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Abstract. The efficiency of the Alfvén impulse excitation in the auroral zone of
the terrestrial magnetosphere upon the onset of the anomalous field-aligned res-
istance has been estimated. The impulsive disturbance excited during the onset of
anomalous field-aligned resistance and electric field may signify the transition of a
global magnetospheric instability into the explosive phase with positive feedback.
We consider the self-consistent problem on excitation of anomalous resistance at
the front of field-aligned current and reverse influence upon it from the induced
currents. The analytical solution of the self-consistent problem has shown that
during the entrance of field-aligned current front into the anomalous resistivity
layer (ARL) an Alfvénic impulse is generated. The interaction of the external
current with ARL results in the delay of the current growth. The impulse duration
and delay time depend on the ratio between the Alfvén damping scale and external
current width. The solution obtained indicates the possibility of using the Alfvénic
impulse as an indicator of distant occurrence of anomalous resistance.

1. Introduction
Anomalous resistance due to the high-frequency turbulence is a ubiquitous element
of high-temperature collisionless space and laboratory plasmas [1, 2]. The occur-
rence of the anomalous resistance on the high-latitude field lines is a key element
of the magnetosphere–ionosphere interaction in the near-Earth environment [3,4].
For a long time it was known that the excitation of the anomalous resistance upon
propagation of intense field-aligned current disturbances is possible [5–8]. In the
region with field-aligned current j0, the emergence of an anomalous resistive layer
with a finite field-aligned conductivity σ‖ results in the occurrence of anomalous
electric field E‖ � j0/σ‖. This field-aligned E‖ accelerates electrons. In the ter-
restrial magnetosphere, the accelerated electrons cause additional ionization of the
ionosphere and activation of the auroral activity. Ionization and relevant modific-
ation of the ionospheric conductance is the physical basis of various mechanisms
of feedback in the coupled ionosphere–magnetosphere system [9,10]. This positive
feedback instability may eventually lead to the onset of an explosive phase of a
substorm.
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Figure 1. Sketch of the model describing the interaction of an Alfvén front with the ARL.

The intensity of field-aligned currents, transported by a front of Alfvén-type
disturbance, may be sufficient for the excitation of anomalous resistance in space
plasma. The sudden switch-on of the σ‖ results in the excitation of an Alfvénic
impulse. The possibility of an Alfvénic impulse generation related to the onset of an
anomalous resistance on auroral field lines was originally suggested by Arykov and
Maltsev [11]. Later on, we developed a mathematical formalism for the description
of the impulse spatial structure, discussed some implications of this model, and
provided some observational evidence in favor of this hypothesis [12]. Therefore, the
occurrence of such an impulse signifies the ‘switch-on’ of the anomalous resistivity
on a field line, even far away from the observation point.
However, the previous models considered the structure of the Alfvén impulse

originating after a momentary occurrence of the anomalous resistance. In a realistic
situation, the induced currents may influence the total field-aligned current and
establishment of anomalous resistance regime. In this paper we consider the self-
consistent problem on excitation of both the anomalous resistance and Alfvén
impulse at the front of field-aligned current entering the region with favorable
conditions for the excitation of plasma turbulence.

2. Model of the resistive layer and basic equations
Here we develop a mathematical formalism for the description of the Alfvén im-
pulse generation during the switch-on of anomalous resistivity in a resistive layer,
induced by an external non-steady current. The model is shown schematically in
Fig. 1. The homogeneous geomagnetic field is directed vertically upwards, B0 =
B0ẑ. The homogeneous magnetospheric plasma has a vanishing transverse static
conductivity and infinite field-aligned conductivity σ‖ = ∞. In many realistic
situations, the threshold for the excitation of the anomalous resistance is lower
within a certain region [13] further named as the anomalous resistivity layer (ARL).
In the model considered, the finite σ‖ occurs in the vicinity of the plane z = 0 inside
a layer with thickness b.
The considered mathematical model is based on the system of Maxwell equations

∇ × E = −1
c
∂tB, ∇ × B =

4π

c
j,
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augmented by Ohm’s law derived from magnetohydrodynamic (MHD) equations

j⊥ =
ΣA
VA

∂tE⊥, jz = σ‖Ez,

where ΣA = c2/(4πVA) is the Alfvén wave conductance.
In this system the possible MHD disturbances are described by the following

equations for Alfvén waves, carrying the field-aligned current jz, and fast compres-
sional waves, carrying the field-aligned magnetic field disturbance Bz,

∂ttjz − V 2
A ∂zzjz =

c2

4π
∇2

⊥∂t(σ−1
‖ jz),

∂ttBz − V 2
A∇2Bz = 0.

