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Abstract

Background. Studies suggest that alcohol consumption and alcohol use disorders have dis-
tinct genetic backgrounds.
Methods. We examined whether polygenic risk scores (PRS) for consumption and problem
subscales of the Alcohol Use Disorders Identification Test (AUDIT-C, AUDIT-P) in the
UK Biobank (UKB; N = 121 630) correlate with alcohol outcomes in four independent sam-
ples: an ascertained cohort, the Collaborative Study on the Genetics of Alcoholism (COGA; N
= 6850), and population-based cohorts: Avon Longitudinal Study of Parents and Children
(ALSPAC; N = 5911), Generation Scotland (GS; N = 17 461), and an independent subset of
UKB (N = 245 947). Regression models and survival analyses tested whether the PRS were
associated with the alcohol-related outcomes.
Results. In COGA, AUDIT-P PRS was associated with alcohol dependence, AUD symptom
count, maximum drinks (R2 = 0.47–0.68%, p = 2.0 × 10−8–1.0 × 10−10), and increased likeli-
hood of onset of alcohol dependence (hazard ratio = 1.15, p = 4.7 × 10−8); AUDIT-C PRS
was not an independent predictor of any phenotype. In ALSPAC, the AUDIT-C PRS was
associated with alcohol dependence (R2 = 0.96%, p = 4.8 × 10−6). In GS, AUDIT-C PRS was
a better predictor of weekly alcohol use (R2 = 0.27%, p = 5.5 × 10−11), while AUDIT-P PRS
was more associated with problem drinking (R2 = 0.40%, p = 9.0 × 10−7). Lastly, AUDIT-P
PRS was associated with ICD-based alcohol-related disorders in the UKB subset (R2 =
0.18%, p < 2.0 × 10−16).
Conclusions. AUDIT-P PRS was associated with a range of alcohol-related phenotypes across
population-based and ascertained cohorts, while AUDIT-C PRS showed less utility in the
ascertained cohort. We show that AUDIT-P is genetically correlated with both use and misuse
and demonstrate the influence of ascertainment schemes on PRS analyses.
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Introduction

Alcohol use, across the lifespan, can be characterized by a series of
transitions: from early experimentation to hazardous drinking
and possible development of alcohol use disorders (AUD), or to
non-problematic alcohol intake. Some of these transitions are
developmentally salient: for instance, hazardous drinking is com-
mon during adolescence and early adulthood, but does not always
portend problematic use in later adulthood (Degenhardt et al.,
2013; Wennberg, Andersson, & Bohman, 2000). Similarly, indivi-
duals with AUD might remit, even to abstinence, or persist into
later life (McCutcheon et al., 2012; Trim, Schuckit, & Smith,
2013). Furthermore, alcohol-related behavior can be broadly dis-
articulated into two components – the extent to which an individ-
ual consumes alcohol and the potential problems that they
experience related to their intake. For instance, AUD are charac-
terized not by excessive alcohol consumption but by measurable
physiological changes that accompany addiction (e.g. withdrawal,
tolerance) as well as the loss of control over drinking and drinking
despite physical and emotional impairment (American
Psychiatric Association, 2013). These complexities underlying
the life course of alcohol use and misuse pose challenges in the
dissection of etiology.

Most stages of alcohol involvement include a heritable contri-
bution (twin h2 = 40–70%), although the magnitude of these gen-
etic effects varies considerably across development (Edwards
et al., 2017; ENOCH, 2006; Pagan et al., 2006). Common genetic
variants from genome-wide association studies (GWAS) explain
4–13% of the phenotypic variance in alcohol use and misuse
(Clarke et al., 2017; Kranzler et al., 2019; Liu et al., 2019;
Sanchez-Roige et al., 2017; Schumann et al., 2016; Walters
et al., 2018). The largest GWAS of alcohol dependence to date
(Kranzler et al., 2019) suggests that the genetic correlation
between alcohol consumption (units per week) and ICD-coded
AUD is variable [rg ranging from 0.54 (beer/cider) to 0.004
(champagne/white wine)].

A recent study (Sanchez-Roige, Palmer, Fontanillas, Elson, &
Clarke, 2018) conducted GWAS of both the consumption and
problem subscales of the Alcohol Use Disorders Identification
Test (AUDIT), a short screener for drinking in the past year
(Saunders, Aasland, Babor, De la Fuente, & Grant, 1993). In the
UK Biobank (UKB) sample, genetic liability to the consumption
subscale (AUDIT-C; three items with information pertaining to
alcohol consumption) was positively correlated with educational
achievement and unrelated to psychopathology whereas liability
to the problem subscale (AUDIT-P; seven items with information
pertaining to alcohol problems) was negatively correlated with
educational achievement and positively correlated with psycho-
pathology. These findings are consistent with the lack of genetic
correlation between psychiatric illness and genetic liability to
alcohol consumption in the largest GWAS of the trait (drinks
per week; Liu et al., 2019). In contrast, two recent studies suggest
moderate genetic correlations between AUD and consumption
indices, including the AUDIT-C (e.g. rg = 0.52, p = 2.40 × 10−42)
(Kranzler et al., 2019; Marees et al., 2019), while another study
found that polygenic risk scores (PRS) for past week alcohol con-
sumption predicted a modest but significant amount of variance
in AUD (e.g. R2 = 0.56%; Johnson et al., 2019), suggesting that the
genetic correspondence between recent consumption and
dependence may be complicated by several factors, including
the characteristics of the sample, and the nature of the assessment
[e.g. alcohol quantity v. frequency (Marees et al., 2019)].

