at 0. Using equation (∗) and the limit (♥),
we see that

0 � ψ(x) �
∑

−3−log2 ‖x‖<n<2−log2 ‖x‖
(cn + 2−2n)

� 5 sup
n>−3−log2 ‖x‖

(cn + 2−2n) → 0 as x → 0.

To show that ψ is C1 on the whole of R
k with derivative 0 at 0, it suffices to show

that dxψ tends to 0 as ‖x‖ → 0. Differentiating equation (∗), we see that

dxψ =
∑

−3−log2 ‖x‖<n<2−log2 ‖x‖
(cn + 2−2n)2nd2nxθ.

Since θ has compact support, K = supx∈Rn ‖dxθ‖ is finite. The equality above and
the limit in (♥) give

‖dxψ‖ � 5K sup{2ncn + 2−n | n > −3 − log2 ‖x‖},

but the right-hand side goes to 0 when ‖x‖ → 0.
We now show ψ(x) > u(x) for x �= 0. There is an integer n0 such that ‖x‖ ∈

[2−n0+1, 2−n0 ], hence θ(2n0x) = 1 and ψ(x) � θ(2n0x)(cn0 + 2−2n0) � cn0 + 2−2n0 .
Since

cn0 = sup{u+(y) | ‖y‖ ∈ [2(−n0+1), 2−n0 ]},

we obtain cn0 � u+(x) and therefore ψ(x) > u+(x) � u(x).
It remains to show that we can get rid of the assumption M = R

k, and to show
how to obtain the desired inequality on the complement of W . We pick a small
open neighbourhood U ⊂ W of x0 which is diffeomorphic to a Euclidean space.
Following what we have already done, we can find a C1-function ψ : U → R with
ψ(x0) = u(x0), dx0ψ = p, and ψ(x) > u(x), for x ∈ U \ {x0}. We then take a C∞

bump function ϕ : M → [0, 1] which is equal to 1 on a neighbourhood of x0 and has
compact support contained in U ⊂ W . By exercise 6, we can find a C∞-function
ψ̃ : M → R such that ψ̃ � u + C. It is easy to check that the function φ : M → R

defined by φ(x) = (1 − ϕ(x))ψ̃(x) + ϕ(x)ψ(x) has the required property.

The following simple lemma is very useful.

Lemma 3.5. Suppose ψ : M → R is Cr, with r � 0. If x0 ∈ M , C � 0, and
W is a neighbourhood of x0, there exist two Cr-functions ψ+, ψ− : M → R, such
that ψ+(x0) = ψ−(x0) = ψ(x0) and ψ+(x) > ψ(x) > ψ−(x) for x �= x0. Moreover,
ψ+(x) − C > ψ(x) > ψ−(x) + C for x /∈ W . If r � 1, then necessarily dx0ψ+ =
dx0ψ− = dx0 ψ̃.
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Proof. The last fact is clear since ψ+−ψ (respectively, ψ−−ψ) achieves a minimum
(respectively, maximum) at x0.

Using the same arguments as at the end of the proof in the previous lemma to
obtain the general case, it suffices to assume C = 0 and M = R

n. In that case, we
can take ψ±(x) = ψ(x) ± ‖x − x0‖2.

4. Criteria for viscosity solutions

In this section we fix a continuous function H : T ∗M → R.

Theorem 4.1. Let u : M → R be a continuous function.

(i) u is a viscosity subsolution of H(x, dxu) = 0 if and only if, for each x ∈ M ,
and each p ∈ D+u(x), we have H(x, p) � 0.

(ii) u is a viscosity supersolution of H(x, dxu) = 0 if and only if, for each x ∈ M ,
and each p ∈ D−u(x), we have H(x, p) � 0.

Proof. Suppose that u is a viscosity subsolution. If p ∈ D+u(x), since u is contin-
uous, it follows from lemma 3.4 that there exists a C1-function φ : M → R, with
φ � u on M , u(x) = φ(x) and dxφ = p. By the viscosity subsolution condition
H(x, p) = H(x, dxφ) � 0.

Suppose conversely that, for each x ∈ M and each p ∈ D+u(x0), we have
H(x, p) � 0. If φ : M → R is C1 with u � φ, then at each point x where u(x) = φ(x),
we have dxφ ∈ D+u(x) and therefore H(x, dxφ) � 0.

Since D±u(x) depends only on the values of u in a neighbourhood of x, the fol-
lowing corollary is now obvious. It shows the local nature of the viscosity conditions.

Corollary 4.2. Let u : M → R be a continuous function. Then, if u is a vis-
cosity subsolution (respectively, supersolution, solution) of H(x, dxu) = 0 on M ,
then any restriction u|U to an open subset U ⊂ M is itself a viscosity subsolution
(respectively, supersolution, solution) of H(x, dxu) = 0 on U .

Conversely, if there exists an open cover (Ui)i∈I of M such that every restriction
u|Ui

is a viscosity subsolution (respectively, supersolution, solution) of H(x, dxu) =
0 on Ui, then u itself is a viscosity subsolution (respectively, supersolution, solution)
of H(x, dxu) = 0 on M .

Since, by Rademacher’s theorem, a Lipschitz function is differentiable almost
everywhere, here is another straightforward consequence of theorem 4.1.

Corollary 4.3. Let u : M → R be a locally Lipschitz function. If u is a vis-
cosity subsolution (respectively, supersolution, solution) of H(x, dxu) = 0, then
H(x, dxu) � 0 (respectively, H(x, dxu) � 0, H(x, dxu) = 0) for almost every x ∈ M .

In particular, a locally Lipschitz viscosity solution is always a very weak solution.

Exercise 7. Let I ⊂ R, and consider u : I → R a viscosity subsolution of

u′(t) = 0.

We want to show that u is non-increasing.
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Fix a < b with a, b ∈ I. For every ε > 0, consider the function θε : [a, b[→ R

defined by
θε(t) =

ε

b − t
.

(i) Show that u − θε cannot have a local maximum in the open interval ]a, b[ .

(ii) Show that u(t) � u(a) + θε(t) − θε(a), for every t ∈ [a, b[ . Conclude that u is
non-increasing.

(iii) What are the supersolutions (respectively, solutions) of u′(t) = 0?

(iv) For c ∈ R, characterize the viscosity subsolutions, supersolutions and solutions
of u′(t) = c.

We end this section with one more characterization of viscosity solutions.

Proposition 4.4 (criterion for viscosity solutions). Suppose that u : M → R is
continuous. To check that u is a viscosity subsolution (respectively, supersolution)
of H(x, dxu) = 0, it suffices to show that, for each C∞-function φ : M → R such
that u − φ has a unique strict global maximum (respectively, minimum) attained at
x0, we have H(x0, dx0φ) � 0 (respectively, H(x0, dx0φ) � 0).

Proof. We treat the subsolution case. We first show that if φ : M → R is a C∞-
function such that u − φ achieves a (not necessarily strict) maximum at x0, then
we have H(x0, dx0φ) � 0. In fact, applying lemma 3.5, we can find a C∞-function
φ+ : M → R such that φ+(x0) = φ(x0), dx0φ+ = dx0φ, φ+(x) > φ(x), for x �= x0.
The function u − φ+ has a unique strict global maximum achieved at x0, and
therefore H(x0, dx0φ+) � 0. Since dx0φ+ = dx0φ, this finishes our claim.

Supposing now that ψ : M → R is C1 and that u−ψ has a global maximum at x0,
we must show that H(x0, dx0ψ) � 0. We fix a relatively compact open neighbour-
hood W of x0. By lemma 3.5, applied to the continuous function ψ, there exists a
C1-function ψ+ : M → R such that ψ+(x0) = ψ(x0), dx0ψ+ = dx0ψ, ψ+(x) > ψ(x)
for x �= x0, and even ψ+(x) > ψ(x) + 3, for x /∈ W . It is easy to see that u − ψ+
has a strict global maximum at x0, and that u(x) − ψ+(x) < u(x0) − ψ+(x0) − 3,
for x /∈ W . By smooth approximations, we can find a sequence of C∞-functions
φn : M → R such that φn converges to ψ+ in the C1 topology uniformly on com-
pact subsets, and supx∈M |φn(x) − ψ+(x)| < 1. This last condition, together with
u(x) − ψ+(x) < u(x0) − ψ+(x0) − 3, for x /∈ W , gives

u(x) − φn(x) < u(x0) − φn(x0) − 1 for x /∈ W.

This implies that the maximum of u−φn on the compact set W̄ is a global maximum
of u − φn. Choose yn ∈ W̄ where u − φn attains its global maximum. Since φn is
C∞, from the first part of the proof we must have H(yn, dynφn) � 0. Extract-
ing a subsequence if necessary, we can assume that yn converges to y∞ ∈ W̄ .
Since φn converges to ψ+ uniformly on the compact set W̄ , u − ψ+ necessar-
ily achieves its maximum on W̄ at y∞. This implies that y∞ = x0, because the
strict global maximum of u − ψ̃ is precisely attained at x0 ∈ W . Since the conver-
gence of φn to ψ+ is in the C1 topology, we have (yn, dynφn) → (x0, dx0ψ+). Hence,
H(yn, dynφn) → H(x0, dx0ψ+), by continuity of H. But using H(yn, dynφn) � 0 and
dx0ψ = dx0ψ+, we get H(x0, dx0ψ) � 0.
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5. Coercive Hamiltonians

Definition 5.1 (coercive). A continuous function H : T ∗M → R is said to be
coercive above every compact subset if, for each compact subset K ⊂ M and each
c ∈ R, the set {(x, p) ∈ T ∗M | x ∈ K, H(x, p) � c} is compact.

Choosing any Riemannian metric on M , it is not difficult to see that H is coercive
if and only if, for each compact subset K ⊂ M , we have lim‖p‖x→∞ H(x, p) = +∞,
the limit being uniform in x ∈ K.

We recall the definition of a locally Lipschitz function on a manifold. A map
f : X → Y between metric spaces is locally Lipschitz if each point of X has a
neighbourhood on which the function f is Lipschitz. If X is locally compact, it is
equivalent to saying that f is Lipschitz on each compact subset of X. If either X
or Y are open subsets of a Euclidean space, we will always assume that they are
endowed with the Euclidean distance. It is then not difficult to show that C1 maps
between open subsets of Euclidean spaces are locally Lipschitz. Also, a composition
of locally Lipschitz maps is locally Lipschitz. If f : M → N is a map between
the smooth manifolds, and we assume that the distances on M and N come from
Riemannian metrics, then f is locally Lipschitz if and only if f is locally Lipschitz
in local coordinates.

Theorem 5.2. Suppose that H : T ∗M → R is coercive above every compact subset,
and c ∈ R. Then a viscosity subsolution of H(x, dxu) = c is necessarily locally
Lipschitz, and therefore satisfies H(x, dxu) � c almost everywhere.

Proof. Since this is a local result we can assume M = R
k, and prove only that u is

Lipschitz on a neighbourhood of the origin 0. We will consider the usual distance
d given by d(x, y) = ‖y − x‖, where we have chosen the usual Euclidean norm on
R

k. We set

�0 = sup{‖p‖ | p ∈ R
k∗, ∃x ∈ R

k, ‖x‖ � 3, H(x, p) � c}.

We have �0 < +∞ by the coercivity condition. Suppose u : R
k → R is a subsolution

of H(x, dxu) = c. Choose � � �0 + 1 such that

2� > sup{|u(y) − u(x)| | x, y ∈ R
k, ‖x‖ � 3, ‖y‖ � 3}.

Fix x ∈ R
k with ‖x‖ � 1, and define φ : R

k → R by φ(y) = �‖y − x‖. Pick y0 ∈
B̄(x, 2) where the function y �→ u(y) − φ(y) attains its maximum for y ∈ B̄(x, 2).
We first observe that y0 is not on the boundary of B̄(x, 2). In fact, if ‖y − x‖ = 2,
we have

u(y) − φ(y) = u(y) − 2� < u(x) = u(x) − φ(x).