(2.1)

These equations are decoupled. This means that the excitation of Alfvén-type dis-
turbances is not accompanied by a generation of a compressional mode. This mode
coupling in homogeneous plasma can take place if a transverse (Hall) conductivity
is non-vanishing (σ⊥ �= 0).
We assume that the ARL is a thin layer as compared with the Alfvén wavelength.

Therefore, the thin-layer approximation can be used, that is, the ARL thickness
b → 0, whereas its resistivity Q(x, y, t) = b/σ‖ remains finite.
In this approximation the simple Alfvén wave equation is valid in the upper

(z > 0) and lower (z < 0) hemi-spaces

∂ttjz − V 2
A ∂zzjz = 0. (2.2)

This equation must be supplemented with two boundary conditions at the interface
z = 0 between two hemi-spaces, separated by a thin layer (b → 0) with the
resistivityQ. The first condition is the requirement of the continuity of field-aligned
current jz(x, y, z, t) across the ARL, which enables us to consider the function
j
(0)
z (x, y, t) = jz(x, y, 0, t) (the superscript (0) indicates that current is considered
inside the ARL). The second boundary condition is obtained by integration of the
first equation from the system (2.1) across the layer and subsequent transition to
the limit b → 0, as follows

{∂zjz}z=0 + ∇2
⊥∂t[R(x, y, t)j(0)

z ] = 0. (2.3)

Here

R(x, y, t) =
c2

4πV 2
A

Q = ΣAQV −1
A

is the normalized resistance of the ARL, and {∂zjz}z=0 = ∂zjz(x, y,+0, t) − ∂zjz

(x, y, −0, t) is the jump of the current density derivative across the ARL.

3. Self-consistent model of the Alfvén front interaction with the ARL
From the magnetosphere, a front of field-aligned current transported by an Alfvén
wave impinges the topside ionosphere along the z-axis:

jz = j0(x, y, z, t) = J(z − z0(x, y) + VAt). (3.1)

A function J(z) is assumed to be monotonically growing; then this Alfvén wave
front produces a gradual increase of the field-aligned current density in the layer
at z = 0. As soon as the current density j

(0)
z exceeds a threshold value j∗, an
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anomalous field-aligned resistance ignites. This process will be described by the
very simplified two-step model [14]

R(j(0)
z ) =

{
0 if j

(0)
z < j∗,

R0 if j
(0)
z > j∗.

(3.2)

Thus, we consider the self-consistent problem, that is, we take into account that
the ARL resistance depends on the magnitude of current inside the layer.
We suppose that the monotonic function J(z) is such that J(0) = j∗. Then the

wave ‘critical’ front, that is, the surface where j0(x, y, z, t) = j∗, is z = z0(x, y)−VAt.
Let us suppose that the critical front at t = 0 intersects with the plane z = 0 at a
point x = 0, y = 0, whereas the function z0(x, y) is monotonically growing along
the rays x = ρ cos φ, y = ρ sin φ, ρ > 0 with the growth of ρ (ρ and φ are coordinates
in a local cylindrical coordinate system centered at the point of first ‘encounter’ of
the Alfvén front with a layer).
Below the critical front (z < z0(x, y) − VAt) the solution of (2.2), (2.3), where

R(x, y, t) is given by (3.2), is the undisturbed wave (3.1). The region DAR(t) in the
plane z = 0, where anomalous resistivity has been switched-on, R(x, y, t) �= 0,
is bounded by the curve z0(x, y) = VAt; within the region DAR(t) an inequality
z0(x, y) < VAt takes place.
The disturbance caused by the turn-on of anomalous resistance propagates from

the plane z = 0. The source of this disturbance is the region growing with time
DAR(t). The solution of (2.2) for t � 0 evidently has the form

jz(x, y, z, t) =

{
J(z − z0(x, y) + VAt) + jzA(x, y, t − z/VA), z ≥ 0;
J(z − z0(x, y) + VAt) + jzA(x, y, t + z/VA), z ≤ 0.