In this study, we sought to examine the extent to which PRS
derived from the AUDIT-C and AUDIT-P GWAS predicted vari-
ance in multiple aspects of alcohol use and misuse, ranging from
levels of alcohol consumption to hazardous drinking and AUD, in
four independent samples that vary in their age and ascertain-
ment scheme. PRS represent an individual’s genetic liability for
a certain trait or disorder, created by aggregating the effects of
many risk variants for the phenotype of interest, weighting the
effect sizes by the number of effect alleles an individual carries
at each locus. Prior evidence indicates that association between
PRS and phenotype in the target sample is improved when
both the discovery and target samples for PRS analyses are derived
using similar ascertainment strategies (Savage et al., 2018). Based
on a study showing positive correlations between psychopathology
and AUDIT-P (but not AUDIT-C; Sanchez-Roige et al., 2018), we
hypothesized that AUDIT-P PRS would be more closely related to
liability to AUD than would AUDIT-C PRS, which would be more
closely related to the aspects of alcohol consumption (e.g. regular
consumption, units per week). We also hypothesized that associa-
tions with AUDIT-C would be stronger in the youngest sample
while the AUDIT-P would be more predictive of drinking in
older, ascertained samples in which problem drinking is more
established. While there have been some recent studies examining
the genetic overlap between alcohol consumption and indices of
problem drinking (e.g. Johnson et al., 2019), none have yet com-
pared the performance of consumption (AUDIT-C) v. problem
drinking (AUDIT-P) PRS across multiple samples. Taken together,
the current analyses demonstrate how genetic findings derived
from a simple and fast screening tool could serve to outline the
polygenic underpinnings of different stages of alcohol use and pro-
blems in diversely ascertained samples.

Materials and methods

Discovery GWAS

The summary statistics of the recent GWAS of AUDIT-C and
AUDIT-P in 121 604 unrelated individuals of European ancestry
from the UKB cohort (Sanchez-Roige et al., 2018) were used to
construct PRS for alcohol-related outcomes in four independent
target samples. The UKB (www.ukbiobank.ac.uk) is a population-
based sample of 502 629 participants who were recruited from 22
assessment centers across the UK from 2006 to 2010 (Bycroft
et al., 2018); the AUDIT was delivered as part of the online
Mental Health Questionnaire follow-up. Discovery GWAS ana-
lyses were performed using BGENIE (Bycroft et al., 2018), version
1.1, with AUDIT scores (AUDIT-C score, and AUDIT-P score,
tested independently) as the outcome variable and age, sex, geno-
typing array, and the first 20 principal components derived from
genotype data as covariates to account for any remaining popula-
tion stratification. Further details regarding the discovery GWAS
are provided in the online Supplemental Materials.

Target sample demographics and characteristics

Collaborative Study on the Genetics of Alcoholism
The Collaborative Study on the Genetics of Alcoholism (COGA)
(Begleiter et al., 1995; Nurnberger et al., 2004; Schuckit et al.,
2018) includes probands meeting criteria for alcohol dependence,
their family members, and community control families. There
were 7645 participants of European ancestry with genotype data
available as well as data on alcohol-related phenotypes; of these,
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6850 were ⩾20 years (the mean age of onset of alcohol depend-
ence) and reported lifetime alcohol use.

Avon Longitudinal Study of Parents and Children
The Avon Longitudinal Study of Parents and Children (ALSPAC)
recruited 14 541 pregnant women residing in Avon, UK, with
expected dates of delivery from 1 April 1991 to 31 December
1992. The enrolled sample consisted of 14 775 children.
Additional details are provided in the online Supplemental
Materials. For the current analyses, phenotypic data were available
for up to 5911 participants, depending on the phenotype and
wave of assessment. Ethical approval for the study was obtained
from the ALSPAC Ethics and Law Committee and the Local
Research Ethics Committees.

Generation Scotland
The Scottish Family Health Study (GS) is a family-based cohort
recruited from the general population of Scotland from 2006 to
2011 (N = 24 084) (Smith et al., 2013). A subset of GS participants
responded to a re-contact in 2015 (Navrady et al., 2018) and pro-
vided additional information on mental health, which included
information on alcohol misuse (N = 17 461).

UK Biobank
Individuals who were part of the AUDIT discovery GWAS
(Sanchez-Roige et al., 2018) were removed from the UKB target
sample, leaving 245 947 individuals with phenotypic data for
these analyses.