In particular, the point y0 is a local maximum of u−φ. If y0 is not equal to x, then
dy0φ exists, with dy0φ(v) = �〈y0 − x, v〉/‖y0 − x‖, and we obtain ‖dy0φ‖ = �. On
the other hand, since u(y) � u(y0) − φ(y0) + φ(y), for y in a neighbourhood of y0,
we get dy0φ ∈ D+u(y0), and therefore have H(y0, dy0φ) � c. By the choice of �0,
this gives ‖dy0φ‖ � �0 < �0 + 1 � �. This contradiction shows that y0 = x, hence
u(y)−�‖y−x‖ � u(x), for every x of norm � 1, and every y ∈ B̄(x, 2). This implies
that u has Lipschitz constant � � on the unit ball of R

k.
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Let us recall now the locally equi-Lipschitzian concept for a family F of functions
of real-valued functions defined on a manifold M . We assume that M is endowed
with a distance d coming from a Riemannian metric on M . The family F is locally
equi-Lipschitzian if, for every x ∈ M , we can find a neighbourhood V of x in
M and a constant K such that, for every y, z ∈ V , and every u ∈ F , we have
|u(y) − u(z)| � Kd(y, z). It is not difficult to check that this notion is independent
of the choice of Riemannian metric on M . Therefore, F is locally equi-Lipschitzian
if and only if, in local coordinates, F is equi-Lipschitzian in the usual sense.

We will also need the following characterization of the Lipschitz constant for a
function. We leave the proof as an exercise.

Exercise 8. Suppose that v : U → R is a locally Lipschitz function defined on the
open convex subset U of a Euclidean space. If K < +∞, then the following two
statements are equivalent:

(i) the Lipschitz constant of v is � K on U , i.e. for every x, y ∈ U , we have
|v(y) − v(x)| � ‖y − x‖;

(ii) for almost every x ∈ U , we have ‖dxu‖ � K.

(If (i) is true, then (ii) is true at every x where dxv exists. To prove that (ii) implies
(i), prove it first for v is C1, then use an approximation argument as in lemma 10.3
to conclude in the general Lipschitz case.)

Corollary 5.3. Let H : T ∗M → R be coercive above every compact subset. For
every c ∈ R, the set S(H, c) of global viscosity subsolutions

u : M → R of H(x, dxu) = c

is locally equi-Lipschitzian.

Proof. The result is essentially local. Using a chart, we can assume M = R
n, and

x = 0. Denoting, as usual, by B the Euclidean unit ball, by coercivity of H, the set

S = {(y, p) ∈ B × R
n | H(y, p) � c}

is compact. Therefore, K = sup{‖p‖ | (y, p) ∈ S} is finite. By theorem 5.2 we know
that any viscosity u : R

n → R is locally Lipschitz and satisfies H(y, dyu) � c, for
almost every y. By the choice of K, we have ‖dyu‖ � K, for almost every y ∈ B. It
now suffices to apply exercise 8 to conclude that u is Lipschitz on B̊ with Lipschitz
constant � K.

It is important to note that, for the evolutionary Hamilton–Jacobi equation, there
are subsolutions which are not locally Lipschitz even if the coercive Hamiltonian is
very simple.

Exercise 9. We consider the coercive Hamiltonian H : T ∗M → R defined by

H(x, p) = 1
2‖p‖2

x.

If ρ : R → R is a non-increasing function, show that u(x, t) = ρ(t) is a viscosity
subsolution of

∂u

∂t
(x, t) + H

(
x,

∂u

∂x
(x, t)

)
= 0.

Give an example of such a ρ which is not locally Lipschitz.
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6. Stability

Theorem 6.1 (stability). Suppose first that the sequence of continuous functions
Hn : T ∗M → R converges uniformly on compact subsets to H : T ∗M → R. Suppose
also that un : M → R is a sequence of continuous functions converging uniformly
on compact subsets to u : M → R. If, for each n, the function un is a viscosity
subsolution (respectively, supersolution, solution) of Hn(x, dxun) = 0, then u is a
viscosity subsolution (respectively, supersolution, solution) of H(x, dxu) = 0.

Proof. We show the subsolution case. We use the criterion 4.4. Suppose first that
φ : M → R is a C∞-function such that u − φ has a unique strict global maximum,
achieved at x0, we have to show H(x0, dx0φ) � 0. We pick a relatively compact
open neighbourhood W of x0. For each n, choose yn ∈ W̄ where un − φ attains
its maximum on the compact subset W̄ . Extracting a subsequence, if necessary,
we can assume that yn converges to y∞ ∈ W̄ . Since un converges to u uniformly
on the compact set W̄ , necessarily u − φ achieves its maximum on W̄ at y∞.
But u − φ has a strict global maximum at x0 ∈ W , and therefore y∞ = x0. By
continuity of the derivative of φ, we obtain (yn, dyn

φ) → (x0, dx0φ). Since W is an
open neighbourhood of x0, dropping the first terms if necessary, we can assume yn ∈
W , this implies that yn is a local maximum of un−φ, and therefore dynφ ∈ D+un(y).
Since un is a viscosity subsolution of Hn(x, dxun) = 0, we get Hn(yn, dynφ) � 0.
The uniform convergence of Hn on compact subsets now implies

H(x0, dx0φ) = lim
n→∞

Hn(yn, dynφ) � 0.

Exercise 10. We consider the Hamiltonian H : T ∗M → R on the manifold M .
Suppose U : [0, +∞[ ×M is a viscosity subsolution of the evolutionary HJE

∂U

∂t
(t, x) + H

(
x,

∂U

∂x
(t, x)

)
= 0 (EHJ)

on ]0, +∞[ ×M .

(i) If ρ : [0, +∞[ → R is a non-increasing C1-function, show that Uρ : [0, +∞[ ×
M → R defined by

Uρ(t, x) = U(x, t) + ρ(t)

is also a viscosity subsolution of (EHJ) on ]0, +∞[ ×M .

(ii) If ρ : [0, +∞[ → R is an arbitrary non-increasing continuous function, show
that it can be uniformly approximated on compact subsets by C∞ non-increas-
ing functions. (Hint: use a convolution argument.)

(iii) Show that (i) remains true for arbitrary non-increasing continuous function
ρ : [0, +∞[ → R.

(iv) Show that U can be uniformly approximated on compact subsets by viscosity
subsolutions of (EHJ) which are not locally Lipschitz.

https://doi.org/10.1017/S0308210550000064 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210550000064


1210 A. Fathi

7. Uniqueness

Our goal here is to obtain some uniqueness results especially for the evolutionary
HJE. These kind of results are usually obtained through a maximum principle.
One of the difficulties is the fact that viscosity solutions are not smooth. There is
an efficient tool that has been developed to deal with this problem, namely, the
doubling (of variables) argument. It has been extensively used since the beginning
of the subject (see, for example, [2, ch. 2, § 3] and [3, ch. 2, §§ 2.4, 2.5]). In our
treatment, we found it convenient to use the doubling argument in the next theorem,
and to deduce the maximum principles and the uniqueness theorems from this
result.

Theorem 7.1. Let H : T ∗M → R be a Hamiltonian on the manifold M . Suppose
that u : M → R is a viscosity subsolution of H(x, dxu) = c1, and that v : M → R

is a viscosity supersolution of H(x, dxv) = c2. Assume further that either u or v is
locally Lipschitz on M . If u − v has a local maximum, then necessarily c2 � c1.

Proof. Call x0 ∈ M a point where u− v achieves a local maximum. Changing u (or
v) by adding an appropriate constant, we can assume that this local maximum of
u − v is 0. This means that u � v in a neighbourhood of x0, with equality at x0. If
both u and v were differentiable at x0, we would have dx0(u − v) = 0. Therefore,
dx0u = dx0v, and c2 � H(x0, dx0v) = H(x0, dx0u) � c1. Since we do not know that
these derivatives exist, we must get around this difficulty. The following argument
is known in viscosity theory as the doubling argument. The problem is essentially
local around x0. Hence, choosing a chart, we can assume x0 = 0 and M = R

n.
Call ‖ · ‖ the usual Euclidean norm in R

n, and denote by B
n the usual unit

ball in R
n. We will also use the canonical identification T ∗

R
n = R

n × R
n. In this

identification, the differential of a function is nothing but its gradient.
Since either u or v are locally Lipschitz on M = R

n, and since B
n is a compact

subset, we can assume that there exists a constant K < +∞ such that either u or
v is Lipschitz on B

n with Lipschitz constant K.
We know that u � v with equality at 0. Also, u : R

n → R is a viscosity subsolution
of H(x, dxu) = c1, and v : R

n → R is a viscosity supersolution of H(x, dxu) = c2.
We want to show that c2 � c1. For � � 1, we set

m� = sup
x,y∈Bn

u(x) − v(y) − ‖x‖2 − �‖x − y‖2. (7.1 a)

Note that m� � 0, since u(0) = v(0). By the compactness of B
n, we can find

x�, y� ∈ B
n such that

0 � m� = u(x�) − v(y�) − ‖x�‖2 − �‖x� − y�‖2. (7.1 b)

By the compactness of B
n, we have A = supx,y∈Bn u(x) − v(y) < +∞. It follows

that
0 � m� � A − �‖x� − y�‖2.

This implies that ‖x� − y�‖2 � A/�, hence x� − y� → 0 when � → +∞. Again,
by the compactness of B

n, we can find an extracted subsequence such that x�i

converges to x∞. Necessarily we also have y�i → x∞. By inequality (7.1 b) above,
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u(x�) − v(y�) − ‖x�‖2 � 0. Passing to the limit we get u(x∞)−v(y∞)−‖x∞‖2 � 0.
Since u � v, we find that x∞ = 0. Therefore, both x�i

and x∞ converge to 0. In
particular, for sufficiently large i, x�i and y�i are in B̊

n. We can therefore drop some
of the first �i and assume x�i , y�i ∈ B̊

n for all i.
It follows from (7.1 a) and (7.1 b) above that u(x) − [v(y�i) + ‖x‖2 + �i‖x − y�i‖2]

has a local maximum at x�i
. But the function ϕ(x) = v(y�i

) + ‖x‖2 + �i‖x − y�i
‖2

is C∞ with gradient 2x + 2�i(x − y�i
). Therefore, 2x�i

+ 2�i(x�i
− y�i

) ∈ D+u(x�i
),

and using the fact that u : R
n → R is a viscosity subsolution of H(x, dxu) = c1, we

obtain
H(x�i , 2x�i + 2�i(x�i − y�i)) � c1. (7.1 c)

In the same way, we get that v(y) − [u(x�i
) − ‖x�i‖2 − �i‖x�i − y‖2] has a local

minimum at y�i . Therefore, 2�i(x�i − y�i
) ∈ D−v(y�i

), and using that v : R
n → R

is a viscosity supersolution of H(x, dxu) = c2, we obtain

H(y�i , 2�i(x�i
− y�i

)) � c2. (7.1 d)

Since x�i
, y�i

are in B
n, and either u or v has Lipschitz constant � K on B

n,
using 2x�i + 2�i(x�i − y�i) ∈ D+u(x�i), 2�i(x�i − y�i) ∈ D−v(y�i), from part (vi) of
proposition 3.3 we obtain that either

‖2x�i + 2�i(x�i − y�i)‖ � K or ‖2�i(x�i − y�i)‖ � K.

Since x�i
∈ B

n, we conclude that ‖2�i(x�i
− y�i

)‖ � K + 2 for all i. Therefore, up to
extraction, we assume that 2�i(x�i − y�i) converges to p ∈ R

n. Since both x�i and
y�i

converge to 0, passing to the limit in (7.1 c) and (7.1 d), we get c2 � H(0, p) �
c1.

Corollary 7.2. Let H : T ∗M → R be a Hamiltonian coercive above every compact
subset of the manifold M . Suppose that u : M → R is a viscosity subsolution of
H(x, dxu) = c1, and v : M → R is a viscosity supersolution of H(x, dxv) = c2. If
u − v has a local maximum, then necessarily c2 � c1.

