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Effective Complexity as a Measure of
Information Content*
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Murray Gell-Mann has proposed the concept of effective complexity as a measure of
information content. The effective complexity of a string of digits is defined as the
algorithmic complexity of the regular component of the string. This paper argues that
the effective complexity of a given string is not uniquely determined. The effective
complexity of a string admitting a physical interpretation, such as an empirical data
set, depends on the cognitive and practical interests of investigators. The effective com-
plexity of a string as a purely formal construct, lacking a physical interpretation, is
either close to zero, or equal to the string’s algorithmic complexity, or arbitrary, de-
pending on the auxiliary criterion chosen to pick out the regular component of the
string. Because of this flaw, the concept of effective complexity is unsuitable as a mea-
sure of information content.

1. Introduction. In algorithmic information theory, the information con-
tent of a string of digits is measured by the string’s algorithmic complexity.
In informal terms, the algorithmic complexity of a string is defined as the
length of the shortest algorithm that, when provided as input to a universal
Turing machine, generates the string. A string has maximal algorithmic
complexity just if the shortest algorithm able to generate it is not signifi-
cantly shorter than the string itself, allowing perhaps for a fixed additive
constant (Li and Vitányi 1997).

Any pattern or regularity in a string lowers its algorithmic complexity.
This is because a pattern constitutes redundancy: it enables one portion
of the string to be recovered from another, allowing a more concise de-
scription. On algorithmic information theory, therefore, a patternless or
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random string of a certain length has the highest information content of
any string of that length. The more randomness a string exhibits, the more
information it contains.

Some writers believe that information content ought not to be linked
to randomness in this way. As Murray Gell-Mann (1994, 49–50) points
out, algorithmic information theory entails that the collected works of
William Shakespeare, which show some degree of regularity, have a
smaller information content than a string of gibberish of the same length.
Gell-Mann concludes that algorithmic complexity is not a suitable mea-
sure of information content.

Instead, Gell-Mann introduces the concept of effective complexity. He
assumes that the information content of a string can be divided into two
components: an amount of “useful information,” corresponding to the reg-
ularity exhibited by the string, and a random component. He defines the
effective complexity of an entity as “the length of a concise description of
the entity’s regularities” (Gell-Mann 1994, 56; see also Gell-Mann 1995;
Gell-Mann and Lloyd 1996). In other words, as Gell-Mann makes clear,
the effective complexity of a string is defined as the algorithmic complexity
of the regular component of the string, neglecting the random component.
Gell-Mann claims that effective complexity is a more suitable measure of
the information content of a string than algorithmic complexity, because it
better captures our intuitive notion of information. He and other writers
have applied the concept of effective complexity in the theory of adaptation
and control and in quantum mechanics (Lloyd and Slotine 1996; Gell-Mann
and Hartle 1997).

To begin with, we note that the effective complexity of an algorithmi-
cally nonrandom string is equal to the string’s algorithmic complexity.
This is because an algorithmically nonrandom string consists entirely of
a regularity or pattern, and exhibits no random component. If the concept
of effective complexity is to prove its usefulness, therefore, it will have to
be as a measure of the information content of algorithmically random
strings.

The concept of effective complexity has a flaw, however: the effective
complexity of a given string is not uniquely defined. This flaw manifests
itself in two ways. For strings that admit a physical interpretation, such
as empirical data sets in science, the effective complexity of a string takes
different values depending on the cognitive and practical interests of
investigators. For strings regarded as purely formal constructs, lacking
a physical interpretation, the effective complexity of a given string is
arbitrary. The flaw derives from the fact that any given string displays
multiple patterns, each of which has a different algorithmic complexity
and each of which can, in a suitable context, count as the regularity of
the string.
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2. Strings with Empirical Content. Let us begin with strings that admit a
physical interpretation, such as empirical data sets in science. Any empir-
ical data set is the effect of the interaction of several different causal fac-
tors, including multiple physical phenomena, perturbations, and the be-
havior of observation or measuring apparatus. The empirical data set
contains information about all the causal factors that contributed to its
production. This information takes the form of patterns in the data. Each
of these patterns may equally legitimately be regarded as constituting the
regularity of the data. These patterns have different algorithmic complex-
ities and are exhibited by the data with different noise levels.

For an example, consider a data set on atmospheric temperature. Such
a data set exhibits many different patterns (Bryant 1997). These include a
pattern with a period of a day, associated with the earth’s rotation about
its axis; patterns with periods of a few days, associated with the life span
of individual weather systems; a pattern with a period of a year, associated
with the earth’s orbit around the sun; a pattern with a period of 11 years,
attributed to the sunspot cycle; a pattern with a period of approximately
21,000 years, attributed to the precession of the earth’s orbit; various pat-
terns with periods of between 40,000 and 100,000 years, attributed to fluc-
tuations in the inclination of the earth’s axis of rotation and the eccen-
tricity of the earth’s orbit; and various patterns with periods of between
107 and 109 years, associated with variations in the earth’s rate of rotation,
the major geography of the earth, the composition of the atmosphere, and
the characteristics of the sun. Each of these patterns has a different al-
gorithmic complexity and is exhibited in the data with a different noise
level. Any of these patterns is eligible to be considered as the regularity of
the data set. Depending on their cognitive and practical interests, weather
forecasters, meteorologists, climatologists, palaeontologists, astronomers,
and researchers in other scientific disciplines will regard different patterns
in this series as constituting the regularity in the data. They will thus as-
cribe different values to the effective complexity of the data set.

