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The Great Elliptic Sailing (GES), which can reduce sailing distance, is important to naviga-
tors. Whether a Great Ellipse (GE) is worth using depends on whether the distance saved is
significant. Otherwise, the Rhumb Line (RL) is easier to steer. We propose a simple criterion
to evaluate the difference in distance between the GE and the RL. The criterion is that the GE
is worth using when the vertex lies between the departure and destination. In order to take
the advantage of shorter distance, the GE is usually approximated as a series of waypoints.
Unlike currently practised methods, we propose the Longitude Bisection Method (LBM) which
determines waypoints with varying intervals. This approach can establish the appropriate num-
ber of waypoints to approximate the GE effectively. The proposed criterion and the LBM are
demonstrated in practical examples.
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1. INTRODUCTION. Route selection directly influences the profits of shipping com-
panies, especially in transoceanic sailing. The World Geodetic System (WGS) 84 reference
ellipsoid is commonly used as the model of the Earth in modern navigation. The track con-
necting two points on the reference ellipsoid is either a Great Ellipse (GE) or a Rhumb Line
(RL). A GE is the shortest track on the surface of a spheroid and is also called the Great
Circle (GC) or the orthodrome when it is on the surface of a sphere. Besides the equator and
the meridians (the special cases of the GE), steering along a GE requires changing course
continually because it crosses every meridian at a different angle. A RL, also called a lox-
odrome, spirals toward the pole. However, steering along a RL enables a vessel to steer a
constant course because it intersects all meridians at the same angle. How do navigators
face the trade-off between the shorter distance and the simpler sailing procedure?

To evaluate and execute the Great Elliptic Sailing (GES) are both important issues. It
is well known that the GE can provide a shorter distance. However, the difference in dis-
tance between GE and RL is not always significant. For example, the great elliptic distance
from Sydney, Australia (33◦50·0′S, 151◦20·0′E) to Valparaiso, Chile (33◦S, 71◦37·0′W)
is 6131·7 nautical miles (nm), which is 751·3 nm shorter than the RL distance. However,
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Figure 1. Illustration of the GE and the RL.

the great elliptic distance from Sydney, Australia (33◦50·0′S, 151◦20·0′E) to San Fran-
cisco, California (37◦56·0′N, 123◦04·0′W) is 6415·8 nm, which is only 18 nm shorter than
the RL distance. Hence, whether the GE is worth adopting depends on whether the dis-
tance saved is significant, otherwise, the RL is easier to navigate. Although the difference
in distance can be accurately calculated, do we have a concise criterion to evaluate it? In
addition, even when a GE is worth adopting, a ship will not follow it exactly because its
true direction changes continuously. Instead, a number of waypoints (also called interme-
diate points) are determined along the GE, and the navigator will steer a series of RL legs
between each successive pair of waypoints, as shown in Figure 1. Thus, the problem is how
to approximate the GE. The commonly practised methods all determine the waypoints at
fixed intervals. Is the number of waypoints suitable? Do we have an effective method that
can use the appropriate number of waypoints to approximate the GE?

GES and Great Circle Sailing (GCS) have both been discussed for decades. To begin
with, the Earth is regarded as a sphere. Navigators usually adopt Napier’s rule or spherical
triangle formulae to solve the GCS problems (Bowditch, 2002; Cutler, 2004; Royal Navy,
2008). To reduce the number of solution steps and to apply to more different conditions, the
studies of GCS have mainly focused on formula derivation with different approaches, such
as vector algebra methods (Chen et al., 2014; Chen, 2016), linear combination methods
(Miller et al., 1991; Nastro and Tancredi, 2010; Tseng and Chang, 2014) and the rotation
transformation method (Chen et al., 2015). In order to improve the accuracy and to comply
with the WGS 84 geodetic datum, the Earth is regarded as a spheroid. Several studies have
started to derive the formulae to deal with GES problems, for example: Williams (1996)
presented the integral formulae of the inverse solution. Pallikaris and Latsas (2009) intro-
duced series expansion formulae of the direct solution. Earle (2011) provided harmonic
series formulae of the direct solution and the GE equation of the inverse solution. Sjöberg
(2012) used the Clairaut constant to establish the iterative process of the direct solution and
the closed formulae of the inverse solution. The direct solutions can obtain the great elliptic
distance and the waypoint position at a given distance. The inverse solutions can acquire
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the latitude of the waypoint at a given longitude. Although these studies make great contri-
butions to the GES or the GCS, they did not pay attention to the evaluation and execution
of the shortest track.

In brief, this study seeks not only to create a criterion to evaluate the GE, but also to
propose a method for approximating the GE. Apart from the current section, Section 2 lists
reference formulae that we use in the following sections. Section 3 creates a criterion to
evaluate a GE. Section 4 provides a new method to approximate the CE. Then, several
numerical examples are demonstrated in Section 5. Finally, the work is summarised and
concluded in Section 6.

2. REFERENCE FORMULAE. In this work, the formulae Earle (2011) derived are
used in the following sections to compute the GE problems. These required formulae are
listed in Sections 2.1 to 2.4.

2.1. Auxiliary Variables. Geocentric latitudes of the departure and destination (θF
and θT) are:

tan θF = (1 − e2) tan φF (1)

tan θT = (1 − e2) tan φT (2)

where e is the eccentricity of the WGS 84 reference ellipsoid (e = 0·081819190842622)
and φF and φT are the geodetic latitudes of the departure and destination.