Proof. In that case, theorem 5.2 implies that u is locally Lipschitz. Therefore, we
can apply theorem 7.1.

Corollary 7.3. Suppose H : T ∗M → R is a coercive Hamiltonian on the compact
manifold M . If there exists a viscosity subsolution of H(x, dxu) = c1 and a viscosity
supersolution of H(x, dxu) = c2, then necessarily c2 � c1.

In particular, there exists at most one c for which the HJE H(x, dxu) = c has a
global viscosity solution u : M → R. This only possible value is the smallest c for
which H(x, dxu) = c admits a global viscosity subsolution u : M → R.

Proof. Call u : M → R a viscosity subsolution of H(x, dxu) = c1, and call v : M →
R a viscosity supersolution of H(x, dxv) = c2. By the compactness of M , we can
find a point x0 ∈ M where u−v achieves its maximum. Therefore, by corollary 7.2,
we have c2 � c1.

Theorem 7.4. Let H : M → R be a continuous Hamiltonian on the compact man-
ifold M . Next, suppose U, V : [0, +∞[ ×M → R are two continuous functions with
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U(x, 0) � V (x, 0), for all x ∈ M . Assume that U (respectively, V ) is a viscosity
subsolution (respectively, supersolution) of the evolutionary HJE

∂u

∂t
(t, x) + H

(
x,

∂u

∂x
(t, x)

)
= 0

on ]0, +∞[ ×M . If either U or V is locally Lipschitz on ]0, +∞[ ×M , then U � V
on the whole of [0, +∞[ ×M .

Proof. We introduce the Hamiltonian Ĥ on R × M defined by

Ĥ(t, x, s, p) = s + H(x, p),

where (t, x) ∈ R × M and (s, p) ∈ T ∗
(t,x)(R × M) = R × T ∗

x M . With this notation,
U (respectively, V ) becomes a viscosity subsolution (respectively, supersolution) of
the HJE

Ĥ((t, x), d(t,x)u) = 0.

Fixing a, ε > 0, we will show that, for all t ∈ [0, a[ and for all x ∈ M ,

U(t, x) +
ε

t − a
� V. (�)

The theorem follows because we can let ε → 0, and a > 0 is arbitrary. To simplify
notation, define ρ : [0, a] → R by

ρ(t) =
ε

t − a
.

Since ρ′(t) = −ε/(t − a)2 � −ε/a2, it is not difficult to see that the continuous
function Û : [0, a[ ×M → defined by

Û(t, x) = U(t, x) + ρ(t)

is a viscosity subsolution of the HJE

Ĥ((t, x), d(t,x)u) = − ε

a2 .

Since ρ is C∞, it follows from the hypothesis that either Û or V is locally Lipschitz on
]0, a[ ×M . Since −ε/a2 < 0, we can apply theorem 7.1 to conclude that Û−V has no
local maximum on ]0, a[ ×M . But ρ(t) → −∞, as t → a, hence, by the compactness
of M , the continuous function Û − V = U − V + ρ must attain its maximum in
[0, a[ ×M . This maximum can only be in {0} × M . But Û − V = U − V + ρ, the
function ρ is equal to ρ(0) = −ε/a on {0} × M , and U − V � 0 on {0} × M .
Therefore, we obtain that Û − V � −ε/a � 0 on [0, a[ ×M . This is precisely the
inequality (�) that we are seeking.

Corollary 7.5. Let H : M → R be a continuous Hamiltonian on the compact
manifold M . Suppose that the continuous function U : [0, +∞[ ×M → R is locally
Lipschitz on ]0, +∞[ ×M , and is a viscosity solution of the evolutionary HJE

∂u

∂t
(t, x) + H

(
x,

∂u

∂x
(t, x)

)
= 0, (EHJ)

on ]0, +∞[ ×M .
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Any other continuous function V : [0, +∞[ ×M → R, which is a viscosity solution
of (EHJ) on ]0, +∞[ ×M and coincides with U on {0} × M , coincides with U on
the whole of [0, +∞[ ×M .

8. Construction of viscosity solutions

In this section we will introduce the Perron method for constructing viscosity solu-
tions.

Proposition 8.1. Let H : T ∗M → R be a continuous function. Suppose (ui)i∈I is
a family of continuous functions ui : M → R such that each ui is a subsolution
(respectively, supersolution) of H(x, dxu) = 0. If supi∈I ui (respectively, infi∈u ui)
is finite and continuous everywhere, then it is also a subsolution (respectively, super-
solution) of H(x, dxu) = 0.

Proof. Set u = supi∈I ui. Suppose φ : M → R is C1, with φ(x0) = u(x0) and φ(x) >
u(x) for every x ∈ M \ {x0}. We have to show H(x0, dx0φ) � 0. Fix some distance
d on M . By continuity of the derivative of φ, it suffices to show that, for each
sufficiently small ε > 0, there exists x ∈ B̊(x0, ε), with H(x, dxφ) � 0.

For ε > 0 small enough, the closed ball B̄(x0, ε) is compact. Fix such an ε > 0.
There is a δ > 0 such that φ(y) − δ � u(y) = supi∈I ui(y) for each y ∈ ∂B(x0, ε).

Since φ(x0) = u(x0), we can find iε ∈ I such that φ(x0) − δ < uiε
(x0). It follows

that the maximum of the continuous function uiε − φ on the compact set B̄(x0, ε)
is not attained on the boundary. Therefore, uiε − φ has a local maximum at some
xε ∈ B̊(x0, ε). Since the function uiε is a viscosity subsolution of H(x, dxu) = 0, we
have H(xε, dxεφ) � 0.

Theorem 8.2 (Perron method). Suppose the Hamiltonian H : TM → R is coer-
cive above every compact subset. Assume that M is connected and that there exists
a viscosity subsolution u : M → R of H(x, dxu) = 0. Then, for every x0 ∈ M ,
the function Sx0 : M → R defined by Sx0(x) = supv v(x), where the supremum is
taken over all viscosity subsolutions v satisfying v(x0) = 0, has finite values and is
a viscosity subsolution of H(x, dxu) = 0 on M .

Moreover, it is a viscosity solution of H(x, dxu) = 0 on M \ {x0}.

Proof. Call SSx0 the family of viscosity subsolutions v : M → R of H(x, dxv) = 0
satisfying v(x0) = 0.

Since H is coercive above every compact subset of M , by corollary 5.3, the family
of restrictions v|K , v ∈ SSx0 is locally equi-Lipschitzian. We now show that Sx0 is
finite everywhere. Since M is connected, given x ∈ M , there exists a compact
connected set Kx,x0 containing both x and x0. By the local equicontinuity of the
family of restrictions {v|Kx,x0

| v ∈ SSx0}, and the compactness of K, we can find
δ > 0 such that, for each y, z ∈ Kx,x0 with d(y, z) � δ, we have |v(y) − v(z)| � 1
for each v ∈ SSx0 .

Since the set Kx,x0 is connected, we can find a sequence x0, x1, . . . , xn = x
withd(xi, xi+1) � δ. It follows that

|v(x)| = |v(x) − v(x0)| �
n−1∑
i=0

|v(xi+1) − v(xi)| � n
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for each v ∈ SSx0 . Therefore, supv∈SSx0
v(x) is finite everywhere. Moreover, as a

finite-valued supremum of a family of locally equicontinuous functions, it is contin-
uous.

By proposition 8.1, the function Sx0 is a viscosity subsolution on M itself. It
remains to show that it is a viscosity solution of H(x, dxu) on M \ {x0}.

Suppose ψ : M → R is C1 with ψ(x1) = Sx0(x1), where x1 �= x0, and ψ(x) <
Sx0(x) for every x �= x1. We want to show that necessarily H(x1, dx1ψ) � 0. We
argue by contradiction. We therefore suppose that H(x1, dx1ψ) < 0. By continu-
ity of the derivative of ψ, we have H(y, dyψ) < 0 for y in a neighbourhood V of
x1. Endowing M with a distance defining its topology, we choose ε > 0 such that
B̄(x1, ε) ⊂ V . Since H(y, dyψ) < 0, for each y ∈ B̄(x1, ε), the function ψ is a vis-
cosity subsolution of H(x, dxu) = 0 on B̊(x1, ε). Taking sufficiently small ε > 0, we
assume that B̄(x1, ε) is a compact subset of M , and x0 /∈ B̄(x1, ε). Since ψ < Sx0 on
the boundary ∂B(x1, ε) of B̄(x1, ε), we can pick δ > 0 such that ψ(y) + δ � Sx0(y)
for every y ∈ ∂B(x1, ε). We now define S̃x0 : M → R by

S̃x0(x) =

{
Sx0(x) on M \ B̄(x1, ε),
max(ψ(x) + 1

2δ, Sx0(x)) on B̄(x1, ε).

The function S̃x0 is a viscosity subsolution on B̊(x1, ε) as the maximum of the two
viscosity subsolutions ψ + 1

2δ and Sx0 . Moreover, this function S̃x0 coincides with
Sx0 outside K = {x ∈ B̄(x1, ε) | ψ(x) + 1

2δ � Sx0(x))} which is a compact subset
of B̊(x1, ε). Therefore it is a viscosity subsolution on M \ K. It follows that S̃x0 is
a viscosity subsolution of H(x, dxu) on M itself, since its restrictions to both open
subsets M \K and B̊(x1, ε) are viscosity subsolutions, and M = B̊(x1, ε) ∪ (M \ K).

But S̃x0(x0) = Sx0(x0) = 0 because x0 /∈ B̄(x1, ε). Moreover,

S̃x0(x1) = max(ψ(x1) + 1
2δ, Sx0(x1))

= max(Sx0(x1) + 1
2δ, Sx0(x1))

= Sx0(x1) + 1
2δ

> Sx0(x1).

This contradicts the definition of Sx0 .

The next argument is inspired by the construction of Busemann functions in
Riemannian geometry (see [1]).

Corollary 8.3. Suppose that H : T ∗M → R is a continuous Hamiltonian coercive
above every compact subset of the connected non-compact manifold M . If there
exists a viscosity subsolution of H(x, dxu) = 0 on M , then there exists a viscosity
solution on M .

Proof. Fix x̂ ∈ M , and pick a sequence xn → ∞ (this means that each compact
subset of M contains only a finite number of points in the sequence).

By arguments analogous to the ones used in the previous proof, the sequence Sxn

is locally equicontinuous. Moreover, for each x ∈ M , the sequence Sxn(x) − Sxn(x̂)
is bounded. Therefore, by Ascoli’s theorem, extracting a subsequence if necessary,
we can assume that Sxn − Sxn(x̂) converges uniformly to a continuous function
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u : M → R. It now suffices to show that the restriction of u to an arbitrary, open,
relatively compact subset V of M is a viscosity solution of H(x, dxu) = 0 on V .
Since {n | xn ∈ V̄ } is finite, for sufficiently large n the restriction of Sxn − Sxn(x̂)
to V is a viscosity solution; therefore, by the stability theorem 6.1, the restriction
of the limit u to V is also a viscosity solution.

The situation is different for compact manifolds, as can be seen from corollary 7.3.

9. Strict subsolutions

Definition 9.1 (strict subsolution). Let H : T ∗M → R be a continuous function.
We say that a viscosity subsolution u : M → R of H(x, dxu) = c is strict at x0 ∈ M
if there exists an open neighbourhood Vx0 of x0, and cx0 < c such that u | Vx0 is a
viscosity subsolution of H(x, dxu) = cx0 on Vx0 .

Here is a way to construct viscosity subsolutions that are strict at some point.

Proposition 9.2. Let H : T ∗M → R be a continuous function. Now, suppose that
u : M → R is a viscosity subsolution of H(y, dyu) = c on M , which is also a
viscosity solution on M \ {x}. If u is not a viscosity solution of H(y, dyu) = c on
M itself, then there exists a viscosity subsolution of H(y, dyu) = c on M which is
strict at x.