(3.3)

This solution for the whole space is determined by the function jzA(x, y, t), defined
at the border z = 0. This function characterizes the induced field-aligned current
density, transported by the induced Alfvén impulse.
The second boundary condition (2.3) enables us to obtain an equation to determ-

ine the induced field-aligned current density jzA(x, y, t) and the total density of the
current through the layer at z = 0:

j(0)
z = J(−z0(x, y) + VAt) + jzA(x, y, t). (3.4)

Substituting the jump of the current density derivative across the ARL found
from (3.3), that is, {∂zjz}z=0 = −2V −1

A ∂tjzA, into the condition (2.3), one obtains
the following equation

∂t

[
−2jzA(x, y, t) + VA∇2

⊥
(
Rj(0)z

)]
= 0. (3.5)

Thus, the expression in square brackets does not vary in time. This invariant value
is zero at any point of the plane z = 0, because before the arrival of the critical
front (t < 0) throughout this plane jzA ≡ 0 and R ≡ 0 (actually jzA and R are
vanishing even before the moment t = V −1

A z0(x, y)). As a result, from (3.5) taking
into account (3.4), one can obtain the equation

VA∇2
⊥(Rj(0)z ) − 2j(0)

z = −2J0, (3.6)

where J0(x, y, t) = J(VAt − z0(x, y)) is the given density of the external current in
the plane z = 0. If we solve (3.6), with the use of (3.4) we may find the function
jzA(x, y, t) and calculate by formula (3.3) the solution of (2.2), (2.3) throughout the
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entire space at any time moment. Note that the differential equation (3.6) holds
the time t just as a parameter.
It is more convenient to consider (3.6) as an equation with respect to the variable

Rj(0)z , which is proportional to the potential drop across the layer (ϕ‖ = limb→0 Ezb):

Rj(0)z = ΣAV −1
A Qσ‖Ez = ΣAV −1

A ϕ‖

(Q = b/σ‖ for b → 0). For an easy comparison with relevant relationships from [11]
and [12] we use as a searched function the Alfvén potential at the upper boundary of
the ARL, that is, ϕ = ϕ(x, y,+0, t). This function is related to ϕ‖ by the relationship
ϕ‖ = −2ϕ. Therefore, (3.6) is reduced to the following form

ΣA∇2
⊥ϕ + j(0)

z = J0. (3.7)

Here the current density j
(0)
z is to be considered as a function of ϕ, which in

accordance with (3.2) has the form

j(0)
z (ϕ) =

⎧⎨
⎩j∗

(
ϕ

ϕ∗

)
if ϕ ≤ ϕ∗,

j∗ if ϕ∗ ≤ ϕ < 0,
(3.8)

where

ϕ∗ = − 1
2Σ−1

A VAR0j∗ = − 1
2Q0j∗. (3.9)

The occurrence of permanent value of current j
(0)
z (ϕ) = j∗ upon potential drop

across the ARL less than some critical value corresponds physically to the plasma
state near the instability threshold. In this state the resistance R has some interme-
diate value between zero and R0. In fact, (3.7) is the modification of (17) from [11]
or (10) from [12]. However, in contrast with the above papers, here the dependence
j
(0)
z (ϕ) is nonlinear. The potential ϕ(x, y) is proportional to the tangential to the
cylindrical boundary of the anomalous resistivity region component of electric field
Ez (before the transfer to the thin layer limit b → 0). Therefore, ϕ(x, y) is to be
continuous upon the transition across the boundary J0(x, y) = j∗, that is, the
curve z0(x, y) = VAt. Beyond the region DAR, the function ϕ(x, y) ≡ 0. Thus, the
boundary condition for (3.7) is

ϕ(x, y) = 0 at the boundary of DAR.