Geocentric Cartesian coordinates of the departure and destination:

�F = [xF, yF, zF] = [rF cos θF cos λF, rF cos θF sin λF, rF sin θF] (3)

�T = [xT, yT, zT] = [rT cos θT cos λT, rT cos θT sin λT, rT sin θT] (4)

where rF and rT are the radiuses from the centre to the departure and destination, and they
can be obtained by the following equations.

rF =

√
1 − e2

1 − e2 cos2 θF
(5)

rT =

√
1 − e2

1 − e2 cos2 θT
(6)

Parameters which define the GE equation (λ and μ):

λ =
yFzT − zFyT

xFyT − yFxT
(7)

μ =
−xFzT + zFxT

xFyT − yFxT
(8)

Latitude and longitude of the vertex (θV, φV and λV):

tan θV = ±
√

λ2 + μ2 (9)
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tan φV =
tan θV

1 − e2 (10)

tan λV =
(μ

λ

)
± π (11)

where the vertex is the point of highest latitude on a GE.
Longitude of the equator crossing point (λE):

tan λE =
(−λ

μ

)
± π (12)

Eccentricity of the GE (e′):

e′ =
e sin θV√

1 − e2 cos2 θV
(13)

Geocentric great elliptic angles of the departure and destination (θ ′
F and θ ′

T):

cos θ ′
F = cos θF cos(λF − λE) (14)

cos θ ′
T = cos θT cos(λT − λE) (15)

Geodetic great elliptic angles of the departure and destination (φ′
F and φ′

T):

tan φ′
F =

tan θ ′
F

1 − e′2 (16)

tan φ′
T =

tan θ ′
T

1 − e′2 (17)

2.2. Great Elliptic Distance. Great elliptic distance from the departure to the desti-
nation (DFT):

DFT = a[a′
0(φ′

T − φ′
F) + 2a′

1 cos(φ′
T + φ′

F) sin(φ′
T + φ′

F)

+ 2a′
2 cos(2(φ′

T − φ′
F)) sin(2(φ′

T − φ′
F)) + 2a′

3 cos(3(φ′
T − φ′

F)) sin(3(φ′
T − φ′

F))]
(18)

where the parameters are a′
0 = 1 − 1

4 e′2 − 3
64 e′4 − 5

256 e′6, a′
1 = − ( 3

8 e′2 + 3
32 e′4 + 45

1024 e′6),
a′

2 =
( 15

256 e′4 + 45
1024 e′6), and a′

3 = − ( 35
3072 e′6).

2.3. Waypoint at a Given Distance. Normalised given distance (DN ):

DN =
π

2

(
DEF + DFX

DEV

)
, (19)

where DEF is the great elliptic distance from the equator crossing point to the destination,
DFX is the given distance from the destination to the waypoint, and DEV is the great elliptic
distance from the equator crossing point to the vertex. DEF and DEV can be obtained by
using Equation (18).
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Geodetic great elliptic angle of the waypoint (φ′
X ):

φ′
X = b′

0DN + b′
1 sin(2DN ) + b′

2 sin(4DN ) + b′
3 sin(6DN ) + b′

4 sin(8DN ) (20)

where parameters are b′
0 = 1, b′

1 = 3
2ε′ − 27

32ε′3, b′
2 = 21

16ε′2 − 55
332ε′4, b′

3 = 151
96 ε′3, and

b′
4 = 1097

512 ε′4. ε′ can be obtained by the following equations.

ε′ =
1 − √

α′

1 +
√

α′ (21)

α′ = 1 − e′ (22)

Geocentric great elliptic angle of the waypoint (θ ′
X ):

tan θ ′
X = α′ tan φ′

X (23)

Geocentric latitude of the waypoint (θX ):

sin θX = sin θ ′
X sin θV (24)

Geodetic latitude and longitude of the waypoint (φX and λX ):

tan θX =
tan θX

1 − e2 (25)

cos(λV − λX ) =
tan φX

tan φV
(26)

2.4. Waypoint at a Given Longitude. Geodetic latitude of the waypoint (φX )

tan φX =
−λ cos λX + μ sin λX

1 − e2 (27)

2.5. Rhumb Line Course and Distance. When the sequence of waypoints are deter-
mined, the rhumb line courses and distance can be computed by using the formulae given
by Bennett (1996) as follows:

Meridional parts of waypoint i (MXi ):

MXi =
10800

π

[
ln tan

(
45◦ +

φXi

2

)
− 1

2
e ln

(
1 + e sin φXi

1 − e sin φXi

)]
(28)

where φXi is in degrees.
Rhumb line course from the waypoint i to the waypoint i + 1 (cXiXi+1 ):

tan cXiXi+1 =
60′(λXi+1 − λXi )

MXi+1 − MXi

(29)

where MXi+1 is the meridional parts of waypoint i + 1, and it can be obtained by using
Equation (28).
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Meridional arc length of waypoint i (mXi ):

mXi = a
[(

1 − e2

4
− 3e4

64
− 5e6

256

)
φXi − 3

8

(
e2 +

e4

4
+

15e6

128

)
sin 2φXi

+
15
256

(
e4 +

3e6

4

)
sin 4φXi − 35e6

3072
sin 6φXi

]
, (30)

where a is the semi-major axis of the WGS 84 reference ellipsoid (a = 3443·918467 nm)
and φXi is in radians.