Proof. The argument of the proof is very similar to the end of the proof of theo-
rem 8.2. Assume that u is not a viscosity solution on the whole of M . Since it is a
subsolution on M , it is the supersolution condition that is violated. Moreover, since
u is a supersolution on M \ {x}, the only possibility is that there exists ψ : M → R

of class C1 such that ψ(x) = u(x), ψ(y) < u(y), for y �= x, and H(x, dxψ) < c. By
continuity of the derivative of ψ, we can find a compact ball B̄(x, r), with r > 0,
and a cx < c such that H(y, dyψ) < cx, for every y ∈ B̄(0, r). In particular, the
C1-function ψ is a subsolution of H(z, dzv) = cx on B̊(x, r), and therefore also of
H(z, dzv) = c on the same set since cx < c.

We choose δ > 0 such that, for every y ∈ ∂B(x, r), we have u(y) > ψ(y)+δ. This
is possible since ∂B(x, r) is a compact subset of M \ {x}, where we have the strict
inequality ψ < u.

First, if we define ũ : M → R by ũ(y) = u(y) if y /∈ B̄(x, r) and ũ(y) =
max(u(y), ψ(y) + δ), we obtain the desired viscosity subsolution of H(y, dyu) � c
which is strict at x. In fact, by the choice of δ > 0, the subset

K = {y ∈ B̄(x, r) | ψ(y) + δ � u(y)}

is compact and contained in the open ball B̊(x, r). Therefore, M is covered by
the two open subsets M \ K and B̊(x, r). On the first open subset ũ is equal to
u. It is therefore a subsolution of H(y, dyu) = c on that subset. On the second
open subset B̊(x, r), the function ũ is the maximum of u and ψ + δ which are
both subsolutions of H(y, dyu) = c on B̊(x, r), by proposition 8.1, it is therefore a
subsolution of H(y, dyu) = c on that second open subset. Since u(x) = ψ(x); we
have ũ(x) = ψ(x) + δ > u(x). Therefore, by continuity, ũ = ψ + δ on a neighbour-
hood N ⊂ B̊(x, r) of x. On that neighbourhood, H(y, dyψ) < cx, hence ũ is strict
at x.
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Here is another useful result on strict subsolutions.

Proposition 9.3. Let H : T ∗M → R be a continuous function. Now suppose that
u : M → R (respectively, v : M → R) is a viscosity subsolution (respectively, super-
solution) of H(y, dyu) = c on M . Assume further that either u or v is locally
Lipschitz. Then u cannot be strict at any local maximum of u − v.

Proof. We argue by contradiction. Assume x0 is a local maximum of u−v. If u was
strict at x0, we could find an open set V containing x0, and a c′ < c such that u | V
is a viscosity subsolution of H(x, dxu) = c′ < c. But if we apply theorem 7.1 to the
restrictions u | V and v | V , we see that we must have c � c′, which contradicts the
choice of c′.

10. Quasi-convexity and viscosity subsolutions

We first recall the definition of a quasi-convex function.

Definition 10.1. The function f : C → R, defined on the convex subset C of the
real vector space E, is said to be quasi-convex if, for every t ∈ R, the sublevel
{x ∈ C | f(x) � t} is convex.

Exercise 11. Suppose f : C → R is defined on the convex subset C of the real
vector space E.

(i) Show that f is quasi-convex if and only if, for every sequence α1 . . . , α� ∈ [0, 1]
with

∑�
i=1 αi = 1, and every sequence x1, . . . , x� ∈ C, we have

f

( �∑
i=1

αixi

)
� �

max
i=1

f(xi).

(ii) Suppose, moreover, that E is a topological vector space, and that f is contin-
uous and quasi-convex. Show that, for any sequence (αi)i∈N with αi ∈ [0, 1]
such that

∑∞
i=0 αi = 1, and every sequence (xi)i∈N such that

∑∞
i=0 αixi exists

and is in C, we have

f

( ∑
i∈N

αixi

)
� sup

i∈N

f(xi).

(iii) (Difficult.) Suppose further that E is a finite-dimensional vector space, and
that the convex set C is Borel measurable. If µ is a Borel probability measure
on E with µ(C) = 1, show that

∫
E

xdµ(x) ∈ C. (Hint: one can assume that
this is true for a vector space whose dimension is strictly lower than that of
E, then argue by contradiction. If x0 =

∫
E

xdµ(x) /∈ C, by the Hahn–Banach
theorem and the finite dimensionality of E, find a linear map θ : E → R such
that θ(x) � θ(x0) for every x ∈ C.)

(iv) If E is finite dimensional, show that (ii) remains true even when f is only
assumed Borel measurable on the Borel measurable convex set C.
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In this section we are mainly interested in Hamiltonians H : T ∗M → R that
are quasi-convex in the fibres, i.e. for each x ∈ M , the function p �→ H(x, p) is
quasi-convex on the vector space T ∗

x M .
Our first goal in this section is to prove the following theorem.

Theorem 10.2. Suppose that the continuous Hamiltonian H : T ∗M → R is quasi-
convex in the fibres. If u : M → R is locally Lipschitz and H(x, dxu) � c almost
everywhere, for some fixed c ∈ R, then u is a viscosity subsolution of H(x, dxu) = c.

Before giving the proof of the theorem we need some preliminary material.
If u : U → R is a locally Lipschitz function defined on the open subset U of

M , it is convenient to introduce the Hamiltonian constant HU (u) as the essential
supremum on U of H(x, dxu), i.e. the constant HU (u) by

HU (u) = inf{c ∈ R ∪ {+∞} | H(x, dxu) � c for almost every x ∈ U}.

Using a sequence cn ↘ c[0] such that the set Sn = {x ∈ M | H(x, dxu) > cn} is
Lebesgue negligible in M , we obtain that H(x, dxu) � HU (u) outside of S =

⋃
n Sn.

Since S is also negligible – as a countable union of negligible sets – it follows that
H(x, dxu) � HU (u) almost everywhere. Since H takes only finite values, we have
HU (u) > −∞.

We will use some classical facts about convolution. Let (ρδ)δ>0 be a family of func-
tions ρδ : R

k → [0,∞[ of class C∞, with ρδ(x) = 0, if ‖x‖ � δ, and
∫

Rk ρδ(x) dx = 1.
Suppose that V , U are open subsets of R

k, with V̄ compact and contained in U .
Calling 2δ0 the Euclidean distance of the compact set V̄ to the boundary of U , we
have δ0 > 0, and therefore the closed δ0-neighbourhood

N̄δ0(V̄ ) = {y ∈ R
k | ∃x ∈ V̄ , ‖y − x‖ � δ0}

of V̄ is compact and contained in U .
If u : U → R is a continuous function, then, for δ < δ0, the convolution

uδ(x) = ρδ ∗ u(x) =
∫

Rk

ρδ(y)u(x − y) dy

makes sense and is of class C∞ on a neighbourhood of V̄ . Moreover, the family uδ

converges uniformly on V̄ to u, as t → 0.

Lemma 10.3. Under the hypothesis above, suppose that u : U → R is a locally Lip-
schitz function. Given any Hamiltonian H : T ∗U → R that is quasi-convex in the
fibres and any ε > 0, for every sufficiently small δ > 0, we have

sup
x∈V

|uδ(x) − u(x)| � ε and HV (uδ) � HU (u) + ε.

Proof. Since uδ converges uniformly to u on the compact subset V̄ , we only have
to prove that HV (uδ) � HU (u) + ε for sufficiently small δ. If HU (u) = +∞, this is
clear. We can therefore assume that HU (u) < +∞. We first show that, for δ < δ0,
we must have

dxuδ =
∫

Rk

ρδ(y)dx−yu dy, ∀x ∈ V. (∗)
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Note that the right-hand side makes sense because dzu exists for almost every
z ∈ U . Since we know that uδ is C∞, it suffices to check that

lim
t→0

uδ(x + th) − uδ(x)
t

=
∫

Rk

ρδ(y)dx−yu(h) dy (∗∗)

for x ∈ V , δ < δ0 and h ∈ R
k. We write

uδ(x + th) − uδ(x)
t

=
∫

Rk

ρδ(y)
u(x + th − y) − u(x − y)

t
dy.

We see that we can obtain (∗∗) from Lebesgue’s dominated convergence theorem,
since ρδ has a compact support contained in {y ∈ R

k | ‖y‖ < δ}, and for y ∈ R
k,

t ∈ R such that ‖y‖ < δ, ‖th‖ < δ0 −δ, the two points x+th−y, x−y are contained
in the compact set N̄δ0(V̄ ) on which u is Lipschitz. Equation (∗) yields

H(x, dxuδ) = H

(
x,

∫
Rk

ρδ(y)dx−yu dy

)
. (∗ ∗ ∗)

Since N̄δ0(V̄ ) is compact and contained in U , and u is locally Lipschitz, we can find
K < ∞ such that ‖dzu‖ � K, for each z ∈ N̄δ0(V̄ ) for which dzu exists. Since H
is continuous, by a compactness argument, we can find δε ∈ ]0, δ0[ such that, for
z, z′ ∈ N̄δ0(V̄ ), with ‖z − z′‖ � δε and ‖p‖ � K, we have |H(z′, p) − H(z, p)| � ε.
We deduce that, for all x in V and almost every y with ‖y‖ � δε, we have

H(x, dx−yu) � H(x − y, dx−yu) + ε � HU (u) + ε.

The quasi-convexity of H in the fibres implies that the set

C = {p ∈ T ∗
x M | H(x, p) � HU (u) + ε}

is convex and closed. Since ρδdy is a probability measure whose support is contained
in B̄(0, δ) = {y ∈ R

k | ‖y‖ � δ}, and dx−yu ∈ C, for every y ∈ B̄(0, δ), we obtain
that the average

∫
Rk ρδ(y)dx−yu dy is also in C. Hence, we obtain, for all δ � δε,

H

(
x,

∫
Rk

ρδ(y)dx−yu dy

)
� HU (u) + ε.

It follows from inequality (∗ ∗ ∗) above that H(x, dxuδ) � HU (u) + ε for δ � δε and
x ∈ V . This gives HV (uδ) � HU (u) + ε, for δ � δε. The inequality

sup
x∈V

|uδ(x) − u(x)| < ε

also holds for every sufficiently small δ, since uδ converges uniformly on V̄ to u, as
δ → 0.

Proof of theorem 10.2. We have to prove that, for each x0 ∈ M , there exists an open
neighbourhood V of x0 such that u|V is a viscosity subsolution of H(x, dxu) = c
on V . In fact, if we take V as any open neighbourhood such that V̄ is contained
in a domain of a coordinate chart, we can apply lemma 10.3 to obtain a sequence
un : V → R, n � 1, of C∞-functions such that un converges uniformly to u|V on V
and H(x, dxun) � c + 1/n. If we define Hn(x, p) = H(x, p) − c − 1/n, we see that
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un is a smooth classical, and hence viscosity, subsolution of Hn(x, dxw) = 0 on V .
Since Hn converges uniformly to H − c, the stability theorem 6.1 implies that u|V
is a viscosity subsolution of H(x, dxu) − c = 0 on V .

Corollary 10.4. Suppose that the Hamiltonian H : T ∗M → R is continuous and
quasi-convex in the fibres. For every c ∈ R, the set of Lipschitz functions u : M → R

which are viscosity subsolutions of H(x, dxu) = c is convex.

Proof. If u1, . . . , un are such viscosity subsolutions. By corollary 4.3, we know that,
at every x where dxuj exists, we must have H(x, dxuj) � c. If we call A the set of
points x where dxuj exists for each j = 1, . . . , n, then A has full Lebesgue measure
in M . If a1, . . . , an � 0, and a1 + · · · + an = 1, then u = a1u1 + · · · + anun is
differentiable at each point of x ∈ A with dxu = a1dxu1 + · · · + andxun. Therefore,
by the quasi-convexity of H(x, p) in the variable p, for every x ∈ A, we obtain

H(x, dxu) = H(x, a1dxu1 + · · · + andxun) � n
max
i=1

H(x, dxui) � c.