The field-aligned current density j
(0)
z (x, y) is also a continuous function in the entire

plane z = 0, because j
(0)
z depends on the potential ϕ continuously according to the

expression (3.8).

4. One-dimensional case
Let us consider the case when the external front (3.1) does not depend on y co-
ordinate. In this case, (3.7) has the form

ϕ′′ = Σ−1
A [J0(x, t) − j(0)

z (ϕ)], (4.1)

where J0(x, t) = J(VAt − z0(x)). It is an ordinary differential equation, since it
contains the time t as a parameter. The searched solution of (4.1) must be such that
ϕ(x−) = ϕ(x+) = 0, where x±(t) are roots of the equation J0(x, t) = j∗. The region
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DAR is reduced to the interval x− < x < x+. The solution is searched within the
interval (x−, x+); beyond this interval ϕ(x) ≡ 0.
If the integral curve of (4.1), connecting (x−, 0) and (x+, 0) does not go down

below the level ϕ = ϕ∗, then with regard for (3.8) it can be described by a simple
equation

ϕ′′ = Σ−1
A ∆0(x, t), (4.2)

where ∆0(x, t) = J0(x, t) − j∗ is the surpass of the external current above the
threshold. Its solution under the condition ϕ(x−) = ϕ(x+) = 0 is

ϕ(x) = k−(x − x−) + Σ−1
A

∫ x

x−

dξ

∫ ξ

x−

∆0(η) dη, (4.3)

where the slope at x = x− is determined by

k− = − 1
ΣA(x+ − x−)

∫ x+

x−

dξ

∫ ξ

x−

∆0(η) dη.

The formula (4.3) is relevant to the initial stage of the process, because the expan-
sion of the region DAR = (x−, x+) and growth of the external current above the
threshold reduce the minimum of the function (4.3). After the minimum reaches the
level ϕ∗, the integral curve ϕ = ϕ(x) in its middle part gets to the region ϕ < ϕ∗,
where owing to (3.8) it is determined by the linear equation

ϕ′′ = λ−2
A ϕ + Σ−1

A J0(x, t), (4.4)

where the linear scale λA =
√

VAR0/2 =
√

ΣAQ0/2 is related to the field-aligned
resistivity. The parameter λA named the Alfvén damping scale was introduced
in [15,16]. Note also the relation ϕ∗ = −λ2

Aj∗/ΣA following from (3.9). The solution
of (4.4) can be expressed analytically via quadratures. The complete solution is
to be obtained by the smooth merging of the solutions of (4.2) and (4.4). At the
initial phase (whilemin ϕ(x) > ϕ∗) the current density j

(0)
z remains at the threshold

level j∗ throughout the whole region DAR.

5. Examples of external current fronts
5.1. Step-wise plane front

As a simple example, we consider a step-wise spatial distribution of the external
current density in (4.2):

J0(x, t) = J0(t)η(Λ⊥ − |x|),
where η(x) is the Heaviside function (η(x < 0) = 0 and η(x ≥ 0) = 1). Let the
variation of J0(t) have a typical time scale T0. The external current front (3.1) with
z0(x) = 0 is assumed to be flat inside a limited region |x| < Λ⊥, beyond this region
the current vanishes. Thus, the area DAR is the interval (−Λ⊥,Λ⊥).
First, we consider the simpler case when the solution ϕ(x) does not go down below

the value ϕ∗. The solution of (4.2) with the conditions ϕ(−Λ⊥) = ϕ(Λ⊥) = 0 is

ϕ(x) = 1
2ϕ∗λ

−2
A [j−1

∗ J0(t) − 1](Λ2
⊥ − x2). (5.1)

When the external current increases linearly in time, that is, J0(t) = j∗(1 + t/T0),
the value

|minϕ(x)| = 1
2ϕ∗(Λ⊥/λA)2(t/T0) (5.2)
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also grows linearly in time. The minimum of ϕ(x) reaches the level ϕ∗, when
(Λ⊥/λA)2(t/T0) = 2. Thus, the current j

(0)
z remains at the threshold level j∗ during

the retardation time

Td = 2T0

(
λA
Λ⊥

)2

.