Rhumb line distance from the waypoint i to the waypoint i + 1 (dXiXi+1 ):

dXiXi+1 =

⎧⎪⎨
⎪⎩

(mXi+1 − mXi ) sec cXiXi+1 , cXiXi+1 =/ 90◦

aπ (λXi+1 − λXi ) cos[(φXi+1 − φXi )/2]
180 sin cXiXi+1{1 − e2 sin2[(φXi+1 − φXi )/2]}1/2

, cXiXi+1 � 90◦ (31)

where mXi+1 is the meridional arc length of waypoint i + 1, and it can be obtained by using
Equation (30). φXi+1 and φXi are in degrees, and dXiXi+1 is in nautical miles.

2.6. Indices Used for Comparing the Great Ellipse and the Rhumb Line. Difference
in distance between the GE and RL (DD):

DD = |DFT − dFT| (32)

where DFT and dFT can be obtained by using Equations (18) and (31), respectively.
Normalised Difference in Distance (NDD):

NDD =
|DFT − dFT|

DFT
(33)

Saving in Distance (SD):

SD = |td − dFT| = |(dFX1 + dX1X2 + . . . + dXnT) − dFT| (34)

This indicates how much the sum of each RL leg distance has already reduced, which
compares to the RL from the departure to the destination.

Remaining Benefit (RB):

RB = |DFT − td| = |DFT − (dFX1 + dX1X2 + . . . + dXnT)| (35)

This indicates how much the sum of each RL leg distance has achieved, which compares
to the GE. It can be calculated by using Equation (35).

3. EVALUATION OF GREAT ELLIPTIC SAILING. To choose between the GE or
the RL, there are several criteria found in the navigation textbooks as follows: a GE is
not worth considering if the two places are at lower latitudes, because the RL near the
equator is almost equivalent to the GE (Cutler, 2004). A GE is worth considering when the
latitudes of the two places are high, the difference of latitude is small, and the difference
of longitude is large (Bowditch, 2002). A GE is worth considering if the two places are in
the same hemisphere, especially when the difference of latitude is small and the difference
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Figure 2. Hiraiwa’s example represented on a Mercator map.

of longitude is large (Royal Navy, 2008). However, all of the above-mentioned criteria
provide only the geographical relationship between the departure and the destination to
evaluate a GE. Unlike these criteria, we want to propose a criterion that can accurately
indicate the key point which influences the difference in distance between the GE and the
RL.

In order to find a new criterion, this study uses the example of Hiraiwa (1987). In this
example, the eight cases are given as shown in Figure 2. The given latitudes of the depar-
ture and destination (φF and φT) are both varied from 10◦N to 80◦N. This excludes two
special cases: when the given latitudes are 0◦ both places are on the equator, and when the
given latitudes are 90◦ both places are on a meridian. The GE will be treated as the RL in
these two special cases. In addition, the given longitudes of the departure (λF) in all cases
are at 140◦E, and the given longitudes of the destination (λT) are all at 120◦W. Hence, the
two places in all cases are in the northern hemisphere, the differences in latitude (φF − φT)
are all 0◦, and the differences in longitude (λF − λT) are all 100◦. The eight cases are repre-
sented graphically on a Mercator map, as is typically used for navigation. In Figure 2, the
GEs are depicted as curved lines, and the RLs are depicted as straight lines. This example
corresponds with all of the above-mentioned criteria. Moreover, we found that the ver-
tex can be considered as the key point because it has the maximum curvature on the GE.
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Figure 3. Illustration of the vertex criterion to evaluate the GE.

When the vertex is at higher latitude, the difference between the GE and RL will become
more apparent. For instance, in the eighth case, its vertex is at the highest latitude, and its
Normalised Differecnce in Distance (NDD8) is the most significant among all the cases.
Although the vertex is the highest point on a GE, a GE track from departure to destina-
tion is not always through the vertex. This depends on whether the longitude of the vertex
(λV) is between the longitudes of the departure (λF) and destination (λT). If the GE track
is through the vertex, the difference in distance between the GE and the RL will become
more significant. When the latitudes and longitudes of the departure and destination are
given, the longitude of the vertex can be calculated by using Equation (11). As shown in
Figure 3, the GE track from FA to TA is through the vertex (V) because the longitude of V
(170◦W) is between the longitude of FA (160◦E) and the longitude of TA (140◦W). The GE
track from FB to TB is through the vertex because the longitude of V (170◦W) is between
the longitude of FB (180◦W) and the longitude of TB (120◦W). Nevertheless, The GE track
from FC to TC is not through the vertex because the longitude of V (170◦W) is not between
the longitude of FC (160◦W) and the longitude of TC (100◦W). Besides, the NDD of pair
A and pair B (NDDA and NDDB) are both larger than pair C (NDDC). Hence, we propose
the criterion that the GE track is worth adopting when the vertex lies between the departure
and destination.

In order to verify that the proposed criterion is effective in most cases, a quantitative
analysis is carried out as follows. First, the angle between the inclined GE plane and the
equator plane will influence the difference in distance between the GE and the RL (DD), as
shown in Figure 4(a). In Figure 4(a) first quadrant, we design eight situations to compare
their DD values. The given distances of the GE in all situations are 3,600 nm, and all given
vertices are located at the middle of the GE. Through Table 1, we show that if the angle
between the inclined GE plane and the equator plane is smaller, the vertex will be at lower
latitude, and the difference in distance is smaller; if the angle between the inclined GE plane
and the equator plane is larger, the vertex will be at a higher latitude, and the difference in
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(a) (b)

Figure 4. Quantitative analysis to verify the proposed criterion.