Alcohol use measures

A summary of the alcohol-related outcomes included in the analyses
is presented in Table 1. Across all samples, participants who did not
endorse lifetime alcohol use were removed to account for those with
high genetic liability who elect not to drink for personal or socio-
cultural reasons, or were not old enough to have had a first drink.
Each target sample used a different assessment. Details regarding
each assessment are available in the online Supplementary
Materials. Briefly, COGA participants were administered the
Semi-Structured Interview for the Genetics of Alcoholism
[SSAGA; (Bucholz et al., 1994)], which includes diagnostic assess-
ments for DSM-IV andDSM-5AUD aswell as other aspects of alco-
hol use. ALSPAC participants completed the AUDIT questionnaire,
and DSM-IV alcohol dependence was derived for 4328 participants,
using symptom-level items adapted from Kendler, Heath, Neale,
Kessler, and Eaves (1992). InGS, participants reported on their alco-
hol intake (units per week) using a pre-clinical questionnaire, and
were also administered the CAGE (Cut-Annoyed-Guilty-Eye)
screener (Ewing, 1984). In the UKB, ICD-9 and 10 codes for
AUD were derived from linkage to hospital inpatient records.
Phenotypic correlations between alcohol use measures across the
samples are shown in online Supplementary Table S16.

Genotypes

Details on genotyping and quality control are shown in the online
Supplementary Materials.

Polygenic risk score construction

For all samples, PRS were coded for every individual by multiply-
ing an individual’s number of effect alleles at a particular SNP by

that SNP’s effect size (β) from the discovery GWAS
(Sanchez-Roige et al., 2018) then averaging across SNPs to create
one score per person. The discovery GWAS summary statistics
were clumped using PLINK (Chang et al., 2015; Purcell et al.,
2007) using the linkage disequilibrium (LD) pattern from the
1000 Genomes European (Consortium, 2015) reference sample,
with an LD threshold of r2⩾ 0.25 and a 500 kb physical distance.
PRS were constructed for eight thresholds ( pT < 0.0001, pT <
0.001, pT < 0.01, pT < 0.10, pT < 0.20, pT < 0.30, pT < 0.40, pT <
0.50) and standardized using the scale function in R within
each sample to ease interpretation of effect sizes. For ALSPAC
and COGA, PRS were generated using PLINK; for UKB and GS
samples, PRS were created using PLINK implemented in
PRSice-2 (Euesden, Lewis, & O’reilly, 2014) using the same R2

thresholds for clumping and the same p value thresholds.

Statistical analyses

Linear and logistic regression models were used to examine
whether AUDIT-C and AUDIT-P PRS were associated with
each of the alcohol-related phenotypes (see Table 1), and to deter-
mine which PRS threshold (i.e. pT) was most predictive of each
measure based on the p value and observed (linear) or pseudo
(logistic) R2. For the cohorts of unrelated individuals (ALSPAC
and UKB), the partial R2 was extracted from linear regression
models for continuous traits, while Nagelkerke’s pseudo-R2 was
extracted from logistic regression models for binary traits. For
the cohorts that employed mixed-effect models to account for
within-sample relatedness (COGA and GS), variance explained
by the PRS in the continuous outcomes (e.g. MaxDrinks,
CAGE) was calculated by multiplying the PRS by its regression
coefficient and dividing the variance of that value by the variance
of the outcome to derive a coefficient of determination between 0
and 1 (Nakagawa & Schielzeth, 2012); in COGA, the ‘MuMIn’
package in R was used to calculate marginal R2 for the logistic
mixed-effect models for the binary outcomes (Barton, 2011).
Once the most predictive AUDIT-C and AUDIT-P PRS thresh-
olds were determined in the single-PRS models (n.b. pT was
allowed to vary between AUDIT-C and AUDIT-P PRS), the
most predictive PRS for both AUDIT-C and AUDIT-P PRS
were simultaneously entered into a joint regression model along
with covariates (results for single-PRS models are available in
online Supplemental Tables S1–S12). We primarily report on
the results of the joint (AUDIT-C PRS + AUDIT-P PRS) regres-
sion models, as we wished to examine the relative contribution
of each AUDIT subscale PRS while controlling for the other sub-
scale PRS. As the primary analyses consisted of two tests
(AUDIT-C PRS and AUDIT-P PRS) for each of the 12 outcomes,
and the number of independent tests across the PRS p value
thresholds was estimated to be approximately 5 [calculated
using spectral decomposition, via the matSpD.R R script
(Nyholt, 2004)], we corrected for 120 tests using a Bonferroni p
value = 0.0004.

COGA
Sex, four ancestral principal components (chosen via visual
inspection of a scree plot of the eigenvalues), total number of
interviews, birth cohort (born 1890–1929, 1930–1949, 1950–
1969, ⩾1970), and array type (see online Supplemental
Materials) were included as fixed effects, while the family identi-
fier and recruitment site were included as random effects (family
nested within site).
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ALSPAC
In keeping with standard practice for genetic analyses in ALSPAC,
sex and 10 ancestral principal components were included as cov-
ariates. ALSPAC assessments are age-specific; therefore, age was
not included as a covariate.

