
Geol. Mag. 143 (2 ), 2006, pp. 243–247. c© 2006 Cambridge University Press 243
doi:10.1017/S0016756805001688 Printed in the United Kingdom

RAPID COMMUNICATION

Strain estimation from flattened parallel folds: application
of the Wellman method and Mohr circle
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Abstract – Parallel folds exhibit a characteristic orthogonal relationship between the tangent and the
corresponding isogon drawn at any point on folded surface. Modification of parallel fold to flattened
parallel fold by superimposition of homogeneous strain introduces an angular shear along the tangents
at different points. The angular shears in different directions, obtained by measuring angles between
the tangents and the corresponding isogons, can be used for estimation of flattening strain by a variety
of geometrical and numerical methods. We show that several simple geometrical techniques, such as
the Wellman method and the Mohr circle method, can rapidly decipher the strain from flattened parallel
folds. These methods, in contrast to most of the existing methods of strain estimation, are independent
of the assumption that one of the principal strain directions parallels the axial trace on the profile plane
of fold.
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1. Introduction

Structural geologists seek ways of deciphering ductile
strain in orogenic belts, but there are few reliable ways
of measuring ductile strain in rocks that do not contain
classic ‘strain markers’, or are folded. In such situations,
flattened parallel folds, developed by superimposition of
a homogeneous strain on parallel folds, can be used as a
potential indicator for revealing the flattening component
of strain history (Campbell, 1951; Ramsay, 1962; Hudleston,
1973a,b,c; Mukhopadhyay, 1965; Naha & Halyburton, 1977;
Gray & Durney, 1979; Ramsay & Huber, 1987, pp. 349–60).

Amongst several methods that are available for estimation
of the flattening strain in the flattened parallel folds, the
t′α–α method of Ramsay (1962; 1967, p. 413) and the φ–α
method of Hudleston (1973a) have been most widely used.
These methods provide estimates of strain by visual matching
of observed t′α–α or φ–α plots with standard t′α–α or φ–
α curves designed for various amounts of flattening strain
(figure 7–29 in Ramsay, 1967, p. 413; fig. 19 in Hudleston,
1973a). Advantage of the visual curve matching in these
methods is, however, offset by the fact that the standard
curves tend to merge with each other, particularly at low
angles of limb dip (α) and high amounts of flattening strain.
In addition, the application of these methods is subject to the
satisfaction of two main conditions, namely (1) the profile
plane represents one of the principal planes of strain ellipsoid,
and (2) on the profile plane, the axial trace of fold parallels
one of the principal strain directions.

Since the above two conditions are not satisfied by
many natural folds, we need methods that do not assume
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parallelism between the geometrical elements of folds and
principal strain directions. This article describes two simple
geometrical techniques, namely the Wellman method and
the Mohr circle method, that can estimate flattening strain in
any flattened parallel fold regardless of the angle between
the principal strain directions and the axial trace of the
fold.

2. The rationale

Parallel (class 1B) folds are characterized by the orthogonal
relationship between the dip isogon, a line joining the
points of equal dips on the outer and inner arcs, and the
corresponding tangents on the profile section (Fig. 1a).
The tangents and the isogons deform as passive lines as
the superimposition of homogeneous strain on a parallel
fold modifies its geometry into a flattened parallel (class
1C) fold. An important geometrical consequence of such a
deformation is that the orthogonality between the tangents
and the corresponding isogon is lost at every point, except
in the principal strain directions (Fig.1b). The angular shears
obtained by measuring the changes in orthogonality between
the tangents and the respective isogons at different points
on the folded surface form the basis for deciphering the
flattening strain by a variety of methods. These include:
(i) geometrical techniques, such as the Breddin’s graph
method (Breddin, 1956; Ramsay & Huber, 1983, pp. 129–
32), the maximum shear strain method (Ramsay, 1967,
pp. 197–9), the Wellman method (Wellman, 1962; Ramsay,
1967, p. 242; Ragan, 1985, pp. 175–7) and the Mohr
circle method (Ramsay, 1967, pp. 235–7; Treagus, 1987;
Lisle, 1991); (ii) numerical solutions, e.g. solutions to
equations 5.39a and 5.39b in Ramsay (1967, p. 237) and
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Figure 1. (a) Orthogonal relationship between the isogons i1

and i2, and the corresponding tangents t1 and t2, on the profile
section of a parallel (class 1B) fold. A reference circle is drawn
below the fold. (b) Profile section of the class 1C fold developed
due to flattening of the class 1B fold in (a). Note that the axial
trace of the fold does not parallel principal strain directions,

√
λ1

and
√

λ2, along the major and minor axes of the stain ellipse. ψ1

and ψ2 are respectively the angles of shear along the tangents
t1 and t2. Orientation of strain ellipse, representing flattening
strain, can be measured in terms of the angle between the major
axis and the tangents or isogons.

(iii) computer-based techniques, such as the retrodeforma-
tional method (Srivastava & Shah, 2006). Herein, we briefly
describe the procedures of the application of the Wellman
method and the Mohr circle method, which involve simple
geometrical constructions but produce rapid and accurate
results.

Figure 2. Principle for application of the Wellman method.
(a) acbd and aebf are two typical rectangles obtained by drawing
lines paralleling the isogons and the corresponding tangents at
two points on the profile section of a parallel fold. By scaling
the diagonals of rectangles to a common length ab, the locus
of vertices of the rectangles is obtained as a circle of diameter
ab. (b) Flattened parallel fold developed due to superimposition
of homogeneous strain on the parallel fold in (a). ACBD and
AEBF are parallelograms with sides paralleling the isogons and
the corresponding tangents. The diagonals of parallelograms are
scaled to a common length AB, so that the locus of vertices of
the parallelograms is the required strain ellipse.