Table 1. Different inclinations of the GE plane to compare the GE with the RL.

GE Departure (F) Destination (T) Vertex (V) RL Dist. (dFT) Diff. in Dist. (DD)*

1 (8·654◦N, 59·675◦E) (8·654◦N, 120·325◦E) (10◦′N, 90◦E) 3604·280′ 4·280′
2 (17·241◦N, 58·498◦E) (17·241◦N, 121·502◦E) (20◦′N, 90◦E) 3617·976′ 17·976′
3 (25·679◦N, 56·387◦E) (25·679◦N, 123·613◦E) (30◦′N, 90◦E) 3643·999′ 43·999′
4 (33·859◦N, 53·089◦E) (33·859◦N, 126·911◦E) (40◦′N, 90◦E) 3688·581′ 88·581′
5 (41·611◦N, 48·182◦E) (41·611◦N, 131·818◦E) (50◦′N, 90◦E) 3764·262′ 164·262′
6 (48·662◦N, 41·019◦E) (48·662◦N, 138·981◦E) (60◦′N, 90◦E) 3896·567′ 296·567′
7 (54·565◦N, 30·764◦E) (54·565◦N, 149·236◦E) (70◦′N, 90◦E) 4137·854′ 537·854′
8 (58·644◦N, 16·820◦E) (58·644◦N, 163·180◦E) (80◦′N, 90◦E) 4588·966′ 988·966′

* The given distance of the GE (DFT) in eight situations are 3600 nm.

distance will become larger. Because the latitude of the vertex on the GE plane in the
first quadrant and in third quadrant are symmetrical, and changing the longitude of the
vertex will not influence the angle between the inclined GE plane and the equator plane,
the above results can be applied to the other quadrants. Second, adopting different tracks
on the same GE plane will influence the difference in distance between the GE and the RL
(DD), as shown in Figure 4(b). In Figure 4(b), taking the plane of GE6 as an example, we
take twenty-three tracks to compare their DD values. The given distances of the GE in all
tracks are 3,600 nm. Through Table 2, we show that if the track crosses the equator (E or
E′), the difference in distance will be smaller, such as Track 1 to Track 2 and Track 16 to
Track 21; if the track passes through the vertex (V), the difference in distance will be larger,
such as Track 7 to Track 11. In particular, if the vertex is at the middle of the GE, it will
have the greatest DD value, such as Track 9. The above results can be applied to the other
GE planes. Hence we can verify that a GE track is worth adopting when the vertex lies
between the departure and destination. In particular, when the vertex is at a higher latitude,
the difference in distance between the GE and RL will become more apparent.

4. EXECUTION OF GREAT ELLIPTIC SAILING. When a GE is used, how do we
follow its path? Since a GE looks like a sine curve on a Mercator map, the ship has to

https://doi.org/10.1017/S0373463317000108 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463317000108


1032 TIEN-PEN HSU AND TSUNG-HSUAN HSIEH VOL. 70

Table 2. Taking different tracks on the plane of GE6 to compare the with the RL.

Track Departure (F) Destination (T) RL Distance Diff. in Dist.* Covered

1 (17·238◦S, 10·320◦W) (33·932◦N, 22·857◦E) 3601·905′ 1·905′ E
2 (8·635◦S, 5·030◦W) (41·656◦N, 30·904◦E) 3606·259′ 6·259′ E
3 (0·042◦N, 0·024◦E) (48·662◦N, 41·019◦E) 3615·904′ 15·904′ non
4 (8·718◦N, 5·079◦E) (54·509◦N, 54·066◦E) 3635·566′ 35·566′ non
5 (17·321◦N, 10·373◦E) (58·537◦N, 70·652◦E) 3672·993′ 72·993′ non
6 (25·764◦N, 16·180◦E) (60·000◦N, 90·000◦E) 3734·116′ 134·116′ non
7 (33·932◦N, 22·857◦E) (58·537◦N, 109·348◦E) 3809·723′ 209·723′ V
8 (41·656◦N, 30·904◦E) (54·509◦N, 125·934◦E) 3872·499′ 272·499′ V
9 (48·662◦N, 41·019◦E) (48·662◦N, 138·981◦E) 3896·567′ 296·567′ V
10 (54·509◦N, 54·066◦E) (41·656◦N, 149·096◦E) 3872·499′ 272·499′ V
11 (58·537◦N, 70·652◦E) (33·932◦N, 157·143◦E) 3809·723′ 209·723′ V
12 (60·000◦N, 90·000◦E) (25·764◦N, 163·820◦E) 3734·116′ 134·116′ non
13 (58·537◦N, 109·348◦E) (17·321◦N, 169·627◦E) 3672·993′ 72·993′ non
14 (54·509◦N, 125·934◦E) (8·718◦N, 174·921◦E) 3635·566′ 35·566′ non
15 (48·662◦N, 138·981◦E) (0·042◦N, 179·976◦E) 3615·904′ 15·904′ non
16 (41·656◦N, 149·096◦E) (8·635◦S, 174·970◦W) 3606·259′ 6·259′ E′
17 (33·932◦N, 157·143◦E) (17·238◦S, 169·680◦W) 3601·905′ 1·905′ E′
18 (25·764◦N, 163·820◦E) (25·683◦S, 163·880◦W) 3600·652′ 0·652′ E′
19 (17·321◦N, 169·627◦E) (33·855◦S, 157·213◦W) 3601·880′ 1·880′ E′
20 (8·718◦N, 174·921◦E) (41·584◦S, 149·183◦W) 3606·197′ 6·197′ E′
21 (0·042◦N, 179·976◦E) (48·599◦S, 139·092◦W) 3615·773′ 15·773′ E′
22 (8·635◦S, 174·970◦W) (54·460◦S, 126·077◦W) 3635·304′ 35·304′ non
23 (17·238◦S, 169·680◦W) (58·509◦S, 109·525◦W) 3672·519′ 72·519′ non