GS
Analyses were performed in AS-REML-R fitting pedigree infor-
mation as a random effect to control for relatedness in the sample.
Fixed effects included age, sex, and four multidimensional scaling
components to correct for population stratification.

UKB
Age, sex, and 10 ancestry principal components were used as
covariates.

Cox proportional hazards survival models for the onset of haz-
ardous drinking (AUDIT total score ⩾8) in ALSPAC and
DSM-IV alcohol dependence in COGA were fit to the data with
identical covariates as the regression analyses. Those who did
not meet criteria for hazardous drinking or alcohol dependence
were censored at their age at last interview (since age at birth).
For ease of comparison across the two samples, the same PRS

Table 1. Alcohol-related measures in each target sample

Drinking measure Definitions

Trait
Continuous/
binary

COGA
Ascertained for AUD

ALSPAC
Population-based

GS
Population-based

UKB
Population-based

Units per week
(Mean, S.D.)

C n/a n/a 10.9 (12.8) n/a

Alcohol use
(N, %)

B Ever drank once a
month for 6
consecutive months
or longer
6163 (90.0%)

n/a n/a n/a

MaxDrinks
(Median, S.D.)

C Lifetime maximum
drinks consumed in
a single 24 h period
14.0 (12.87)

Lifetime maximum drinks
consumed in a single 24 h
period
15.0 (12.35)

n/a n/a

Hazardous drinking
(N, %)

B n/a AUDIT total score cutoff of 8 +
at any age
3264 (66.2%)

n/a n/a

AUDIT-C score
(Mean, S.D.)

C n/a Sum of AUDIT items 1–3
Age 16 4.80 (2.59)
Age 18 5.04 (2.26)
Age 19 6.01 (2.50)
Age 21 6.11 (2.43)
Age 23 5.37 (2.31)

n/a n/a

AUDIT-P score
(Mean, S.D.)

C n/a Sum of AUDIT items 4–10
Age 16 2.37 (3.18)
Age 18 2.48 (2.97)
Age 19 2.38 (2.89)
Age 21 3.16 (3.66)
Age 23 2.30 (2.93)

n/a n/a

DSM alcohol
dependence
symptom count
(Mean, S.D.)

C Sum of 11 lifetime
criteria for the
diagnosis of DSM-5
AUD
3.57 (3.68)

Sum of 7 criteria for the
diagnosis of DSM-IV AUD;
maximum observed across
waves
Age 18 0.35 (0.91)
Age 21 0.72 (1.30)
Age 23 0.43 (1.01)

n/a n/a

DSM-IV alcohol
dependence
diagnosis
(N, %)

B Clustering of ⩾3 of 7
DSM-IV criteria
within 12 months
2318 (33.8%)

Clustering of ⩾3 of 7 DSM-IV
criteria within 12 months at
any wave of assessment (age
18, 21, or 23)
484 (11.2%)

n/a n/a

ICD-9 and ICD-10
alcohol
dependence
diagnosis (N, %)

B n/a n/a n/a ICD-9 code of 303* or
ICD-10 code of F10*
4141 (1.68%)

CAGE scores
(Range 0–4; Mean,
S.D.)

C n/a n/a 0.603 (0.93) n/a

C, continuous (linear regression model used); B, binary (logistic regression model used).
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threshold ( pT < 0.5) was used in both COGA and ALSPAC and
for both the AUDIT-C and AUDIT-P PRS. Violations of the pro-
portional hazards assumption for the PRS were tested using scaled
Schoenfeld residuals. All analyses were conducted in R (R Core
Team, 2017). In COGA, family identifier and recruitment site
were included in the survival models as a nested frailty term
[i.e. (1 | site/family)], using the ‘coxme’ package for mixed-effect
Cox proportional hazards models containing Gaussian random
effects (Therneau & Grambsch, 2013; Therneau, 2018).
ALSPAC data were analyzed using the ‘survival’ and ‘survminer’
packages in R (Kassambara, Kosinski, & Biecek, 2017; Therneau
& Lumley, 2015)

For illustrative purposes, PRS were also split into quartiles for
COGA, ALSPAC, and UKB, and the odds of having an AUD
diagnosis (DSM-IV alcohol dependence in COGA and
ALSPAC, ICD-9/ICD-10 alcohol-related codes in UKB) was cal-
culated in each quartile using the lowest quartile as the reference
group.

Results

Target sample demographics and characteristics

The prevalence of each alcohol use measure for each target sample
is shown in Table 1. The SNP-heritability of AUDIT-C was 11%,
while the SNP-heritability of the AUDIT-P score was 9%, and the
genetic correlation (i.e. SNP-rg) between them was rg = 0.70 [as
reported in the original paper (Sanchez-Roige et al., 2018)]. See
online Supplemental Table S15 for the number of SNPs in each
PRS threshold.