Since A is of full measure, by theorem 10.2 we conclude that u is also a viscosity
subsolution of H(x, dxu) = c.

The next corollary shows that the viscosity subsolutions are the same as the very
weak subsolutions, at least in the geometric cases we have in mind. This corollary
is clearly a consequence of theorems 5.2 and 10.2.

Corollary 10.5. Suppose that the Hamiltonian H : T ∗M → R is continuous,
coercive and quasi-convex in the fibres. A continuous function u : M → R is a
viscosity subsolution of H(x, dxu) = c for some c ∈ R if and only if u is locally
Lipschitz and H(x, dxu) � c for almost every x ∈ M .

We now give a global version of lemma 10.3.

Theorem 10.6. Suppose that H : T ∗M → R is a Hamiltonian, which is quasi-
convex in the fibres. Let u : M → R be a locally Lipschitz viscosity subsolution of
H(x, dxu) = c on M . For every pair of continuous functions δ, ε : M → ]0, +∞[ , we
can find a C∞-function v : M → R such that |u(x) − v(x)| � δ(x) and H(x, dxv) �
c + ε(x) for each x ∈ M .

Proof. We pick up a locally finite countable open cover (Vi)i∈N of M such that
each closure V̄i is compact and contained in the domain Ui of a chart which has a
compact closure Ūi in M . For every i ∈ N, we set J(i) = {j ∈ N | Vi ∩Vj �= ∅}. Note
that j ∈ J(i) if and only if i ∈ J(j). The local finiteness of the cover (Vi)i∈N and
the compactness of V̄i imply that, for each i ∈ N, the set J(i) is finite. Therefore,
denoting by #A the number of elements in a set A, we obtain

j(i) = #J(i) = #{j ∈ N | Vi ∩ Vj �= ∅} < +∞,

j̃(i) = max
�∈J(i)

j(�) < +∞.

We define Ri = supx∈Ūi
‖dxu‖x < +∞, where the supremum is in fact taken over

the subset of full measure of x ∈ Ui where the locally Lipschitz function u has
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a derivative. It is finite because Ūi is compact. Since J(i) is finite, the following
quantity R̃i is also finite:

R̃i = max
�∈J(i)

R� < +∞.

We now choose (θi)i∈N a C∞ partition of unity subordinated to the open cover
(Vi)i∈N. We also define

Ki = sup
x∈M

‖dxθi‖x < +∞,

which is finite since θi is C∞ with support in Vi, which is relatively compact.
Again, by compactness, continuity and finiteness routine arguments, the following

numbers are greater than 0:

δi = inf
x∈V̄i

δ(x) > 0, δ̃i = min
�∈J(i)

δ� > 0,

εi = inf
x∈V̄i

ε(x) > 0, ε̃i = min
�∈J(i)

ε� > 0.

Since V̄i is compact, the subset {(x, p) ∈ T ∗M | x ∈ V̄i, ‖p‖x � R̃i + 1} is also com-
pact. Therefore, by the continuity of H, we can find ηi > 0 such that, for all x ∈ V̄i

and for all p, p′ ∈ T ∗
x M ,

‖p‖x � R̃i + 1, ‖p′‖x � ηi, H(x, p) � c + 1
2εi

=⇒ H(x, p + p′) � c + εi.

We can now choose η̃i > 0 such that j̃(i)Kiη̃i < min�∈J(i) η�. Noting that H(x, p)
and ‖p‖x are both quasi-convex in p, and that V̄i is compact and contained in the
domain Ui of a chart, by lemma 10.3, for each i ∈ N, we can find a C∞-function
ui : Vi → R such that, for all x ∈ Vi,

|u(x) − ui(x)| � min(δ̃i, η̃i),

H(x, dxui) � sup
z∈Vi

H(z, dzu) + 1
2 ε̃i � c + 1

2 ε̃i,

‖dxui‖x � sup
z∈Vi

‖dzu‖z + 1 = Ri + 1,

where the supremum in the last two lines is taken over the set of points z ∈ Vi,
where dzu exists.

We now define v =
∑

i∈N
θiui. It is obvious that v is C∞. We fix x ∈ M , and

choose i0 ∈ N such that x ∈ Vi0 . If θi(x) �= 0, then necessarily Vi ∩ Vi0 �= ∅ and
therefore i ∈ J(i0). Hence,∑

i∈J(i0)

θi(x) = 1 and v(x) =
∑

i∈J(i0)

θi(x)ui(x).

We can now write

|u(x) − v(x)| �
∑

i∈J(i0)

θi(x)|u(x) − ui(x)| �
∑

i∈J(i0)

θi(x)δ̃i

�
∑

i∈J(i0)

θi(x)δi0 = δi0 � δ(x).
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We now estimate H(x, dxv). First we observe that
∑

i∈J(i0) θi(y) = 1 and v(y) =∑
i∈J(i0)θi(y)ui(y) for every y ∈ Vi0 . Since Vi0 is a neighbourhood of x, we can

differentiate to obtain
∑

i∈J(i0) dxθi = 0, and

dxv =
∑

i∈J(i0)

θi(x)dxui

︸ ︷︷ ︸
p(x)

+
∑

i∈J(i0)

ui(x)dxθi

︸ ︷︷ ︸
p′(x)

.

Using the quasi-convexity of H in p, we get

H(x, p(x)) � max
i∈J(i0)

H(x, dxui) � max
i∈J(i0)

c + 1
2 ε̃i � c + 1

2εi0 , (∗)

where, for the last inequality, we have used that i ∈ J(i0) means Vi ∩ Vi0 �= ∅, and
therefore i0 ∈ J(i), which implies ε̃i � εi0 , by the definition of ε̃i.

In the same way, we have

‖p(x)‖x � max
i∈J(i0)

‖dxui‖x � max
i∈J(i0)

Ri + 1 � R̃i0 + 1. (∗∗)

We now estimate ‖p′(x)‖x. Using
∑

i∈J(i0) dxθi = 0, we get

p′(x) =
∑

i∈J(i0)

ui(x)dxθi

=
∑

i∈J(i0)

(ui(x) − u(x))dxθi.

Therefore,

‖p′(x)‖x =
∥∥∥∥ ∑

i∈J(i0)

(ui(x) − u(x))dxθi

∥∥∥∥
x

�
∑

i∈J(i0)

|ui(x) − u(x)|‖dxθi‖x

�
∑

i∈J(i0)

η̃iKi. (∗ ∗ ∗)

From the definition of η̃i, we get Kiη̃i � ηi0/j(i0) for all i ∈ J(i0). Hence,

‖p′(x)‖x �
∑

i∈J(i0)

ηi0

j(i0)
= ηi0 .

The definition of ηi0 , together with inequalities (∗)–(∗ ∗ ∗) above, implies

H(x, dxv) = H(x, p(x) + p′(x)) � c + εi0 � c + ε(x).

Theorem 10.7. Suppose H : T ∗M → R is a Hamiltonian quasi-convex in the fibres.
Let u : M → R be a locally Lipschitz viscosity subsolution of H(x, dxu) = c which
is strict at every point of an open subset U ⊂ M . For every continuous function
ε : U → ]0, +∞[ , we can find a viscosity subsolution uε : M → R of H(x, dxu) = c
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such that u = uε on M \ U, |u(x) − uε(x)| � ε(x), for every x ∈ M , and the
restriction uε|U is C∞ with H(x, dxu) < c for each x ∈ U .

Proof. We first define ε̃ : M → [0, +∞[ . If M = U , we set ε̃ = ε. If M \ U �= ∅, we
set ε̃(x) = min(ε(x), d(x, M \ U)2) for x ∈ U , and ε̃(x) = 0 for x /∈ U . It is clear
that ε̃ is continuous on M and ε̃ > 0 is strictly positive on U .

For each x ∈ U , we can find cx < c, and Vx ⊂ V an open neighbourhood of x
such that H(y, dyu) � cx, for almost every y ∈ Vx. The family (Vx)x∈U is an open
cover of U . Therefore, we can find a locally finite partition of unity (ϕx)x∈U on U
subordinated to the open cover (Vx)x∈U . We define δ : U → ]0, +∞[ by

δ(y) =
∑
x∈U

ϕx(y)(c − cx) for y ∈ U.

It is not difficult to check that H(y, dyu) � c − δ(y) for almost every y ∈ U .
We apply theorem 10.6 to the Hamiltonian H̃ : T ∗U → R defined by H̃(y, p) =

H(y, p) + δ(y) and u | U which satisfies H̃(y, dyu) � c for almost every y ∈ U .
We can therefore find a C∞-function uε : U → R, with |uε(y) − u(y)| � ε̃(y), and
H̃(y, dyuε) � c + 1

2δ(y), for each y ∈ U . Therefore, we obtain

|uε(y) − u(y)| � ε(y) and H(y, dyuε) � c − 1
2δ(y) < c

for each y ∈ U . Moreover, since ε̃(y) � d(y, M \ U)2, it is clear that we can extend
continuously uε by u on M \ U . This extension satisfies

|uε(x) − u(x)| � d(x, M \ U)2 for every x ∈ M.

We must verify that uε is a viscosity subsolution of H(x, dxuε) = c. This is clear
on U , since uε is C∞ on U , and H(y, dyuε) < c, for y ∈ U . It remains to check
that if φ : M → R is C1, and such that φ � uε with equality at x0 /∈ U , then
H(x0, dx0φ) � c. For this, we note that

uε(x0) = u(x0) and u(x) − uε(x) � d(x, M \ U)2 � d(x, x0)2.

Hence, u(x) � φ(x)+d(x, x0)2 with equality at x0. The function x → φ(x)+d(x, x0)2

has a derivative at x0 equal to dx0φ. Therefore, H(x0, dx0φ) � c, since u is a viscosity
solution of H(x, dxu) � c.

11. The viscosity semi-distance

We will suppose that H : T ∗M → R is a continuous Hamiltonian coercive above
every compact subset of the connected manifold M .

Definition 11.1 (Mañé critical value). Let H : T ∗M → R be a continuous Hamil-
tonian. The Mañé critical value c[0] of H is defined in the following way.

• If there is no c ∈ R such that H(x, dxu) = c admits a global viscosity subso-
lution u : M → R, we set c[0] = +∞.

• If there is a c ∈ R such that H(x, dxu) = c admits a global viscosity sub-
solution u : M → R, we define c[0] as the infimum of all c ∈ R such that
H(x, dxu) = c admits a global subsolution u : M → R.
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Note that when M is compact we are always in the second case above. In fact,
if u : M → R is C1, then HM (u) = supx∈M H(s, dxu) is finite, and u is a viscosity
subsolution of H(x, dxu) = c for any c � HM (u).

Proposition 11.2. Suppose that H : T ∗M → R is a continuous Hamiltonian coer-
cive above every compact subset of the connected manifold M . Then

c[0] � sup
x∈M

inf
p∈T ∗

x M
H(x, p) > −∞.

Moreover, if the Hamiltonian H on M is defined by H(x, p) = 1
2‖p‖2

x + V (x),
where V : M → R is continuous, and ‖ · ‖x is the norm associated to a Riemannian
on M , then c[0] = supM V .

Proof. We first prove that the function x �→ infp∈T ∗
x M H(x, p) is finite and con-

tinuous on M . This is obviously a local result. We can therefore assume that
M = R

n. Fix K a compact subset of R
n. By continuity of H, the constant

CK = supx∈K H(x, 0) is finite. By coercivity of H, the set

SK = {(x, p) ∈ K × R
n | x ∈ K, H(x, p) � CK + 1}

is compact. Hence, RK = sup{‖p‖ | H(x, p) � CK + 1} is finite. Obviously, for x ∈
K, we have

inf
p∈T ∗

x M
H(x, p) = inf

p∈B̄(0,RK)
H(x, p).