* The given distance of the GE in all tracks is 3,600 nm.

(a) (b)

(c) (d)

Figure 5. Four methods to approximate the GE.
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continually change course. In common practice, a number of waypoints are determined at
fixed intervals on the GE, and the navigator then steers along a series of rhumb line legs
between each successive pair of waypoints to approximate the GE. The three common
methods are as follows. As shown in Figure 5(a), Method 1 establishes the waypoints
at fixed distance intervals (generally use the one-day sailing distance), and the course is
usually changed at noon. As shown in Figure 5(b), Method 2 establishes the waypoints
at fixed longitude intervals, and the course is usually changed at whole-degree meridians
(generally use 5◦ or 10◦ intervals of longitude), which is in accordance with the scale of
the chart. As shown in Figure 5(c), Method 3 sets the waypoints at fixed latitude intervals,
which is seldom used because one latitude may correspond to two longitudes, requiring
the additional pre-judgment step. However, the above-mentioned methods, which use fixed
intervals to establish the waypoints, do not consider whether the number of waypoints is
appropriate or not.

Using varying intervals, the Longitude Bisection Method (LBM) is proposed to approx-
imate the GE as shown in Figure 5(d). There are two rules. First, the selected GE should
have a significant DD value. When the GE is divided into two or more great ellipse seg-
ments, the segment in which the DD value is greatest should be selected preferentially.
Second, the waypoint is determined by bisecting the difference of longitude between the
two ends of the selected segment because the calculation of the longitude is easier than the
calculation of the distance. Thus, the steps of the algorithm can be constructed as follows.

Step 1: Calculate the DD values of segments. Initially, there is only one segment from
the departure to the destination. When waypoint 1 is established, the GE is divided into
two segments, which are from the departure to waypoint 1 (SFX1 ) and from waypoint 1 to
the destination (SX1T). Thus if the number of waypoints is n, the GE will be divided into
n + 1 segments. Next, the DD values of segments (e.g., |DFX1 − dFX1 |) can be calculated.
The great elliptic distance can be obtained by using Equation (18), and the RL distance can
be obtained by using Equation (31).

Step 2: Evaluate the total DD values. If the sum of DD values, which is equal to the
remaining benefit of the GE, is significant, we can add a waypoint and go to the next step;
otherwise, the process ends. Adopting the Royal Navy’s (2008) suggestion that any GE
which saves more than one hour of travel time is worth adopting, we assume the average
speed is 15 knots and define the significant total DD values should be more than 15 nm.
Navigators can define the significant value by themselves. Then, the segment in which
the DD value is the greatest should be selected as the priority segment. If more than one
segment has the greatest value, we can choose any one of them.

Step 3: Determine the waypoints. The longitude of the waypoint can be determined
by bisecting the difference of longitude between the two ends of the priority segment.
For example, if the priority segment is SFX1 , the longitude of the waypoint can be deter-
mined from (λF − λX1 )/2, as shown in Figure 5(d). When the longitude of the waypoint is
obtained, its latitude can be calculated by using Equation (27).

When the waypoint is determined, the priority segment will be divided into new seg-
ments, and the number of segments increases by one. To repeat steps 1 to 3 until the total
DD values of segments is insignificant in step 2. It is important to note that the sequence of
waypoints should, in practice, be reorganised according to the geographical order.