For a second example, consider a data set consisting of microwave
radiation intensity readings of the sky. Radio astronomers analyze such a
data set as exhibiting several different patterns (Partridge 1995). One pat-
tern consists of a number of discrete peaks with an intensity of a few
kelvin, spread over the sky, corresponding to astronomical radio sources;
a second consists of a constant intensity distribution, independent of di-
rection, with the spectrum of a black body at approximately 2.7 K, cor-
responding to the isotropic background; a third consists of one warm and
one cool pole in opposite directions in the sky, corresponding to the dipole
anisotropy; a fourth consists of two warm and two cool poles, correspond-
ing to a quadrupole; a fifth consists of fluctuations of radiation tempera-
ture on angular scales of 10� and above, called “ripples”; and a sixth con-

https://doi.org/10.1086/375469 Published online by Cambridge University Press

https://doi.org/10.1086/375469


     305

sists of fluctuations of radiation temperature on an angular scale of around
1�, dubbed “acoustic oscillations.” Each of these patterns too has a dif-
ferent algorithmic complexity and is exhibited in the data with a different
noise level. Any of these patterns is eligible to be considered as the regu-
larity of the data set. Astronomers and cosmologists working on different
problems will focus on different patterns in this series, and thus disagree
about the effective complexity of the data set.

To summarize, the effective complexity of a string is defined as the
algorithmic complexity of the regularity of the string; each of the multiple
patterns that may be identified in an empirical data set has equal claim to
constitute the regularity of that data set; and each of these patterns has a
different algorithmic complexity. It follows that the effective complexity
of an empirical data set is not uniquely defined: it varies with the cognitive
and practical interests of investigators.

One might attempt to avert this conclusion by defining the effective
complexity of a string as the sum of the algorithmic complexities of all the
patterns of the string. This attempt does not succeed, however. The set of
all regular components of an algorithmically random string is not uniquely
defined. It is always possible to analyze the remaining random component
of a string as the sum of a particular regularity and a further random
component. One of the ways in which science makes empirical progress is
precisely by identifying further systematic components in residuals of em-
pirical data sets that were previously considered unanalyzable. The history
of research into atmospheric temperature fluctuations and cosmological
microwave radiation offers good examples of this.

3. Strings as Formal Constructs. Let us now turn to strings considered as
purely formal constructs, lacking physical interpretation. As a formal con-
struct, a string may be described equally legitimately as the sum of any
one of infinitely many different patterns and a corresponding noise term.
In other words, there are infinitely many distinct descriptions of a given
string as “Pattern A � noise at m percent,” “Pattern B � noise at n
percent,” and so on through the set of all possible patterns. The patterns
in this set have all possible degrees of algorithmic complexity and are
exhibited in the string with all possible noise levels. The term “noise”
denotes here not a margin of error or factual inaccuracy in a string, but
rather the purely mathematical discrepancy between a given pattern and
the string, as in classical information theory. Each of these patterns may
legitimately be regarded as constituting the regular component of the
string. Thus, the effective complexity of the string is arbitrary.

One might attempt to avert this conclusion by devising a nonarbitrary
criterion upon which one of the infinitely many mathematically legitimate
descriptions of a string is picked out as more adequate than the others.
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There are just two plausible nonarbitrary criteria upon which one descrip-
tion of the form “Pattern A � noise at m percent” can be picked out as
more adequate than the others: one criterion is to pick out the pattern
that has the lowest algorithmic complexity, whereas the second is to pick
out the pattern that is exhibited in the string with the lowest noise level.
Let us examine the consequences of applying these criteria.

Picking out the pattern that has the lowest algorithmic complexity deliv-
ers a sequence of zeros (or of ones) as the most adequate description of any
string. The difference between this pattern and the actual string—i.e., the
entire content of the string—would be described as noise. On this criterion,
the effective complexity of any string would be approximately zero.

Picking out the pattern that is exhibited in the string with the lowest
noise level delivers the pattern that reproduces the string in every detail
as the most adequate description of the string. This pattern is exhibited in
the string with zero noise. On this criterion, the effective complexity of
any string would be equal to its algorithmic complexity.

All other ways of picking out one of the infinitely many possible de-
scriptions of a string are arbitrary. In particular, any combination of the
two criteria mentioned above would depend on their relative weighting
and would thereby be arbitrary. Thus, each of the infinitely many other
possible descriptions of a string of the form “Pattern A � noise at m
percent” has equal status. In other words, every other possible pattern has
equal claim to constitute the regularity that the string contains. If the two
criteria described above are rejected, therefore, the effective complexity of
a string is arbitrary: there is no more justification for assigning one value
to it than another (McAllister 1997).

4. Conclusion. The effective complexity of a given string is not uniquely
defined. The effective complexity of a string admitting a physical inter-
pretation, such as an empirical data set, depends on the cognitive and
practical interests of investigators. The effective complexity of a string
regarded as a purely formal construct, lacking a physical interpretation,
is either close to zero, or equal to the string’s algorithmic complexity, or
arbitrary, depending on which of various possible criteria is used to pick
out the regular component of the string. Because of these features, ef-
fective complexity is not a useful measure of information content. It is a
less suitable measure than algorithmic complexity, notwithstanding the
counter-intuitive implications of the latter concept.
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