COGA
A total of 33.8% of the participants (N = 2318) met DSM-IV cri-
teria for alcohol dependence during their lifetime, with 77.6% of
those endorsing ⩾6 (i.e. severe) DSM-5 AUD criteria. A median
of 14.0 drinks (S.D. = 12.9; ∼96 g of alcohol, or 14 standard US
drinks) in a single 24 h period was reported (i.e. MaxDrinks).
A total of 90.0% of the participants reported drinking at least
once a month for 6 consecutive months or longer (i.e. monthly
alcohol use).

ALSPAC
By age 23, 11.2% (N = 484) had met DSM-IV criteria for alcohol
dependence within the past year at any of the three assessment
waves, while 66.2% reported hazardous drinking (AUDIT total
score ⩾8). The median MaxDrinks was 15 UK units (S.D. = 12.4;
approximately 120 g of alcohol, or 8.5 standard US drinks).

GS
Mean alcohol intake was 10.9 units per week (S.D. = 12.8; approxi-
mately 87.2 g of alcohol, or 6.2 standard US drinks; N = 17 461)
and the mean CAGE score was 0.6 (S.D. = 0.93).

UKB
There were 4141 (1.68%) individuals in the subset of UKB
selected for analysis who had at least one ICD-9 or ICD-10
code assigned as a primary or secondary diagnosis of alcohol-
related disorders during time as a hospital inpatient.

Associations between AUDIT PRS and alcohol consumption
measures

COGA
As shown in Table 2, only the AUDIT-P PRS was significantly
associated with monthly alcohol use (R2 = 0.65%, p = 1.24 ×
10−4) and MaxDrinks (R2 = 0.47%, p = 2.00 × 10−8). We also con-
verted the pseudo-R2 values for all binary outcomes to R2 on the
liability scale (Lee, Goddard, Wray, & Visscher, 2012), but as esti-
mates did not differ, these results are not presented.

ALSPAC
AUDIT-C and AUDIT-P PRS accounted for increasing propor-
tions of phenotypic variance in AUDIT-C and AUDIT-P scores
as the sample aged, from ∼0.50% at age 16 to 1.12% at age 23
(see online Supplementary Tables S8 and S9 for complete results).
Here we focus on results for age 23 for comparability to other
samples, which consisted predominantly of adults. No association
survived the correction for multiple tests. The strongest associa-
tions observed were for AUDIT-C and AUDIT-P PRS, which
were both associated with higher AUDIT-C scores in ALSPAC
at age 23, each explaining 0.60% of the variance ( p = 1.06 ×
10−3 and 5.9 × 10−4, respectively), and between AUDIT-P PRS
and MaxDrinks (R2 = 3.30%, p = 1.59 × 10−3); a 1-S.D. increase
in AUDIT-P PRS corresponds to a predicted increase of 0.54
drinks.

GS
The AUDIT-P PRS explained 0.15% of the variance in units per
week ( p = 4.7 × 10−7) and 0.40% of the variance in CAGE scores
( p = 9.0 × 10−7), while the AUDIT-C PRS explained 0.27% of the
variance in units per week ( p = 5.5 × 10−11).

Associations between AUDIT PRS and alcohol problem
measures

COGA
As shown in Table 2, only the AUDIT-P PRS was significantly
associated with DSM-IV alcohol dependence (R2 = 0.68%,
p = 4.55 × 10−9) and DSM-5 AUD symptom count (R2 = 0.67%,
p = 1.01 × 10−10). For individuals in the top quartile of
AUDIT-P PRS risk, the odds of being diagnosed with alcohol
dependence was 1.74 [95% confidence intervals (CI) 1.47–2.07]
compared to those in the lowest quartile, while being in the top
AUDIT-C PRS quartile was associated with an odds ratio (OR)
of 1.30 (95% CI 1.10 to −1.54) compared to those in the lowest
quartile (Fig. 1). Comparison of the OR and their 95% CI suggest
that for AUDIT-C, those in the 4th quartile are at significantly ele-
vated likelihood of AUD compared to those in the lowest quartile,
though there were overlapping 95% CI between the 2nd, 3rd, and
4th quartiles. In contrast, for AUDIT-P, the likelihood of AUD
escalates at the mid-point, with those in both the 3rd and 4th
quartiles being at significantly greater risk of AUD than those
in the lowest quartile of AUDIT-P PRS.

ALSPAC
Only AUDIT-P PRS were associated with AUDIT-P scores,
accounting for 1.1% of the variance ( p = 9.05 × 10−6). AUDIT-C
PRS and AUDIT-P PRS were both positively associated with
DSM-IV alcohol dependence, explaining 1.0% ( p = 4.81 × 10−6)
and 0.50% ( p = 5.75 × 10−4) of the variance, respectively, although
only the AUDIT-C PRS passed multiple testing corrections. Both
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PRS scores were also positively associated with DSM-IV alcohol
dependence symptom count (R2 = 0.8% for both; AUDIT-C p =
3.59 × 10−5, AUDIT-P p = 3.53 × 10−5). For individuals in the top
quartile of AUDIT-C PRS, the odds of being diagnosed with
AUD was 1.73 (95% CI 1.29–2.33) compared to those in the lowest
quartile, while being in the top AUDIT-P PRS quartile was asso-
ciated with an OR of 1.25 (95% CI 0.93 to −1.68) compared to
those in the lowest quartile (Fig. 1). Due to wider 95% CI (suggest-
ing imprecision potentially due to smaller sample size and/or less of
a dose–response association pattern), it was difficult to draw com-
parisons of the ORs across quartiles in the ALSPAC sample. For
AUDIT-C, differentiation in the likelihood of AUD appeared to
occur at the 3rd quartile, while for AUDIT-P, there was no clear
distinction in the OR across the 2nd, 3rd, and 4th quartiles.