When the number of waypoints is insufficient, the effectiveness of approximating the GE
may not achieve a satisfactory standard; when the number of waypoints is excessive, the
efficiency may decrease. The appropriate number of waypoints is to use neither a higher
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or lower number of waypoints to achieve the goal of approximating the GE. In order to
compare the performance between Method 1, Method 2 and the LBM (ignoring Method
3, which is seldom used in practice), we take the eight GE tracks of Table 1 for example.
These tracks are more worth approximating than others because their vertices are all at their
middles, and they all have the greatest DD value on their GE planes. The results are shown
in Table 3. The Saving in Distance (SD) can be calculated by using Equation (34), and the
Remaining Benefit (RB) can be calculated by using Equation (35). First of all, Method 1
determines the waypoints on the GE at each 360 nm interval. Because the distances of the
GE in eight tracks are all 3,600 nm, the numbers of waypoints in all tracks are nine. In
addition, Method 2 determines the waypoints on the GE at each 10◦ intervals of longitude.
Because the differences of longitude between departure and destination (λF − λT) in eight
tracks are 60·650◦ to 146·360◦, the numbers of waypoints in all tracks are six to 14. Only
depending on the assumed intervals, Method 1 and Method 2 may use too many waypoints
to approximate the GE. For example, the difference in distance of GE2 is 17·976 nm. The
LBM only determines one waypoint, and can save 13·216 nm. In Method 1 and Method 2,
they are inefficient because they have to use nine and six waypoints. There are, perhaps,
two ways to reduce the number of waypoints. One way is to increase the fixed interval,
the other way is to take partial waypoints. If we double the given interval, the number
of waypoints will halve. However, how do we determine the appropriate fixed interval to
obtain the appropriate number of waypoints? Method 1 and Method 2 may use the trial-
and-error method to determine the appropriate fixed interval. However, the trial-and-error
method itself is essentially inefficient. Likewise, if we want to pick n waypoints from a
given set of waypoints, how many waypoints should be picked? Which ones should be
taken? If these problems have yet to be solved, the number of waypoints of Method 1 still
depends on the given distance interval, and the number of waypoints of Method 2 still
depends on the given longitude interval. In fact, when the fixed interval is determined, the
waypoints and the number of waypoints are also determined at the same time. Because
the number of waypoints has no immediate connection with the DD value, Method 1 and
Method 2 cannot provide the appropriate number of waypoints to approximate the GE. In
contrast, the LBM would calculate the DD value. If the DD value is more than 15 nm, the
LBM will determine the first waypoint. Furthermore, the next waypoint is not added unless
the total DD values of segments is still more than 15 nm. As shown in Table 3, no waypoint
can be determined on GE1 because the DD value of GE1 is 4·280 nm. The LBM, which has
to evaluate the DD value to add a waypoint, can ensure the remaining benefit (DFT − td)
will not be more than 15 nm (see Table 3). Hence, the LBM can establish the appropriate
number of waypoints to approximate the GE.

5. DEMONSTRATED EXAMPLES. To demonstrate the proposed criterion and the
LBM, this study proposes eight practical transoceanic voyages to be used as examples:
Voyage 1 transits from Bishop Rock (near the English Channel) to Nantucket (on the east
coast of the United States); Voyage 2 leaves Gibraltar (at the entrance to the Mediter-
ranean) for Nantucket; Voyage 3 proceeds from Natal (in north-eastern Brazil) to the Cape
of Good Hope (in South Africa); Voyage 4 sails from Yokohama (in Japan) to Los Angeles
(on the west coast of the United States); Voyage 5 leaves Los Angeles for Luzon Strait
(in south-east Asia); Voyage 6 transits from Sydney to Los Angeles; Voyage 7 proceeds
from the coastal waters south of the Cape of Good Hope to the Sunda Strait (in Indonesia);
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Table 3. Compare three methods to approximate the GE.

Diff. of Long. Diff. in Dist. Number of Saving in Dist. Remaining Benefit
GE (λF − λT) (DFT − dFT) Methods Waypoints (td − dFT) (DFT − td)

1 60·650◦ 4·280′ Method 1 9 4·234′ 0·046′
Method 2 6 4·156′ 0·125′
LBM 0 0′ 4·280′

2 63·005◦ 17·976′ Method 1 9 17·782′ 0·194′
Method 2 6 17·506′ 0·469′
LBM 1 13·216′ 4·760′

3 67·226◦ 43·999′ Method 1 9 43·526′ 0·474′
Method 2 6 43·005′ 0·994′
LBM 1 32·390′ 11·609′

4 73·821◦ 88·581′ Method 1 9 87·632′ 0·949′
Method 2 7 86·928′ 1·653′
LBM 2 74·038′ 14·544′

5 83·636◦ 164·262′ Method 1 9 162·511′ 1·751′
Method 2 8 161·905′ 2·357′
LBM 3 153·560′ 10·702′

6 97·962◦ 296·567′ Method 1 9 293·404′ 3·163′
Method 2 9 293·541′ 3·027′
LBM 5 285·350′ 11·217′

7 118·473◦ 537·854′ Method 1 9 531·925′ 5·929′
Method 2 11 534·273′ 3·581′
LBM 6 524·898′ 12·956′

8 146·360◦ 988·966′ Method 1 9 975·552′ 13·414′
Method 2 14 985·192′ 3·774′
LBM 7 975·410′ 13·556′

Voyage 8 sails from the Mozambique Channel (in the south-east of Africa) to Mumbai
(in India). The latitudes and longitudes of all departures and destinations can be obtained
using the Pilot Chart (NGA, 2001); see Table 4. Voyages 1, 2 and 3 are trans-Atlantic tran-
sits; Voyages 4, 5 and 6 are trans-Pacific transits; Voyages 7 and 8 are trans-Indian Ocean
transits.

At first, we use the proposed criterion to evaluate the GEs in eight voyages. The vertices
of the eight voyages can be calculated by using Equations (10) and (11), respectively. As
shown in Table 4, the vertices of Voyages 1, 2, 4, 5 and 7 are on their GE. According
to the proposed criterion, the GE is worth using on these voyages. To validate the result,
we calculate the DD value, which can be determined accurately by using Equation (32).
The DD values of these five voyages are more significant, as expected. Consequently, the
proposed criterion can help us to simply judge the difference in distance between the GE
and the RL.