The continuity of H and the compactness of K × B̄(0, RK) imply that

inf
p∈T ∗

x M
H(x, p) = inf

p∈B̄(0,RK)
H(x, p)

is a finite and continuous function of x ∈ K. Since infp∈T ∗
x M H(x, p) is finite, we

get
sup
x∈M

inf
p∈T ∗

x M
H(x, p) > −∞.

To finish the proof of the first part, we can assume c[0] < +∞. Suppose now
that u : M → R is a viscosity subsolution of H(x, dxu) = c, where c ∈ R. Since
H is coercive, we know by theorem 5.2 that u is locally Lipschitz and satisfies
H(x, dxu) � c almost everywhere in M . This implies that c � infp∈T ∗

x M H(x, p) for
almost every x ∈ M . But x �→ infp∈T ∗

x M H(x, p) is continuous on M . It follows that

c � sup
x∈M

inf
p∈T ∗

x M
H(x, p).

Taking the infimum over all c ∈ R such that H(x, dxu) = c admits a viscosity
subsolution, we conclude that

c[0] � sup
x∈M

inf
p∈T ∗

x M
H(x, p).

To prove the second part we observe that infp∈T ∗
x M H(x, p) = V (x). Therefore,

c[0] � supM V . Of course, if supM V = +∞, the proof is finished. If supM V < +∞,
let u : M → R be a constant function, and then H(x, dxu) = H(x, 0) = V (x) for
every x ∈ M . Hence any constant function is a viscosity subsolution of H(x, dxu) =
supM V . By definition of c[0], we obtain the reverse inequality c[0] � supM V .
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We denote by SSc the set of viscosity subsolutions of H(x, dxu) = c, and by
SSc

x̂ ⊂ SSc the subset of subsolutions vanishing at a given x̂ ∈ M . Of course, since
we can always add a constant to a viscosity subsolution and still obtain a subsolu-
tion, we have SSc

x̂ �= ∅ if and only if SSc �= ∅, and in that case SSc = R + SSc
x̂.

Proposition 11.3. Suppose that H : T ∗M → R is a continuous Hamiltonian coer-
cive above every compact subset of the connected manifold M . Assume that there
is a c ∈ R such that H(x, dxu) = c has a viscosity subsolution on the whole of
M (in particular, the Mañé critical value c[0] is finite). Then there exists a global
u : M → R viscosity subsolution of H(x, dxu) = c[0].

Proof. Fix a point x̂ ∈ M . Subtracting u(x̂) if necessary, we will assume that all
the viscosity subsolutions of H(x, du) = c we consider vanish at x̂. Since H is
coercive above every compact subset of M , by corollary 5.3, for each c the family
of functions in SSc

x̂ is locally equi-Lipschitzian. Therefore, by the beginning of the
proof of theorem 8.2, using that M is connected and the fact that every v ∈ SSc

x̂

vanish at x̂, we obtain, for all x ∈ M ,

sup
v∈SSc

x̂

|v(x)| < +∞.

We pick a sequence cn ↘ c[0], with cn � c, and a sequence un ∈ SScn

x̂ . Since, by
Ascoli’s theorem, the family SSc

x̂ is relatively compact in the topology of uniform
convergence on each compact subset, extracting a sequence if necessary, we can
assume that un converges uniformly to u on each compact subset of M . By the
stability theorem 6.1, since un is a viscosity subsolution of H(x, dxun) = cn, the
limit u is a viscosity subsolution of H(x, dxu) = c[0].

For c � c[0], we define

Sc(x, y) = sup
u∈SSc

u(y) − u(x) = sup
v∈SSc

x

u(y).

It follows from theorem 8.2 that, for each x ∈ M , the function Sc(x, ·) is finite, and
is a viscosity subsolution of H(y, dyu) = c on M itself, and a viscosity solution on
M \ {x}.

Theorem 11.4. For each c � c[0], the function Sc is a semi-distance, i.e. it satis-
fies

(i) Sc(x, x) = 0 for each x ∈ M ,

(ii) Sc(x, z) � Sc(x, y) + Sc(y, z) for each x, y, z ∈ M .

The function Sc is locally Lipschitz on M × M . If d is a distance coming from a
Riemannian metric on M , for every compact subset K ⊂ M , we can find a constant
LK < +∞ such that |Sc(x, y)| � LKd(x, y) for every x, y ∈ K.

Moreover, for c > c[0], the symmetric semi-distance

Ŝc(x, y) = Sc(x, y) + Sc(y, x)

is a distance which is locally Lipschitz-equivalent to any distance coming from a
Riemannian metric.
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Proof. The fact that Sc is a semi-distance follows easily from the definition

Sc(x, y) = sup
u∈SSc

u(y) − u(x).

We now prove that Sc is locally Lipschitz on M × M . By corollary 5.3, the family
of functions SSc is locally equi-Lipschitzian. Therefore, if x0, y0 ∈ M are given,
we can find neighbourhood Vx0 , Vy0 of x0 and y0, respectively, and finite constants
Lx0 , Ly0 such that

|u(x′) − u(x)| � Lx0d(x, x′), ∀u ∈ SSc, ∀x, x′ ∈ Vx0 ,

|u(y′) − u(y)| � Ly0d(y, y′), ∀u ∈ SSc, ∀y, y′ ∈ Vy0 .

This of course implies

|Sc(x, x′)| � Lx0d(x, x′), ∀x, x′ ∈ Vx0 ,

|Sc(y, y′)| � Ly0d(y, y′), ∀y, y′ ∈ Vy0 .

If (x, y), (x′y′) ∈ Vx0 × Vy0 , by the triangular inequality (ii), we obtain

Sc(x′, y′) � Sc(x′, x) + Sc(x, y) + Sc(y, y′).

Since Sc is finite valued, this yields

Sc(x′, y′) − Sc(x, y) � Sc(x′, x) + Sc(y, y′).

With the estimation above, we deduce that

Sc(x′, y′) − Sc(x, y) � Lx0d(x, x′) + Ly0d(y′, y).

Therefore, by symmetry, we obtain

|Sc(x′, y′) − Sc(x, y)| � Lx0d(x, x′) + Ly0d(y′, y).

Hence, Sc is Lipschitz on the neighbourhood Vx0 × Vy0 of (x0, y0) in M × M .
Suppose now that K ⊂ M is compact. Since Sc is locally Lipschitz on the compact

set K × K, we can find α > 0 and L < +∞ such that, for x, x′, y, y′ ∈ K, with
d(x, x′) + d(y, y′) < α, we have |Sc(x′, y′) − Sc(x, y)| � L[d(x, x′) + d(y, y′)]. In
particular, since Sc(z, z) = 0, if x, y ∈ K are such that d(x, y) < α, we have
|Sc(x, y)| � LKd(x, y). Since the continuous function Sc is bounded on the compact
set K ×K, the constant L1 = maxK |Sc| is finite, and for x, y ∈ K with d(x, y) � α,
we have

|Sc(x, y)| � L1 � L1

α
d(x, y).

If we set LK = max(L, L1/α), we obtain that |Sc(x, y)| � LKd(x, y), for all x, y ∈
K.

It remains to show a reverse inequality for c > c[0]. Fix such a c, and a compact set
K ⊂ M . Choose δ > 0 such that N̄δ(K) = {x ∈ M | d(x, K) � δ} is also compact.
By the compactness of the set

{(x, p) | x ∈ N̄δ(K), H(x, p) � c[0]},
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and the continuity of H, we can find ε > 0 such that

H(x, p) � c[0], ‖p′‖x � ε, for every x ∈ N̄δ(K) and every p, p′ ∈ TxM,

=⇒ H(x, p + p′) � c. (∗)

We can find δ1 > 0 such that the radius of injectivity of the exponential map, associ-
ated to the Riemannian metric, is at least δ1 at every point x in the compact subset
N̄δ(K). In particular, the distance function x �→ d(x, x0) is C∞ on B̊(x0, δ1) \ {x0}
for every x0 ∈ N̄δ(K). The derivative of x �→ d(x, x0) at each point where it exists
has norm 1, since this map has (local) Lipschitz constant equal to 1. We can assume
δ1 < δ. We now pick φ : R → R a C∞-function, with support in ]12 , 2[ , and such
that φ(1) = 1. If x0 ∈ K and 0 < d(y, x0) � 1

2δ1, the function

φy(x) = φ

(
d(x, x0)
d(y, x0)

)

is C∞. In fact, if d(x, x0) � δ1, then φy is zero in a neighbourhood of x, since

d(x, x0)
d(y, x0)

� δ1
1
2δ1

= 2;

if 0 < d(x, x0) < δ1 < δ, then it is C∞ on a neighbourhood of x; finally φy(x) = 0
for x such that d(x, x0) � 1

2d(y, x0). In particular, we obtained that dxφy = 0,
unless 0 < d(x, x0) < δ, but at each such x, the derivative of z �→ d(z, x0) exists
and has norm 1. It is then not difficult to see that supx∈M ‖dxφy‖x � A/d(y, x0),
where A = supt∈R |φ′(t)|.

Therefore, if we set λ = εd(y, x0)/A, we see that ‖λdxφy‖x � ε, for x ∈ M .
Since φy is 0 outside the ball B(x0, δ1) ⊂ Nδ1(K), it follows from the property (∗)
characterizing ε that we have, for all (x, p) ∈ T ∗M ,

H(x, p) � c[0] ⇒ H(x, p + λdxφy) � c.

Since Sc[0](x0, ·) is a viscosity subsolution of H(x, dxu) = c[0], and φy is C∞, we
conclude that the function u(·) = Sc[0](x0, ·) + λφy(·) is a viscosity subsolution of
H(x, dxu) = c. But the value of u at x0 is 0, and its value at y is

Sc[0](x0, y) + λφy(y) = Sc[0](x0, y) + εd(y, x0)/A,

since φy(y) = φ(1) = 1. Therefore, Sc(x0, y) � Sc[0](x0, y) + εd(y, x0)/A. Since x0 ∈
K, and y ∈ B̄(x0,

1
2δ1) were arbitrary, we obtain, for all x, y ∈ K,

d(x, y) � 1
2δ1 ⇒ Sc(x, y) � Sc[0](x, y) + εA−1d(x, y).

Adding up and using Sc[0](x, y) + Sc[0](y, x) � Sc[0](x, x) = 0, we get, for all x, y ∈
K,

d(x, y) � 1
2δ1 ⇒ Sc(x, y) + Sc(y, x) � 2ε

A
d(x, y).
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12. The projected Aubry set

Theorem 12.1. Assume that H : T ∗M → R is a Hamiltonian coercive above every
compact subset of the connected manifold M , with c[0] < +∞. For each c � c[0]
and each x ∈ M , the following two conditions are equivalent:

(i) the function Sc(x, ·) is a viscosity solution of H(z, dzu) = c on the whole of
M ;

(ii) there is no viscosity subsolution of H(z, dzu) = c on the whole of M which is
strict at x.

In particular, for every c > c[0], the function Sc(x, ·) is not a viscosity solution of
H(z, dzu) = c.

Proof. The implication (ii) =⇒ (i) follows from proposition 9.2.
To prove (i) =⇒ (ii), fix x ∈ M such that Sc

x(·) = Sc(x, ·) is a viscosity solution
on the whole of M , and suppose that u : M → R is a viscosity subsolution of
H(y, dyu) = c which is strict at x. Therefore, we can find an open neighbourhood
Vx of x, and a cx < c such that u|Vx is a viscosity subsolution of H(y, dyu) = cx

on Vx. By definition of S, we have u(y) − u(x) � Sc
x(y) with equality at y = x.

This implies that u − Sc
x has a global maximum at x. Applying theorem 7.2 to the

restrictions of u and Sc
x to Vx, we see that we must have c � cx < c, which is a

contradiction.
Since a viscosity subsolution of H(x, dxu) = c[0] is a strict viscosity subsolution

of H(x, dxu) = c for any c > c[0], we obtain the last part of the theorem.

The above theorem yields the following definition.