UKB
Positive associations with AUD-related ICD codes were observed
for both AUDIT-P (R2 = 0.18%, p < 2 × 10−16) and AUDIT-C
(R2 = 0.04%, p = 8.9 × 10−5) PRS. For individuals in the top
quartile of AUDIT-P PRS, the odds of having a mental or behav-
ioral disorder due to alcohol was 1.45 (95% CI 1.37–1.54) com-
pared to those in the lowest quartile. For AUDIT-C PRS, being
in the top PRS quartile was associated with an OR of 1.11 (95%
CI 1.02–1.20) compared to those in the lowest quartile (Fig. 1).
In the UKB, likelihood of AUD across quartiles seemed to follow
a dose–response pattern with increasing OR for each quartile of
polygenic risk for both AUDIT-C and AUDIT-P (though with

overlapping CI for AUDIT-C), with the 4th quartile of
AUDIT-P PRS being statistically significantly more likely to be
diagnosed with AUD relative to the 3rd quartile.

Associations between AUDIT PRS and the onset of hazardous
drinking and alcohol dependence

COGA
The AUDIT-P, but not the AUDIT-C, PRS was associated
with increased hazards of alcohol dependence onset (AUDIT-P
HR= 1.15, 95% CI 1.10–1.20, p = 4.7 × 10−8; online Supplemental
Table S13). Those in the top quartile of AUDIT-P PRS were at con-
siderably higher risk for onset of alcohol dependence (HR = 1.50,
95% CI 1.36–1.64, p = 9.7 × 10−10) relative to any other group;
the risk attributable to the top AUDIT-C PRS quartile was lower
in magnitude (HR = 1.27, 95% CI 1.14–1.40, p = 1.8 × 10−4).

ALSPAC
Only the AUDIT-C PRS was associated with the onset of hazard-
ous drinking, although not significant after multiple testing cor-
rections (online Supplemental Table S14; AUDIT-C HR = 1.06,
95% CI 1.02–1.10, p = 2.28 × 10−3).

Discussion

The course of alcohol use and misuse consists of several stages,
each with polygenic and environmental underpinnings. At earlier

Table 2. Associations between AUDIT-C and AUDIT-P PRS and multiple indices of alcohol use in COGA, UKB, ALSPAC, and GS samples

AUDIT-C PRS AUDIT-P PRS

Outcome Sample pT R2 β (S.E.) p value pT R2 β (S.E.) p value

Units per
week

GS <0.1 0.27% 0.052 (0.008) 5.50 × 10−11 <0.01 0.15% 0.039
(0.008)

4.70 × 10−7

Alcohol use COGA <0.0001 0.32% 0.129 (0.046) 5.19 × 10−3 <0.4 0.65% 0.188
(0.049)

1.24 × 10−4

AUDIT-C ALSPAC
(age 23)

<0.1 0.59% 0.066 (0.020) 1.06 × 10−3 <0.01 0.65% 0.067
(0.020)

5.90 × 10−4

MaxDrinks ALSPAC <0.5 1.54% 0.389 (0.173) 2.44 × 10−2 <0.2 3.26% 0.540
(0.171)

1.59 × 10−3

COGA <0.001 0.04% 0.266 (0.147) 7.03 × 10−2 <0.2 0.47% 0.879
(0.156)

2.00 × 10−8

CAGE GS <0.4 0.19% 0.044 (0.010) 8.60 × 10−4 <0.2 0.40% 0.063
(0.010)

9.00 × 10−7

AUDIT-P ALSPAC
(age 23)

<0.2 0.28% 0.045 (0.020) 2.61 × 10−2 <0.01 1.12% 0.088
(0.020)

9.05 × 10−6

Alcohol
dependence
symptom count

ALSPAC
(DSM-IV)

<0.3 0.84% 0.091 (0.022) 3.59 × 10−5 <0.01 0.84% 0.086
(0.021)

3.53 × 10−5

COGA
(DSM-5)

<0.1 0.08% 0.103 (0.045) 2.30 × 10−2 <0.4 0.67% 0.301
(0.046)

1.01 × 10−10

Alcohol
dependence

ALSPAC
(DSM-IV)

<0.3 0.96% 0.240 (0.052) 4.81 × 10−6 <0.01 0.54% 0.170
(0.050)

5.75 × 10−4

COGA
(DSM-IV)

<0.0001 0.14% 0.078 (0.032) 1.44 × 10−2 <0.4 0.68% 0.199
(0.034)