3. The Wellman method

On the profile section of a class 1B fold, it is possible to draw
a set of rectangles such that the two adjacent sides of each
rectangle parallel the isogon and the corresponding tangents
(Fig. 2a). These rectangles can be represented in a common
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Figure 3. The Mohr circle method. (a) Profile section of the given class 1C fold. t1 and t2 – tangents at any two points; n1 and n2 –
normals to the tangents t1 and t2 respectively; i1 and i2 – dip isogons; β – the angle between t1 and t2. Inset shows the criterion for sense
of angular shear. (b) λ′–γ ′ cartesian frame showing two lines OA and OB that pass through the origin and make angles + ψ1 and – ψ2

with respect to the λ′ axis. (c) A circle of arbitrary radius. 2β is the angle between radii CD and CE. (d) Mohr diagram showing a
unique solution.

√
OG/OF – axial ratio of strain ellipse. Major axis of strain ellipse is inclined at angles θ1 and θ 2 with respect to the

tangents t1 and t2, respectively.

reference frame by drawing the lines parallel to the isogons
and the corresponding tangents from the ends a and b of a
line ab of arbitrary length. As shown in Figure 2a, such a con-
struction results in a geometrical condition where the locus
of the vertices of the rectangles is a circle of diameter
ab.

As the superimposition of homogeneous strain flattens a
class 1B fold into a class 1C fold, the rectangles on the
class 1B fold transform into parallelograms such that the
two adjacent sides of each parallelogram parallel the isogon
and the corresponding tangents on class 1C fold (Fig. 2b).
These parallelograms can be transferred into a common
reference frame by drawing the lines that pass through the
ends A and B of an arbitrarily chosen reference line AB,
and parallel the isogon and the corresponding tangents at
different points on the given class 1C fold. The locus of the
vertices of such parallelograms is the required strain ellipse
that represents the flattening strain (Fig. 2b).

4. The Mohr circle method

Different techniques for construction of the Mohr circles
for determining the strain ratio and the principal strain
directions are described by Ramsay (1967, p. 78), Treagus
(1987) and Lisle (1991). We use the angular shears ψ1 and
ψ2 along the tangents t1 and t2 drawn at any two points on the
flattened parallel fold and adopt the procedures explained by
Ramsay (1967, p. 237) and Ramsay & Huber (1983,
pp. 132–4) for drawing the Mohr circle in a λ′–γ ′ cartesian
frame (Fig. 3).

The Mohr circle intersects the λ′ axis at two points F
(kλ1

′, 0) and G (kλ2
′, 0), respectively (Fig. 3d). The square

root of ratio OG/OF equals to
√

(λ2
′/ λ1

′), which is the axial
ratio of the finite strain ellipse for the flattening component in
the given class 1C fold. The direction of maximum stretching
is located at angles θ 1 or θ 2 from the tangents t1 or t2,
respectively, measured according to the standard conventions
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Figure 4. (a) Profile section of a flattened parallel fold (taken from figure 19.11 in Ramsay & Huber, 1987, p. 393), along with the
isogons and corresponding tangents. Tangents t1 and t2 and the corresponding isogons are highlighted. (b) Wellman’s construction for
fold in (a). θ – angle between axial trace (AT) and major axis (

√
λ1) of the strain ellipse. (c) Mohr circle solution on λ′–γ ′ graph. Mohr

circle intersects λ′ axis at λ′
1 and λ′

2. Orientation of strain ellipse with respect to tangents t1 and t2 and axial trace of the fold (AT) is
shown in the strain ellipse.

Table 1. Results of strain analysis on the natural example of a
flattened parallel fold

Wellman method Mohr circle method

Example
√

λ1/λ2 θ
√

λ1/λ2 θ

Figure 4 1.69 8◦ 1.73 7◦

√
λ1/λ2 – axial ratio of strain ellipse representing flattening strain.

θ – angle between the direction of maximum stretching and the
axial trace.

of the Mohr circle (Ramsay, 1967, p. 73). Alternatively, the
same solution can be obtained by drawing the Mohr circle
through the pole to the Mohr circle (Lisle, 1991).

5. Example

We demonstrate application of the Wellman method and the
Mohr circle method on a natural example of the flattened
parallel fold taken from figure 19.11 in Ramsay & Huber
(1987, p. 393). This example represents a ptygmatic fold
in the siltstone layer within shale beds exposed near Hope
Cove, South Devon, England (Fig. 4a). The results of strain
analysis on this fold show that the axial ratios and the orient-
ations of strain ellipses obtained by the Wellman method and
the Mohr circle method are quite consistent (Figure 4b,c and
Table 1).

6. Discussion and conclusions

One implicit assumption in these methods is that flattening
follows the process of buckling, albeit the class 1C folds can
also develop by simultaneous buckling and flattening, partic-
ularly at low viscosity contrasts (Hudleston & Stephansson,
1973). The latter type of class 1C folds is not discussed in
this paper. The other assumption is that of a homogeneous

nature of the strain during the flattening process (Flinn, 1962;
Treagus & Treagus, 1981).

The condition of orthogonality between the isogon and the
corresponding tangents on the profile section of a class 1B
fold opens up the possibility of the application of a large
number of simple techniques for estimation of flattening
strain in class 1C folds. Of these, the Wellman and the Mohr
circle methods, proposed by us, have several distinct merits
over the commonly used t′α–α and the φ–α methods. In
particular, on account of being independent of the condition
of parallelism between principal strain direction and axial
trace of the fold, these methods are capable of providing
estimates of strain from obliquely-flattened parallel folds. In
this regard, these approaches are comparable to the inverse
thickness method, which is free from the assumption of
parallelism between axial trace and principal strain direction
(Lisle, 1992).
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