Definition 12.2 (projected Aubry set). If H : T ∗M → R is a continuous Hamilto-
nian, coercive above every compact subset of the connected manifold M . We define
the projected Aubry set A as the set of x ∈ M such that Sc[0](x, ·) is a viscosity
solution of H(z, dzu) = c[0].

Proposition 12.3. The projected Aubry set A is closed.

Proof. We show that M \ A is open. In fact, by the equivalence in theorem 12.1, if
x0 /∈ A, there is a viscosity subsolution u which is strict at x0. By the definition of
a strict subsolution there is a whole open neighbourhood Ux0 of x0 on which u is
a subsolution of H(x, dxu) = c, for some c < c[0]. Obviously, this subsolution u is
strict at every x ∈ Ux0 . Again, by the equivalence in theorem 12.1, we obtain that
x /∈ A, for every x ∈ Ux0 .

In fact, the projected Aubry set can be empty even if H is quasi-convex in the
fibres (see example 12.7). To be able to proceed in our discussion we will need to
restrict to Hamiltonians convex in the fibres.

Proposition 12.4. Assume that H : T ∗M → R is a continuous Hamiltonian, con-
vex in the fibres, and coercive above every compact subset of the connected manifold
M . There exists a viscosity subsolution v : M → R of H(x, dxv) = c[0], which is
strict at every x ∈ M \ A.

https://doi.org/10.1017/S0308210550000064 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210550000064


1228 A. Fathi

Proof. We fix some base point x̂ ∈ M . For each x /∈ A, we can find ux : M →
R, an open subset Vx containing x, and cx < c[0], such that ux is a viscosity
subsolution of H(y, dyux) = c[0] on M , and ux | Vx is a viscosity subsolution
of H(y, dyux) � cx, on Vx. Subtracting ux(x̂) if necessary, we will assume that
ux(x̂) = 0. Since U = M \ A is covered by the family of open sets Vx, x /∈ A, we
can extract a countable subfamily (Vxi

)i∈N covering U . Since H is coercive above
every compact set, the sequence (uxi)i∈N is locally equi-Lipschitzian. Therefore,
since M is connected, and all the uxi vanish at x̂, the sequence (uxi

)i∈N is uniformly
bounded on every compact subset of M . It follows that the sum

v =
∑
i∈N

1
2i+1 uxi

is uniformly convergent on each compact subset. If we set

un = (1 − 2−(n+1))−1
∑

0�i�n

1
2i+1 uxi ,

then un is a viscosity subsolution of H(x, dxun) = c[0] as a convex combination
of viscosity subsolutions (see proposition 10.4). Since un converges uniformly on
compact subsets to u, the stability theorem 6.1 implies that v is also a viscosity
subsolution of H(x, dxv) = c[0].

On the set Vxn0
, we have H(x, dxuxn0

) � cxn0
for almost every x ∈ Vxn0

. There-
fore, if we fix n � n0, we see that, for almost every x ∈ Vxn0

, we have

H(x, dxun) � (1 − 2−(n+1))−1
n∑

i=0

1
2i+1 H(x, dxuxi

)

� (1 − 2−(n+1))−1
[
cxn0

− c[0]
2n0+1 +

n∑
i=0

1
2i+1 c[0]

]

= c[0] +
cxn0

− c[0]
2n0+1 − 2n0−n

.

Therefore, un|Vxn0
is a viscosity subsolution of

H(x, dxun) = c[0] +
cxn0

− c[0]
2n0+1 − 2n0−n

.

By the stability theorem 6.1, we obtain that v|Vxn0
is a viscosity subsolution

of H(x, dxv) = c[0] + (cxn0
− c[0])/2n0+1. Since cxn0

− c[0] < 0, we conclude that
u | Vxn0

is a strict subsolution of H(x, dxv) = c[0], for each x ∈ Vxn0
, and therefore

at each x ∈ U ⊂
⋃

n∈N
Vxn

.

Corollary 12.5. Assume that H : T ∗M → R is a Hamiltonian convex in the fibres
and coercive, where M is a compact connected manifold. Its projected Aubry set A
is not empty.

Proof. We argue by contradiction. If A = ∅, then by proposition 12.4, we can
find a viscosity subsolution u of H(x, dxu) = c[0] which is strict everywhere. In
particular, for every x ∈ M , we can find an open neighbourhood Vx of x and
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cx < c[0] such that u | Vx is a viscosity solution of H(y, dyv) = cx. By com-
pactness of M , we can find a finite number of points x1, . . . , x� in M such that
M = Vx1 ∪ · · · ∪ Vx�

. It follows from corollary 4.2 that u is a viscosity subsolution
of H(x, dxu) = max(cx1 , . . . , cx�

) on the whole of M . This is in contradiction of the
definition of c[0] since max(cx1 , . . . , cx�

) < c[0].

Theorem 12.6. Assume that H : T ∗M → R is a Hamiltonian convex in the fibres
and coercive, where M is a compact connected manifold. Suppose u1, u2 : M → R

are a viscosity subsolution and a viscosity supersolution, respectively, of H(x, dxu) =
c[0]. If u1 � u2 on the projected Aubry set A, then u1 � u2 everywhere on M .

In particular, if two viscosity solutions of H(x, dxu) = c[0] coincide on A, they
coincide on M .

Proof. By proposition 12.4, we can find a viscosity subsolution u0 of H(x, dxu) =
c[0] which is strict at every point of M \ A. We interpolate between u0 and u1 by
defining ut = (1 − t)u0 + tu1. As in the proof of proposition 12.4, we can show
that ut is a viscosity subsolution of H(x, dxu) = c[0] for any t ∈ [0, 1]. Moreover,
for t < 1, the viscosity subsolution ut is strict at each point of M \ A. By the
coercivity condition, all subsolutions are locally Lipschitz. Since M is compact,
ut − u2 achieves a maximum on M . By proposition 9.3, for t < 1, this maximum is
achieved at a point of the compact subset A. Since ut converges uniformly to u1, it
follows that u1 − u2 also achieves its maximum on M in the same compact subset
A. But u1 − u2 � 0 on A. Therefore, u1 − u2 � 0 everywhere on M .

Example 12.7. We give an example of a Hamiltonian quasi-convex in the fibres
with the Aubry set empty, hence, corollary 12.5 does not hold for quasi-convex
Hamiltonians. We will also show that proposition 12.4 does not necessarily hold for
this Hamiltonian; in fact, the argument shows more generally that when the Aubry
set is empty for a Hamiltonian on a compact manifold, proposition 12.4 cannot
hold.

Define the quasi-convex function h : R → R by

h(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−t − 1 for t � −1,

t + 1 for − 1 � t � 0,

1 for 0 � t � 1,

t for t � 1.

We define a Hamiltonian H on T = R/Z. We use the usual identification of the
cotangent space T ∗

T with T × R. In this usual identification, the derivative du of a
function u : T → R, as a section, is exactly t �→ (t, u′(t)). The Hamiltonian H : T×R

is defined by H(t, s) = h(s). Obviously, the constant function u0 ≡ 0 obviously
satisfies H(t, u′

0(t)) = H(t, 0) = h(0) = 1, therefore c[0] = 1, by corollary 7.3.
For any t0 ∈ T, the function vt0(t) = (2π)−1 sin(2πt + π − 2πt0) has a derivative
v′

t0(t) = cos(2πt+π−2πt0) which is between −1 and 1 everywhere. Therefore, vt0 is
a subsolution of H(t, v′(t)) = 1. Moreover, its derivative at t0 is cos(π) = −1, Hence,
H(t0, v′

t0(t0)) = h(−1) = 0 < 1. By continuity of the derivative of vt0 , it follows that
vt0 is strict at t0. Since t0 is arbitrary in T, it follows from theorem 12.1 that the
Aubry set of H is empty. This shows that corollary 12.5 cannot be true for general
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quasi-convex Hamiltonian. We now show that proposition 12.4 cannot be true for
H. In fact, if it were true we would obtain a viscosity subsolution which is strict at
every point of T. Using the compactness of T as in the proof of corollary 12.5, we
see that this yields a viscosity subsolution of H(t, v′(t)) = c, for some c < 1. This
is impossible since c[0] = 1.

13. The representation formula

We still assume that M is compact, and that H : T ∗M → R is a coercive Hamilto-
nian convex in the fibres.

Theorem 13.1. Any viscosity solution u : M → R for H(x, dxu) = c[0] satisfies

u(x) = inf
x0∈A

u(x0) + Sc[0](x0, x), ∀x ∈ M.

This follows easily from the uniqueness theorem 12.6 and the following theorem.

Theorem 13.2. For any function v : A → R bounded from below, the function

ṽ(x) = inf
x0∈A

v(x0) + Sc[0](x0, x)

is a viscosity solution of H(x, dxv) = c[0]. Moreover, we have ṽ|A = v if and only
if, for all x, y ∈ A,

v(y) − v(x) � Sc[0](x, y).

We start with a lemma.

Lemma 13.3. Suppose H : T ∗M → R is a continuous Hamiltonian quasi-convex in
the fibres, and coercive above each compact subset of the connected manifold M .
Let ui : M → R, i ∈ I, be a family of viscosity subsolutions of H(x, dxu) = c. If
infi∈I ui(x0) is finite for some x0 ∈ M , then infi∈I ui is finite everywhere. In that
case, the function u = infi∈I ui is a viscosity subsolution of H(x, dxu) = c.

In particular, if each ui is a viscosity solution, so is u = infi∈I ui.

Proof. We fix an auxiliary Riemannian metric on M , and we use as a distance on
M its associated distance.

By the coercivity condition, the family (ui)i∈I is locally equi-Lipschitzian. There-
fore, if K is a compact connected subset of M , there exists a constant C(K) such
that, for all x, y ∈ K and for all i ∈ I,

|ui(x) − ui(y)| � C(K).

If x ∈ M is given, we can find a compact connected subset Kx containing x0 and
x, it follows that

inf
i∈I

ui(x0) � inf
i∈I

ui(x) + C(Kx).

Therefore, infi∈I ui is finite everywhere. It now suffices to show that, for a given
x̃ ∈ M , we can find an open neighbourhood V of x̃ such that infi∈I ui | V is a
viscosity subsolution of H(x, dxu) = c on V . We choose an open neighbourhood V
of x̃ such that its closure V̄ is compact. Since C0(V̄ , R) is metric and separable in
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the topology of uniform convergence, we can find a countable subset I0 ⊂ I such
that ui|V̄ , i ∈ I0, is dense in {ui|V̄ | i ∈ I}, for the topology of uniform convergence.
Therefore, infi∈I ui = infi∈I0 ui on V̄ . Since I0 is countable, we have reduced the
proof to the cases where I0 = {0, . . . , N} or I0 = N.

Let us start with the first case. Since u0, . . . , uN , and u = infN
i=0 ui are all

locally Lipschitzian on V , we can find E ⊂ V of full Lebesgue measure such that
dxu, dxu0, . . . , dxuN exists, for each x ∈ E. At each such x ∈ E, we necessarily have
dxu ∈ {dxu0, . . . , dxuN}. In fact, if n is such that u(x) = un(x), since u � un with
equality at x and both derivatives dxun, dxu at x exist, they must be equal. Since
each ui is a viscosity subsolution of H(x, dxv) = c, we obtain H(x, dxu) � c for
every x in the subset E of full measure in V . By the quasi-convexity of H in the
fibres, corollary 10.5 implies that u is a viscosity subsolution of H(x, dxu) = c in
V . It remains to consider the case I0 = N. Define uN (x) = inf0�i�N ui(x). By the
previous case, uN is a viscosity subsolution of H(x, dxuN ) = c on V .

Now uN (x) → infi∈I0 ui(x), for each x ∈ V̄ , the convergence is, in fact, uniform
on V̄ since (ui)i∈I0 is equi-Lipschitzian on the compact set V̄ . It remains to apply
the stability theorem 6.1.

To prove the last part of the lemma, it suffices to recall from proposition 8.1 that
an infimum of a family of supersolutions is itself a supersolution.