Next, use the LBM to execute the GE in Voyages 1, 2, 4, 5 and 7. Voyage 5 is a good
example to list the solution process because its DD value is the greatest among the five
voyages. As shown in Table 5, first, there is only one segment (SFT). The DD value of
SFT is 332·893 nm. Add a waypoint on the SFT because its DD value is significant (more
than 15 nm). Waypoint 1 (45◦02·9′N, 179◦20·0′W) is determined from (λF − λT)/2. Sec-
ond, the GE is divided into two segments (SFX1 , SX1T). Add a waypoint on the SFX1 because
its DD value is greater, and the total DD values of segments is still significant. Waypoint
2 (43◦52·3′N, 150◦00·0′W) is determined from (λF − λX1 )/2. Third, the GE is divided into
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Table 4. Eight transoceanic voyages to validate the proposed criterion.

Voyage Departure (F) Destination (T) Vertex (V) DD (DFT − dFT)

1 Bishop Rock Nantucket On the GE 71·648′
(49◦40·0′N, 6◦34·0′W) (40◦30·0′N, 69◦15·0′W) (50◦52·7′N, 23◦14·9′W) (2640·890′–2712·538′)

2 Gibraltar Nantucket On the GE 61·877′
(35◦56·0′N, 6◦15·0′W) (40◦30·0′N, 69◦15·0′W) (43◦02·9′N, 45◦21·8′W) (2927·913′–2989·790′)

3 Natal Cape of Good Hope Not on the GE 16·143′
(5◦S, 34◦40·0′W) (34◦22·0′S, 18◦23·0′E) (38◦28·5′S, 49◦00·8′E) (3426·982′–3443·125′)

4 Yokohama Los Angeles On the GE 241·433′
(34◦45·0′N, 140◦00·0′E) (34◦00·0′N, 120◦40·0′W) (46◦35·3′N, 171◦01·0′W) (4691·946′–4933·379′)

5 Los Angeles Luzon Strait On the GE 332·893′
(34◦00·0′N, 120◦40·0′W) (20◦10·0′N, 122◦00·0′E) (45◦30·1′N, 169◦09·3′W) (5981·890′–6314·783′)

6 Sydney Los Angeles Not on the GE 15·773′
(33◦50·0′S, 151◦20·0′E) (34◦00·0′N, 120◦40·0′W) (44◦4·0′N, 74◦50·4′W) (6400·136′–6415·909′)

7 Cape of Good Hope Sunda Strait On the GE 87·708′
(36◦45·0′S, 19◦00·0′E) (6◦25·0′S, 106◦00·0′E) (36◦52·9′S, 24◦37·2′E) (5033·758′–5121·466′)

8 Mozambique Channel Mumbai Not on the GE 0·384′
(21◦20·0′S, 39◦30·0′E) (18◦50·0′N, 72◦45·0′E) (51◦58·6′S, 32◦43·1′W) (3095·680′–3096·064′)
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Table 5. Using LBM to approximate the GE in Voyage 5.

Process Points Value of Segments Total Values Added Waypoint

1 F, T SFT (332·893′) 332·893′ X1 (45◦02·9′N, 179◦20·0′W)
2 F, X1, T SFX1 (52·612′), SX1T (46·196′) 98·808′ X2 (43◦52·3′N, 150◦00·0′W)
3 F, X2, X1, T SFX2 (6·557′), SX2X1 (6·844′), SX1T (46·196′) 59·597′ X3 (38◦08·2′N, 151◦20·0′E)
4 F, X2, X1, X3, T SFX2 (6·557′), SX2X1 (6·844′), SX1X3 (6·753′),

SX3T (5·035′)
25·188′ X4 (45◦24·9′N, 164◦40·0′W)

5 F, X2, X4, X1, X3, T SFX2 (6·557′), SX2X4 (0·859′), SX4X1 (0·859′),
SX1X3 (6·753′), SX3T (5·035′)

20·062′ X5 (42◦43·3′N, 166◦00·0′E)

6 F, X2, X4, X1, X5, X3, T SFX2 (6·557′), SX2X4 (0·859′), SX4X1 (0·859′),
SX1X5 (0·857′), SX5X3 (0·837′), SX3T (5·035′)

15·003′ X6 (40◦12·8′N, 135◦20·0′W)

7 F, X6, X2, X4, X1, X5, X3, T SFX6 (0·795′), SX6X2 (0·849′), SX2X4 (0·859′),
SX4X1 (0·859′), SX1X5 (0·857′), SX5X3 (0·837′),
SX3T (5·035′)

10·091′ None
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Table 6. LBM to approximate the GE in Voyages 1, 2, 4, 5 and 7.

Saving in Remaining
Voyage 1 Waypoints RL Course RL Distance Distance Benefit

F (49◦40·0′N, 6◦34·0′W)
1 (49◦56·8′N, 37◦54·5′W) 270·790◦ 1218·290′ 60·390′ 11·258′
2 (46◦42·1′N, 53◦34·7′W) 252·743◦ 656·749′
T (40◦30·0′N, 69◦15·0′W) 241·396◦ 777·109′

Voyage 2 Waypoints RL Course RL Distance Saving in Remaining
Distance Benefit

F (35◦56·0′N, 6◦15·0′W)
1 (42◦47·7′N, 37◦45·0′W) 285·697◦ 1520·449′ 52·008′ 9·869′
2 (42◦45·5′N, 53◦30·0′W) 269·821◦ 695·954′
T (40◦30·0′N, 69◦15·0′W) 259·175◦ 721·379′