In the general case, this delay time Td can be determined as a root of the equation

J0(Td) = j∗[1 + 2(λA/Λ⊥)2]. (5.3)

If the current density J0(t) never exceeds the value of j∗[1 + 2(λA/Λ⊥)2], then the
value of potential ϕ(x) does not go below ϕ∗, whereas j

(0)
z remains at the threshold

level while J0(t) ≥ j∗.
At t > Td, the minimum of ϕ(x) goes below ϕ∗. The region −x∗ < x < x∗

arises, where the solution is determined by (4.4), and beyond this region (4.2) is
still valid. Integrating (4.2) and (4.4) with the account of the boundary conditions
ϕ(±Λ⊥) = 0 and ϕ(± x∗) = ϕ∗ we find

ϕ(x, t) =

⎧⎪⎨
⎪⎩

ϕ1(x, t) at x∗ ≤ x ≤ Λ⊥,

ϕ2(x, t) at |x| ≤ x∗,

ϕ1(−x, t) at − Λ⊥ ≤ x ≤ −x∗,

where the functions ϕ1 and ϕ2 are determined by

ϕ1(x, t)
ϕ∗

=
Λ⊥ − x

Λ⊥ − x∗
+

1
2λ2

A
[j−1

∗ J0(t) − 1](Λ⊥ − x)(x − x∗)

and
ϕ2(x, t)

ϕ∗
= 1 +

[
J0(t)
j∗

− 1
][

1 − cosh(x/λA)
cosh(x∗/λA)

]
.

To find the joining point x∗, we use the condition

∂xϕ1(x∗, t) = ∂xϕ2(x∗, t).

In the example under consideration, this condition is, in fact, the following equation

1
1 − ξ∗

− [j−1
∗ J0(t) − 1]

[
1
2

Λ2
⊥

λ2
A

(1 − ξ∗) +
Λ⊥
λA

tanh
(

Λ⊥
λA

ξ∗

)]
= 0, (5.4)

where ξ∗ = x∗/Λ⊥. This equation implicitly determines the dependence x∗(t). At t >
Td, (5.4) has a root in the interval 0 < ξ∗ < 1.
Linear growth of an external current J0(t)= j∗(1+ t/T0) corresponds to a general

situation during an initial phase after the threshold has been exceeded. Numerically
calculated time evolution of main parameters under linear growth of J0(t) is shown
in Figs 2–4.
Figure 2 shows the time evolution of the normalized potential as a set of curves

ϕ(x, t)/ϕ∗ at equal intervals ∆τ = 0.04 of dimensionless time τ = t/T0. At the
initial phase the anomalous resistivity grows corresponding to the jump at j

(0)
z = j∗

of the function (3.2). The fast potential growth at this stage is specific for a ‘wide’
external current front with Λ⊥/λA � 1, as is seen from (5.2). Later, at the phase
with constant R(j(0)

z ) = R0, the potential increases much slower.
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Figure 2. The time evolution of the potential as a set of curves ϕ−1
∗ ϕ(x, t) at equal intervals

∆τ = 0.04 of dimensionless time τ = t/T0.

The time evolution of ϕ at the center of ARL x = 0 is explicitly shown in Fig. 3(a).
The fast growth of ϕ(t) during time interval Td is replaced by slower increase, after
ϕ(t) has reached the level ϕ∗.
The time evolution of j

(0)
z /j∗ − 1 during linear phase of the external current

growth is shown in Fig. 3(b). When the current has reached the level j∗, it remains
on this level for the time Td, and only continues to grow after this. The nominal
growth of external current J0/j∗ − 1 in the absence of ARL is indicated by dotted
line. In these figures the parameter Λ⊥/λA = 4.0.
The time evolution of the induced field-aligned current density jzA at the ARL

center x = 0 is shown in Fig. 4 for several values of the parameter Λ⊥/λA, indicated
near curves. This current induced during the transition from one plasma state to
another (within ARL) initially increases in absolute value totally compensating
for any further increase of an external current. However, after some time (Td) the
induced current cannot compensate for the growth of external current.
Now we consider the interaction with ARL of a field-aligned current front that