4.55 × 10−9

UKB (ICD) <0.0001 0.04% 0.062 (0.016) 8.90 × 10−5 <0.5 0.18% 0.147
(0.020)

<2.00 × 10−16

The PRS threshold ( pT) that most strongly predicted each outcome (based on the highest R2) is presented. Results significant at p < 0.0004 are bolded. Complete results are available in online
Supplemental Tables S1–S12.
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ages, how much and how often a person drinks often serves as an
indicator of their genetic susceptibility to alcohol misuse (Dick,
Meyers, Rose, Kaprio, & Kendler, 2011; Irons, Iacono, &
McGue, 2015). As an individual progresses toward maladaptive
alcohol intake, a unique genetic susceptibility to physiological
and psychological impairments related to alcohol misuse may
unfold (Kendler, Gardner, & Dick, 2011). Our goal was to outline
the extent to which PRS derived from a discovery GWAS of the
AUDIT consumption (AUDIT-C) and problem (AUDIT-P) sub-
scales predicted variance in a range of alcohol use behaviors
across samples that were variously ascertained. With few excep-
tions, polygenic liability to AUDIT-P was a superior predictor
of indices of heavy drinking and alcohol problems compared to
the AUDIT-C.

Overall, across several ascertainment strategies, AUDIT-P PRS
outperformed AUDIT-C as a predictor of both normative and
disordered drinking (see Fig. 2 for an overview). For example,
AUDIT-P PRS predicted up to 3.3% of the variance in the lifetime
maximum number of drinks consumed in a 24 h period (although
this was a clear outlier in terms of variance explained), 1.1% of the
variance in AUDIT-P scores, and 0.7% of the variance in DSM-5
AUD symptom counts. Exceptions to the superior performance of
AUDIT-P PRS were observed within ALSPAC, where AUDIT-C
PRS explained higher proportions of the variance than
AUDIT-P PRS in some adolescent AUDIT-C and AUDIT-P
assessments (prior to age 23; see online Supplemental
Materials). AUDIT-C PRS also accounted for more variance in
DSM-IV AD in ALSPAC.

Even indices of alcohol consumption, such as lifetime max-
imum drinks in 24 h and monthly alcohol use, were more closely
related to the genetic liability indexed by AUDIT-P PRS than
AUDIT-C PRS. However, this difference was most notable in
COGA, for which drinking for at least 6 months during the life-
time represents a highly heterogeneous group of individuals,
which may include both non-problem drinkers and those with
AUD. As expected, and in line with prior studies (Mies et al.,
2018; Sanchez-Roige et al., 2018), AUDIT-P outperformed
AUDIT-C for measures of problem drinking within each sample
(i.e. COGA, ALSPAC, GS, and UKB; see Table 2), confirming that
the AUDIT-P is more closely related to genetic susceptibility to
alcohol misuse than AUDIT-C.

Overall, the variance explained by PRS was low, even when the
discovery and target phenotypes were identical (e.g. AUDIT
scores in ALSPAC). These estimates are nonetheless consistent

with other PRS studies (Mies et al., 2018; Savage et al., 2018),
and the proportion of explained variance may improve as the dis-
covery GWAS get larger. In agreement with previous studies
(Savage et al., 2018), we demonstrated that ascertainment is likely
to be a crucial factor in polygenic prediction analyses. For
instance, while the AUDIT-P PRS explained a larger amount of
variance in dependence in COGA than in ALSPAC, the
AUDIT-C PRS was not a significant predictor for any phenotype
in COGA over and above the effect of AUDIT-P PRS, suggesting
that the effect sizes for AUDIT-C from a volunteer cohort (UKB)
may not be optimal for capturing genetic risk to AUD in high-risk
families, such as those in COGA. AUDIT-C associations in
COGA using other addiction-enriched samples, such as the
Million Veteran Program (Kranzler et al., 2019), where the genetic
correlation between AUDIT-C and AUD is high, will likely pro-
vide insights into the extent of the effect of ascertainment differ-
ences in discovery and target samples. Interestingly, variance
explained by either PRS was the highest in ALSPAC, a
population-based cohort that is noticeably younger than the dis-
covery sample (age 39–79 years). Lastly, the variance explained for
AUD in the (independent) subset of UKB participants itself was
markedly lower than in ALSPAC. Here, it is worth recognizing
that AUDIT is a past-year screener for alcohol consumption/pro-
blems, and there may have been individuals in the original
AUDIT GWAS with low scores who were formerly problem drin-
kers. Furthermore, using ICD codes derived from hospital records
as a proxy for AUD in the UKB may have resulted in false nega-
tives; some of the ‘controls’ could have been problem drinkers but
had not been diagnosed with an alcohol-related condition as a
hospital inpatient. Thus, the lower prediction in the UKB sample
may reflect the instruments used to measure AUD in both the dis-
covery and target GWAS.