Voyage 4 Waypoints RL Course RL Distance Saving in Remaining
Distance Benefit

F (34◦45·0′N, 140◦00·0′E)
2 (43◦58·0′N, 164◦50·0′E) 64·393◦ 1278·306′ 228·002′ 13·431′
1 (46◦35·2′N, 170◦20·0′W) 81·496◦ 1063·568′
4 (45◦50·1′N, 157◦55·0′W) 94·990◦ 519·333′
3 (43◦39·0′N, 145◦30·0′W) 103·867◦ 546·832′
T (34◦00·0′N, 120◦40·0′W) 116·479◦ 1297·339′

Voyage 5 Waypoints RL Course RL Distance Saving in Remaining
Distance Benefit

F (34◦00·0′N, 120◦40·0′W)
6 (40◦12·8′N, 135◦20·0′W) 297·903◦ 795·690′ 322·802′ 10·091′
2 (43◦52·3′N, 150◦00·0′W) 288·504◦ 691·126′
4 (45◦24·9′N, 164◦40·0′W) 278·385◦ 635·016′
1 (45◦02·9′N, 179◦20·0′W) 267·975◦ 622·286′
5 (42◦43·3′N, 166◦00·0′E) 257·632◦ 651·397′
3 (38◦08·2′N, 151◦20·0′E) 247·735◦ 725·669′
T (20◦10·0′N, 122◦00·0′E) 234·907◦ 1870·797′

Voyage 7 Waypoints RL Course RL Distance Saving in Remaining
Distance Benefit

F (36◦45·0′S, 19◦00·0′E)
2 (35◦47·1′S, 40◦45·0′E) 86·861◦ 1056·865′ 75·732′ 11·976′
1 (30◦38·2′S, 62◦30·0′E) 74·264◦ 1136·831′
T (6◦25·0′S, 106◦00·0′E) 59·497◦ 2852·037′

three segments (SFX2 , SX2X1 , SX1T). Add a waypoint on the SX1T because its DD value is
greater, and the total DD values of segments is still significant. Waypoint 3 (38◦08·2′N,
151◦20·0′E) is determined from (λX1 − λT)/2. Fourth, the GE is divided into four segments
(SFX2 , SX2X1 , SX1X3 , SX3T). Add a waypoint on the SX2X1 because its DD value is greater, and
the total DD values of segments is still significant. Waypoint 4 (45◦24·9′N, 164◦40·0′W)
is determined from (λX2 − λX1 )/2. Fifth, the GE is divided into five segments (SFX2 , SX2X4 ,
SX4X1 , SX1X3 , SX3T). Add a waypoint on the SX1X3 because its DD value is greater, and the
total DD values of segments is still significant. Waypoint 5 (42◦43·3′N, 166◦00·0′E) is
determined from (λX1 − λX3 )/2. Sixth, the GE is divided into six segments (SFX2 , SX2X4 ,
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Figure 6. Comparing three methods to approximate the GE on Voyage 5.

SX4X1 , SX1X5 , SX5X3 , SX3T). Add a waypoint on the SFX2 because its DD value is greater, and
the total DD values of segments is still significant. Waypoint 6 (40◦12·8′N, 135◦20·0′W) is
determined from (λF − λX2 )/2. Seventh, the GE is divided into seven segments (SFX6 , SX6X2 ,
SX2X4 , SX4X1 , SX1X5 , SX5X3 , SX3T). However, the total DD values of segments is insignificant.
Hence, the process ends. According to the above process, the waypoints of these five voy-
ages are established as shown in Table 6. After determining the appropriate waypoints, the
remaining benefit of these five voyages are not more than 15 nm. As shown in Figure 6, in
Voyage 5, the LBM uses six waypoints to approximate the GE. Method 1 determines eleven
waypoints at 360 nm intervals on the GE, and Method 2 determines sixteen waypoints at
every 10◦ of longitude on the GE. Comparing the LBM with Method 1 and Method 2, the
trend line of the LBM is steeper than other methods, and the end of trend lines in Method
1 and Method 2 are almost ineffective. Consequently, the proposed LBM can help us to
approximate a GE by using the proper number of waypoints.

6. CONCLUSIONS. In this study, we create a criterion to evaluate the difference in
distance between the GE and the RL, and propose the method to approximate the GE. In
order to establish the criterion, we use the Hiraiwa’s (1987) example to compare the GE
(a shorter track) and the RL (easier to steer) on a Mercator map. The key point which
causes the difference of the saved distance is found to be at the vertex. In order to verify
the influence of the vertex, a quantitative analysis is carried out. This shows that when
the vertex is at a higher latitude, the difference in distance between the GE and RL will
become more apparent. Accordingly, the simple criterion we proposed is that if the vertex
lies between the departure and destination, the GE will be worth using. In addition, we
develop the LBM, which uses varying intervals, to approximate the GE. The first waypoint
will be established when the difference in distance between the GE and RL (DD) is sig-
nificant, and the next waypoint will not be added unless the total DD values of segments
is still significant. The waypoint is determined by bisecting the difference of longitude
between the two ends of the priority segment which has the greatest difference in distance.
We define that a significant DD value should be more than 15 nm. Navigators can define
the significant value to suit their needs. As a result, the LBM can use the appropriate num-
ber of waypoints to approximate the GE. We hope the criterion and the LBM can benefit
navigators.
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