grows in time and then saturates at some level. This time behavior can be modeled
by the dependence J0(t) = j∗[1 + tanh(t/T0)]. The time evolution of the induced
current density jzA(0, t) for several values of the parameter Λ⊥/λA calculated for
this model is shown in Fig. 5, analogous to Fig. 4. At smaller values of Λ⊥/λA the
time evolution of jzA(0, t) under saturated current differs from that under linearly
growing external current. Figure 6 presents the corresponding set of the curves
j
(0)
z (t) − j∗ together with the applied external current ∆0 = J0 − j∗ (dotted line).
Once again, as in Fig. 3(b), one can see that the current through the ARL is delayed
for some time at the critical level j∗, and only then continue to grow.
The saturation level of the external current J0(t) with this time dependence is

J0(∞) = 2j∗. If this value does not exceed j∗[1 + 2(λA/Λ⊥)2] (see (5.3)), then for
relatively narrow current fronts Λ⊥/λA ≤

√
2 the total current j

(0)
z (x, t) is retarded
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Figure 3. (a) The time evolution of ϕ at the fixed point x = 0. (b) The same for j
(0)
z /j∗ − 1.

The nominal growth of external current J0/j∗ − 1 in the absence of ARL is indicated by a
dotted line. The parameter Λ⊥/λA = 4.0.
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Figure 4. The time evolution of the induced field-aligned current density jzA at the fixed
point x = 0 for several values of the parameter Λ⊥/λA, indicated near curves. The model of
linearly growing external current.
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Figure 5. The time evolution of the induced current density jzA(0, t) for several values of
the parameter Λ⊥/λA for the model of external current with saturation at some level.
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Figure 6. The set of the curves j
(0)
z (t)/j∗ − 1 (solid curves) together with the external

current J0/j∗ − 1 (dashed curve). The values Λ⊥/λA are indicated near corresponding
curves.
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Figure 7. The time evolution of spatial field-aligned structure of Alfvén impulse at the
background of an external current front for the case of ‘narrow’ ARL (Λ⊥/λA ≤

√
2).

The ‘snapshots’ of the field-aligned structure jz(z) are shown for several subsequent time
moments in the middle of the ARL (x = 0).

at the threshold level j∗ for an indefinitely long time, that is, Td = ∞. If the current
front is relatively wide, Λ⊥/λA >

√
2, then the total current is delayed for a finite

time Td at the threshold level, and then maxx j
(0)
z (x, t) continues to grow. For these

two cases, Fig. 7 (Λ⊥/λA ≤
√

2) and Fig. 8 (Λ⊥/λA = 2.0) show the time evolution
of spatial field-aligned structure of Alfvén impulse at the background of external
current front, described by the dependence (3.3). The ‘snapshots’ of the field-aligned
structure jz(z) are shown for several subsequent time moments in the middle of
the ARL (x = 0). The ARL location corresponds to z = 0. One can see that in the
case of a ‘narrow layer’ (Fig. 7), the ARL works as a ‘current limiter’ that does not
allow a current with density higher than a critical level j∗ to flow through the ARL.
However, in the case of a ‘wide layer’ (Fig. 8), the ARL just hampers the growth

of the external current for some time at a critical level, but then the current through
the ARL continues to increase. The changes of spatial scales in the range Λ⊥/λA ≤√

2 do not influence the resultant spatial–temporal pattern of induced disturbance.