Our findings should be viewed in the context of several limita-
tions. First, the AUDIT is a past-year screener for alcohol con-
sumption and problems, and thus may not capture individuals
who had alcohol use problems in the past. Second, the AUDIT
discovery GWAS was performed in a subset of the UKB that con-
sisted of individuals who responded to an email request to com-
plete a mental health follow-up survey. A recent study of the
genomic profiles of these individuals has found them to represent
a lower polygenic risk for psychopathology and greater polygenic
load for educational achievement, suggesting selection bias in the
discovery sample itself (Adams et al., 2018). In addition, these
individuals had relatively low endorsement of AUDIT-P items,

Fig. 1. Odds ratios (OR) and 95% confidence interval for alcohol dependence diagnosis by PRS quartiles in ALSPAC, COGA, and UKB. PRS were split into quartiles
and odds ratios calculated for case status for each quartile of risk compared to quartile 1 (lowest). (a) Alcohol dependence in ALSPAC was coded by DSM-IV diag-
nosis (484 cases, 3837 controls). (b) Alcohol dependence was coded via DSM-IV diagnosis in the COGA sample (2318 cases, 4532 controls). (c) A sample of European
ancestry, unrelated British individuals who had ever drank, had ICD9 and ICD-10 codes available, and were not included in the discovery GWAS were used (4141
cases, 241 806 controls).
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which might have limited the statistical power of the discovery
GWAS to capture the full spectrum of problem drinking and, in
turn, limited our ability to compare across the AUDIT-C and
AUDIT-P. Third, as the discovery GWAS was conducted on indi-
viduals of primarily European descent, these PRS could not be
applied to other ancestral groups, reflecting a research gap in
the dearth of large discovery GWAS of non-European populations
(Martin et al., 2017). Results from the recent AUDIT-C GWAS by
Kranzler et al. (2019), which includes 57 340 African-Americans,
for instance, will be instrumental in bridging this gap. Fourth, it is
likely that the pattern of results reflects a complex interplay
between developmental effects, ascertainment strategy, the psy-
chometrics of the assessment instruments, and even population
selection effects. For instance, distinctions between ALSPAC
and COGA could be attributed to the higher median age of
COGA participants, or even drinking patterns prevalent in earlier
birth cohorts that are represented within COGA. Potential mod-
eration of PRS by sex are also possible; however, power for such
exploratory analyses is limited and beyond the scope of this
study. Fifth, although this study examined a range of alcohol
use phenotypes (from a measure of monthly alcohol use to
dependence), the cross-sectional design cannot capture potential
longitudinal changes in PRS association across the progression
of stages of alcohol use. A sixth limitation is that we did not con-
trol for any measures of socioeconomic status (SES) in our mod-
els, although SES has been shown to be a potential moderator of
polygenic risk for alcohol consumption (Barr, Silberg, Dick, &
Maes, 2018; Clarke, 2016), as the measures available varied widely
and inconsistently across our target samples. The imbalance of
cases and controls in the UKB target sample is another limitation;
this imbalance would be more likely to seriously bias a discovery
GWAS, but may still have confounded the regression analyses in
our target sample. A final limitation is that the strength of PRS
associations varied across p value thresholds ( pT; see online
Supplementary Tables S1–S12); because we chose the best-

performing pT for each model, as is typical for the pruning +
thresholding (P + T) method of PRS analyses (Euesden et al.,
2014), we run the risk of over-fitting.

Collectively, these analyses demonstrate that much of the poly-
genic liability to alcohol use and misuse remains unaccounted for
– we anticipate that much larger GWAS of phenotypes represent-
ing disordered drinking, in conjunction with other risk indices
(e.g. PRS for negative affect, a hallmark of later stages of AUD)
will be necessary to explain additional variance. Importantly, as
the use of PRS becomes increasingly common in attempts to dis-
sect the transitions from experimentation, to regular or problem
use and further, to AUD, differences between the discovery sam-
ple and target sample(s) in age, ascertainment, and other charac-
teristics will need to be considered in the interpretation of
findings. In addition, our findings highlight the high degree of
heterogeneity and polygenicity underlying alcohol use and misuse
– not only is there no ‘gene for’ alcoholism, there is currently no
robust ‘polygenic indicator for’ clinical prediction of liability to
problem drinking. Furthermore, while we focused on contrasting
the genetic relationship of each individual AUDIT subscale with
the variety of alcohol-related measures across our different sam-
ples, it should be noted that the proportion of variance explained
in the alcohol-related outcomes is larger when we consider both
the AUDIT-C and AUDIT-P PRS together, suggesting that mul-
tiple polygenic scores provide more utility than PRS for the indi-
vidual sub-scales. The two scores are only modestly correlated and
likely, some of this commonality is due to variants in ADH1B that
exert a relatively large effect. Overall, our analyses suggest that
even though it is too small to be statistically significant, there is
some incremental contribution of variance from the inclusion
of the AUDIT-C. Despite these caveats, our analyses demonstrate
the feasibility of using a fast and simple screening questionnaire,
the AUDIT, that assesses both consumption and problem drink-
ing, to understand the course of alcohol use and misuse.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/S0033291719004045
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