Proof of theorem 13.2. By definition of the projected Aubry set, for every x0 ∈ A,
the function v(x0) + Sc[0](x0, ·) is a viscosity solution. It follows from lemma 13.3
that ṽ is a viscosity solution.

Since ṽ is in particular a subsolution, it satisfies ṽ(y) − ṽ(x) � Sc[0](x, y) every-
where. Therefore, if v = ṽ on A, we must have that

v(y) − v(x) � Sc[0](x, y), ∀x, y ∈ A.

Conversely, if v satisfies the property above, from the definition of ṽ it is obvious
that v = ṽ on A.

14. Tonelli Hamiltonians and Lagrangians

We now establish part of the relationship between viscosity solutions, weak KAM
solutions, and the Lax–Oleinik semi-group for a Tonelli Hamiltonian. A reference
for this part is [4]. Another reference is [10].

In this section we will always suppose that the manifold is compact. We first
recall the definition of a Tonelli Hamiltonian.

Definition 14.1. Let M be a compact manifold. A Hamiltonian H : T ∗M → R is
said to be Tonelli if it is at least C2, and satisfies the following two conditions.

(i) Superlinearity: for every K � 0, there exists C∗(K) < ∞ such that, for all
(x, p) ∈ T ∗M ,

H(x, p) � K‖p‖x − C∗(K).

(ii) C2 strict convexity in the fibres: for every (x, p) ∈ T ∗M , the second
derivative along the fibres ∂2H/∂p2(x, p) is (strictly) positive definite.
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Note that condition (i) is independent of the choice of a Riemannian metric on
M . In fact, all Riemannian metrics on the compact manifold M are equivalent.
Moreover, condition (i) implies that H is coercive.

To such a Hamiltonian we associate a Lagrangian L : TM → R defined by

L(x, v) = max
p∈T ∗

x M
〈p, v〉x − H(x, p), ∀(x, v) ∈ TM.

Since H is of class C2, finite everywhere, superlinear and C2 strictly convex in each
fibre T ∗

x M , it is well known that L is finite everywhere of class C2, superlinear and
C2 strictly convex in each fibre TxM , and satisfies, for all (x, p) ∈ T ∗M ,

H(x, p) = max
v∈TxM

〈p, v〉x − L(x, v).

Definition 14.2 (evolution dominated function). A function U : [0, +∞[ ×M →
R is said to be evolution dominated by the Tonelli Lagrangian L associated to the
Tonelli Hamiltonian H if, for every continuous piecewise C1 curve γ : [a, b] → M ,
with 0 � a � b, we have

U(b, γ(b)) − U(a, γ(a)) �
∫ b

a

L(γ(s), γ̇(s)) ds.

Note that an evolution dominated function is not necessarily continuous. In fact,
since L is superlinear, we have c = inf L > −∞. If ρ : [0, +∞[ → R is any non-
increasing (not necessarily continuous) function, then U(t, x) = ct+ρ(t) is evolution
dominated by L.

Exercise 12.

(i) Show that a function U : [0, +∞[ ×M → R is evolution dominated by L if and
only if, for every continuous piecewise C1 curve γ : [α, β] → M , with α, β ∈ R,
α � β, and every a � 0, we have

U(a + β − α, γ(β)) − U(a, γ(α)) �
∫ β

α

L(γ(s), γ̇(s)) ds.

(Hint: reparametrize the curve γ by a shift in time.)

(ii) Suppose that U : [0, +∞[ ×M → R is evolution dominated by L. If a � 0
show that V (t, x) = U(t + a, x) is also evolution dominated by L.

Proposition 14.3. If a continuous function U : [0, +∞[ ×M → R is evolution
dominated by the Tonelli Lagrangian L associated to the Tonelli Hamiltonian H,
then U is a viscosity subsolution of

∂U

∂t
(t, x) + H

(
x,

∂U

∂x
(t, x)

)
= 0

on the open set ]0, +∞[ ×M .

Proof. Suppose φ � U , with φ of class C1 and φ(t0, x0) = U(t0, x0), where t0 > 0.
Fix v ∈ Tx0M , and pick a C1 curve γ : [0, t0] → M such that (γ(t0), γ̇(t0)) = (x0, v).
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If 0 � t � t0, we have

U(t0, γ(t0)) − U(t, γ(t)) �
∫ t0

t

L(γ(s), γ̇(s)) ds. (∗)

Since φ � U , with equality at (t0, x0), noting that γ(t0) = x0, we obtain from (∗)
that, for all t ∈ ]0, t0[ ,

φ(t0, γ(t0)) − φ(t, γ(t)) �
∫ t0

t

L(γ(s), γ̇(s)) ds.

Dividing by t0 − t > 0, and letting t → t0, we get, for all v ∈ Tx0M ,

∂φ

∂t
(t0, x0) +

∂φ

∂x
(t0, x0)(v) � L(x0, v).

Since

H

(
x0,

∂φ

∂x
(t0, x0)

)
= sup

v∈Tx0M

∂φ

∂x
(t0, x0)(v) − L(x0, v),

we obtain
∂φ

∂t
(t0, x0) + H

(
x0,

∂φ

∂x
(t0, x0)

)
� 0.

This finishes the proof.

An important object of the theory is the Lax–Oleinik semi-group. We recall its
definition and some of its properties, and send the reader to the last section of [4],
or to [10].

If u : M → R is a continuous function, and t > 0, we define T−
t u : M → R by

T−
t u(x) = inf

γ

{
u(γ(0)) +

∫ t

0
L(γ(s), γ̇(s)) ds

}
,

where the infimum is taken over all the continuous piecewise C1 curves γ : [0, t] → M
such that γ(t) = x.

In fact, for each t > 0 the function T−
t u is continuous (and even Lipschitz). More-

over, setting T−
0 u = u, the function (t, x) �→ T−

t u(x) is continuous on [0, +∞[ ×M ,
and is locally Lipschitz on ]0, +∞[ ×M .

Moreover, the family T−
t , t � 0, is a semi-group, i.e., for all t, t′ � 0 and for all

u ∈ C0(M, R),
T−

t+t′u = T−
t T−

t′ u.

Exercise 13.

(i) Suppose that U : [0, +∞[ ×M → R is a continuous function. For a � 0, set
Ua(x) = U(a, x). Show that U is evolution dominated by L if and only if, for
every t, a � 0, we have Ut+a � T−

t Ua.

(ii) If u ∈ C0(M, R) and U(t, x) = T−
t u(x), show that U is evolution dominated

by L.
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Theorem 14.4. If u ∈ C0(M, R) and U(t, x) = T−
t u(x), then U is a viscosity

solution of
∂U

∂t
(t, x) + H

(
x,

∂U

∂x
(t, x)

)
= 0, (EHJ)

on the open subset ]0, +∞[ ×M .

Proof. By proposition 14.3 and part (ii) of exercise 13, the function U is a viscosity
subsolution of (EHJ) on ]0, +∞[ ×M .

To prove that U is a supersolution, we consider ψ � U , with ψ of class C1.
Suppose U(t0, x0) = ψ(t0, x0) with t0 > 0.

As is well known, by Tonelli’s theorem, the infimum in the definition of T−
t u(x)

is attained by a curve which is a minimizer, hence, at least C2. Therefore, we can
pick a C2 curve γ : [0, t0] → M such that γ(t0) = x0 and

U(t0, x0) = T−
t0 u(x0) = u(γ(0)) +

∫ t0

0
L(γ(s), γ̇(s)) ds.

Since U(0, γ(0)) = u(γ(0)), this can be rewritten as

U(t0, x0) − U(0, γ(0)) =
∫ t0

0
L(γ(s), γ̇(s)) ds. (∗∗)

Applying the fact that U is evolution dominated twice, for every t ∈ [0, t0] we obtain

U(t0, x0) − U(t, γ(t)) �
∫ t0

t

L(γ(s), γ̇(s)) ds,

U(t, γ(t)) − U(0, γ(0)) �
∫ t

0
L(γ(s), γ̇(s)) ds.

Adding these two inequalities, by (∗∗), we in fact obtain an equality. Hence, we
must have, for all t ∈ [0, t0],

U(t0, γ(t0)) − U(t, γ(t)) =
∫ t0

t

L(γ(s), γ̇(s)) ds.

Since ψ � U , with equality at (t0, x0), for every t ∈ [0, t0] we obtain

ψ(t0, γ(t0)) − ψ(t, γ(t)) �
∫ t0

t

L(γ(s), γ̇(s)) ds.

Dividing by t0 − t > 0 and letting t → t0, we get

∂ψ

∂t
(t0, x0) +

∂ψ

∂x
(t0, x0)(γ̇(t0)) � L(x0, γ̇(t0)).

By definition of L, we have

L(x0, γ̇(t0)) � ∂ψ

∂x
(t0, x0)(γ̇(t0)) − H

(
x0,

∂ψ

∂x
(t0, x0)

)
.

It follows that

∂ψ

∂t
(t0, x0) +

∂ψ

∂x
(t0, x0)(γ̇(t0)) � ∂ψ

∂x
(t0, x0)(γ̇(t0)) − H

(
x0,

∂ψ

∂x
(t0, x0)

)
.
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Therefore,
∂ψ

∂t
(t0, x0) + H

(
x0,

∂ψ

∂x
(t0, x0)

)
� 0.

Since the continuous function (t, x) �→ T−
t u(x), (t, x) ∈ [0, +∞[ ×M , is locally

Lipschitz on ]0, +∞[ ×M , and is a viscosity solution of

∂U

∂t
(t, x) + H

(
x,

∂U

∂x
(t, x)

)
= 0

on ]0, +∞[ ×M , we can apply the uniqueness statement of corollary 7.5 to obtain
the following theorem.

Theorem 14.5. Let H : T ∗M → R be a Tonelli Hamiltonian on the compact man-
ifold M . Suppose that the continuous function U : [0, +∞[ ×M → R is a viscosity
solution of

∂U

∂t
(t, x) + H

(
x,

∂U

∂x
(t, x)

)
= 0

on the open set ]0, +∞[ ×M . Then U(t, x) = T−
t u(x) for every (t, x) ∈ [0, +∞[ ×M ,

where u : M → R is defined by u(x) = U(x, 0).

We now conclude with the characterization of the solutions of the HJE by the
Lax–Oleinik semi-group.

Theorem 14.6. Let H : T ∗M → R be a Tonelli Hamiltonian on the compact man-
ifold M . A continuous function u : M → R is a viscosity solution of H(x, dxu) = c
if and only if u = T−

t u + ct for all t � 0.

Proof. We set U(t, x) = u(x)−ct. By exercise 4, the function u is a viscosity solution
of

H(x, dxu) = c

on M if and only if U is a viscosity solution of

∂U

∂t
(t, x) + H

(
x,

∂U

∂x
(t, x)

)
= 0

on ]0, +∞[ ×M . It now follows from theorem 14.5 that u is a viscosity solution of
H(x, dxu) = c if and only if u−ct = U(t, x) = T−

t u(x), for all x ∈ M and t � 0.

Exercise 14. Suppose that H : T ∗M → R is a Tonelli Hamiltonian on the compact
manifold M . Assume that the continuous functions U, V : [0, +∞[ ×M → R are,
respectively, a viscosity subsolution and a viscosity supersolution of the evolutionary
HJE

∂U

∂t
(t, x) + H

(
x,

∂U

∂x
(t, x)

)
= 0 (EHJ)

on the open set ]0, +∞[ ×M . For a � 0, define Ua, Va : M → R by Ua(x) = U(a, x)
and Va(x) = V (a, x).
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(i) Show that, for all t � 0, we have

Ut+a � T−
t Ua and T−

t Va � Vt+a.

(ii) Show that U is evolution dominated by L.

(iii) Conclude that a continuous function on [0, +∞[ ×M is a viscosity subsolution
of (EHJ) on ]0, +∞[ ×M if and only if it is evolution dominated by L.
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