5.2. Parabolic front

This example can be considered as a model of a general situation at an early stage,
when only the leading terms in the Taylor decomposition of the functions z0(x) and
J(z) are kept. Let us consider the situation when external current linearly grows,
and the critical front has a parabolic shape

z0(x) = ax2 = L‖x
2/L2

⊥,

J(z) = j∗ + bz = j∗(z/L‖ + 1),
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Figure 8. The time evolution of spatial field-aligned structure of Alfvén impulse at the
background of external current front for the case of ‘wide’ ARL (parameters ratio
Λ⊥/λA = 2.0 taken as an example). The ‘snapshots’ of the field-aligned structure jz(z)
are shown for several subsequent time moments in the middle of the ARL (x = 0).

where L‖ = VAT0 and L⊥ are longitudinal and transverse scales of the external
current front. Then

∆0(x, t) = b(VAt − ax2) = j∗(t/T0 − x2/L2
⊥). (5.5)

The region DAR is bounded by points x± = ±L⊥
√

t/T0. The principal distinction
of this example from the previous one is that here the region DAR first occurs at a
point, but then its size grows in time.
At the initial stage, while ϕ(x) ≥ ϕ∗, the potential is determined by (4.2) with∆0

from (5.5). Its solution with the conditions ϕ(x−) = ϕ(x+) = 0may be presented as

ϕ(x) =
1
12

ϕ∗

(
L⊥t

λAT0

)2[
5 − 6

(
x

x+
0
)2

+
(

x

x+

)4]
. (5.6)

This shows that | min ϕ(x)| grows as the square of time. The form of dependence
ϕ(x) is universal and is determined by the polynomial 1

12 (5 − 6ξ2 + ξ4), where ξ =
x/x+(t), and |ξ| ≤ 1. The minimum of ϕ(x) reaches the level ϕ∗, when L⊥t/λAT0 =√

12/5. Thus, the current j
(0)
z remains at the threshold level j∗ during the time

Td =

√
12
5

T0
λA
L⊥

.

At t > Td the region −x∗ < x < x∗ arises, where the solution is determined by
(4.4), and beyond this region (4.2) is still valid. Using the conditions ϕ(x±) = 0 and
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ϕ(±x∗) = ϕ∗ we obtain the solution, which has the form

ϕ(x, t) =

⎧⎪⎨
⎪⎩

ϕ1(x, t) at x∗ ≤ x ≤ x+,

ϕ2(x, t) at |x| ≤ x∗,

ϕ1(−x, t) at x− ≤ x ≤ −x∗,

(5.7)

where the functions ϕ1 and ϕ2 are determined by

ϕ1(x, t)
ϕ∗

=
x+ − x

x+ − x∗
+

(x+ − x)(x − x∗)
12λ2

AL2
⊥

[5x2
+ − (x + x∗)(x+ + x∗) − x2]

and

ϕ2(x, t)
ϕ∗

= 1 +
1

L2
⊥

[
x2

+ − x2 − 2λ2
A − (x2

+ − x2
∗ − 2λ2

A)
cosh(x/λA)
cosh(x∗/λA)

]
.

To find the joining point x∗ we use the smoothness condition, which for our given
example looks as follows (for ξ∗ = x∗/x+)

1
1 − ξ∗

−
(

L⊥t

λAT0

)2

P (ξ∗) −
√

t

T0

[
L⊥t

λAT0
(1 − ξ2

∗ ) − 2
λA
L⊥

]
tanh

(√
t

T0

L⊥
λA

ξ∗

)

− 2
t

T0
ξ∗ = 0, (5.8)

where the polynomial P (ξ∗) = 1
12 (5 − 7ξ∗ − ξ2

∗ + 3ξ3
∗ ). If L⊥t/(λAT0) >

√
12/5 =

1.5492, that is, at t > Td, (5.8) has a root in the interval 0 < ξ∗ < 1.
Calculations with the help of relations (5.7), (3.8) and (3.4) provide results similar

to the plane front case. The time evolution of ϕ for a parabolic front (not shown)
is similar to that shown in Fig. 3(a). The difference is that the fast growth of
|ϕ(x, t)| occurs not only in time, but expands fast from the ARL center, and the
time dependence is not linear (e.g. square of time at x = 0). The time evolutions of
j
(0)
z and induced current jzA are also similar to those shown in Fig. 3(b) and Fig. 4,
correspondingly.
Figures 9(a) and (b) present several successive ‘snapshots’ of the evolution of

the transverse spatial structure of the field-aligned current j
(0)
z (x) with the plane

and parabolic front, respectively, at various stages of the anomalous resistance
occurrence. In both cases, after retardation time Td the current j

(0)
z exceeds the

critical value in a spatially limited ‘tongue’, that grows in magnitude and expands
in space in the transverse direction.

6. Discussion: consequences of the model
The primary application of this model is the excitation of a transient magnetic pulse
during the auroral activity activation in the terrestrial magnetosphere. It is com-
monly assumed that the acceleration of precipitating electrons necessary for auroral
activation is produced by an anomalous field-aligned electric field. The analytical
consideration of the anomalous resistivity onset in this paper has shown that during
the entrance of field-aligned current front into the ARL, the Alfvénic impulse is
generated. Therefore, the occurrence of such an impulse signifies the ‘switch-on’ of
the anomalous resistivity on auroral field lines and thus may be an indicator of the
transition of a global magnetospheric instability into the phase with ionospheric
feedback. The occurrence of resonant features of the ionosphere–magnetosphere
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Figure 9. The evolution of the transverse spatial structure of the field-aligned current j
(0)
z (x)

for a model with the (a) plane and (b) parabolic front of the external current at various stages
of the anomalous resistance occurrence.

system can produce oscillatory transient response. This mechanism can contribute
to the generation of transient impulsive signals at auroral latitudes, classified as Pi2
pulsations. Indeed, a general association within a fewminutes between the Pi2 wave
train and the substorm onset, auroral breakup, onset of geomagnetic bay and ex-
plosive phenomena in the nightside terrestrial magnetosphere (current disruption,
dipolarization, X-line formation, bursty bulk flows, etc.) is well established [17–19].
At auroral latitudes, Pi2 transient disturbances probably, in fact, comprise inputs
from several possible driver mechanisms, and a ‘classical’ Pi2 waveform, isolated
damping quasi-sinusoidal train, is commonly observed at middle latitudes [20].
Because of multiple possible nearly simultaneous contributions to Pi2 pulsations,
still there is no confirmative physical interpretation of their generation mechanism.
The fine temporal structure of auroral Pi2 may be used as a clue to the understand-
ing and monitoring of a substorm explosive phase. Recently, the dedicated analysis
of the magnetic array data indeed revealed the contributions from several sources
into the auroral Pi2 signals [21, 22]. We suppose that such an additional transient
Pi2-like signal is generated during the sudden occurrence of ARL during substorm
onset on auroral field lines, as was originally suggested by Arykov and Maltsev [11].
The interaction of current with ARL results in the delay of the current growth

through the layer by the time about Td. Calculations show that the delay time Td
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as compared with the nominal growth time of the external current T0 = L‖/VA is
as follows

Td
T0

� λA
L⊥

.

Therefore, an ARL operates as a kind of ‘current limitation device’ that does not
allow an external current to exceed a critical level. Depending on the ratio between
the Alfvén damping scale λA and external current width L⊥, the retardation time
Td may vary in a wide range (up to infinity!).
A number of plasma effects have been neglected in our consideration. The occur-

rence of anomalous resistance is to be accompanied by the plasma heating and
formation of pressure gradients. However, we assume that the process of the Alfvén
front interaction with ARL considered here is faster than a heating process. Then,
in a weakly turbulent plasma, nonlinear wave interaction provides a nonlinear fre-
quency shift, namely ω2

k → ω2
k +δ2

k. The modification of dispersion relationship cal-
culated by Aleksin et al. [23] is by order of magnitude δ2/ω2 ∼ (k⊥/k‖)2(W/B2)2/3,
where W is the energy density of turbulent pulsations. However, the neglected
effects cannot noticeably modify the results obtained.

7. Conclusion
Our analysis has shown that the onset of anomalous resistance in a current-carrying
plasma is to be accompanied by MHD effects. These MHD effects can result in the
generation of kink Alfvénic disturbance and termination of the external current
growth. The magnitude of the effect is dependent on the ratio between the trans-
verse scale of the external current and specific parameter of the ARL, the Alfvén
resistive scale λA. The retardation of the external current growth is important for
a ‘wide’ anomalous resistivity domain (Λ⊥ � λA), whereas a ‘narrow’ anomalous
resistivity domain (L⊥ � λA) does not exert a significant influence on the external
current.
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